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Abstract

Using fluctuation theory, we solve the two-sided exit problem and identify the ruin
probability for a general spectrally negative Lévy risk process with tax payments of a
loss-carry-forward type. We study arbitrary moments of the discounted total amount
of tax payments and determine the surplus level to start taxation which maximises the
expected discounted aggregate income for the tax authority in this model. The results
considerably generalise those for the Cramér–Lundberg risk model with tax.

Keywords: Lévy process; fluctuation theory; excursion theory; scale functions; insurance
risk theory; ruin probability; tax payments

2000 Mathematics Subject Classification: Primary 60G51; 91B30
Secondary 60J75

1. Introduction

The classical risk model describes the surplus process of an insurance company by a
stochastic process U = (U(t))t≥0 with

U(t) = u+ ct − S(t),

where S(t) is a compound Poisson process with jump intensity θ and jump distribution F
(representing the aggregate claim payments up to time t), u > 0 denotes the initial surplus, and
c > 0 is a constant premium intensity. Usually it is assumed that the net profit condition

c > θµ

holds, whereµ denotes the expected value of the single claim size distributionF . This condition
ensures that ruin will not occur almost surely. As a Lévy process,U has a characteristic exponent
given by

�(λ) = − ln E[eiλ(U(1)−u)] = −iλc −
∫ 0

−∞
(eiλz − 1)θF (dz)

for λ ∈ R.
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One way to generalise the classical risk process is to consider an arbitrary spectrally negative
Lévy process, i.e. a process X = (X(t))t≥0 with independent and stationary increments and
with characteristic exponent given by

�(λ) = −iλc + 1

2
σ 2λ2 −

∫ 0

−∞
(eiλz − 1 − iz 1{z>−1})�(dz)

for λ ∈ R and σ ≥ 0, where � is a measure on (−∞, 0) such that∫ 0

−∞
(1 ∧ z2)�(dz) < ∞.

Here, c > 0 again represents the constant premium intensity. The net profit condition for this
Lévy insurance risk process now reads

E[X(1)− u] > 0,

which is equivalent to limt→∞X(t) = ∞ almost surely.
An interpretation of such Lévy risk processes for the surplus modelling of large insurance

companies is, for instance, given in [12] and [15]. This model has recently attracted a lot of
research interest; see, e.g. [6], [8], [9], [11], [13], and [18].

In a recent paper, Albrecher and Hipp [1] investigated how tax payments (according to a
loss-carry-forward system) affect the behaviour of a Cramér–Lundberg surplus process. In
their model taxes are paid at a fixed proportional rate γ whenever the company is in a profitable
situation, defined as being at a running maximum of the surplus process. It turned out that in
this model there is a strikingly simple relationship between ruin probabilities with and without
tax, and that we could also obtain an explicit formula for the expected discounted sum of tax
payments over the lifetime of the risk process.

In this paper we will embed this tax model into a general Lévy framework. Utilising excursion
theory and exploiting the structure of the model, we will solve the two-sided exit problem
for the Lévy risk process with tax and, consequently, recover the simple relation between
ruin probabilities with and without tax in this more general class of models. Furthermore,
expressions for arbitrary moments of discounted tax payments until ruin will be derived. It turns
out that close connections of the distribution of tax payments to the distribution of dividend
payments according to a horizontal barrier strategy, that were observed in the Cramér–Lundberg
model, carry over to the Lévy setup.

The paper is organised as follows. In Section 2 we will review some preliminaries on
spectrally negative Lévy processes that will be needed later on. In Section 3 we introduce the
tax model under consideration and then derive a new fluctuation identity, the ruin probability,
as well as moments of discounted tax payments until ruin. Finally, in Section 4 the problem
of an optimal choice of a threshold surplus level for starting taxation to maximise the expected
tax income will be addressed.

2. Preliminaries on spectrally negative Lévy processes

Let X = (X(t))t≥0 be a spectrally negative Lévy process or, in other words, a Lévy
process with no positive jumps (to avoid trivialities, we exclude the case where X is a negative
subordinator or a deterministic drift). The law of X such that X(0) = u ≥ 0 will be denoted
by Pu and the corresponding expectation by Eu (for a general introduction to Lévy processes,
we refer the reader to [3] or [14]).
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As the Lévy process X has no positive jumps, its Laplace transform is given by

Eu[eλ(X(t)−u)] = etψ(λ)

for λ ≥ 0 and t ≥ 0, where ψ(λ) = −�(−iλ). In this case the Laplace exponent ψ is strictly
convex and limλ→∞ ψ(λ) = ∞. Thus, there exists a function � : [0,∞) → [0,∞) such that

ψ(�(λ)) = λ, λ ≥ 0.

We now define the so-called scale functions {W(q); q ≥ 0} of the process X as in [4]. For
each q, W(q) : [0,∞) → [0,∞) is the unique, strictly increasing, and continuous function
with Laplace transform ∫ ∞

0
e−λzW(q)(z) dz = 1

ψ(λ)− q

for λ > �(q). When q = 0, we write W instead of W(0).

2.1. Two-sided exit problem

Scale functions arise naturally when considering two-sided exit problems for spectrally
negative Lévy processes. Indeed, let a be a positive real number and define τ+

a = inf{t >
0 : X(t) > a} and τ−

0 = inf{t > 0 : X(t) < 0} with the convention inf ∅ = ∞. When the
process X starts within the interval (i.e. X(0) = u ∈ (0, a)), the random time τ+

a ∧ τ−
0 is the

first exit time of X from this interval. Since X has no positive jumps, it will hit the point a
when exiting above, but it might jump below 0 when exiting below. Its Laplace transform on
the event where the process X leaves the interval at the upper boundary is given by

Eu[exp(−qτ+
a ) 1{τ+

a <τ
−
0 }] = W(q)(u)

W(q)(a)
, q ≥ 0. (2.1)

Consequently, when q = 0,

Pu{τ+
a < τ−

0 } = W(u)

W(a)
.

If X has a positive mean, we have

Pu
{

inf
t≥0
X(t) ≥ 0

}
= ψ ′(0+)W(u). (2.2)

This result is of course related to the ruin and survival probabilities in insurance risk theory.

2.2. Smoothness of the scale functions

At several places in this paper, differentiability of the scale functions will be required. If
the sample paths of X are of unbounded variation then the scale functions W(q) are contin-
uously differentiable. When the sample paths of X are of bounded variation then the scale
functions are continuously differentiable if and only if � has no atoms or, in other words, if
{x < 0 | �({x}) > 0} = ∅. Note that if X has a Gaussian component then its sample paths
are of unbounded variation and, moreover, its scale functions are even twice continuously
differentiable. Furthermore, if the Lévy measure � has a density then the scale functions are
always differentiable (see [5] or [7] for more details).
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3. The model

Let X be the underlying Lévy risk process with differentiable scale functions. Let SX =
(SX(t))t≥0 denote the running maximum of X, i.e. SX(t) = max0≤s≤t X(s). This process is
continuous and, of course, increasing. Clearly, SX(0) = u as X(0) = u. For 0 ≤ γ ≤ 1,
define a process Uγ = (Uγ (t))t≥0 by

Uγ (t) = X(t)− γ (SX(t)−X(0)).

We can think of Uγ as the surplus process of an insurance company that pays out taxes at a
fixed rate γ whenever it is in a profitable situation (or, in other words, whenever the surplus is
at a running maximum). When γ = 1, this amounts to the situation where the company pays
out as dividends any capital above its initial value.

3.1. A fluctuation identity

The following theorem generalises both Theorem VII.8 of [3] and (2.1).

Theorem 3.1. For any 0 < u < a and q ≥ 0, let τ+
a,γ = inf{t > 0 : Uγ (t) > a} and τ−

0,γ =
inf{t > 0 : Uγ (t) < 0}. If γ < 1 then

Eu[exp(−qτ+
a,γ ) 1{τ+

a,γ <τ
−
0,γ }] =

(
W(q)(u)

W(q)(a)

)1/(1−γ )
. (3.1)

Proof. We first consider the case thatX drifts to positive infinity, and we want to prove (3.1)
for q = 0.

It is well known that SX is a local time at 0 for the Markov process SX − X. Then, let ε
be the excursion process of SX − X away from 0, and let ε̄ be the excursion height process.
If X drifts to ∞ then ε is a Poisson point process and ε̄ is also a Poisson point process with
characteristic measure ν given by ν(x,∞) = W ′(x)/W(x). By the definition of an excursion,
the event {τ+

a,γ < τ−
0,γ } is the same as{

ε̄s < u+ (1 − γ )s for all 0 ≤ s ≤ a − u

1 − γ

}
.

Indeed, if an excursion starts from level u + s (for the process X), meaning that the process
Uγ is at level u+ (1 − γ )s, to avoid falling below 0, this excursion must not exceed the latter
quantity; this must be true until Uγ reaches level a, which is equivalent to X reaching level
a/(1 − γ ). Then, by the definition of a Poisson point process, we have

Pu{τ+
a,γ < τ−

0,γ } = P{N = 0}

= exp

(
−

∫ (a−u)/(1−γ )

0

W ′(u+ (1 − γ )s)

W(u+ (1 − γ )s)
ds

)

= exp

(
− 1

1 − γ

∫ a−u

0

W ′(u+ s)

W(u+ s)
ds

)

=
(
W(u)

W(a)

)1/(1−γ )
,

where N is a Poisson distributed random variable with parameter∫ (a−u)/(1−γ )

0
ν(u+ (1 − γ )s,∞) ds
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that counts the number of Poisson points (s, ε̄s) in{
(x, y) ∈ R

2
∣∣∣∣ 0 ≤ x ≤ a − u

1 − γ
, u+ (1 − γ )x ≤ y

}
.

Without assuming that X drifts to +∞, for q > 0, we define another probability measure
P�(q)u on (Ft )t≥0 with Radon–Nikodym derivative

dP�(q)u

dP
= e�(q)(X(t)−u)−qt

on Ft , where (Ft )t≥0 denotes the filtration generated by X. Under P�(q)u , X is still a spec-
trally negative Lévy process, but now with W�(q) as its 0-scale function, which are given by
e�(q)xW�(q)(x) = W(q)(x); in addition, under this measure, X drifts to +∞ (see Chapter 8
of [14] for details).

Observe that X(τ+
a,γ ) = SX(τ+

a,γ ) for τ+
a,γ < ∞. Since

a = Uγ (τ
+
a,γ ) = X(τ+

a,γ )− γ (SX(τ+
a,γ )− u)

for τ+
a,γ < ∞, we have

X(τ+
a,γ ) 1{τ+

a,γ <∞} = a − γ u

1 − γ
1{τ+

a,γ <∞} .

Since
dP�(q)u

dP
= exp(�(q)(X(τ+

a,γ )− u)− qτ+
a,γ )

on Fτ+
a,γ

, we then further obtain

Eu[exp(−qτ+
a,γ ) 1{τ+

a,γ <τ
−
0,γ }] = P�(q)u {τ+

a,γ < τ−
0,γ } exp

(
−�(q)

(
a − γ u

1 − γ
− u

))

=
(
W�(q)(u)

W�(q)(a)

)1/(1−γ )
exp

(
−�(q)(a − u)

1 − γ

)

=
(

e−�(q)uW(q)(u)

e−�(q)aW(q)(a)

)1/(1−γ )
exp

(
−�(q)(a − u)

1 − γ

)
.

Therefore, the desired result follows readily.
Letting q → 0+, we can obtain (3.1) for q = 0.

3.2. The survival probability

Let
φγ (u) = Pu

{
inf
t≥0
Uγ (t) ≥ 0

}
denote the survival probability in the risk model with tax rate γ and initial surplus u. Hence,
φ0(u) is the survival probability in the risk model without tax. For the compound Poisson risk
model, Albrecher and Hipp [1] established a simple relation between the survival probability
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of a risk model with and without tax. We will now utilise Theorem 3.1 to generalise this result
to spectrally negative Lévy risk processes.

Corollary 3.1. If γ < 1 then

φγ (u) = (φ0(u))
1/(1−γ ).

Proof. From Theorem 3.1, we have

φγ (u) = (ψ ′(0+)W(u))1/(1−γ ),

since lima→∞W(a) = (ψ ′(0+))−1. The result follows from (2.2).

Note that φγ (u) > 0 if and only if φ0(u) = ψ ′(0+) > 0, which is the case under the net
profit condition Eu[X(1)− u] > 0.

3.3. The discounted tax payments

Let τγ := τ−
0,γ be the time of ruin of the risk process with tax and, furthermore, let

Tγ,δ = γ

∫ τγ

0
e−δt dD(t)

denote the present value of all tax payments until the time of ruin τγ , whereD(t) = SX(t)−X(0)
and δ ≥ 0 can be interpreted as the force of interest.

Recall from [19] that

V1(u, u) = W(δ)(u)

(W(δ))′(u)
,

where V1(u, u) is the expectation of the present value of all dividends paid until ruin when a
horizontal barrier is at level u. Utilising a methodology from [19] for horizontal barrier models,
we will now compute vγ,δ(u) = Eu[Tγ,δ]. Note that v1,δ(u) = V1(u, u) (so that the case in
which γ = 1 is settled).

Theorem 3.2. If γ < 1 and δ > 0 then the expected discounted sum of tax payments until ruin
is given by

vγ,δ(u) = γ

1 − γ

∫ ∞

u

(
W(δ)(u)

W(δ)(s)

)1/(1−γ )
ds. (3.2)

Proof. If X(0) = u then

SX(τ+
u+1/n,γ )− u = 1/n

1 − γ
.

Clearly, we have

vγ,δ(u) = Eu[Tγ,δ; τ+
u+1/n,γ < τγ ] + Eu[Tγ,δ; τ+

u+1/n,γ > τγ ]. (3.3)
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For the second expression on the right-hand side, we have, using integration by parts,

Eu[Tγ,δ; τ+
u+1/n,γ > τγ ] ≤ Eu

[∫ τ+
u+1/n,γ

0
e−δt γ d(SX(t)− u); τ+

u+1/n,γ > τγ

]

= Eu

[
exp(−δτ+

u+1/n,γ )
γ (1/n)

1 − γ
; τ+

u+1/n,γ > τγ

]

+ Eu

[
γ δ

∫ τ+
u+1/n,γ

0
e−δt (SX(t)− u) dt; τ+

u+1/n,γ > τγ

]

≤ 2γ /n

1 − γ

(
1 −

(
W(u)

W(u+ 1/n)

)1/(1−γ ))

= o

(
1

n

)
.

For the first expression on the right-hand side of (3.3), we can write

Eu[Tγ,δ; τ+
u+1/n,γ < τγ ]

= Eu

[∫ τ+
u+1/n,γ

0
e−δt γ d(SX(t)− u); τ+

u+1/n,γ < τγ

]
(3.4)

+ Eu

[∫ τγ

τ+
u+1/n,γ

e−δt γ d(SX(t)− u); τ+
u+1/n,γ < τγ

]
. (3.5)

Consider the two summands on the right-hand side separately. For (3.4), we apply the integration
by parts formula to obtain

Eu

[∫ τ+
u+1/n,γ

0
e−δt γ d(SX(t)− u); τ+

u+1/n,γ < τγ

]

= Eu

[
exp(−δτ+

u+1/n,γ )
γ /n

1 − γ
; τ+

u+1/n,γ < τγ

]

+ Eu

[
γ δ

∫ τ+
u+1/n,γ

0
e−δt (SX(t)− u) dt; τ+

u+1/n,γ < τγ

]
,

where the second expression on the right-hand side can be bounded by

Eu

[
γ δ

∫ τ+
u+1/n,γ

0
e−δt (SX(t)− u) dt; τ+

u+1/n,γ < τγ

]

≤ γ /n

1 − γ

((
W(u)

W(u+ 1/n)

)1/(1−γ )
−

(
W(δ)(u)

W(δ)(u+ 1/n)

)1/(1−γ ))

= o

(
1

n

)
.

For (3.5), using the strong Markov property and the spatial homogeneity of the Lévy process
X, we obtain

Eu

[∫ τγ

τ+
u+1/n,γ

e−δt γ d(SX(t)− u); τ+
u+1/n,γ < τγ

]

= Eu[exp(−δτ+
u+1/n,γ ); τ+

u+1/n,γ < τγ ]vγ,δ
(
u+ 1

n

)
.
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Consequently,

vγ,δ(u) =
(

W(δ)(u)

W(δ)(u+ 1/n)

)1/(1−γ )(
γ /n

1 − γ
+ vγ,δ

(
u+ 1

n

))
+ o

(
1

n

)
.

Standard algebraic manipulations to form the differential quotient for vγ,δ then yield, for
n → ∞,

(vγ,δ)
′(u) = γ

1 − γ

(
(W(δ))′(u)
γW(δ)(u)

vγ,δ(u)− 1

)
. (3.6)

This is the analogue of Equation (14) of [1]. Using the integrating factor technique for ordinary
differential equations, we find that its solution is given by

vγ,δ(u) =
(
C − γ

1 − γ
U2(u)

)
exp

(
U1(u)

1 − γ

)

for some constant C, where

U1(u) =
∫ u

0

(W(δ))′(s)
W(δ)(s)

ds, U2(u) =
∫ u

0
exp

(−U1(s)

1 − γ

)
ds.

We have (W(δ))′(s)/W(δ)(s) ≥ 0 and

lim
s→∞

(W(δ))′(s)
W(δ)(s)

= �(δ).

The latter result can be found in [2] or [20]. Hence, U1 is unbounded because �(δ) > 0 for
δ > 0. Also, since τγ → ∞ as u → ∞ (for any γ ), we have limu→∞ vγ,δ(u) < ∞. Thus,

lim
u→∞U2(u) = 1 − γ

γ
C,

and then

vγ,δ(u) = γ

1 − γ
exp

(
(1 − γ )−1

∫ u

0

(W(δ))′(s)
W(δ)(s)

ds

)

×
∫ ∞

u

exp

(
−(1 − γ )−1

∫ s

0

(W(δ))′(t)
W(δ)(t)

dt

)
ds, (3.7)

from which (3.2) follows.

Remark 3.1. If X has a negative drift (i.e. Eu[X(1)− u] < 0) then (3.2) also holds for δ = 0.

Remark 3.2. Using (3.7), we can also write

vγ,δ(u) = γ

1 − γ
exp

(
(1 − γ )−1

∫ u

0
(V1(s, s))

−1 ds

)

×
∫ ∞

u

exp

(
−(1 − γ )−1

∫ s

0
(V1(t, t))

−1 dt

)
ds,

recovering Theorem 2 of [1] in our more general Lévy setting.
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Remark 3.3. Using L’Hôpital’s rule, we recover the following interesting relation:

lim
u→∞ vγ,δ(u) = γ lim

u→∞V1(u, u). (3.8)

A direct probabilistic reasoning to obtain this identity goes as follows. In the absence of ruin
the only difference for the calculation of vγ,δ(u) and V1(u, u) is that, whenever tax (dividend)
payments start and last until the next deviation from the running maximum, in the tax case only
the proportion γ of the income is paid, whereas in the horizontal barrier case all the income is
paid. The only further difference is then that the surplus level at the next payment stream is
different, but this latter difference does not matter if the distance to the ruin boundary does not
matter, which in the limit u → ∞ is the case. Hence, we immediately arrive at (3.8).

Remark 3.4. We can also understand (3.2) from an intuitive point of view. Whenever the
taxed process Uγ is in a running maximum, its increase scales with a factor γ /(1 − γ ) for the
increase of the associated tax payments. So the integral in (3.2) can be interpreted as summing
up the (appropriately discounted) contributions given that a new running maximum is reached
(cf. Theorem 3.1).

3.4. Higher moments

We will now investigate higher moments of Tγ,δ . Let v(k)γ,δ(u) be the kth moment of Tγ,δ
when the initial surplus is equal to u. Recall from [17], and also from [15], that

Vk(u, u) = k!
k∏
i=1

W(iδ)(u)

(W(iδ))′(u)
, (3.9)

where Vk(u, u) is the kth moment of the present value of all dividends paid until ruin when the
horizontal barrier is at level u. Note that v(k)1,δ(u) = Vk(u, u). So we need to address only the
case in which γ < 1.

Theorem 3.3. If γ < 1 and δ > 0 then the kth moment of the present value of tax payments
until ruin is related to the (k − 1)th moment by

v
(k)
γ,δ(u) = kγ

1 − γ

∫ ∞

u

v
(k−1)
γ,δ (s)

(
W(kδ)(u)

W(kδ)(s)

)1/(1−γ )
ds. (3.10)

Proof. Proceeding as in the proof of Theorem 3.2 and the proof of Proposition 1 of [17], we
have

v
(k)
γ,δ(u) = kv

(k−1)
γ,δ

(
u+ 1

n

)
γ (1/n)

1 − γ

(
W(kδ)(u)

W(kδ)(u+ 1/n)

)1/(1−γ )

+ v
(k)
γ,δ

(
u+ 1

n

)(
W(kδ)(u)

W(kδ)(u+ 1/n)

)1/(1−γ )
+ o

(
1

n

)
.

Furthermore, we obtain

(v
(k)
γ,δ)

′(u) = γ

1 − γ

(
(W(kδ))′(u)
γW(kδ)(u)

v
(k)
γ,δ(u)− kv

(k−1)
γ,δ (u)

)
.
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Solving this ordinary differential equation leads to

v
(k)
γ,δ(u) = kγ

1 − γ
exp

(
(1 − γ )−1

∫ u

0

(W(kδ))′(s)
W(kδ)(s)

ds

)

×
∫ ∞

u

v
(k−1)
γ,δ (s) exp

(
−(1 − γ )−1

∫ s

0

(W(kδ))′(t)
W(kδ)(t)

dt

)
ds.

The statement follows from simple algebraic manipulations.

Remark 3.5. From (3.10) we obtain, by L’Hôpital’s rule,

lim
u→∞ v

(k)
γ,δ(u) = kγ lim

u→∞ v
(k−1)
γ,δ (u)

W(kδ)(u)

(W(kδ))′(u)
.

With (3.9) we can hence generalise the asymptotic relation (3.8) to arbitrary moments of tax
and dividend payments, respectively:

lim
u→∞ v

(k)
γ,δ(u) = γ k lim

u→∞Vk(u, u). (3.11)

The alternative probabilistic argument from Remark 3.3 also carries over to explain (3.11).

3.5. Examples

3.5.1. Cramér–Lundberg process with exponential claims. IfX is a compound Poisson process
with exponential jumps (with Poisson parameter λ and exponential parameter α) then the scale
functions are given by

W(δ)(x) = (α + ρ)eρx(1 − η(x))

c(ρ − r)

(see, e.g. [15]), where

η(x) = α + r

α + ρ
e(r−ρ)x,

and ρ and r are respectively the positive and negative solutions of the equation

cR2 + (cα − λ− δ)R − αδ = 0.

Plugging this expression into (3.2), we eventually arrive at the explicit formula

vγ,δ(u) = γ

ρ
(1 − η(u))1/(1−γ )

× 2F1

(
1

1 − γ
,

ρ

(ρ − r)(1 − γ )
,

ρ

(ρ − r)(1 − γ )
+ 1; η(u)

)
,

which was already derived in [1]. Here

2F1(a, b, c; z) = �(c)

�(b)�(c − b)

∫ 1

0
tb−1(1 − t)c−b−1(1 − zt)−a dt,

where c > b > 0 denotes the Gauss hypergeometric series.
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3.5.2. Brownian motion with drift. Let X(t) = mt + σB(t) be a Brownian motion with drift
(with m 	= 0 and σ > 0). As in this case ψ(λ) = mλ+ 1

2σ
2λ2 and �(α) = −ω + θα , we can

verify that

W(δ)(x) = 1

σ 2θδ
(exp((−ω + θδ)x)− exp(−(ω + θδ)x)),

where θδ = √
m2 + 2δσ 2/σ 2 and ω = m/σ 2 (see also [2]). In particular, we have

W(x) = 1

m

(
1 − exp

(
−2m

σ 2 x

))
.

Thus,

v1,δ(u) = V1(u, u) = σ 2

2m

(
exp

(
2m

σ 2 u

)
− 1

)
,

which recovers Equation (2.20) of [10].
Also, if γ < 1 and if δ > 0, then we obtain

vγ,δ(u) = γ

1 − γ
(exp((θδ − ω)u)(1 − exp(−2θδu)))

1/(1−γ )

×
∫ ∞

u

(exp((θδ − ω)s)(1 − exp(−2θδs)))
−1/(1−γ ) ds.

Since θδ > ω when σ > 0 and δ > 0, the above expression can be rewritten as

vγ,δ(u) = γ

1 − γ

(
(1 − exp(−2θδu))1/(1−γ )

θδ − ω

)

× 2F1

(
(1 − γ )−1,

θδ − ω

2θδ
,

3θδ − ω

2θδ
; exp(−2θδu)

)
.

4. Optimality of the tax barrier

As tax payments stop at ruin, it is natural to ask whether the expected discounted tax payments
over the lifetime of the process can be optimised when tax payments are started only after the
surplus has reached a certain levelM (see [1] for a corresponding study in the Cramér–Lundberg
framework). Due to the strong Markov property, we clearly have

vγ,δ,M(u) = W(δ)(u)

W(δ)(M)
vγ,δ(M) (4.1)

for u < M and vγ,δ,M(u) = vγ,δ(u) for u ≥ M (as then tax payments start immediately).
Hence, the goal is to maximise (4.1) with respect to M .

Assumption 4.1. In what follows we assume that each scale function is three times differen-
tiable and that its first derivative is a strictly convex function (so that (W(δ))′′(u) changes its
sign from negative to positive at most once).

Assumption 4.1 is, for instance, fulfilled if the Lévy measure has a completely monotone
density (see [16] for the strict convexity of (W(δ))′ and [5] for infinite differentiability). Among
particular examples fulfilling Assumption 4.1 are the gamma process and the inverse Gaussian
process (for more examples, see [16]).
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Differentiating (4.1) with respect toM , we find thatM0 is a critical point ofM �→ vγ,δ,M(u)

if
vγ,δ(M0) = V1(M0,M0) or, equivalently, (vγ,δ)

′(M0) = 1, (4.2)

where (3.6) was used for the latter equivalence. To specify the nature of this critical point, we
use the second derivative:

∂2vγ,δ,M(u)

∂M2

∣∣∣∣
M=M0

= γ

1 − γ

W(δ)(u)

(W(δ)(M0))2
vγ,δ(M0)(W

(δ))′′(M0). (4.3)

Clearly, since limM→∞ vγ,δ,M(u) = 0 for any u, there is a point M� ∈ [0,∞) where the
function M �→ vγ,δ,M(u) reaches its global maximum.

Remark 4.1. Note that M �→ vγ,δ,M(u) cannot have a local minimum in [0,∞). Indeed, if
there existed a local minimum then, by virtue of limM→∞ vγ,δ,M(u) = 0, there would have to
exist a local maximum for a larger value M . But in view of (4.3) and the strict convexity of
(W(δ))′, this cannot occur.

Similarly, we deduce that after a potential saddlepoint there cannot be a local maximum.
Recall that

V ′
1(s, s) = 1 − W(δ)(s)(W(δ))′′(s)

((W(δ))′(s))2
and from Remark 3.3 that

lim
u→∞ vγ,δ(u) < lim

u→∞V1(u, u). (4.4)

Remark 4.2. From the above, it follows that M �→ vγ,δ,M(u) also cannot have a saddlepoint
M0 in [0,∞). Indeed, otherwise from vγ,δ(M0) = V1(M0,M0) and (W(δ))′′(M0) = 0, we can
observe that

V ′′
1 (M0,M0) = −W(δ)(M0)(W

(δ))′′′(M0)

((W(δ))′(M0))2

and (vγ,δ)′′(M0) = 0. Hence, the function s �→ vγ,δ(s) − V1(s, s) reaches a local minimum
value of 0 at this point M0 (as (W(δ))′′′(M0) > 0), implying that vγ,δ is greater than V1 in a
neighbourhood of M0, so that this saddlepoint would have to be followed by a maximum or
another saddlepoint, which itself is excluded by the convexity of (W(δ))′(u).

As a consequence, (4.2) has at most one positive solution M0. If V1(0, 0) ≤ vγ,δ(0) then,
due to (4.4), such a solutionM0 > 0 exists and is the point of global maximum, i.e.M� = M0.

If V1(0, 0) > vγ,δ(0) then M� = 0 (i.e. tax payments start immediately), as a solution of
(4.2), by (4.4), would have to be accompanied by a second one, which cannot be the case. Note
that M� is independent of the initial surplus u.

From the above discussion, we obtain the following final result which extends Theorem 3
of [1].

Theorem 4.1. Suppose that the scale functions ofX are three times differentiable and that their
first derivatives are strictly convex functions. If V1(0, 0) > vγ,δ(0) then the optimal heightM�

is equal to 0. If V1(0, 0) ≤ vγ,δ(0) then the optimal height M� is the unique positive solution
of (4.2). The maximum value is thus given by

vγ,δ,M�(u) =
{
V1(u,M

�) if u < M�,

vγ,δ(u) if u ≥ M�.
(4.5)
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Proof. If u < M� then

vγ,δ,M�(u) = W(δ)(u)

W(δ)(M�)
vγ,δ(M

�) = V1(u,M
�)

V1(M�,M�)
vγ,δ(M

�) = V1(u,M
�).

Otherwise, we start to pay taxes right away and vγ,δ,M�(u) = vγ,δ(u).
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