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Abstract
In Caspers et al. (Can. J. Math. 75[6] [2022], 1–18), transference results between multilinear Fourier and Schur
multipliers on noncommutative Lp-spaces were shown for unimodular groups. We propose a suitable extension
of the definition of multilinear Fourier multipliers for non-unimodular groups and show that the aforementioned
transference results also hold in this more general setting.

1. Introduction

A central problem in classical harmonic analysis is finding conditions on symbols φ ∈ L∞(Rn) such
that the associated Fourier multiplier Tφ is bounded on Lp(Rn). One can replace R

n here by any locally
compact abelian group in a straightforward way. For non-abelian groups G, there is no Pontryagin dual;
instead, the Fourier multiplier corresponding to a function φ on G is a map on the group von Neumann
algebra. It is given by λs �→ φ(s)λs for s ∈ G, where λ is the left regular representation. Equivalently, it is
given by λ(f ) �→ λ(φf ) for f ∈ L1(G). It turns out that symbols φ ∈ L∞(G) give rise to bounded Fourier
multipliers on LG precisely when φ defines a multiplier on the Fourier algebra A(G), which coincides
with the predual of LG.

Another interesting question is which symbols φ ∈ L∞(G) give rise to a completely bounded multi-
plier on LG. Bozejko and Fendler [1] showed that this happens exactly when φ defines a bounded Schur
multiplier of Toeplitz type on B(L2(G)), and in that case, the completely bounded norms are equal. This
is called a transference result between Fourier and Schur multipliers. A different proof of this transfer-
ence result was later provided by Jolissaint [13]. This relation between Fourier and Schur multipliers has
been an important tool to prove several multiplier results. For instance, bounding the norm of Fourier
multipliers by that of Schur multipliers played a crucial role in [21]. The converse transference was used
in [20] to give examples of bounded multipliers on Lp-spaces that are not completely bounded. Similar
transference techniques were used in [4] to prove Hörmander-Mikhlin criteria for the boundedness of
Schur multipliers and in [17] to find examples of noncommutative Lp-spaces without the completely
bounded approximation property.

There are several papers treating transference results for the noncommutative Lp-spaces Lp(LG).
Neuwirth and Ricard studied this question for discrete groups [18]. In this case, the Fourier multipliers
are relatively straightforward to define on Lp(LG). They proved that if φ defines a completely bounded
Fourier multiplier on Lp(LG), then it defines a completely bounded Schur multiplier on the Schatten
class Sp(L2(G)). Moreover, they proved that the converse implication also holds provided that the group
G is amenable. Later, Caspers and De la Salle [3] defined Fourier multipliers on the noncommutative
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Lp-spaces of general locally compact groups and proved that the same transference results also hold
here. An analogous result was proved by Gonzalez-Perez [10] for crossed products.

Juschenko, Todorov and Turowska [14] introduced multilinear Schur multipliers with respect to mea-
sure spaces. Such multipliers and the related notion of multiple operator integrals have been used to
prove several interesting results such as the resolution of Koplienko’s conjecture on higher order spec-
tral shift functions in [22]. Therefore, it is also interesting to consider transference between multilinear
Fourier and Schur multipliers. Todorov and Turowska [26] defined a multidimensional Fourier algebra
and proved a transference result for multiplicatively bounded multilinear Fourier and Schur multipliers.

To consider multilinear results on noncommutative Lp-spaces, one needs a (p1, . . . , pn)-version
of multiplicative boundedness. This was introduced by Caspers, Janssens, Krishnaswamy-Usha and
Miaskiwskyi [5] along the lines of Pisier’s characterisation of completely bounded norms in terms
of Schatten norms [20, Lemma 1.7]. Moreover, they proved a bilinear transference result for discrete
groups ‘along the way’ in [5, Proof of Theorem 7.2], in order to provide examples of Lp-multipliers for
semidirect products of groups. Multilinear transference was studied in a more general sense by Caspers,
Krishnaswamy-Usha and the author of the present manuscript in [6], but only for unimodular groups.
They obtained a generalisation of the linear transference results. As a direct consequence of this trans-
ference result, a De Leeuw-type restriction theorem was proven for the multiplicatively bounded norms.
In this paper, we complete the picture by proving a multilinear transference result for general locally
compact groups.

The main difficulty for non-unimodular groups comes from the fact that the Plancherel weight is
not tracial. This means that we have to deal with spatial derivatives, which in our case will just be the
multiplication operator with the modular function. It will be denoted by �. In particular, this raises the
question of how the multilinear Fourier multiplier should be defined for p<∞. It turns out that, in order
to prove transference results, one needs to use the definition that ‘leaves the�’s in place’. More precisely,
for ‘suitable’ fi (this will be defined later) and xi =�

1
2pi λ(fi)�

1
2pi , the Fourier multiplier is defined as

Tφ(x1, . . . , xn) =
∫

G×n

φ(s1, . . . , sn)f1(s1) . . . fn(sn)�
1

2p1 λs1�
1

2p1 . . . �
1

2pn λsn�
1

2pn ds1 . . . dsn.

A major drawback of this definition is that it is not suitable for interpolation results when n> 2, unless
the ‘intermediate’ pi’s are all equal to ∞, in which case it is open. All this will be discussed in Section 3.
Our first main result gives the multilinear transference from Fourier multipliers as defined above to
Schur multipliers. This is Theorem 4.1. The definitions of (p1, . . . , pn)-multiplicative norms are given
in Section 2.2.

Theorem A. Let G be a locally compact first countable group, and let 1 ≤ p ≤ ∞, 1< p1, . . . , pn ≤ ∞
be such that p−1 =∑n

i=1 p−1
i . Let φ ∈ Cb(G×n) and define φ̃ ∈ Cb(G×n+1) by

φ̃(s0, . . . , sn) = φ(s0s
−1
1 , s1s

−1
2 , . . . , sn−1s−1

n ), si ∈ G.

If φ is the symbol of a (p1, . . . , pn)-multiplicatively bounded Fourier multiplier Tφ of G, then φ̃ is the
symbol of a (p1, . . . , pn)-multiplicatively bounded Schur multiplier Mφ̃ of G. Moreover,

‖Mφ̃ : Sp1 (L2(G)) × . . .× Spn (L2(G)) → Sp(L2(G))‖(p1,...,pn)−mb

≤ ‖Tφ : Lp1 (LG) × . . .× Lpn (LG) → Lp(LG)‖(p1,...,pn)−mb.

The proof is mostly an adaptation of the proof of [6, Theorem 3.1]. [6, Theorem 3.1] in turn has
a large overlap with [5, Lemma 4.6]. For that reason, the proof of [6, Theorem 3.1] only sketches the
changes compared to [5, Lemma 4.6]. As it seems undesirable to keep stacking sketches of changes, we
have chosen to include the proof in full detail here. However, most of the work in generalising to the
non-unimodular case comes from generalising the reduction lemmas [5, Lemmas 4.3 and 4.4]. We do
this already in Section 3. Note that [5, Lemma 4.4] does not give any details for the proof even though
it is not that trivial even in the unimodular case. In Lemma 3.8, we give an elegant induction argument
that fills this gap.
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Also, we need an extension of the intertwining result [5, Proposition 3.9] for non-unimodular groups,
which we state in Proposition 4.3. We will sketch the proof in a separate technical section at the end.
We also note that in [6, Theorem 3.1], the group was required to be second countable, but in the proof,
actually, only first countability was needed.

For amenable groups, we also have the converse transference result. In fact, one no longer needs a
continuous symbol nor the first countability condition on the group. This is Corollary 5.2.

Theorem B. Let G be an amenable locally compact group and 1 ≤ p, p1, . . . , pn ≤ ∞ be such that 1
p
=∑n

i=1
1
pi

. Let φ ∈ L∞(G×n) and define φ̃ as in Theorem 1.1. If φ̃ is the symbol of a (p1, . . . , pn)-bounded
(resp. multiplicatively bounded) Schur multiplier, then φ is the symbol of a (p1, . . . , pn)-bounded (resp.
multiplicatively bounded) Fourier multiplier. Moreover,

‖Tφ‖(p1,...,pn) ≤ ‖Mφ̃‖(p1,...,pn), ‖Tφ‖(p1,...,pn)−mb ≤ ‖Mφ̃‖(p1,...,pn)−mb.

Again, the proof is similar to [6] but with additional technical complications. We also abstain from using
ultraproduct techniques since they were not actually necessary for the proof. It should be noted that if
pi = ∞ for some 1 ≤ i ≤ n, then our methods only yield the above boundedness results of the multilinear
Fourier multiplier on C∗

λ
(G) in the i’th input (and conversely, boundedness on C∗

λ
(G) is all we need for

the converse direction in Theorem A). Of course, if p1 = . . .= pn = p = ∞, then the result from [26]
guarantees that the Fourier multiplier is indeed bounded on (LG)×n.

As a result of Theorem B, we again get a multilinear De Leeuw-type restriction theorem.
Finally, we describe the structure of the paper. We start by giving the necessary preliminaries in

Section 2. We also give a new definition of (linear) p-Fourier multipliers here. In Section 3, we discuss
possible definitions of the multilinear Fourier multiplier and explain why the definition as stated above is
the correct one for transference. We also prove some properties of the multilinear Fourier multiplier that
we will need later. In Sections 4 and 5, we prove the transference from Fourier to Schur (Theorem A)
and transference from Schur to Fourier (Theorem B), respectively. In Section 6, we sketch the proof of
Proposition 4.3 using Haagerup reduction. This section is rather technical and not essential to understand
the bigger picture.

2. Preliminaries

A more elaborate discussion of some of the statements in this section is contained in the author’s PhD
thesis [27].

2.1. Lp-spaces of group von Neumann algebras for noncommutative groups

Let G be a locally compact group, not necessarily unimodular. We will denote the left Haar measure of
such a group by μ := μG. Its modular function will be denoted by�. Recall that� : G → (R>0, ×) is a
continuous group homomorphism satisfying∫

G

f (s−1)�(s−1)dμ(s) =
∫

G

f (s)dμ(s) =�(t)
∫

G

f (st)dμ(s), t ∈ G, f ∈ L1(G).

In the sequel, we will write ds for the left Haar measure.
The left regular representation λ acts on L2(G) by (λsf )(t) = f (s−1t). It also defines a ∗-representation

of the ∗-algebra L1(G) on L2(G) by the formula

λ(f )g =
∫

G

f (s)(λsg)ds = f ∗ g.

The group von Neumann algebra LG of G is defined as
LG = {λs : s ∈ G}′′ = {λ(f ) : f ∈ L1(G)}′′.
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The group von Neumann algebra admits a canonical weight ϕ, named the Plancherel weight. It is defined
for x ∈LG by

ϕ(x∗x) =
{

‖f ‖2
2 if x = λ(f ) for some f ∈ L2(G)

∞ else.

Here, we extend λ to all functions that define a bounded convolution operator. The Plancherel weight
is tracial if and only if G is unimodular. Similarly, there is a right regular representation ρ defined by
(ρsf )(t) =�1/2(s)f (ts) and a Plancherel weight ψ on (LG)′ defined as ψ(x∗x) = ‖f ‖2

2 if x is given by
x = ρ(f ) for some f ∈ L2(G) and ψ(x) = ∞ otherwise. In practice, the group LG is often semifinite even
when G is not unimodular, but it is more natural to work with the Plancherel weight. For instance, the
definition of ϕ gives the Plancherel identity (2.2) below.

Let Lp(LG) denote the Connes–Hilsum Lp-space corresponding to the Plancherel weight ψ on (LG)′

([7],[11]; see also [25]). To keep this paper more accessible, we will not be using the Tomita–Takesaki
theory or the theory of spatial derivatives, except for the last section. Instead, we will use some facts
about the Connes–Hilsum Lp-spaces as a black box. First, for 1 ≤ p<∞, elements of Lp(LG) are
closed unbounded operators on L2(G), and sums and products of such operators are densely defined
and preclosed. Addition and multiplication on Lp(LG) are defined by taking the closures of the result-
ing sum resp. product, and we will use the usual addition and multiplication notations for this. For any
x ∈ Lp(LG), 1 ≤ p ≤ ∞, we have

‖λsxλt‖Lp(LG) = ‖x‖Lp(LG), s, t ∈ G. (2.1)

The spatial derivative dϕ
dψ

is just multiplication with the modular function �; see, for instance, [3,
Section 3.5] for more details. With slight abuse of notation, we will denote this operator by� as well. The
domain of this operator is exactly the set of functions f ∈ L2(G) such that

∫
G
�2(s)|f (s)|2ds<∞. Usually,

we will only apply � to continuous compactly supported functions so that no technical complications
can arise.

Now define L := λ(Cc(G) �Cc(G)), where Cc(G) �Cc(G) is the linear span of elements of the form
f ∗ g, f , g ∈ Cc(G). For θ ∈ [0, 1] and 1 ≤ p<∞, there is an embedding κθp : L → Lp(LG) given by

κθp (x) =�(1−θ)/px�θ/p.

For p = ∞, we simply set κθp to be the identity. The images of the embeddings κθp are dense in Lp(LG),
which will be crucial in the rest of the paper.

We now state some other facts for later use. From the definitions of the Lp-norm and the Plancherel
weight, we have the following Plancherel identity:

‖λ(f )�1/2‖L2(LG) = ‖f ‖2, f ∈ L2(G) ∩ L1(G). (2.2)

As a side note, this implies that the map Cc(G) �→ κ1
2 (λ(Cc(G))), f �→ λ(f )�1/2 extends to a unitary

L2(G) ∼= L2(LG). Next, a straightforward calculation yields the following commutation formulae:

�zλs =�z(s)λs�
z, z ∈C, s ∈ G (2.3)

and

�zλ(f ) = λ(�zf )�z, z ∈C, f ∈ Cc(G). (2.4)

Also, note that for f = g ∗ h, g, h ∈ Cc(G) and z ∈C, we have

(�zf )(s) =�z(s)
∫

G

g(t)h(t−1s)dt =
∫

G

�z(t)g(t)�z(t−1s)h(t−1s)dt = ((�zg) ∗ (�zh))(s) (2.5)

and therefore �z(Cc(G) �Cc(G)) = Cc(G) �Cc(G). Hence, (2.4) yields that

κθp (L) = κ0
p (L), ∀ θ ∈ [0, 1]. (2.6)
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2.2. Operator spaces and multiplicatively bounded maps

Let E1, . . . , En, E be operator spaces and T : E1 × . . .× En → E a linear map. For N ≥ 1, the multiplica-
tive amplification T (N) : MN(E1) × . . .MN(En) → MN(E) of T is defined as

T (N)(α1 ⊗ x1, . . . , αn ⊗ xn) = α1 . . . αn ⊗ T(x1, . . . , xn), αi ∈ MN(C), xi ∈ Ei

and extended linearly. The map T is said to be multiplicatively bounded if

‖T‖mb := sup
N≥1

‖T (N)‖<∞.

Let us now define a notion of p-completely bounded maps. Set E = Lp(M,ψ) for some von Neumann
algebra M and normal faithful semifinite weight ψ on M′. Let x ∈ MN(E); then x is closable and
[x] ∈ Lp(Mn(M), trN ⊗ψ). Here trN is the trace on MN(C). Now we set SN

p ⊗ Lp(M,ψ) to be the space
Mn(Lp(M,ψ)) equipped with the norm

‖x‖SN
p ⊗Lp(M,ψ) := ‖[x]‖Lp(MN (M),trN⊗ψ).

We say that an operator T : Lp(M,ψ) → Lp(M,ψ) is p-completely bounded if

‖T‖p−cb := sup
N≥1

‖T (N) : SN
p ⊗ Lp(M,ψ) → SN

p ⊗ Lp(M,ψ)‖<∞.

The matrix norms satisfy

‖α⊗ x‖SN
p ⊗Lp(M,ϕ) = ‖α‖SN

p
‖x‖Lp(M,ϕ), α ∈ SN

p , x ∈ Lp(M, ϕ). (2.7)

For semifinite M, this is an easy exercise; for arbitrary von Neumann algebras, this requires some
analysis on the interplay between spatial derivatives and matrices.

We note that the norm on SN
p ⊗ Lp(M,ψ) does not give an operator space structure on Lp(M,ψ), as

it does not satisfy the axioms. However, if M is semifinite, then the notion of p-completely bounded
maps coincides with the usual notion of completely bounded maps by [20].

We now define a (p1, . . . , pn)-multiplicatively bounded norm in a similar manner. Let 1 ≤
p1, . . . , pn, p ≤ ∞ with p−1 =∑n

i=1 p−1
i . We define a map T : Lp1 (M) × . . .× Lpn (M) → Lp(M) to be

(p1, . . . , pn)-multiplicatively bounded if

‖T‖(p1,...,pn)−mb := sup
m≥1

‖T (m) : Sm
p1

⊗ Lp1 (M) × . . .× Sm
pn

⊗ Lpn (M) → Sm
p ⊗ Lp(M)‖<∞.

This turns out to be the correct notion to prove our transference results. We note that this time, there
does not seem to be a case for which this coincides with ‘normal’ multiplicative boundedness, as [20,
Lemma 1.7] does not generalise to the multilinear case. If M is semifinite, then the above definition
does coincide with the definition of (p1, . . . , pn)-multiplicative boundedness from [5] and [6]. Even in
the semifinite case, it is unclear if this definition corresponds to the complete boundedness of some
linear map on some appropriate tensor product; see [6, Remark 2.1].

2.3. Fourier multipliers

Again let G be a locally compact group. For a bounded function φ : G →C, the associated Fourier
multiplier Tφ : LG →LG is given for f ∈ L1(G) by λ(f ) �→ λ(φf ), whenever this map extends weak-∗
continuously. This definition has been extended to Lp(LG) for general locally compact groups in [3].
However, this was done only for symbols φ ∈ McbA(G), that is, those symbols for which Tφ defines a
completely bounded multiplier on LG. We give a broader definition here as preparation for the multi-
linear definition. Define LG(γ ) to be the space of closed densely defined γ -homogeneous operators on
L2(G). See [25, Section III, IV] for a definition and some properties. We use here the facts that this space
contains Lp(LG) and that the right-hand side of (2.8) is always in LG(−1/p) ([25, III.(19) and Corollary
III.34]).
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For φ ∈ L∞(G), define Tφ : κθp (L) →LG(−1/p) by

Tφ(κθp (λ(f ))) =�
1−θ

p λ(φf )�
θ
p , f ∈ Cc(G) �Cc(G), 1 ≤ p<∞, θ ∈ [0, 1] (2.8)

The map Tφ does not depend on the choice of θ ; this follows from (2.6) and some manipulations using
the commutation formula (2.4). When the image of Tφ lies in Lp(LG) and Tφ extends continuously to a
bounded map on Lp(LG), we say that φ defines a p-Fourier multiplier. When the extension is moreover
p-completely bounded on Lp(LG), we say φ defines a p-cb Fourier multiplier. For φ ∈ McbA(G), the
definition of the Fourier multiplier coincides with that of [3]. For p = 1, this can be shown by using [3,
Proposition-Definition 3.5] and (2.10) below together with [3, Theorem 6.2 (ii), (iv)]; for other p, this
follows by interpolation.

Let us now state some known results about when symbols define p- or p-cb Fourier multipliers.
Let A(G) be the Fourier algebra; it is defined as A(G) = {f ∗ g̃ : f , g ∈ L2(G)} where g̃(s) = g(s−1). It is
isomorphic to L1(LG), the predual of LG, through the pairing

〈ψ , λ(f )〉 =
∫

G

ψ(s)f (s)ds, ψ ∈ A(G), f ∈ L1(G).

From classical theory (see, e.g. [16, Proposition 5.1.2]), it is known that φ ∈ M(A(G)) if and only if
φ defines a ∞-Fourier multiplier. In the same way as in [3, Proof of Definition-Proposition 3.5], one
proves that in this case, φ defines a p-Fourier multiplier for all 1 ≤ p ≤ ∞. Trivially, A(G) ⊆ M(A(G)),
and hence A(G) provides us with plenty of symbols defining p-Fourier multipliers; we will use this fact
later on. As mentioned above, if φ is a ∞-cb Fourier multiplier (i.e. φ ∈ McbA(G)), then φ is also a p-cb
Fourier multiplier for 1 ≤ p ≤ ∞. This is proven in [3, Definition-Proposition 3.5].

Let us now turn our attention to the multilinear case. In [26], Mcb
n A(G) was defined to be the space of

all symbols φ ∈ L∞(G×n) such that the map

(λs1 , . . . , λsn ) �→ φ(s1, . . . , sn)λs1...sn

extends to a multiplicatively bounded normal map (LG)×n →LG. In [6], multilinear Fourier multipliers
on the noncommutative Lp-spaces were defined for unimodular groups G as follows. Let φ ∈ L∞(G×n)
and 1 ≤ p1, . . . , pn, p<∞ with p−1 =∑n

i=1 p−1
i . Consider the map Tφ : L×n →LG defined by

Tφ(λ(f1), . . . , λ(fn)) =
∫

G×n

φ(t1, . . . , tn)f1(t1) . . . fn(tn)λt1...tn dt1 . . . dtn

for fi ∈ Cc(G) �Cc(G). If this map takes values in Lp(LG) and extends continuously to Lp1 (LG) × . . .×
Lpn (LG), then we say that φ defines a (p1, . . . , pn)-Fourier multiplier. The extension is again denoted by
Tφ . In case pi = ∞, we replace Lpi (LG) by C∗

λ
(G) in the i’th coordinate. If the extension is (p1, . . . , pn)-

multiplicatively bounded, then we say that φ defines a (p1, . . . , pn)-mb Fourier multiplier.
This definition works only for unimodular groups if p<∞ since L is not contained in Lp(LG)

otherwise. In Section 3, we will give the definition for non-unimodular groups.

Remark 2.1. We note that a priori, the set of symbols of (∞, . . . , ∞)-mb Fourier multipliers is smaller
than Mcb

n A(G). However, these sets are actually the same. This follows, for instance, from a combination
of our results and [26, Theorem 5.5]. One does not need the complicated machinery of Section 4 however.
It follows already from the proof of [26, Theorem 5.5] or from the alternative proof of the Fourier to
Schur direction in [6, Proposition 2.3], which it suffices to require that Tφ is bounded on (C∗

λ
(G))×n.

2.4. Schatten classes and Schur multipliers

We denote by Sp(H) the standard Schatten classes on the Hilbert space H. If (X,μ) is some measure
space, then S2(L2(X)) can be isometrically identified with the space of kernels L2(X × X). Through this
identification, a kernel A ∈ L2(X × X) corresponds to the operator (Aξ )(s) = ∫

X
A(s, t)ξ (t)dt. This should
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be seen as a continuous version of matrix multiplication. We will make no distinction between an oper-
ator A and its kernel. For 1 ≤ p ≤ 2 ≤ p′ ≤ ∞ with 1

p
+ 1

p′ = 1, the dual pairing between Sp(L2(X)) and
Sp′ (L2(X)) is given by

〈A, B〉p,p′ =
∫

X×2

A(s, t)B(t, s)dtds, A ∈ Sp(L2(X)), B ∈ S2(L2(X)). (2.9)

This assignment is extended continuously for general B ∈ Sp′ (L2(X)). We refer to [17] Section 1.2] for
more details.

For φ ∈ L∞(X×n+1), the associated Schur multiplier is the multilinear map S2(L2(X)) × . . .×
S2(L2(X)) → S2(L2(X)) determined by

Mφ(A1, . . . , An)(t0, tn) =
∫

X×n−1

φ(t0, . . . , tn)A1(t0, t1)A2(t1, t2) . . . An(tn−1, tn)dt1 . . . dtn−1.

It follows by Cauchy–Schwarz and a straightforward calculation that Mφ does indeed take values in
S2(L2(X)) (see, for instance, [6]). Now let 1 ≤ p, p1, . . . , pn ≤ ∞, with p−1 =∑n

i=1 p−1
i . Restrict Mφ in the

i-th input to S2(L2(X)) ∩ Spi (L2(X)). Assume that this restriction maps to Sp(L2(X)) and has a bounded
extension to Sp1 (L2(X)) × . . .× Spn (L2(X)). Then we say that φ defines a (p1, . . . , pn)-Schur multiplier.
Its extension is again denoted by Mφ . If Mφ is (p1, . . . , pn)-multiplicatively bounded, then we say that φ
defines a (p1, . . . , pn)-mb Schur multiplier.

The following theorem is [6, Theorem 2.2]; see also [17, Theorem 1.19] and [3, Theorem 3.1]. It will
be the starting point for the proof of Theorem 4.1.

Theorem 2.2. Let μ be a Radon measure on a locally compact space X and φ : Xn+1 →C a continuous
function. Let K > 0. The following are equivalent for 1 ≤ p1, . . . , pn, p ≤ ∞:

(i) φ defines a bounded Schur multiplier Sp1 (L2(X)) × . . .× Spn (L2(X)) → Sp(L2(X)) with norm less
than K.

(ii) For every σ -finite measurable subset X0 in X, φ restricts to a bounded Schur multiplier
Sp1 (L2(X0)) × . . .× Spn (L2(X0)) → Sp(L2(X0)) with norm less than K.

(iii) For any finite subset F = {s1, . . . , sN} ⊂ X belonging to the support of μ, the symbol φ|F×(n+1)

defines a bounded Schur multiplier Sp1 (�2(F)) × . . .× Sp2 (�2(F)) → Sp(�2(F)) with norm less
than K.

The same equivalence is true for the (p1, . . . , pn) − mb norms.

Now let G again be a locally compact group. In general, one has Lp(LG) ∩ Sp(L2(G)) = {0}, so we
cannot directly link Fourier and Schur multipliers as in the case p = ∞. In Section 5, we will use the
following trick from [3] to circumvent this difficulty. Let F ⊆ G be a relatively compact Borel subset of G
with positive measure and PF : L2(G) → L2(F), f �→ 1Ff the orthogonal projection. Then for x ∈ Lp(LG),
one can formally define the operator PFxPF, which lies in Sp(L2(G)). We refer to [3, Proposition 3.3,
Theorem 5.1] for details.

Let F ⊆ G compact. We calculate the kernel of PF�
aλ(f )�bPF: for g ∈ Cc(G) and s ∈ G, we have

(PF�
aλ(f )�bPFg)(s) = 1F(s)�a(s)

∫
G

f (t)�b(t−1s)1F(t−1s)g(t−1s)dt

= 1F(s)�a(s)
∫

G

f (st)�b(t−1)1F(t−1)g(t−1)dt

= 1F(s)�a(s)
∫

G

f (st−1)�b(t)1F(t)�(t−1)g(t)dt.

Hence the kernel of PF�
aλ(f )�bPF is given by

(s, t) �→ 1F(s)�a(s)f (st−1)�b−1(t)1F(t). (2.10)
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3. The definition of multilinear Fourier multipliers for non-unimodular groups

In this section, G is an arbitrary locally compact group. Let 1 ≤ p1, . . . , pn, p ≤ ∞ with p−1 =∑n
i=1 p−1

i

and φ ∈ L∞(G×n). In this section, we explore what a suitable definition for the Fourier multiplier
Tφ : Lp1 (LG) × . . . Lpn (LG) → Lp(LG) might be. Our first requirement is that it must coincide with the
linear definition for n = 1; that is, it must satisfy (2.8).

Second, we would like the definition to be compatible with interpolation arguments. More precisely,
if Tφ is bounded as a map LG × . . .×LG →LG and as a map Lp1 (LG) × . . .× Lpn (LG) → Lp(LG),
then it should also be bounded as map L p1

ν
(LG) × . . .× L pn

ν
(LG) → L p

ν
(LG) for all 0< ν < 1. This

means that the definition must be ‘compatible’ with the definition on (LG)×n, in the sense that in each
input, the maps Tφ must coincide on the intersection space of some compatible couple (with respect to
some θ ). This tells us what the Fourier multiplier should look like on the dense subsets κθpi

(L):

Definition 3.1 (‘Wrong definition’). Let θ1, . . . , θn, θ ∈ [0, 1] and xi = κθi
pi

(λ(fi)) for i = 1, . . . , n, where
fi ∈ Cc(G) ∗ Cc(G). We set

Tθ1,...,θn ,θ
φ,int (x1, . . . , xn) = κθp (Tφ(λ(f1), . . . , λ(fn))). (3.1)

Definition 3.1 might seem reasonable at first glance; it coincides with the linear definition for n = 1,
and it is the only option if we want interpolation results. However, there are several problems with
Definition 3.1. First, the definition depends on the choice of embeddings, which is not an issue in the
linear case. Second, there are several properties of multilinear Fourier multipliers on unimodular groups,
which do not carry over. This includes, for instance, [5, Lemma 4.3 and Lemma 4.4], which are crucial
in the proof of the transference from Fourier to Schur multipliers. Moreover, if we want to prove an
approximate intertwining property as in (5.1), Corollary 5.5 tells us that the definition of the Fourier
multiplier has to ‘preserve products of linear multipliers’, in the sense that

Tφ(x1, . . . , xn) = Tφ1 (x1) . . . Tφn (xn)

whenever φ(s1, . . . , sn) = φ1(s1) . . . φn(sn). Definition 3.1 does not do this. This means that there is
essentially no hope of proving the transference from Schur to Fourier multipliers either.

The above requirement on the preservation of products leads us to consider instead the following
definition. Let θi ∈ [0, 1] and set ai = 1−θi

pi
and bi = θi

pi
so that κθi

pi
(x) =�ai x�bi . Now for fi ∈ Cc(G) �Cc(G),

we formally define the Fourier multiplier corresponding to θ1, . . . , θn by

Tφ,(θ1,...,θn)(κ
θ1
p1

(λ(f1)), . . . , κ
θn
pn

(λ(fn))) =
∫

G×n

φ(t1, . . . , tn)f1(t1) . . . fn(tn)×
�a1λt1�

b1+a2λt2 . . . �
bn−1+anλtn�

bn dt1 . . . dtn. (3.2)

A priori, it is not clear how to define the integral in (3.2). After all, the integrand

H(t1, . . . , tn) := φ(t1, . . . , tn)f1(t1) . . . fn(tn)�
a1λt1�

b1+a2λt2 . . . �
bn−1+anλtn�

bn

is a function that has unbounded operators as values. However, on closer inspection, the ‘unbounded
part’ of this operator doesn’t really depend on the integration variables. Indeed, using the commutation
formula (2.3), we can write

H(t1, . . . , tn)

= φ(t1, . . . , tn)f1(t1) . . . fn(tn)�
a1 (t1)�

a1+a2+b1 (t2) . . . �
∑n

i=1 ai+∑n−1
i=1 bi (tn)λt1...tn�

1/p

= φ(t1, . . . , tn)(�
β1 f1)(t1) . . . (�

βn fn)(tn)λt1...tn ·�1/p, βj =
j∑

i=1

ai +
j−1∑
i=1

bi.
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Note here that the functions �βi fi are still in Cc(G) �Cc(G) by (2.5). Hence, a more rigorous way to
define the Fourier multiplier is

Tφ,(θ1,...,θn)(κ
θ1
p1

(λ(f1)), . . . , κ
θn
pn

(λ(fn))) = Tφ(λ(�β1 f1), . . . , λ(�βn fn))�
1/p.

However, we will keep the notation from (3.2). The integral is justified through the above arguments.
The latter expression also makes clear that (3.2) takes values in the space of closed densely defined
( − 1/p)-homogeneous operators on L2(G) (see [25, III.(19) and Corollary III.34]). Just as in the linear
case, it is not clear that (3.2) takes values in Lp(LG) in general; this will be part of the assumptions.

It turns out that the operator Tφ,(θ1,...,θn) in (3.2) does not depend on the choice of θi’s:

Proposition 3.2. Let 1 ≤ p1, . . . , pn, p<∞ and θ1, . . . , θn ∈ [0, 1]. The maps Tφ,(θ1,...,θn) and Tφ,(0,...,0) coin-
cide on the space κ0

p1
(L) × . . .× κ0

pn
(L). Consequently, if one of the maps has an image in Lp(LG) and

extends continuously to Lp1 (LG) × . . .× Lpn (LG), then the other does as well, and these extensions are
equal.

Proof. Recall that by (2.6), κθi
pi

(L) = κ0
pi

(L) for i = 1 . . . , n. For any such i, take ai, bi as above, that
is, so that κθpi

(x) =�ai x�bi . Let fi ∈ Cc(G) �Cc(G) and set gi =�−bi fi. Then by (2.4), �aiλ(fi)�bi =
�1/p1λ(gi) =: xi, that is, κθi

pi
(λ(fi)) = κ0

pi
(λ(gi)). By (2.3), we find

Tφ,(θ1,...,θn)(x1, . . . , xn) =
∫

G×n

φ(t1, . . . , tn)f1(t1) . . . fn(tn)×
�a1λt1�

b1+a2λt2 . . . �
bn−1+anλtn�

bn dt1 . . . dtn

=
∫

G×n

φ(t1, . . . , tn)�
−b1 (t1)f1(t1)�

−b2 (t2)f2(t2) . . . �
−bn (tn)fn(tn)×

�1/p1λt1�
1/p2 . . . �1/pnλtn dt1 . . . dtn

=Tφ,(0,...,0)(�
1/p1λ(g1), . . . ,�

1/pnλ(gn)) = Tφ,(0,...,0)(x1, . . . , xn).

With this issue out of the way, we can now define Fourier multipliers independent of the choice of
θi’s:

Definition 3.3 (‘Correct definition’). Let 1 ≤ p1, . . . , pn, p ≤ ∞ with p−1 =∑n
i=1 p−1

i . Also let φ ∈
L∞(G×n). For i = 1, . . . , n, take any ai, bi ∈ [0, 1] such that ai + bi = p−1

i . If the map

Tφ : κ0
p1

(L) × . . .× κ0
pn

(L) →LG(−1/p)

which is given for xi =�aiλ(fi)�bi with fi ∈ Cc(G) �Cc(G) by

Tφ(x1, . . . , xn) =
∫

G×n

φ(t1, . . . , tn)f1(t1) . . . fn(tn)×
�a1λt1�

b1+a2λt2 . . . �
bn−1+anλtn�

bn dt1 . . . dtn, (3.3)

takes values in Lp(LG) and extends boundedly to Lp1 (LG) × . . .× Lpn (LG) in the norm topology (in
case pi = ∞ for some i, we use the space C∗

λ
(G) instead of L∞(LG) =LG in the i’th leg), then we

say that φ defines a (p1, . . . , pn)-Fourier multiplier. We denote the extension by Tφ or Tp1,...,pn
φ when

we wish to emphasise the domain of the operator. This is especially useful when writing an operator
norm since writing out the full domain and codomain generally makes equations too long. If Tφ is
(p1, . . . , pn)-multiplicatively bounded, then we say that φ defines a (p1, . . . , pn)-mb Fourier multiplier.

Clearly, for n = 1, Definition 3.3 reduces to (2.8). It does not give the problems that Definition 3.1
does; as we saw already, it does not depend on the choice of embeddings. Moreover, the properties [5,
Lemma 4.3 and 4.4] do carry over, as we show in Lemmas 3.6 and 3.8. Finally, it preserves products in
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the following more general way: if φ is such that there exist m< n and φ1 : G×m →C, φ2 : G×n−m →C

such that

φ(s1, . . . , sn) = φ1(s1, . . . , sm)φ2(sm+1, . . . , sn),

then

Tφ(x1, . . . , xn) = Tφ1 (x1, . . . , xm)Tφ2 (xm+1, . . . , xn). (3.4)

However, we have to give up interpolation results in general. The only instances where interpola-
tion might work is when the Lp-spaces ‘in the middle’ are all equal to C∗

λ
(G). Indeed, in that case,

we can take θ1 = 0, θn = 1, θ = p
pn

so that the Fourier multiplier Tφ from Definition 3.3 also satisfies
(3.1). We note that for n> 2 and pi <∞ for some 2 ≤ i ≤ n − 1, (3.3) is not of the form (3.1) for
any θ1, . . . , θn, θ , and hence Tφ cannot be a compatible morphism for any ‘usual’ compatible couple
structures on (LG, Lpi (LG))θi .

Remark 3.4. Although (3.1) is a necessary condition for the Fourier multiplier to allow interpolation,
we have not been able to prove that it is a sufficient condition. The issue is that to prove that the mapping
for (p1, . . . , pn) is compatible with the one for (∞, . . . , ∞), we have to prove that they coincide on the
entire intersection space Lp(LG) ∩LG (within the appropriate compatible couple structure). However,
we do not know whether L is dense in this space in the intersection norm. In fact, for p> 2, we do not
even know if T 2

ϕ
is dense in the intersection norm.

Remark 3.5. We could have just taken (the extension of) the map T
1
2 ,..., 1

2
φ as the definition of our Fourier

multiplier. This would have allowed us to skip Proposition 3.2, and all the proofs further on in this
paper would still work by approximating only with elements in the central embedding. However, the
more general definition allows some flexibility to choose convenient embeddings for notation or to avoid
some technicalities (in particular in Lemma 3.6).

Let us now prove some properties of the multilinear Fourier multiplier for later use. Lemmas 3.6, 3.7
and 3.8 are used in the proof of Theorem 4.1. Here, Lemma 3.6 generalises [5, Lemma 4.3], and Lemma
3.8 generalises [5, Lemma 4.4]. Since the proofs of these two lemmas require careful bookkeeping with
modular functions, we will give the full details. The proof of [5, Lemma 4.4] was omitted, but it is not
that trivial; our argument fills that gap.

Lemma 3.6. Let 1 ≤ pj, p ≤ ∞ and fix some 1 ≤ i ≤ n. Suppose that φ : G×n →C is bounded and
measurable and set for r, t, r′ ∈ G:

φ̄(s1, . . . , sn;r, t, r′) := φ(rs1, . . . , sit, t−1si+1, . . . , snr
′).

Then φ defines a (p1, . . . , pn)-Fourier multiplier (resp. (p1, . . . , pn)-mb Fourier multiplier) iff φ̄(·;r, t, r′)
defines a (p1, . . . , pn)-Fourier multiplier (resp. (p1, . . . , pn)-mb Fourier multiplier). In that case, for
xj ∈ Lpj (LG),

Tφ̄(·;r,t,r′)(x1, . . . , xn) = λ∗
r Tφ
(
λrx1, x2, . . . , xiλt, λ

∗
t xi+1, . . . , xnλr′

)
λ∗

r′ . (3.5)

Further, we have

‖Tp1,...,pn
φ ‖ = ‖Tp1,...,pn

φ̄(·;r,t,r′)‖
and (r, t, r′) �→ Tφ̄(·;r,t,r′) is strongly continuous. In the multiplicatively bounded case, we have for any
N ≥ 1

‖(Tp1,...,pn
φ )(N)‖ = ‖(Tp1,...,pn

φ̄(·;r,t,r′))
(N)‖

as maps SN
p1

[Lp1 (LG)] × . . .× SN
pn

[Lpn (LG)] → SN
p [Lp(LG)], and (r, t, r′) �→ T (N)

φ̄(·;r,t,r′) is strongly continu-
ous.
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Proof. It is straightforward to check that for s ∈ G, f ∈ Cc(G), we have λsλ(f ) = λ(λs(f )) = λ(f (s−1·));
moreover, we have

λ(f )λs =
∫

G

f (t)λtsdt =�(s−1)
∫

G

f (ts−1)λtdt =�(s−1)λ(f (·s−1)). (3.6)

We will only make a choice for some of the embeddings and leave the rest open; this is notationally more
convenient. Let xj =�ajλ(fj)�bj ∈ Lpj (LG), with fj ∈ Cc(G) �Cc(G) and a1 = bi = ai+1 = bn = 0 (hence
b1 = 1

p1
, ai = 1

pi
, etc). We compute

Tφ̄(·;r,t,r′)(x1, . . . , xn)

=
∫

G×n

φ̄(s1, . . . , sn;r, t, r′)f1(s1) . . . fn(sn)λs1�
b1+a2λs2 . . . �

bn−1+anλsn ds1 . . . dsn

=
∫

G×n

φ(s1, . . . , sn)f1(r
−1s1) . . . �(t)−1fi(sit

−1)fi+1(tsi+1) . . . �(r′)−1fn(sn(r
′)−1)×

λr−1s1�
b1+a2 . . . �bi−1+aiλsisi+1�

bi+1+ai+2 . . . �bn−1+anλsn(r′)−1 ds1 . . . dsn

= λ∗
r Tφ
(
x̃1, x2, . . . , x̃i, x̃i+1, . . . , x̃n

)
λ∗

r′ .

Here

x̃1 := λ(f1(r
−1·))�b1 ; x̃i := �−1(t)�aiλ(fi(·t−1));

x̃i+1 := λ(fi+1(t·))�bi+1 ; x̃n := �−1(r′)�anλ(fn(·(r′)−1)).

By (3.6), we can write

x̃n =�anλ(fn)λr′ = xnλr′

and similarly

x̃1 = λrx1; x̃i = xiλt; x̃i+1 = λ∗
t xi+1.

Combining everything together, we conclude

Tφ̄(·;r,t,r′)(x1, . . . , xn) = λ∗
r Tφ
(
λrx1, x2, . . . , xiλt, λ

∗
t xi+1, . . . , xnλr′

)
λ∗

r′ .

By (2.1), we have

‖Tφ̄(·;r,t,r′)(x1, . . . , xn)‖p = ‖Tφ
(
λrx1, x2, . . . , xiλt, λ

∗
t xi+1, . . . , xnλr′

)‖p

≤ ‖Tp1,...,pn
φ ‖‖x1‖p1 . . . ‖xn‖pn .

Hence, on the dense subsets of elements xj as above, we have ‖Tφ̃(·;r,t,r′)‖ ≤ ‖Tφ‖. If we setψ = φ̃(·;r, t, r′),
then ψ̃(·;r−1, t−1, (r′)−1) = φ. Hence, applying the above result to ψ̃(·;r−1, t−1, (r′)−1) yields the reverse
inequality. By density, we conclude that the first three statements of the lemma hold. By [15, Lemma
2.3], the (left or right) multiplication with λs, s ∈ G is strongly continuous in s. This implies the strong
continuity of (r, t, r′) �→ Tφ̃(·;r,t,r′).

Now assume φ defines a (p1, . . . , pn)-mb Fourier multiplier and let N ≥ 1. Denote by ιN the N × N-
identity matrix. Then by writing out the definitions and using (3.5), we find, for xi ∈ SN

pi
⊗ Lpi (LG),

T (N)
φ̄(·;r,t,r′)(x1, . . . , xn)

= (ιN ⊗ λ∗
r )T (N)

φ ((ιN ⊗ λr)x1, . . . , xi(ιN ⊗ λt), (ιN ⊗ λ∗
t )xi+1, . . . , xn(ιN ⊗ λr′ ))(ιN ⊗ λ∗

r′).

Hence, by a complete/matrix amplified version of the above arguments, we deduce the last two
statements.

Lemma 3.7. Let 1 ≤ pj, p ≤ ∞ and fix some 1 ≤ i ≤ n. Suppose that φ : G×n →C defines a (p1, . . . , pn)-
Fourier multiplier and φi : G →C defines a pi-Fourier multiplier. Set

φ̄(s1, . . . , sn) = φ(s1, . . . , sn)φi(si).
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Then φ̄ defines a (p1, . . . , pn)-Fourier multiplier and for xj ∈ Lpj (LG),

Tφ̄(x1, . . . , xn) = Tφ(x1, . . . , xi−1, Tφi (xi), xi+1, . . . , xn). (3.7)

In particular,

‖Tp1,...,pn

φ̄
‖ ≤ ‖Tp1,...,pn

φ ‖‖Tφi : Lpi (LG) → Lpi (LG)‖. (3.8)

Proof. For xj ∈ κ0
pj

(L) (or any other embedding), it follows directly from writing out the definitions
that (3.7) holds (cf. (2.8)). By density, (3.7) holds for general xj ∈ Lpj (LG), which implies (3.8), so Tp1,...,pn

φ̄

is bounded.

Lemma 3.8. Let 1 ≤ p1, . . . , pn ≤ ∞. Let q−1
j =∑n

i=j p−1
i and suppose that φj : G →C defines a qj-

Fourier multiplier for 1 ≤ j ≤ n. Set

φ̄(s1, . . . , sn) = φ1(s1 . . . sn)φ2(s2 . . . sn) . . . φn(sn).

Then φ̄ defines a (p1, . . . pn)-Fourier multiplier, and for xi ∈ Lpi (LG), we have

Tφ̄(x1, . . . , xn) = Tφ1 (x1Tφ2 (x2 . . . Tφn (xn) . . . )). (3.9)

Proof. We first show (3.9) on the dense subset κ0
pi

(L) × . . .× κ0
pn

(L). The lemma then follows from
the boundedness of the Tφi together with Hölder’s inequality.

We make the slightly stronger claim that for any φ2, . . . , φn as in the assumptions and any xi ∈ κ0
pi

(L),
there exists a compactly supported function g : G →C such that for all φ1 as in the assumptions,

Tφ̄(x1, . . . , xn) =�
1

q1 λ(φ1g) = Tφ1 (x1Tφ2 (x2 . . . Tφn (xn) . . . )). (3.10)

We will prove (3.10) with induction on n. We will need this intermediate step in order to expand the
outer Fourier multiplier in the right-hand side of (3.9).

The case n = 1 follows directly from (2.8). Now assume that (3.10) holds for any choice of
φ1, . . . , φn−1 as above and x1, . . . , xn−1 with xi ∈ κ0

p′
i
(L). Fix functions φ1, . . . , φn as in the assumptions

and x1, . . . , xn so that xi =�
1
pi λ(fi) for fi ∈ Cc(G) �Cc(G). Take g compactly supported such that for any

ψ : G →C defining a q2-Fourier multiplier,

Tψ (x2Tφ3 (x3 . . . Tφn (xn) . . . )) =�
1

q2 λ(ψg) = Tψ̄ (x2, . . . , xn) (3.11)

where ψ̄(s2, . . . , sn) =ψ(s2 . . . sn)φ3(s3 . . . sn) . . . φn(sn). We calculate

Tφ1 (x1Tφ2 (x2 . . . Tφn (xn) . . . ))
(3.11)= Tφ1 (�

1
p1 λ(f1)�

1
q2 λ(φ2g))

(2.4)= Tφ1 (�
1

q1 λ((�− 1
q2 f1) ∗ (φ2g)))

(2.8)= �
1

q1 λ(φ1((�
− 1

q2 f1) ∗ (φ2g))).

This shows the second equality from (3.10). Continuing the previous equation,

Tφ1 (x1Tφ2 (x2 . . . Tφn (xn) . . . )) =
∫

G

φ1(t)

(∫
G

(�− 1
q2 f1)(s1)(φ2g)(s−1

1 t)ds1

)
�

1
q1 λtdt

=
∫

G

∫
G

φ1(s1t)(�
− 1

q2 f1)(s1)(φ2g)(t)�
1

q1 λs1tdtds1

(2.3)=
∫

G

f1(s1)�
1

p1 λs1

∫
G

φ1(s1t)φ2(t)g(t)�
1

q2 λtdtds1

=
∫

G

f1(s1)�
1

p1 λs1�
1

q2 λ(φ1(s1·)φ2g)ds1.

https://doi.org/10.1017/S0017089524000326 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089524000326


Glasgow Mathematical Journal 13

Applying (3.11) again but now with φ1(s1·)φ2 in place of ψ , we get

Tφ1 (x1Tφ2 (x2 . . . Tφn (xn) . . . ))

=
∫

G

f1(s1)�
1

p1 λs1

∫
G×n−1

φ1(s1s2 . . . sn)φ2(s2 . . . sn)φ3(s3 . . . sn) . . . φn(sn)×
f2(s2) . . . fn(sn)�

1
p2 λs2 . . . �

1
pn λsn ds2 . . . dsnds1

= Tφ̄(x1, . . . , xn).

Finally, we calculate a convenient form for the kernel of a corner of the Fourier multiplier for use in
Theorem 5.1.

Lemma 3.9. Let F ⊆ G compact and xi =�aiλ(fi)�bi ∈ Lpi (LG) as above for fi ∈ Cc(G) �Cc(G). Then
the kernel of PFTφ(x1, . . . , xn)PF is given by

(t0, tn) �→ 1F(t0)1F(tn)
∫

G×n−1

φ(t0t
−1
1 , . . . , tn−1t

−1
n )f1(t0t

−1
1 ) . . . fn(tn−1t

−1
n )×

�a1 (t0)�
b1+a2 (t1) . . . �

bn (tn)�((t1 . . . tn)
−1)dt1 . . . dtn−1.

Proof. Let g ∈ Cc(G) �Cc(G) and t0 ∈ G. Then the function PFTθ1,...,θn
φ (x1, . . . , xn)PFg is given by

t0 �→ 1F(t0)
∫

G×n

φ(t1, . . . , tn)f1(t1) . . . fn(tn)×
(�a1λt1�

b1+a2λt2 . . . �
bn−1+anλtn�

bn PFg)(t0)dt1 . . . dtn

= 1F(t0)
∫

G×n

φ(t1, . . . , tn)f1(t1) . . . fn(tn)�
a1 (t0)�

b1+a2 (t−1
1 t0) × . . .

�bn−1+an (t−1
n−1 . . . t

−1
1 t0)(�

bn 1Fg)(t−1
n . . . t−1

1 t0)dt1 . . . dtn

= 1F(t0)
∫

G×n

φ(t0t1, t2, . . . , tn)f1(t0t1)f2(t2) . . . fn(tn)�
a1 (t0)�

b1+a2 (t−1
1 )×

�b2+a3 (t−1
2 t−1

1 ) . . . �bn−1+an (t−1
n−1 . . . t

−1
1 )(�bn 1Fg)(t−1

n . . . t−1
1 )dt1 . . . dtn

= 1F(t0)
∫

G×n

φ(t0t
−1
1 , t2, . . . , tn)f1(t0t

−1
1 )f2(t2) . . . fn(tn)�

a1 (t0)�
b1+a2 (t1)×

�b2+a3 (t−1
2 t1) . . . �

bn−1+an (t−1
n−1 . . . t

−1
2 t1)(�

bn 1Fg)(t−1
n . . . t−1

2 t1)�(t−1
1 )dt1 . . . dtn

= . . .

= 1F(t0)
∫

G×n

φ(t0t
−1
1 , . . . , tn−1t

−1
n )f1(t0t

−1
1 ) . . . fn(tn−1t

−1
n )�a1 (t0)�

b1+a2 (t1) × . . .

�bn−1+an (tn−1)(�
bn 1Fg)(tn)�((t1 . . . tn)

−1)dt1 . . . dtn.

It follows that the kernel has the required form.

4. Fourier to Schur transference

Let G be a locally compact first countable group. In this section, we prove the transference from Fourier
to Schur multipliers for such groups. An important ingredient will be the following ‘split’ coordinate-
wise convolution: fix functions ϕk ∈ Cc(G) �Cc(G) ⊆ A(G) such that ‖ϕk‖1 = 1 and the supports of ϕk

form a decreasing neighbourhood basis of {e}. In other words, (ϕk) is an approximate unit for the Banach
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∗-algebra L1(G). Note that we use the first countability of G here. Now, given a bounded function
φ : G×n →C and some fixed 1 ≤ i ≤ n, we define

φt1,...,tn (s1, . . . , sn) = φ(t−1
1 s1t2, . . . , t−1

i−1si−1ti, t−1
i si, si+1t

−1
i+1, ti+1si+2t

−1
i+2, . . . , tn−1snt

−1
n )

and

φk(s1, . . . , sn) :=
∫

G×n

φt1,...,tn (s1, . . . , sn)

(
n∏

j=1

ϕk(tj)

)
dt1 . . . dtn

=
∫

G×n

φt1,...,tn (e, . . . , e)

(
i∏

j=1

ϕk(sj . . . sitj)

)(
n∏

j=i+1

ϕk(tjsi+1 . . . sj)�(si+1 . . . sj)

)
dt1 . . . dtn. (4.1)

The last term of (4.1) in combination with Lemma 3.8 will allow us to reduce the problem to the linear
case. The necessity of the ‘split’ between indices i and i + 1 will be explained later.

Theorem 4.1. Let G be a locally compact first countable group, and let 1 ≤ p ≤ ∞, 1< p1, . . . , pn−1 ≤
∞ be such that p−1 =∑n

i=1 p−1
i . Let φ ∈ Cb(G×n) and define φ̃ ∈ Cb(G×n+1) by

φ̃(s0, . . . , sn) = φ(s0s
−1
1 , s1s

−1
2 , . . . , sn−1s−1

n ), si ∈ G.

If φ is defines a (p1, . . . , pn)-mb Fourier multiplier Tφ of G, then φ̃ defines a (p1, . . . , pn)-mb Schur
multiplier Mφ̃ of G. Moreover,

‖Mφ̃ : Sp1 (L2(G)) × . . .× Spn (L2(G)) → Sp(L2(G))‖(p1,...,pn)−mb

≤ ‖Tφ : Lp1 (LG) × . . .× Lpn (LG) → Lp(LG)‖(p1,...,pn)−mb.

Proof. Let F ⊆ G finite with |F| = N. By Theorem 2.2, it suffices to show that the norm of

Mφ̃ : Sp1 (�2(F)) × . . . Spn (�2(F)) → Sp(�2(F))

and its matrix amplifications are bounded.
For s ∈ F, let ps ∈ B(�2(F)) be the orthogonal projection onto the span of δs. Define the unitary U =∑

s∈F ps ⊗ λs ∈ B(�2(F)) ⊗LG. In the case p = ∞, the Fourier to Schur transference is proven through
the transference identity

T (N)
φ (U(a1 ⊗ 1)U∗, . . . , U(an ⊗ 1)U∗) = U(Mφ̃(a1, . . . , an) ⊗ 1)U∗, ai ∈ B(�2(F)).

The idea is to do something similar in the case p<∞. However, the unit does not embed in Lp(LG), so
we need to use some approximation of the unit instead. We construct this as follows: let V = (Vi)i∈N be a
decreasing symmetric neighbourhood basis of the identity (this is possible because G is first countable).
For V ∈ V , we define the operator

kV = ‖1V�
−1/4‖−1

2 λ(1V�
−1/4)�1/2 ∈ L2(LG)

which is proven to be self-adjoint in [8, Section 8.3]. Let kV = uVhV be its polar decomposition. Then
we have h2/p

V ∈ Lp(LG), and by (2.2), ‖h2/p
V ‖p = 1. Now for any V ∈ V , we have, by (2.7),

‖Mφ̃(a1, . . . , an)‖SN
p
= ‖Mφ̃(a1, . . . , an) ⊗ h

2
p
V ‖SN

p ⊗Lp(LG), ai ∈ B(�2(F)). (4.2)

Next, fix an i ∈ {1, . . . , n} such that p̄1 := (∑i
l=1 p−1

l

)−1
> 1 and p̄2 := (∑n

l=i+1 p−1
l

)−1
> 1. This is

possible by our assumption that p1, . . . , pn > 1. We now define the functions φt1,...,tn and φk as in (4.1)
for the chosen i.

The condition p̄1, p̄2 > 1 is necessary for the use of Proposition 4.3 at the end of the proof of Lemma
4.2; this also explains why we need the ‘split’ in the pointwise convolutions. If p> 1, then one can
take i = n in which case the proof of Lemma 4.2 simplifies somewhat. Note that in [5] and [6], the
convolutions were defined for i = n − 1. In the latter paper, this creates a problem in case pn = ∞, p = 1;
this problem is resolved by splitting instead at some i chosen as above.
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Let a1, . . . , an ∈ B(�2(F)). By continuity of φ, we have that φk → φ pointwise. Indeed, for ε > 0, we
can take K such that for t1, . . . , tn ∈ suppϕK , |φt1,...,tn (s1, . . . , sn) − φ(s1, . . . , sn)|< ε. Then for k>K, we
get |φk(s1, . . . , sn) − φ(s1, . . . , sn)|< ε. Since we are working in finite dimensions, this implies

Mφ̃k (a1, . . . , an) → Mφ̃(a1, . . . , an)

in SN
p . Together with (4.2), we find

‖Mφ̃(a1, . . . , an)‖SN
p
= lim

k
lim sup

V∈V
‖Mφ̃k (a1, . . . , an) ⊗ h

2
p
V ‖SN

p ⊗Lp(LG)

= lim
k

lim sup
V∈V

‖U(Mφ̃k (a1, . . . , an) ⊗ h
2
p
V )U∗‖SN

p ⊗Lp(LG)

≤ lim sup
k

lim sup
V∈V

‖T (N)
φk

(U(a1 ⊗ h
2

p1
V )U∗, . . . , U(an ⊗ h

2
pn
V )U∗)‖SN

p ⊗Lp(LG)

+ lim sup
k

lim sup
V∈V

‖T (N)
φk

(U(a1 ⊗ h
2

p1
V )U∗, . . . , U(an ⊗ h

2
pn
V )U∗)

− U(Mφ̃k (a1, . . . , an) ⊗ h
2
p
V )U∗‖SN

p ⊗Lp(LG)

:= A + B.

First, we have

A ≤ lim sup
k

lim sup
V∈V

‖T (N)
φk

‖‖a1 ⊗ h
2

p1
V ‖SN

p1
⊗Lp1 (LG) . . . ‖an ⊗ h

2
pn
V ‖SN

pn ⊗Lpn (LG)

= lim sup
k

‖T (N)
φk

‖‖a1‖SN
p1
. . . ‖an‖SN

pn
.

By repeated use of Lemma 3.6 (in particular, we can use Fubini because of the strong continuity
property) we find

‖T (N)
φk

‖ ≤
∫

G×n

‖T (N)
φ ‖

(
n∏

i=1

|ϕk(tj)|
)

dt1 . . . dtn = ‖T (N)
φ ‖‖ϕk‖n

1 = ‖T (N)
φ ‖ ≤ ‖Tφ‖(p1,...,pn)−mb.

and hence

A ≤ ‖Tφ‖(p1,...,pn)−mb‖a1‖SN
p1
. . . ‖an‖SN

pn
.

It remains to show that B = 0. By the triangle inequality, it suffices to show this for ai = Eri−1,ri ,
r0, . . . , rn ∈ F (for other combinations of matrix units, the term below becomes 0). In that case we get,
by applying Lemma 3.6 in the second equality:

T (N)
φk

(U(Er0,r1 ⊗ h
2

p1
V )U∗, . . . , U(Ern−1,rn ⊗ h

2
pn
V )U∗) − U(Mφ̃k (Er0,r1 , . . . , Ern−1,rn ) ⊗ h

2
p
V )U∗

= Er0,rn ⊗
(

Tφk (λr0 h
2

p1
V λ

∗
r1

, . . . , λrn−1 h
2

pn
V λ

∗
rn

) − φk(r0r
−1
1 , . . . , rn−1r

−1
n )λr0 h

2
p
V λ

∗
rn

)
= Er0,rn ⊗ λr0

(
Tφk(r0·r−1

1 ,...,rn−1·r−1
n )(h

2
p1
V , . . . , h

2
pn
V ) − φk(r0r

−1
1 , . . . , rn−1r

−1
n )h

2
p
V

)
λ∗

rn
.

Hence,

B = lim sup
k

lim sup
V∈V

∥∥∥∥Tφk(r0 ·r−1
1 ,...,rn−1·r−1

n )(h
2

p1
V , . . . , h

2
pn
V ) − φk(r0r

−1
1 , . . . , rn−1r

−1
n )h

2
p
V

∥∥∥∥
Lp(LG)

. (4.3)

The limit over k exists and is 0; we postpone the proof to Lemma 4.2 below.
For the multiplicatively bounded estimate, we prove using similar methods that for K ≥ 1 and

a1, . . . , an ∈ MK(B(�2(F))),

‖M(K)
φ̃

(a1, . . . , an)‖SKN
p

≤ ‖T (KN)
φ ‖‖a1‖SKN

p
. . . ‖an‖SKN

p
.
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Here, we use 1MK ⊗ U in place of U. Moreover, by the triangle inequality, it suffices to prove the estimate
for B for ai = Eji−1,ji ⊗ Eri−1,ri , with 1 ≤ ji ≤ K and ri ∈ F; the expression for B then reduces to (4.3)
again.

The following Lemma is similar to [5, Lemma 4.6]. In our case, we have xj = 1, which allows us
to avoid the SAIN condition used in that paper; on the other hand, we work with translated functions,
and our result works for non-unimodular groups. Already in [6, Theorem 3.1], it was explained how
to adapt the proof of [5, Lemma 4.6] for the translated functions. However, this paper only considered
unimodular groups. Here, we spell out the full proof for the convenience of the reader.

Lemma 4.2. In the proof of Theorem 4.1, we have that

lim
k

lim sup
V∈V

∥∥∥∥Tφk(r0·r−1
1 ,...,rn−1·r−1

n )(h
2

p1
V , . . . , h

2
pn
V ) − φk(r0r

−1
1 , . . . , rn−1r

−1
n )h

2
p
V

∥∥∥∥
Lp(LG)

= 0.

The main idea is to reduce the problem to the linear case using (4.1) and apply the following result
for linear Fourier multipliers:

Proposition 4.3. Let V be a symmetric neighbourhood basis of the identity of G. Let 2 ≤ q< p ≤ ∞ or
1 ≤ p< q ≤ 2. Assume ψ ∈ Cb(G) defines a Fourier multiplier on Lp(LG). Then we have

lim
V∈V

‖Tψ (h2/q
V ) −ψ(1)h2/q

V ‖Lq(LG) → 0.

The proof of Proposition 4.3 is essentially a matter of combining results and remarks from [5,
Proposition 3.9] and [8, Claim B and Section 8] and applying Haagerup reduction to [9, Lemma 3.1] to
generalise that estimate to general von Neumann algebras. We give more details in Section 6.

Proof of Lemma 4.2. The idea is to use a dominated convergence argument in the last expression
of (4.1). However, the functions φk need not be integrable. We work around this by multiplying with
compactly supported functions that are close to 1 around e so that as V ∈ V decreases to {e}, we are
just ‘multiplying by 1’ in the limit. Define a function ζ ∈ Cc(G) ∩ A(G) with ζ (e) = 1, which is positive
definite and (therefore) satisfies ‖Tζ : Lp(LG) → Lp(LG)‖ ≤ 1 for all 1 ≤ p ≤ ∞. Next let

ζj(s) = ζ (r−1
j−1srj), 1 ≤ j ≤ n, s ∈ G.

We define a product function as follows:

(φ(ζ1, . . . , ζn))(s1, . . . , sn) = φ(s1, . . . , sn)ζ1(s1) . . . ζn(sn).

Then

‖Tφk(r0 ·r−1
1 ,...,rn−1·r−1

n )(h
2

p1
V , . . . , h

2
pn
V ) − φk(r0r

−1
1 , . . . , rn−1r

−1
n )h

2
p
V ‖Lp(LG)

≤ ‖(φ(ζ1, . . . , ζn))k(r0r
−1
1 , . . . , rn−1r

−1
n )h

2
p
V − φk(r0r

−1
1 , . . . , rn−1r

−1
n )h

2
p
V ‖Lp(LG)

+ ‖T(φ(ζ1,...,ζn))k(r0 ·r−1
1 ,...,rn−1·r−1

n )(h
2

p1
V , . . . , h

2
pn
V ) − (φ(ζ1, . . . , ζn))k(r0r

−1
1 , . . . , rn−1r

−1
n )h

2
p
V ‖Lp(LG)

+ ‖Tφk(r0 ·r−1
1 ,...,rn−1·r−1

n )(h
2

p1
V , . . . , h

2
pn
V ) − T(φ(ζ1,...,ζn))k(r0 ·r−1

1 ,...,rn−1·r−1
n )(h

2
p1
V , . . . , h

2
pn
V )‖Lp(LG)

=: Ak,V + Bk,V + Ck,V .

Here, φ((ζ1, . . . , ζn))k is defined again by (4.1) for the same i. We will estimate these terms separately.
We start by showing that limk lim supV∈V Ak,V and limk lim supV∈V Ck,V are 0, essentially reducing the
problem to the integrable functions φ(ζ1, . . . , ζn). We then apply the idea mentioned above to show that
limV∈V Bk,V = 0 for any k.
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First, since ψk →ψ pointwise for any ψ ∈ Cb(G)×n, we have

lim sup
V∈V

Ak,V = |(φ(ζ1, . . . , ζn))k(r0r
−1
1 , . . . , rn−1r

−1
n ) − φk(r0r

−1
1 , . . . , rn−1r−1

n )|
→ |φ(r0r

−1
1 , . . . , rn−1r

−1
n )(1 − ζ1(r0r

−1
1 ) . . . ζn(rn−1r

−1
n ))| = 0.

Next, we estimate the limit in k of lim supV∈V Ck,V . Set uj = t−1
j rj−1, vj = tjrj and

CV(t1, . . . , tn) = ‖Tη(h
2

p1
V , . . . , h

2
pn
V )‖Lp(LG),

where

η= (φ − φ(ζ1, . . . , ζn))(u1 · u−1
2 , . . . , ui−1 · u−1

i , ui · r−1
i , ri · v−1

i+1, vi+1 · v−1
i+2, . . . , vn−1 · v−1

n ).

Thanks to the strong continuity statement of Lemma 3.6, we can use Fubini to deduce

Ck,V ≤
∫

G×n

CV(t1, . . . , tn)

(
n∏

i=1

|ϕk(tj)|
)

dt1 . . . dtn. (4.4)

Now set

yj,V = λuj h
2
pj
V λ

∗
uj+1

for 1 ≤ j ≤ i − 1, yi,V = λui h
2
pi
V λ

∗
ri
, yi+1,V = λri h

2
pi+1
V λ∗

vi+1
,

yj,V = λvj−1 h
2
pj
V λ

∗
vj

for i + 2 ≤ j ≤ n.

Denote ιq for the identity operator on Lq(LG). The symbol 1 is used both for the constant 1-function and
the number 1. Then we get the following estimate, where we apply Lemma 3.6 and (2.1) in the first line
and Lemma 3.7 and the assumption that Tζ is a contraction in the third line:

CV(t1, . . . , tn) = ‖T(φ−φ(ζ1,...,ζn))(y1,V , . . . , yn,V)‖Lp(LG)

≤
n∑

j=1

‖Tφ(1,...,1,(ζj−1),ζj+1,...,ζn)(y1,V , . . . , yn,V)‖Lp(LG)

≤ ‖Tφ : Lp1 × . . .× Lpn → Lp‖
n∑

j=1

(
‖(Tζj − ιpj )(yj,V)‖Lpj (LG)

∏
i �=j

‖yi,V‖pi

)
. (4.5)

By (2.1), we have ‖yj,V‖pj = 1. Further, by applying again Lemma 3.6 and Proposition 4.3,

‖(Tζj − ιpj )(yj,V)‖Lpj (LG) = ‖Tζj(uj·u−1
j+1)−1(h

2
pj
V )‖Lpj (LG) → |ζj(uju

−1
j+1) − 1|

for 1 ≤ j ≤ i − 1. Filling in the definition of ζj,

|ζj(uju
−1
j+1) − 1| = |ζ (r−1

j−1t
−1
j rj−1r

−1
j tj+1rj) − 1|

and this equals 0 when evaluated at tj, tj+1 = e. Similarly, we find for i ≤ j ≤ n that limV∈V ‖(Tζj −
ι)(yj,V)‖Lpj (LG) exists and equals 0 when evaluated at the identity in the corresponding t1, . . . , tn. Moreover,
all these values are bounded by 2. Going back to (4.4), let us write M := ‖Tφ : Lp1 × . . .× Lpn → Lp‖.
We find

Ck,V ≤
∫

G×n

M

(
n∑

j=1

‖(Tζj − ι)(yj,V)‖Lpj (LG)

)(
n∏

j=1

|ϕk(tj)|
)

dt1 . . . dtn. (4.6)

The integrand of (4.6) is bounded by the integrable function 2M
∏n

i=1 |ϕk(tj)|. Hence, by Lebesgue’s
dominated convergence theorem, the right-hand side of (4.6) converges in V . We find that

lim sup
V∈V

Ck,V ≤ M
∫

G×n

(
n∑

j=1

lim
V∈V

‖(Tζj − ι)(yj,V)‖Lpj (LG)

)(
n∏

i=1

|ϕk(tj)|
)

dt1 . . . dtn.

This quantity goes to 0 in k. This concludes the proof for Ck,V .
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Finally, we prove that limV∈V Bk,V = 0 for any k. We fix a k for the remainder of the proof. Recall that
since ϕk ∈ A(G), Tϕk is bounded on Lq(LG) for any 1 ≤ q ≤ ∞. Moreover, since ϕk ∈ Cc(G) �Cc(G), we
also have ϕk� ∈ Cc(G) �Cc(G) ⊆ A(G) (cf. the calculation before (2.6)), hence Tϕk� is also bounded on
Lq(LG) for any q.

We may assume, by scaling ϕk if necessary, that Tϕk : Lq(LG) → Lq(LG) and Tϕk� : Lq(LG) → Lq(LG)
are contractions for any Hölder combination q of p1, . . . , pn. Of course, this means that ‖ϕk‖1 need no
longer be 1 from now on. Set

ψk(s1, . . . , sn;t1, . . . , tn) :=
(

i∏
j=1

ϕk(rj−1sj . . . sir
−1
i tj)

)

×
(

n∏
j=i+1

ϕk(tjrisi+1 . . . sjr
−1
j )�(risi+1 . . . sjr

−1
j )

)
=:ψ 1

k (s1, . . . , si;t1, . . . , ti)ψ
2
k (si+1, . . . , sn;ti+1, . . . , tn).

By using the last term of (4.1) and Fubini, we get

Bk,V ≤
∫

G×n

|(φ(ζ1, . . . , ζn))t1,...,tn (e, . . . , e)|

× ‖Tψk(·;t1,...,tn)(h
2

p1
V , . . . , h

2
pn
V ) −ψk(1, . . . , 1;t1, . . . tn)h

2
p
V ‖Lp(LG)dt1 . . . dtn. (4.7)

Note that |ϕk| ≤ 1 by the assumed contractivity of Tϕk . Indeed, for s ∈ G, apply Tϕk to λs to deduce
that |ϕk(s)| ≤ 1. Hence, |ψk(1, . . . , 1;t1, . . . , tn)| ≤∏n

j=i+1 �(rir−1
j ). Moreover, from the expression (4.9)

below, we see that ‖Tψk(·;t1,...,tn)(h
2

p1
V , . . . , h

2
pn
V )‖Lp(LG) ≤�((ti+1, . . . , tn)−1). Since φ(ζ1, . . . , ζn) is com-

pactly supported, the integrand of (4.7) is dominated by an integrable function. Hence by the Lebesgue
dominated convergence theorem, it suffices to show that the term

‖Tψk(·;t1,...,tn)(h
2

p1
V , . . . , h

2
pn
V ) −ψk(1, . . . , 1;t1, . . . tn)h

2
p
V ‖Lp(LG) (4.8)

goes to 0 in V for any choice of t1, . . . , tn ∈ G.
Fix t1, . . . , tn ∈ G. For 1 ≤ j ≤ i, set q−1

j =∑i
l=j p−1

l (so q1 = p̄1) and Tj = Tϕk(rj−1·r−1
i tj). By Lemma 3.6, Tj

is a contraction on Lqj (LG). For i + 1 ≤ j ≤ n, set q−1
j =∑n

l=j p−1
l (so qi+1 = p̄2) and Tj = Tϕk(tjri·r−1

j )�(ri ·r−1
j ).

We can estimate the norm of Tj:Lqj (LG) → Lqj (LG) by using again Lemma 3.6:

‖Tj‖ =�(t−1
j )‖Tϕk(tjri ·r−1

j )�(tjri·r−1
j )‖ =�(t−1

j )‖Tϕk�‖ ≤�(t−1
j ).

Now, by Lemma 3.8, we have

Tψ1
k (·;t1,...,ti)(h

2
p1
V , . . . , h

2
pi
V ) = T1(h

2
p1
V T2(h

2
p2
V . . . Ti(h

2
pi
V ) . . . )),

Tψ2
k (·;ti+1,...,tn)(h

2
pi+1
V , . . . , h

2
pn
V ) = Ti+1(h

2
pi+1
V Ti+2(h

2
pi+2
V . . . Tn(h

2
pn
V ) . . . )).

Clearly, Tψ1
k (·;t1,...,ti) is contractive as a map on Lp1 (LG) × . . .× Lpi (LG). Let xj ∈ Lpj (LG) with ‖xj‖Lpj (LG) ≤

1; then, from (3.4),

‖Tψk(·;t1,...,tn)(x1, . . . , xn)‖Lp(LG) ≤ ‖Tψ2
k (·;t1,...,tn)(xi+1, . . . , xn)‖Lp̄2 (LG)

≤�((ti+1 . . . tn)
−1). (4.9)
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This validates the use of the dominated convergence theorem above. Now we go back to estimating (4.8).
Using subsequently the triangle inequality and Hölder’s inequality (with again [3.4]), we find

‖Tψk(·;t1,...,tn)(h
2

p1
V , . . . , h

2
pn
V ) −ψk(1, . . . , 1;t1, . . . tn)h

2
p
V ‖Lp(LG)

≤ ‖Tψ1
k (·;t1,...,ti)(h

2
p1
V , . . . , h

2
pi
V ) ·ψ 2

k (1, . . . , 1;ti+1, . . . , tn)h
2

p̄2
V −ψk(1, . . . , 1;t1, . . . tn)h

2
p
V ‖Lp(LG)

+ ‖Tψk(·;t1,...,tn)(h
2

p1
V , . . . , h

2
pn
V ) − Tψ1

k (·;t1,...,ti)(h
2

p1
V , . . . , h

2
pi
V ) ·ψ 2

k (1, . . . , 1;ti+1, . . . , tn)h
2

p̄2
V ‖Lp(LG)

≤
(

n∏
j=i+1

�(rir
−1
j )

)
‖Tψ1

k (·;t1,...,ti)(h
2

p1
V , . . . , h

2
pi
V ) −ψ1

k (1, . . . , 1;t1, . . . , ti)h
2

p̄1
V ‖Lp̄1 (LG)

+ ‖Tψ2
k (·;ti+1,...,tn)(h

2
pi+1
V , . . . , h

2
pn
V ) −ψ2

k (1, . . . , 1;ti+1, . . . , tn)h
2

p̄2
V ‖Lp̄2 (LG)

=: B1
k,V + B2

k,V .

We show only that limV∈V B2
k,V = 0; the equality limV∈V B1

k,V = 0 follows similarly and is in fact slightly
easier since the Tj are contractions for j ≤ i. Now set, for i ≤ j ≤ n,

Rj,V :=
(

n∏
l=j+1

ϕk(tlrir
−1
l )

)
Ti+1(h

2
pi+1
V . . . Tj(h

2
qj
V ) . . . ).

Here Ri,V =∏n−1
l=i+1 ϕk(tlrir

−1
l )h

2
q1
V . Then

B2
k,V ≤

n∑
j=i+1

‖Rj,V − Rj−1,V‖Lp̄2 (LG).

Recall that |ϕk| ≤ 1. Hence
‖Rj,V − Rj−1,V‖Lp̄2 (LG)

=
(

n∏
l=j+1

|ϕk(tlrir
−1
l )|

)
‖Ti+1(h

2
pi+1
V . . . Tj−1(h

2
pj−1
V (Tj(h

2
qj
V ) − ϕk(tjrir

−1
j )h

2
qj
V )) . . . )‖Lp̄2 (LG)

≤�((ti+1 . . . tn)
−1)‖Tj(h

2
qj
V ) − ϕk(tjrir

−1
j )h

2
qj
V ‖Lqj (LG).

We know that qj > p̄2 > 1 for any i + 1 ≤ j ≤ n. Additionally, Tj is bounded on LG and L1(LG).
By Proposition 4.3, the above terms converge to 0 in V . Hence, limV∈V B2

k,V = 0. This finishes the
proof.

Remark 4.4. As in the unimodular case (see [6, Remark 3.3]) we do not know if Theorem 4.1 holds if
p = pi = 1 for some 1 ≤ i ≤ n (and pj = ∞ for all j �= i). The proof above fails in that case because we
cannot apply Proposition 4.3.

5. Schur to Fourier transference for amenable groups

In this section, we extend [6, Proof of Theorem 4.1], that is, the transference from Schur multipliers
to Fourier multipliers for amenable groups, to the non-unimodular setting. The proof is essentially the
same but with extra technicalities due to the modular function. We also fixed a small mistake in the
proof, as will be mentioned at the relevant spot.

Recall [19, Theorem 4.10] that G is amenable iff it satisfies the following Følner condition: for any
ε > 0 and any compact set K ⊆ G, there exists a compact set F ⊆ G with nonzero measure such that
μ((sF\F)∪(F\sF))

μ(F)
< ε for all s ∈ K. This allows us to construct a net F(ε,K) of such Følner sets using the ordering

(ε1, K1) ≤ (ε2, K2) if ε1 ≥ ε2, K1 ⊆ K2.
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Theorem 5.1. Let G be a locally compact, amenable group and let 1 ≤ p, p′, p1, . . . , pn ≤ ∞ be such
that 1

p
=∑n

i=1
1
pi

= 1 − 1
p′ . Let φ ∈ L∞(G×n) and define φ̃ ∈ L∞(G×n+1) by

φ̃(s0, . . . , sn) = φ(s0s
−1
1 , s1s

−1
2 , . . . , sn−1s−1

n ), si ∈ G.

Assume that φ̃ defines a (p1, . . . , pn)-Schur multiplier of G. Then there is a net I, and there are complete
contractions iq,α : Lq(LG) → Sq(L2(G)), α ∈ I, such that for all fi, f ∈ Cc(G) �Cc(G),∣∣〈ip,α(Tφ(x1, . . . , xn)), ip′ ,α(y)〉 − 〈Mφ̃(ip1,α(x1), . . . , ipn ,α(xn)), ip′ ,α(y)〉∣∣ α→ 0, (5.1)

where xi =�aiλ(fi)�bi ∈ Lpi (LG), y =�aλ(f )�b ∈ Lp′
(LG) (i.e. ai + bi = 1

pi
). In a similar way, the

matrix amplifications of iq,α approximately intertwine the multiplicative amplifications of the Fourier
and Schur multipliers.

Proof. Let Fα, α ∈ I be a Følner net for G, where I is the index set consisting of pairs (ε, K) for ε > 0,
K ⊆ G compact and the ordering as described above.

Let Pα = PFα be the projection of L2(G) onto L2(Fα). Consider the maps ip,α : Lp(LG) → Sp(L2(G))
defined by ip,α(x) =μ(Fα)−1/pPαxPα. They are contractions by [3, Theorem 5.1]. By replacing G by G ×
SU(2), one proves that they are in fact complete contractions (see also the last paragraph of [3, Proof of
Theorem 5.2]).

Now fix α. From (2.10), we deduce

Mφ̃(ip1,α(x1), . . . , ipn ,α(xn))(t0, tn)

= 1

μ(Fα)1/p
1Fα (t0)1Fα (tn)

∫
F×n−1
α

φ(t0t
−1
1 , . . . , tn−1t

−1
n )f1(t0t

−1
1 ) . . . fn(tn−1t

−1
n )×

�a1 (t0)�
b1+a2 (t1) . . . �

bn (tn)�((t1 . . . tn)
−1)dt1 . . . dtn−1.

From Lemma 3.9, we have a similar expression for the kernel of ip,α(Tφ(x1, . . . , xn)):

(t0, tn) �→ 1

μ(Fα)1/p
1Fα (t0)1Fα (tn)

∫
G×n−1

φ(t0t
−1
1 , . . . , tn−1t−1

n )f1(t0t
−1
1 ) . . . fn(tn−1t

−1
n )×

�a1 (t0)�
b1+a2 (t1) . . . �

bn (tn)�((t1 . . . tn)
−1)dt1 . . . dtn−1.

Now we need to take the pairing of these kernels with ip′ ,α(y) and calculate their difference. To that
end, we define the following function �:

�(t0, . . . , tn) =φ(t0t
−1
1 , . . . , tn−1t

−1
n )f1(t0t

−1
1 ) . . . fn(tn−1t

−1
n )f (tnt

−1
0 )×

�a1+b(t0)�
b1+a2 (t1) . . . �

bn+a(tn)�((t0t1 . . . tn)
−1),

and the function �α:

�α(t0, . . . , tn) = 1Fα (t0)1Fα (tn) − 1F×n+1
α

(t0, . . . , tn) = 1Fα×(F×n−1
α )c×Fα (t0, . . . , tn).

Note that in [6], the indicator function was mistakenly taken over Fα × (Fc
α
)×n−1 × Fα instead. This cor-

rection leads to an extra term n in the choice of the lower bound of α at the end. Also note that a priori,
it is not clear that Tφ(x1, . . . , xn) lies in Lp(LG), and hence it is not clear that ip,α(Tφ(x1, . . . , xn)) lies
in Sp(L2(G)). However, both ip,α(Tφ(x1, . . . , xn)) and ip′ ,α(y) are given by integration against a kernel in
L2(G × G), so the pairing (2.9) is still well-defined as a pairing in S2(L2(G)) instead. Now we have

|〈ip,α(Tφ(x1, . . . , xn)), ip′ ,α(y)〉 − 〈Mφ̃(ip1,α(x1), . . . , ipn ,α(xn)), ip′ ,α(y)〉|
=
∣∣∣∣ 1

μ(Fα)

∫
G×n+1

�(t0, . . . , tn)�α(t0, . . . , tn)dt0 . . . dtn

∣∣∣∣ (5.2)

Let K ⊆ G be some compact set such that supp(fj), supp(f ) ⊆ K and e ∈ K. Let t0, . . . , tn be such that
both�(t0, . . . , tn) and�α(t0, . . . , tn) are nonzero. Since�α(t0, . . . , tn) is nonzero, we must have t0, tn ∈ Fα
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and ti /∈ Fα for some i ∈ {1, . . . , n − 1}. Since�(t0, . . . , tn) is nonzero, there are k1, . . . , kn ∈ K such that
tn−1 = kntn, tn−2 = kn−1kntn, . . . , t0 = k1 . . . kntn. Hence we find

tn ∈ Fα ∩ (k1 . . . kn)
−1Fα \ ((k2 . . . kn)−1Fα ∩ . . .∩ k−1

n Fα

)
⊆ Fα \ ((k2 . . . kn)−1Fα ∩ . . .∩ k−1

n Fα

)
= (Fα \ (k2 . . . kn)−1Fα) ∪ . . .∪ (Fα \ k−1

n Fα) (5.3)

We want to apply a change of variables in (5.2). Let us first look at a simple case: assume g ∈ L1(G × G)
is such that g(s, t) �= 0 only when st−1 ∈ K. Then

∫
G×2

g(s, t)dsdt =
∫

G×2

1K(st−1)g(s, t)dsdt =
∫

G×2

1K(s)g(st, t)�(t)dsdt

=
∫

G

∫
K

g(k1t, t)�(t)dk1dt

where we renamed the variable s in the last line. Applying the above formula twice for a function g ∈
L1(G×3) such that g(r, s, t) �= 0 only when rs−1 ∈ K, st−1 ∈ K, we get

∫
G×3

g(r, s, t)drdsdt =
∫

G×2

∫
K

g(k1s, s, t)�(s)dk1dsdt

=
∫

G

∫
K×2

g(k1k2t, k2t, t)�(k2t)�(t)dk1dk2dt.

Carrying on like this, we obtain

∣∣∣∣ 1

μ(Fα)

∫
G×n+1

�(t0, . . . , tn)�α(t0, . . . , tn)dt0 . . . dtn

∣∣∣∣
=
∣∣∣∣ 1

μ(Fα)

∫
K×n

∫
G

�(k1 . . . kntn, . . . , kntn, tn)�α(k1 . . . kntn, . . . , kntn, tn)×

�(k2 . . . kntn) . . . �(kntn)�(tn)dtndk1 . . . dkn

∣∣∣∣. (5.4)

Note that a + b +∑n
i=1 ai + bi = 1, hence

|�(k1 . . . kntn, . . . , kntn, tn)|�(k2 . . . kntn) . . . �(kntn)�(tn)

≤ ‖φf1 . . . fnf ‖∞�
a1+b(k1 . . . kntn)�

b1+a2+1(k2 . . . kntn) . . . �
bn−1+an+1(kntn)×

�bn+a+1(tn)�(k−1
1 k−2

2 . . . k−n
n t−n−1

n )

= ‖φf1 . . . fnf ‖∞�
a1+b−1(k1)�a1+a2+b1+b−1(k2) . . . �

1−bn−a−1(kn)

≤ ‖φf1 . . . fnf ‖∞CK,n =: M. (5.5)

Here the constant CK,n can be chosen to be dependent only on K and n (and G).
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Applying (5.2), (5.4), (5.5) and (5.3) consecutively, we get

|〈ip,α(Tφ(x1, . . . , xn)), ip′ ,α(y)〉p,p′ − 〈Mφ̃(ip1,α(x1), . . . , ipn ,α(xn)), ip′ ,α(y)〉|
=
∣∣∣∣ 1

μ(Fα)

∫
K×n

∫
G

�(k1 . . . kntn, . . . , kntn, tn)�α(k1 . . . kntn, . . . , kntn, tn)×

�(k2 . . . kntn) . . . �(kntn)�(tn)dtndk1 . . . dkn

∣∣∣∣
≤ M

μ(Fα)

∫
K×n

∫
G

�α(k1 . . . kntn, . . . , kntn, tn)dtndk1 . . . dkn

= M

μ(Fα)

∫
K×n

μ
(
Fα ∩ (k1 . . . kn)−1Fα \ ((k2 . . . kn)−1Fα ∩ . . .∩ k−1

n Fα

))
dk1 . . . dkn

≤ M

μ(Fα)

∫
K×n

n∑
i=2

μ(Fα \ (ki . . . kn)
−1Fα)dk1 . . . dkn

≤ M(n − 1)μ(K)n sup
k∈K1−n

μ(Fα \ kFα)

μ(Fα)
. (5.6)

Using the ordering described earlier, if the index α ≥ (ε× (MnμG(K)n)
−1 , K1−n), then the Følner

condition implies that (5.6) is less than ε, and hence the limit (5.1) holds.
From (5.1), it follows from writing out the definitions that the matrix amplifications of ip,α also approx-

imately intertwine the multiplicative amplifications of the Fourier and Schur multipliers; that is, for
βi ∈ SN

pi
, β ∈ SN

p′ , we have∣∣∣〈id ⊗ ip,α(T
(N)
φ (β1 ⊗ x1, . . . , βn ⊗ xn)), id ⊗ ip′ ,α(β ⊗ y)〉p,p′

− 〈M(N)
φ̃

(id ⊗ ip1,α(β1 ⊗ x1), . . . , id ⊗ ipn ,α(βn ⊗ xn)), id ⊗ ip′ ,α(β ⊗ y)〉
∣∣∣→ 0 (5.7)

Corollary 5.2. Let G be an amenable locally compact group and 1 ≤ p, p1, . . . , pn ≤ ∞ be such
that 1

p
=∑n

i=1
1
pi

. Let φ ∈ L∞(G×n). If φ̃ is the symbol of a (p1, . . . , pn)-bounded (resp. multiplica-
tively bounded) Schur multiplier then φ is the symbol of a (p1, . . . , pn)-bounded (resp. multiplicatively
bounded) Fourier multiplier. Moreover,

‖Tφ‖(p1,...,pn) ≤ ‖Mφ̃‖(p1,...,pn), ‖Tφ‖(p1,...,pn)−mb ≤ ‖Mφ̃‖(p1,...,pn)−mb.

Proof. Let xi be as in the hypotheses of Theorem 5.1, and let ip,α be as in the proof of Theorem 5.1.
Let p′ be the Holder conjugate of p. In [3, Theorem 5.2], it is proven that

〈ip,α(x), ip′ ,α(y)〉p,p′ → 〈x, y〉p,p′ , x ∈ Lp(LG), y ∈ Lp′ (LG). (5.8)

Note that this inequality also holds and in fact is explicitly proven for p = ∞; by symmetry, it also holds
for p = 1. We remark that this result also uses the Følner condition.

Let ε > 0. Then we can find y =�aλ(f )�b, f ∈ Cc(G) �Cc(G) such that ‖y‖Lp′ (LG) ≤ 1 and

‖Tφ(x1, . . . , xn)‖Lp(LG) ≤ |〈Tφ(x1, . . . , xn), y〉| + ε.

Next, by (5.8) and Theorem 5.1, we can find α ∈ I such that the following two inequalities hold:

|〈Tφ(x1, . . . , xn), y〉 − 〈ip,α(Tφ(x1, . . . , xn)), ip′ ,α(y)〉|< ε
and

|〈ip,α(Tφ(x1, . . . , xn)), ip′ ,α(y)〉p,p′ − 〈Mφ̃(ip1,α(x1), . . . , ipn ,α(xn)), ip′ ,α(y)〉p,p′ |< ε.
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By combining these inequalities, we find

‖Tφ(x1, . . . , xn)‖Lp(LG) ≤ |〈Mφ̃(ip1,α(x1), . . . , ipn ,α(xn)), ip′ ,α(y)〉p,p′ | + 3ε

≤ ‖Mφ̃‖(p1,...,pn)

n∏
i=1

‖xi‖Lpi (LG) + 3ε

The elements xi as chosen above are norm dense in Lpi (LG) (resp. C∗
λ
(G) when pi = ∞); hence, we get

the required bound. The multiplicative bound follows similarly.

Remark 5.3. In [3], [6], the proof runs via an ultraproduct construction. The ultraproduct is not
actually necessary as demonstrated above, as all limits are usual limits and not ultralimits.

We can now extend the result of [6, Corollary 4.3] to non-unimodular groups. It is also a multiplica-
tively bounded, non-unimodular version of [5, Theorem 4.5]. Moreover, we no longer need the SAIN
condition, and the subgroup no longer needs to be discrete.

Corollary 5.4. Let G be a locally compact, first countable group, and let 1 ≤ p ≤ ∞ and 1<
p1, . . . , pn ≤ ∞ with p−1 =∑n

i=1 p−1
i . Let φ ∈ Cb(G×n), which defines a (p1, . . . , pn)-mb Fourier multi-

plier, and let H ≤ G be an amenable subgroup. Then

‖Tφ|H×n ‖(p1,...,pn)−mb ≤ ‖Tφ‖(p1,...,pn)−mb

Proof. The associated inequality for Schur multipliers follows from Theorem 2.2. Now Corollary 5.2
(using amenability of H) and Theorem 4.1 yield the result.

In the next corollary, we prove a necessary condition for a ‘Fourier multiplier’ to satisfy (5.1) for the
embeddings ip,α defined above. This was used in the discussion in Section 3.

Corollary 5.5. Fix n> 1, 1 ≤ p1, . . . , pn, p, p′ ≤ ∞ such that 1
p
=∑n

i=1
1
pi

= 1 − 1
p′ , and let

θ1, . . . , θn, θ , θ ′ ∈ [0, 1]. Let ip,α be as in the proof of Theorem 5.1. Assume that for each φ ∈ L∞(G×n),
we have a map Sφ : κθ1

pi
(L) × . . .× κθn

pn
(L) → κθp (L) satisfying∣∣〈ip,α(Sφ(x1, . . . , xn)), ip′ ,α(y)〉p,p′ − 〈Mφ̃(ip1,α(x1), . . . , ipn ,α(xn)), ip′ ,α(y)〉p,p′

∣∣ α→ 0. (5.9)

for xi ∈ κθi
pi

(L), y ∈ κθ ′
p′ (L). Now let φ(s1, . . . , sn) = φ1(s1) . . . φn(sn) for some functions φ1, . . . , φn ∈

L∞(G). Then Sφ must satisfy

Sφ(x1, . . . , xn) = Tφ1 (x1) . . . Tφn (xn)

for xi ∈ κθi
pi

(L), i = 1, . . . , n.

Proof. Fix some y ∈ κθ ′
p′ (L). By density, it suffices to show that

〈Sφ(x1, . . . , xn), y〉 = 〈Tφ1 (x1) . . . Tφn (xn), y〉.
By (5.8), it suffices to show

lim
α∈I

|〈ip,α(Sφ(x1, . . . , xn) − Tφ1 (x1) . . . Tφn (xn)), ip′ ,α(y)〉| = 0.

By running the proof of Theorem 5.1 with the constant 1 function in place of φ and Tφi (xi) in place of
xi, we find that

lim
α∈I

|〈ip,α(Tφ1 (x1) . . . Tφn (xn)) − ip1,α(Tφ1 (x1)) . . . ipn ,α(Tφn (xn)), ip′ ,α(y)〉| = 0.

Since multiplication with φi only maps Cc(G) �Cc(G) to Cc(G), we no longer need to have that Tφi (xi) ∈
κθi

pi
(L), so we cannot apply Theorem 5.1 directly. But since we have φ = 1, this does not give any technical

complications in the proof.
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Using the kernel representations, it is straightforward to show that

ip1,α(Tφ1 (x1)) . . . ipn ,α(Tφn (xn)) = Mφ̃1 (ip1,α(x1)) . . .Mφ̃n (ipn ,α(xn))

= Mφ̃(ip1,α(x1), . . . , ipn ,α(xn)).

By combining the above observations with (5.9), we get the required result.

6. Linear intertwining result

In this section, we sketch the proof of Proposition 4.3. The main ingredient to be added to already existing
results is the extension of [9, Lemma 3.1] to general von Neumann algebras via Haagerup reduction. The
Haagerup reduction method is described by Theorem 6.1, proved for σ -finite von Neumann algebras in
[12] and extended to the weight case in [8, Section 8]. We will assume that the reader is familiar with
Tomita–Takesaki theory, conditional expectations and such. We refer to [24] for the background.

Denote by σϕ the modular automorphism group of a normal faithful semifinite (nfs) weight ϕ. Recall
that the centraliser Nϕ of a nfs weight ϕ on a von Neumann algebra M is given by

Nϕ = {x ∈M : σϕt (x) = x ∀t ∈R}.

Theorem 6.1. Let (M, ϕ) be any von Neumann algebra equipped with a nfs weight. There is another
von Neumann algebra (R, ϕ̂) containing M and with nfs weight ϕ̂ extending ϕ and elements an in the
center of the centraliser of ϕ̂ such that the following properties hold:

1. There is a conditional expectation E : R→M satisfying

ϕ ◦ E = ϕ̂, σϕs ◦ E = E ◦ σ ϕ̂s , s ∈R.

2. The centralisers Rn of the weights ϕn := ϕ(e−an ·) are semifinite for n ≥ 1.
3. There are conditional expectations En : R→Rn satisfying

ϕ̂ ◦ En = ϕ̂, σ ϕ̂s ◦ En = En ◦ σ ϕ̂s , s ∈R

4. En(x) → x σ -strongly for x ∈ nϕ̂ , and
⋃

n≥1 Rn is σ -strongly dense in R.

We denote by Dϕ the spatial derivative with respect to ϕ (and some weight on the commutant, whose
choice is unimportant). Assume that T : M→M is unital completely positive (ucp) and satisfies ϕ ◦
T ≤ ϕ. Then by [12, Section 5], T ‘extends’ to a map T (p) on Lp(M), in the sense that T (p)(D1/2p

ϕ
xD1/2p

ϕ
) =

D1/2p
ϕ

T(x)D1/2p
ϕ

for x ∈mϕ̂ . If T satisfies σϕs ◦ T = T ◦ σϕs , then we moreover have T (p)(Dθ/p
ϕ

xD(1−θ)/p
ϕ

) =
Dθ/p
ϕ

T(x)D(1−θ)/p
ϕ

for any 0 ≤ θ ≤ 1 and x ∈mϕ̂ .
In particular, the conditional expectations E , En ‘extend’ to maps E (p), E (p)

n from Lp(R, ϕ̂) to Lp(M, ϕ)
resp. Lp(Rn, ϕ̂). The following statement is [8, Lemma 8.3]:

lim
n→∞

‖E (p)
n (x) − x‖p = 0, 1 ≤ p<∞, x ∈ Lp(R, ϕ̂). (6.1)

We need a few more facts; we refer to [8, Section 8.2] for the details. First, there is an isometric iso-
morphism κp : Lp(Rn, ϕ̂) → Lp(Rn, ϕn) given by κp(D

1/2p
ϕ̂ xD1/2p

ϕ̂ ) = ean/2pxean/2p for x ∈mϕ̂ . Next, assume
that T : M→M is ucp and preserves ϕ and σϕs . Then by [12, Section 4], there exists an extension
T̂ : R→R, which is also ucp and preserves ϕ̂ and σ ϕ̂s . Hence T̂ itself also ‘extends’ to the various
noncommutative Lp-spaces. Moreover, the following diagram commutes:
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Lp(R, ϕ) Lp(Rn, ϕ) Lp(Rn, ϕn)

Lp(R, ϕ) Lp(Rn, ϕ) Lp(Rn, ϕn).

E(p)
n κp

T (p)

E(p)
n

T (p)

κp

T

Note that since ϕn is tracial on Rn, the T̂ in the rightmost upwards arrow is actually an extension of the
operator T̂ on Rn, so we do not need to use the notation T̂ (p) here.

Finally, for 1 ≤ p, q<∞, we define the Mazur maps Mp,q : Lp(M) → Lq(M) by x �→ u|x|p/q, where
x = u|x| is the polar decomposition of x. The Mazur maps satisfy κq ◦ Mp,q = Mp,q ◦ κp; see, for instance,
[23, end of Section 3]. We are now ready to state and prove the generalisation of [9, Lemma 3.1] for
general von Neumann algebras. This result was already shown for 2< p<∞ in [8, Section 8], but we
will prove the result for all 1< p<∞ at once since this does not take any extra effort.

Lemma 6.2. Let (M, ϕ) be a von Neumann algebra equipped with nfs weight. Let T : M→M be a
unital completely positive map satisfying ϕ ◦ T = ϕ and T ◦ σϕs = σϕs ◦ T for all s ∈R. Then there exists
a universal constant C> 0 such that for any x ∈ L2(M) and 1< p<∞:

‖T (p)(M2,p(x)) − M2,p(x)‖p ≤ C‖T (2)(x) − x‖θ2‖x‖1−θ
2 ,

where θ = 1
4

min{ p
2
, 2

p
}.

Proof. The proof runs via Haagerup reduction, using the estimates for the semifinite case from [8,
Claim B] for p> 2 and [9, Lemma 3.1] for p< 2. Note that the latter was stated only for finite von
Neumann algebras, but the same proof works for the semifinite case as well.

Set y = M2,p(x). Since T = T̂ onM and Lp(M, ϕ) ↪→ Lp(R, ϕ̂) canonically and isometrically, we have
T (p)(y) = T̂ (p)(y) and

‖T (p)(y) − y‖Lp(M,ϕ) = ‖T̂ (p)(y) − y‖Lp(R,ϕ̂).

Now fix n ≥ 1. Then

‖E (p)
n (̂T (p)(y)) − E (p)

n (y)‖Lp(Rn ,ϕ̂) = ‖κp

(
E (p)

n (̂T (p)(y)) − E (p)
n (y)

) ‖Lp(Rn ,ϕn)

= ‖T̂(κp(E (p)
n (y))) − κp(E (p)

n (y))‖Lp(Rn ,ϕn).

Now we can apply the result for the semifinite case on κp(E (p)
n (y)) to obtain

‖E (p)
n (̂T (p)(y)) − E (p)

n (y)‖Lp(Rn ,ϕ̂)

≤ C‖T̂(Mp,2(κp(E (p)
n (y)))) − Mp,2(κp(E (p)

n (y)))‖θL2(Rn ,ϕn) · ‖Mp,2(κp(E (p)
n (y)))‖1−θ

L2(Rn ,ϕn)

= C‖κ2(T̂ (2)(Mp,2(E (p)
n (y)))) − κ2(Mp,2(E (p)

n (y)))‖θL2(Rn ,ϕn) · ‖κ2(Mp,2(E (p)
n (y)))‖1−θ

L2(Rn ,ϕn)

= C‖T̂ (2)(Mp,2(E (p)
n (y))) − Mp,2(E (p)

n (y))‖θL2(Rn ,ϕ̂) · ‖Mp,2(E (p)
n (y))‖1−θ

L2(Rn ,ϕ̂)

=: CAθ

nB1−θ
n .

By the triangle inequality, the main result from [23] and (6.1), we find

Bn ≤ ‖Mp,2(E (p)
n (y)) − Mp,2(y)‖L2(Rn ,ϕ̂) + ‖Mp,2(y)‖L2(Rn ,ϕ̂)

≤ Cx,p‖E (p)
n (y) − y‖min{ p

2 ,1}
Lp(Rn ,ϕ̂) + ‖x‖L2(Rn ,ϕ̂) → ‖x‖L2(M,ϕ)

for some constant Cx,p independent of n. Similarly, we find

An ≤ Cx,p‖T̂ (2) − 1R‖‖E (p)
n (y) − y‖min{ p

2 ,1}
Lp(Rn ,ϕ̂) + ‖T̂ (2)(x) − x‖L2(Rn ,ϕ̂) → ‖T (2)(x) − x‖L2(M,ϕ).
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Hence, taking limits and applying again (6.1), we conclude

‖T (p)(y) − y‖p = lim
n→∞

‖E (p)
n (̂T (p)(y)) − E (p)

n (y)‖Lp(Rn ,ϕ̂) ≤ C‖T (2)(x) − x‖θ2‖x‖1−θ
2 .

Proof of Proposition 4.3. We indicate only the changes to [8, Proof of Claim B]. The statement we
have to prove is precisely [8, Equation (9)], but without the uj (this is just a different choice based on
convenience). The Tζ constructed in [8, Proof of Claim B] is a ϕ-preserving ucp map that commutes
with the modular automorphism group; one can see this from (2.4). Hence, we can apply Lemma 6.2 on
Tζ and hV to show [8, Equation (10)] (but without the uj). Then, setting zj = h2/q

V , the rest of the proof is
the same.
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