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Solvable Points on
Projective Algebraic Curves

Ambrus Pál

Abstract. We examine the problem of finding rational points defined over solvable extensions on al-

gebraic curves defined over general fields. We construct non-singular, geometrically irreducible pro-

jective curves without solvable points of genus g, when g is at least 40, over fields of arbitrary charac-

teristic. We prove that every smooth, geometrically irreducible projective curve of genus 0, 2, 3 or 4

defined over any field has a solvable point. Finally we prove that every genus 1 curve defined over a

local field of characteristic zero with residue field of characteristic p has a divisor of degree prime to

6p defined over a solvable extension.

1 Introduction

Definition 1.1 Let X be a quasi-projective variety over a field F. We say that P is a

solvable point of X over F if P is a rational point of X defined over a solvable extension

of F. Similarly we say that D is a solvable divisor of X over F if D is a rational divisor

of X defined over a solvable extension of F.

In this paper we will examine the following question:

Question 1.2 Given a field F and a natural number g, is there any smooth, geomet-

rically irreducible projective curve of genus g over the field F which does not have

solvable points over F?

Remark 1.3 The condition of geometric irreducibility in the question is necessary to

have a nontrivial problem. For example we can take a smooth projective curve which

is not geometrically irreducible such that the absolute Galois group acts on the set

of its irreducible components over the separable closure of F through a non-solvable

quotient. A natural condition to rule out these pathological examples is to require

that the curve is geometrically irreducible.

Our first theorem suggests that the phenomenon of smooth, geometrically irre-

ducible projective curves without solvable points is quite general:

Theorem 1.4 If there is a quasi-projective, geometrically irreducible variety over an

algebraic extension K of the perfect field F which does not have solvable points over K,

then there is a smooth, geometrically irreducible projective curve over F which does not

have solvable points over F.

Our second result shows that for any prime p there is a field F of characteristic p

such that for any positive integer g which is at least 40 there is a smooth, geometrically

Received by the editors August 27, 2002.
AMS subject classification: 14H25,11D88.
c©Canadian Mathematical Society 2004.

612

https://doi.org/10.4153/CJM-2004-028-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2004-028-0


Solvable Points on Projective Algebraic Curves 613

irreducible curve defined over F of genus equal to g without solvable points. More

precisely:

Theorem 1.5 Let F be a local field such that the absolute Galois group of its residue

field has quotients isomorphic to S5, PSL3(F2) and PSL3(F3). Then there is a non-

singular, geometrically irreducible projective curve defined over F of genus g without

solvable points when g is equal to 6, 8, 10, 11, 15, 16, 20, 21, 22, 25, 26, 27, 28, 29, 30,

31, 32, 34, 35, 36, 37, 38 or at least 40.

The structure of the proof of the theorem is the following. First we construct a

connected, but geometrically reducible stable curve of arithmetic genus g without

solvable points over the residue field using the assumption on its absolute Galois

group. This construction is essentially combinatorial in nature. Then we use the re-

sults of [2] on the moduli of stable curves to construct a flat projective curve over the

spectrum of the discrete valuation ring of F such that its generic fiber is smooth and

geometrically irreducible and its special fiber is the stable curve above. The generic

fiber will be of genus g without solvable points. The theorem above obviously does

not apply when F is the completion of a number field, because the hypothesis on the

absolute Galois group of the residue field does not hold. Actually the claim is false in

this case, as the absolute Galois group of F is solvable. However, the method of the

theorem does apply when F is finitely generated of transcendence degree at least one

over an algebraically closed field of uncountable cardinality (Theorem 4.11) and for

certain function fields over more general fields (Theorems 4.13 and 4.14) where the

method and Theorem 1.4 will be used to prove less precise results.

On the other hand our third theorem says that there are natural numbers g such

that there are not any smooth, geometrically irreducible projective curves of genus g

defined over an arbitrary field without solvable points:

Theorem 1.6 Let F be any field and let X be a smooth, geometrically irreducible pro-

jective curve defined over F such that its genus is 0, 2, 3, or 4. Then X has a solvable

point.

There is a similar result for surfaces. We will call a variety X defined over a field F

geometrically rational if it is irreducible and rational over the algebraic closure of F.

The theorem is the following:

Theorem 1.7 Let F be any field and let X be a smooth, geometrically rational projective

surface defined over F. Then X has a solvable point.

We will prove these results by examining the canonical linear system on X in or-

der to construct zero-dimensional cycles on X of low degree defined over a solvable

extension of F. In order to prove the second theorem we will also show that the

Merkurjev-Suslin theorem implies that every Brauer-Severi variety defined over an

arbitrary field has a solvable point.

We will also use this result when we examine the following question related to the

one above:

Question 1.8 Given a field F and natural numbers g and d, is there any smooth,

geometrically irreducible projective curve of genus g over the field F which does not

have solvable divisors of degree d defined over F?
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It is clear that if a curve X has a solvable point then it has a solvable divisor of

degree d defined over F for any natural number d. On the other hand we will see that

there are smooth, geometrically irreducible projective curves without solvable points

but with a solvable divisor of arbitrary degree.

Our first result about this question is the following:

Theorem 1.9 Let F be a perfect field of characteristic p or a local field of characteristic

zero with a residue field of characteristic p. Let X be a smooth, geometrically irreducible

projective curve of genus 1 defined over F. Then there is a solvable divisor on X whose

degree is relatively prime to 6p.

As an application of this result and the construction used in Theorem 1.5 we have

finally a result which answers a question similar to 1.8 in a non-trivial case:

Theorem 1.10 Let F be a local field of characteristic zero with a residue field of charac-

teristic p where p = 5 or p = 7. Assume that the absolute Galois group of the residue

field of F has a quotient isomorphic to S5, if p = 5, and has a quotient isomorphic to

PSL3(F2), if p = 7. Then there is a smooth, geometrically irreducible projective curve of

genus g without a solvable divisor whose degree is relatively prime to p if and only if p

divides g − 1 and g is at least 2.

Notation 1.11 In this paper, if not otherwise stated, we will use the following ter-

minology and notation. By a local field we mean a field complete with respect to

a discrete valuation. By a solvable extension we mean a separable extension with a

solvable Galois group. Let Sn denote the symmetric group on n letters for any natural

number n. For any abelian category A and any object M of A let M[n] denote the ker-

nel of multiplication by n in M. For any field F let F̄, Fp denote its separable closure

and its perfection, respectively. Let X be a regular, geometrically irreducible projec-

tive variety defined over the field F. Let Div(X), Pic(X), Pr(X) and Rt(X) denote

the functors from the category of extensions of F to the category of abelian groups

which assigns to every extension K of F the group of divisors on X defined over K,

the group of linear equivalence classes of divisors on X defined over K, the group

of principal divisors on X defined over K and the multiplicative group of nonzero

rational functions on X defined over K, respectively. If X is a regular, geometrically

irreducible projective curve defined over the field F, then let Div0(X), Pic0(X) denote

the functors from the category of extensions of F to the category of abelian groups

which assigns to every extension K of F the group of degree zero divisors on X de-

fined over K, and the group of linear equivalence classes of degree zero divisors on

X defined over K, respectively. Restricted to finite separable extensions of a fixed ex-

tension K, the functors Div(X), Pr(X) and Rt(X) are sheaves on the étale topology,

but Pic(X), Pic0(X) are only presheaves. Let Pic(X), Pic0(X) denote their sheafifica-

tion. Let rL|K denote by abuse of notation all natural restriction homomorphisms on

the cohomology groups of the functors such as Pic(X), Pr(X) or Gm for any pair of

extensions K ⊆ L of F.

https://doi.org/10.4153/CJM-2004-028-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2004-028-0


Solvable Points on Projective Algebraic Curves 615

2 A General Reduction

Definition 2.1 Let K|F be a finite extension of fields and let X be a quasi-projective

variety defined over the field K. We define the norm NK|F(X) of X as the functor

from Spec(F)-schemes to sets which assigns to each Spec(F)-scheme Z the set of all

Spec(K)-morphisms from the base change Z ×Spec(F) Spec(K) to X. We will examine

the representability of this functor in the next proposition. If the functor is repre-

sentable, we will denote the scheme, which represents it, by the same symbol.

Proposition 2.2 Assume that the extension K|F is separable. Then the functor NK|F(X)

is representable by a quasi-projective variety over F. If X is geometrically irreducible,

then the norm NK|F(X) is also geometrically irreducible.

Proof Let L be a finite Galois extension of F with Galois group G over F which con-

tains the field K. Let X also denote the base change X×Spec(K) Spec(L) by abuse of no-

tation. Then the variety NL|F(X) exists and it is isomorphic to the product
∏

g∈G Xg

over L, where Xg is the g-conjugate of X (see [13, 1.3, pp. 4–7]). Let H be the sub-

group of G fixing the field K. The group H acts naturally on the functor NL|F(X), and

the sub-functor of H-invariant maps is naturally isomorphic to the functor NK|F(X)

by Galois theory. This functor is representable by the fixed variety of the F-rational

action of H on NL|F(X). This variety is obviously quasi-projective. It is also geomet-

rically irreducible, because it is isomorphic to the product
∏

g∈R Xg over L, where

R is a set of representatives of the cosets of H in G, as the product of geometrically

irreducible varieties is also geometrically irreducible.

Theorem 2.3 If there is a quasi-projective, geometrically irreducible variety over an

algebraic extension K of the perfect field F which does not have solvable points over K,

then there is a smooth, geometrically irreducible projective curve over F which does not

have solvable points over F.

Proof We can assume that F has a non-solvable extension, otherwise the claim of the

theorem is trivial. This assumption also implies that F must be infinite. Let X be a

quasi-projective, geometrically irreducible variety over an algebraic extension K of F

such that it does not have solvable points. We can actually assume that K|F is finite.

The norm NK|F(X) of the variety X is geometrically irreducible by Proposition 2.2.

Also if it has a point over an extension L of F then X has a point over the composite

of K and L simply by its universal property. If L is solvable, this extension of K is

also solvable, hence we can assume that X is defined over F. By Bertini’s theorem ap-

plied to some projective embedding of X (see [5, Theorem 6.3, parts (2), (3) and (4),

pp. 66–67]) the set of hyper-plane sections of X which are regular and geometrically

irreducible is non-empty. Successively applying this remark we can conclude that

there is an quasi-projective, regular, geometrically irreducible curve U which does

not have solvable points over F.

The curve U can be embedded in a regular projective curve C . We will construct a

finite cover D of C which is regular, geometrically irreducible and the Galois group of

the field of definition of each geometric point in the pre-image of the complement of

U is non-solvable. Because any variety over F having an Spec(F)-morphism into U
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does not have solvable points over F, this curve D does not have solvable points either

over F. Let P denote the divisor which is the sum of all points in the complement of

U . Take a very ample divisor class L on C defined over F. Because F is infinite, there

is a divisor Q in L whose support is disjoint from the support of P. Then the divisor

class of P + Q is very ample, so there is a divisor R linearly equivalent to P + Q, whose

support is disjoint from the support of P + Q. With this definitions there is a map

f : C → P1 such that the pre-image of 0, 1 are the divisors P + Q and R, respectively.

Lemma 2.4 Let p(x) ∈ F[x] be a separable polynomial of degree n. Then there is an

affine plane curve X ⊂ A2
F defined by the polynomial q(x, y) ∈ F[x, y] such that

(a) q(x, 0) = p(x),

(b) deg(q) = n,

(c) q(x, 1) = xn,

(d) The point (0, 1) ∈ X is regular.

Proof Write p(x) =
∑n

k=0 akxk. Consider the polynomial

q(x, y) =

n
∑

k=0

pk(y)xk,

where p0(y) = a0 + ay + by2, pn(y) = an + (1 − an)y and pk(y) = ak − ak y for

all other k. Then qy(0, 1) = p ′
0(1) and q(x, 1) = p0(1) + xn, hence the polynomial

q(x, y) will satisfy the requirements of the lemma if p0(1) 6= 0 and p0(1) = 0. This

means for a, b that a0 + a + b = 0 and a + 2b 6= 0. By substitution we can reduce this

to the condition 2a0 6= a, which can always be satisfied.

Let us return to the proof of the theorem. Take an irreducible polynomial p(x) ∈
F[x], whose Galois group is not solvable and let X denote Zariski closure in the pro-

jective plane of the plane curve constructed in Lemma 2.4. The center of projection

to the y-coordinate axis is not in X, hence it defines a degree n covering X → P1.

We define the covering D → C as the normalization of the pull-back of this covering

above with respect to f , which is denoted by E.

The geometric points of E in the pre-image of R are regular, hence the normal-

ization map D → E is one to one in a Zariski neighborhood of those points. D is

geometrically irreducible if it is geometrically connected. If it is not geometrically

connected, then D will have at least two geometric points in the pre-image of any ge-

ometric point of C with respect to the cover map D → C . But this cannot be true for

the pre-image of R. On the other hand the natural map D → X is Galois-invariant,

hence the action on the pre-image of P + Q does not factor through a solvable quo-

tient.

3 Combinatorics

Definition 3.1 For any graph G let V(G) and E(G) denote its set of vertices and

edges, respectively. An automorphism of G is a pair (π1, π2) where π1, π2 is a per-

mutation of V(G) and E(G), respectively such that a vertex v ∈ V(G) is on an edge
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e ∈ E(G) then π1(v) is on π2(e). If G is a simple graph then π1 uniquely determines

π2. The set of automorphisms of G forms a group with respect to composition which

is denoted by Aut(G). We say that G is without solvable orbits if Aut(G) acts on the

orbit of any vertex in V(G) and any edge in E(G) through a non-solvable quotient. A

group Γ acts on a graph G if a homomorphism Γ → Aut(G) is given. We say that Γ

acts on G without solvable orbits if Γ acts on the orbit of any vertex in V(G) and any

edge in V(G) through a non-solvable quotient.

Lemma 3.2 The graph G is without solvable orbits if and only there is a group Γ which

acts on G without solvable orbits.

Proof We only have to prove that the second assumption implies the first. For any

vertex v ∈ V(G) the Γ-orbit of v is contained in its Aut(G)-orbit. By assumption

Γ acts on this orbit through a non-solvable quotient, so Aut(G) acts on the orbit of

v through a group which has a non-solvable subgroup and therefore it is itself non-

solvable. A similar argument for any edge in E(G) concludes the proof.

Definition 3.3 We define the Euler characteristic of a graph G, denoted by e(G), as

the sum 1 + |E(G)| − |V(G)|, where |X| denotes the cardinality of a set X. A graph G

is stable, if it is connected and the degree of any vertex in V(G) is at least 3.

Proposition 3.4 There is a stable graph without solvable orbits of Euler characteristic

equal to 6, 8, 10, 11, 15, 16, 20, 21, 22, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38

or at least 40.

Proof Let n, x be natural numbers such that n is bigger than 4. We define the graph

Sn(x) as follows. Its set of vertices is 1, 2, . . . , n. Its set of edges contains one edge

connecting any two different vertices and for each vertex i exactly x loops fitting on

i. Sn(x) is clearly stable and its Euler characteristic

e(Sn(x)) =
n(n − 3)

2
+ nx + 1.

Sn acts on Sn(x) as follows. For each vertex i we index its loops by i1, i2, . . . , ix. If

π ∈ Sn is a permutation, i.e., a bijective function π : {1, 2, . . . , n} → {1, 2, . . . , n},

we extend its natural action on the simple graph spanned by V(Sn(x)) to an au-

tomorphism π̃ ∈ Aut(Sn(x)) whose action on the loops is given by the formula

π̃(i j) = π(i) j for all 1 ≤ i ≤ n and 1 ≤ j ≤ x.

Let n, m, x, y be natural numbers such that n, m are bigger than 4. We define

the graph Sn,m(x, y) as follows. Its set of vertices is 1, 2, . . . , n + m. Its set of edges

contains exactly one edge between i and j for all i ≤ n and n + 1 ≤ j ≤ n + m, for

each vertex i ≤ n exactly x loops fitting on i, and for each vertex n + 1 ≤ j ≤ n + m

exactly y loops fitting on j. Sn,m(x, y) is stable and its Euler characteristic

e(Sn,m(x, y)) = (n − 1)(m − 1) + nx + my.

The direct product Sn × Sm acts on Sn,m(x, y) as follows. For each vertex i ≤ n,

n + 1 ≤ j ≤ n + m we index its loops by i1, i2, . . . , ix and j1, j2, . . . , j y , respec-

tively. If (π1, π2) ∈ Sn × Sm is a pair of permutations, i.e., two bijective functions
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π1 : {1, 2, . . . , n} → {1, . . . , n} and π2 : {1, 2, . . . , m} → {1, . . . , m}, then we ex-

tend the natural action of (π1, π2) on the simple graph spanned by V(Sn,m(x, y)) to

an automorphism π̃ ∈ Aut(Sn,m(x, y)) whose action on the loops is given by the for-

mulas π̃(ik) = π1(i)k, π̃( jl) = (π2( j − n) + n)l, for all 1 ≤ i ≤ n, 1 ≤ k ≤ x, and

n + 1 ≤ j ≤ n + m, 1 ≤ l ≤ y, respectively.

Finally let q be a power of a prime and let x be a natural number. We define the

graph Pq(x) as follows. Its set of vertices is the disjoint union of P2(Fq), P̂2(Fq), the

set of points and lines of the projective plane over the finite field Fq, respectively. Its

set of edges contains exactly one edge between two different vertices i, j if i ∈ P2(Fq),

j ∈ P̂2(Fq) and the point i is on the line j, and for each vertex i ∈ P2(Fq) exactly x

loops fitting on i. Pq(x) is stable and its Euler characteristic

e(Pq(x)) = (q − 1 + x)(q2 + q + 1) + 1.

The projective linear group PGL3(Fq) acts on Pq(x) as follows. For each vertex

i ∈ P2(Fq) we index its loops by i1, i2, . . . , ix. The group PGL3(Fq) acts on the simple

graph spanned by V(Pq(x)) naturally. If π ∈ PGL3(Fq) is considered here as a bijec-

tive function π : P2(Fq) → P2(Fq), we extend its action above to an automorphism

π̃ ∈ Aut(Pq(x)) whose action on the loops is given by the formula π̃(i j) = π(i) j for

all i ∈ P2(Fq) and 1 ≤ j ≤ x.

By the formulas above, S5(0), S5(1), S5(2), S5(3) has Euler characteristic 6, 11,

16, 21, respectively. Moreover P2(0), P2(1), P2(2), P2(3), P2(4) and P3(0) has Euler

characteristic 8, 15, 22, 29, 36 and 27. Since every integer greater than or equal to

40 can be written is the form 20 + 5x + 6y for some non-negative integers x and y,

and e(S5,6(x, y)) = 20 + 5x + 6y, every positive integer n ≥ 40 occurs as the Euler

characteristic of the graph S5,6(x, y) for some x, y. Finally the numbers 20, 25, 26, 30,

31, 32, 35, 36, 37 and 38 are elements of the set of Euler characteristics of the graphs

S5,6(x, y) for x ≤ 3 and y ≤ 3.

The following combinatorial result implies that there are natural numbers g which

do not occur as the Euler characteristic of a connected graph without solvable or-

bits, hence our method of proving Theorem 1.5. cannot be generalized to con-

struct smooth, geometrically irreducible projective curve of genus g without solvable

points. This is particularly interesting in the cases g = 5, g = 7 and g = 9, since in

these cases we cannot prove that every smooth, geometrically irreducible projective

curve of genus g has a solvable point.

Proposition 3.5 If G is a connected graph without solvable orbits of Euler characteristic

less than 10 then its Euler characteristic is equal to 6 or 8.

Proof Assume that G has a loop. The set of vertices with loops is invariant with

respect to the action of Aut(G). Since any subgroup of the symmetric group on four

letters is solvable, the cardinality of the set above is at least five if it is not empty. This

implies that the number of loops is also bigger than four, so the Euler characteristic of

the graph G̃ which is G with all the loops removed is at most 4. G̃ is without solvable

orbits, so we can assume that G has not any loops.
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Assume that G has a multiple edge. Aut(G) acts on the set of unordered pairs

of vertices (v, u), where there are more then one edge connecting v with u. Let Γ

denote the quotient by the kernel of this action. If π ∈ Aut(G) fixes all pairs of

vertices above, then it acts on the set of vertices which are connected to another vertex

with more than one edge as an involution. Hence Aut(G) acts on the set of vertices

above through a quotient which is the extension of Γ by a 2-torsion group. Since this

quotient is not solvable, Γ is not either, so the number of the unordered pairs above

is at least 5. This implies that if we substitute each multiple edge by a single one in

G, then the Euler characteristic of the new graph will be at most 4. This graph is

also without solvable orbits and connected, hence we can assume that G has not any

multiple edges, so it is a simple graph.

If we remove each vertex of degree 1 from G then the new graph is still connected

and without solvable orbits, and has the same Euler characteristic as the old graph.

Similarly, if we remove each vertex of degree 2 and connect any remaining pair of

vertices (which might coincide) if they were connected by a path of vertices of degree

2, then the new graph is again connected and without solvable orbits, and has the

same Euler characteristic as the old graph (although it might not be simple). Using

the reductions of the first two paragraphs, if it is necessary, we can assume that G is a

simple graph such that the degree of each vertex is at least 3.

Let rd denote the number of vertices of degree d. Since Aut(G) leaves the set of

vertices of degree d invariant for each positive d, we have rd ≥ 5 for each d such that

rd is non-zero. Since we have 9 ≥ e(G) = 1 +
∑

(d/2− 1)rd, at most r3 and r4 can be

non-zero. But both of them cannot be non-zero at once, unless r3 = 6 and r4 = 5.

Otherwise e(G) = 6 or 8, or G is either 3-regular and r3 = 6, 8, 12 or 16, or G is

4-regular and r4 = 6 or 8.

Assume that there is an orbit O of vertices with respect to the action of Aut(G)

such that its cardinality is divisible by a prime p different from 2 or 3. Let P be

another orbit which has a vertex adjacent to a vertex in O. The number of edges

connecting a vertex in O to vertices in P is the same because the action of Aut(G) is

transitive on O, and similarly the number of edges connecting a vertex in P to vertices

in O is the same. These two numbers are not divisible by primes other than 2 and 3,

because they are less than 5, hence the cardinality of P is also divisible by p. Since G

is connected this implies that the cardinality of each orbit is divisible by p, which is

impossible by the above.

Let v ∈ V(G) be vertex. Aut(G) acts on the orbit of v through a quotient which

we denote by Γ. Let Γi be the subgroup of Γ which fixes all vertices connected to v

by a path of length at most i. Clearly Γi+1 is a normal subgroup in Γi . The factor set

Γ/Γ0 can be identified with the orbit of v, so it not divisible by primes other than 2

or 3. The same holds for the quotient group Γi/Γi+1. This group acts faithfully on

the set Xi of vertices which are connected to v by a path of length i but not connected

by a path of length less than i. The set of vertices connected to any vertex fixed by Γi

is left invariant by Γi/Γi+1. These sets cover X and each has cardinality less than 5,

hence Γi/Γi+1 injects into a direct product power of S4. Because the groups Γi define

a filtration on the group Γ, the order of the latter is not divisible by primes other

than 2 or 3. But such a group must be solvable by Burnside’s paqb theorem (see [1,

pp. 221–222]).
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4 Constructions

For any scheme S and any stable curve π : C → S of genus g let ωC/S denote relative

dualizing sheaf. The sheaf ω⊗3
C/S

is relatively very ample by Theorem 1.2 of [2, p. 77]

and its corollary. This result implies that the functor which assigns to each scheme S

the set of stable curves π : C → S, and an isomorphism P(π∗(ω⊗3
C/S

)) ∼= P
5g−6
S (mod-

ulo isomorphism) is represented by a fine moduli scheme Hg . The following two

results are Corollary 1.7 of [2, p. 83] and the main result of [2, pp. 92–96], respec-

tively.

Theorem 4.2 The scheme Hg is smooth over the spectrum of Z and the base change

(Hg)Spec(F) is irreducible for any algebraically closed field F.

Lemma 4.3 Let R be a discrete valuation ring and let f, F denote its residue field and

quotient field, respectively. Let X be a smooth scheme of finite type over Spec(R). Let

X0 be an open dense sub-scheme of the base change XSpec(F). Then for any morphism

p : Spec(f) → X over Spec(R) there is a morphism Spec(R) → X whose specialization

to Spec(f) is p, and its restriction to Spec(F) maps into X0.

Proof By Proposition 3.24 of [10, p. 31] we can assume that X = Spec(A), where

A = R[T1, T2, . . . , Tn]/(P1, P2, . . . , Pm), Pi ∈ R[T1, T2, . . . , Tn], m ≤ n

and the ideal generated by the m × m minors of (∂Pi/∂T j) is A. Let p / A be the

maximal ideal which is the kernel of the homomorphism p∗ : A → f corresponding

to the morphism p. One of the minors above is not in p. We can assume that this

minor is det(∂Pi/∂T j)
m
i, j=1. Since p∗|R is surjective for each n−m + 1 ≤ j ≤ n there

is an a j ∈ R such that the polynomial P j = T j − a j ∈ p. Because det(∂Pi/∂T j)
n
i, j=1

is not in the ideal p as well, by Theorem 4.2 of [10, pp. 32–34] there are ai ∈ R

for each 1 ≤ i ≤ n − m such that P j(a1, a2, . . . , an) = 0 for each 1 ≤ i ≤ n. The

projection map π : X → An−m
R to the last n−m coordinates is étale in a Zariski neigh-

borhood of the point (a1, . . . , an). Hence the image of the closed complement of the

intersection of X0 with this neighborhood is a proper constructible subset of An−m
R .

The intersection I of the complement of this set with the unit open ball around the

point (0, 0, . . . , 0) with respect to the valuation of R is non-empty. The projection

map π has an inverse on a sufficiently small ball contained in the unit ball around

(0, 0, . . . , 0) mapping (0, 0, . . . , 0) to (a1, a2, . . . , an) by the inverse function theo-

rem. The image of a point in I with respect to this inverse is an R-valued point

satisfying the properties in the claim above.

Corollary 4.4 Let R, f and F be as above. Let C be a stable curve over Spec(f). Then

there is a stable curve π : C → Spec(R) such that the base change CSpec(F) is a smooth,

geometrically irreducible projective curve and CSpec(f) is isomorphic to C.

Proof Assume that the stable curve C has genus g. Define X0 as the open sub-variety

of (pg)Spec(F) of tri-canonical non-singular curves. This sub-variety is also dense,

since it is a non-empty and (Hg)Spec(F) is irreducible. The curve C defines a morphism

p : Spec(f) → (Hg)Spec(R) over Spec(R). The claim follows from applying the lemma

above to X = (Hg)Spec(R), p and X0.
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Definition 4.5 A stable curve with rational components over F is a stable curve C

over Spec(F) whose base change to Spec(F̄) has only rational curves as components.

Let C be a stable curve with rational components over F. Let C0 denote the the base

change of C to Spec(F̄). We denote by Γ(C) the graph whose set of vertices is the set

of irreducible components of C0, its set of edges of Γ(C) is the set of singular points

of C0, and the extremities of an edge v ∈ E(Γ(C)) are the irreducible components on

which v lies. Note that the arithmetic genus of C is equal to e(Γ(C)), and the absolute

Galois group Gal(F̄|F) of F acts on the graph Γ(C).

Proposition 4.6 Let G be a stable graph with an action by Gal(F̄|F). Assume that F

is infinite. Then there exists a stable curve C with rational components over F such that

there is a Galois-equivariant isomorphism between G and Γ(C).

Proof Let G̃ be the oriented graph whose set of vertices is V(G) and for each e ∈ E(G)

there are exactly two edges of G̃ whose orientation is opposite and their extremities

are the same as the extremities of e. The absolute Galois group Γ = Gal(F̄|F) acts on

G̃, too. Let O1, O2, . . . , On denote the orbits of Γ on the set of edges of G̃. Choose

an edge o j ∈ O j for every orbit. For each edge o j let Γ j , Γ
i
j and Γ

t
i denote the

stabilizer of the edge o j , its initial and terminal vertex in Γ, respectively. Moreover

let F j , Fi
j and Ft

j denote the sub-field of F̄ fixed by Γ j , Γ
i
j and Γ

t
j , respectively. Since

these subgroups are of finite index in the absolute Galois group Γ, the fields above are

finite separable extensions of F. Since Γ j ⊆ Γ
i
j , Γ j ⊆ Γ

t
j for each j, we have closed

immersions j i : Spec(F j) → Spec(Fi
j) and jt : Spec(F j ) → Spec(Ft

j) as well. Choose

for each edge o j a different point p j : P0
F → P1

F of the projective line over Spec(F).

This is possible because F is infinite. Define the schemes X and Y over Spec(F) as

X =

∐

j

Spec(Fi
j) ×F P1

F ∪
∐

j

Spec(Ft
j) ×F P1

F

and

Y =

∐

j

Spec(F j) =

∐

j

Spec(F j) ×F P0
F,

and the Spec(F)-morphisms i : Y → X and t : Y → X as i =
∐

j ji × p j ,

t =
∐

j jt × p j , respectively.

Lemma 4.7 Let X, Y be two quasi-projective varieties over Spec(K) and let i, t be two

Spec(K)-morphisms Y → X, where K is an extension of F. Assume that Y is zero-

dimensional. Then there is a unique scheme X/Y over Spec(K) along with a Spec(K)-

morphism p : X → X/Y such that

(a) the morphisms p ◦ i and p ◦ t are equal,

(b) for any Spec(K)-morphism h : X → Z such that the morphisms h ◦ i and h ◦ t are

equal there is a unique Spec(K)-morphism z : X/Y → Z such that the morphisms

z ◦ p and h are equal.

Moreover the formation of X/Y commutes with base change.

Proof The uniqueness of X/Y and p, as well as the the fact that the formation of

these objects commutes with base change follows from the universal property. The
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variety Y is the co-product of spectrums of finite extensions of K, so in particular

it is affine. Assume first that X is affine, too. Let X = Spec(A), Y = Spec(B) and

let i0 : B → A, t0 : B → A be the K algebra-homomorphisms corresponding to the

morphisms i, t , respectively. Define X/Y as Spec(A/I), where I is the ideal generated

by i0(x) − t0(x) for all x ∈ B, and define p as the morphism corresponding to the

factor map A → A/I.

These objects clearly satisfy (a) of the claim. It is also clear that p induces an

isomorphism between the complement of the images of i and t in X and p ◦ i = p ◦ t

in X/Y , respectively. So in order to check that (b) also holds, it will be sufficient

to show that we can define z uniquely on an open neighborhood of the image of

p ◦ i = p ◦ t . For any point y ∈ Y there is an open affine sub-variety U in Z which

contains the point h◦i(y) = h◦t(y) and an open affine sub-variety V of X containing

the image of i(y) and t(y) which maps into U via h. The map z clearly extends to

the image of V in X/Y by the definition of the ideal I. If we do not assume that X

is affine, then we can still choose an open affine sub-variety V of X containing the

image of i and t , then glue V/Y and the complement of the image of i and t in X in

order to get X/Y .

Let us return to the proof of the proposition. Consider the scheme C = X/Y

associated by Lemma 4.7 to X, Y , i and t above. C is automatically flat, because it is

defined over a field, and since it is dominated by a proper scheme, it is also proper. It

is birational to X, so it is 1-dimensional. In order to check that it is reduced, has only

ordinary double points and its geometric components are rational, we can assume

that F is algebraically closed, when this is obvious from the construction. It is also

clear that there is a Galois-equivariant isomorphism between G and Γ(C), which

implies that C is stable, because G is.

Theorem 4.8 Let F be a local field such that the absolute Galois group of its residue

field has quotients isomorphic to S5, PSL3(F2) and PSL3(F3). Then there is a non-

singular, geometrically irreducible projective curve defined over F of genus g without

solvable points when g is equal to 6, 8, 10, 11, 15, 16, 20, 21, 22, 25, 26, 27, 28, 29, 30,

31, 32, 34, 35, 36, 37, 38 or at least 40.

Proof We will prove the slightly stronger statement that there is a non-singular, ge-

ometrically irreducible projective curve defined over F of genus g without solvable

points over the perfection of F. Let g be one of the natural numbers in the claim.

First we prove that there is a stable graph Γ of Euler characteristic equal to g such

that either S5, PSL3(F2) or PSL3(F3) acts on Γ without solvable orbits. It is clear that

the graphs constructed in the proof of Proposition 3.4 satisfy these properties except

that one of the three groups above acts on the graphs S5,6(x, y) without solvable or-

bits. The symmetric group S5 acts on the set of its 5-Sylow subgroups transitively by

conjugation. By the Sylow theorems the number of 5-Sylow subgroups divides the

order of S5, but it is also congruent to 1 modulo 5. Since the order of S5 is 120, the

only possibility is 6. Define the homomorphism h : S5 → S5 × S6 as the direct prod-

uct of the identity with the homomorphism defined by the action above. Clearly the

action of S5 on S5,6(x, y) defined via this homomorphism is without solvable orbits.
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Let f, R denote the residue field of F and its discrete valuation ring, respectively.

By assumption there is an action of Gal(f̄|f) on Γ without solvable orbits. By Propo-

sition 4.6 there is a stable curve C with rational components over f such that there

is a Galois-equivariant isomorphism between Γ and Γ(C). By Corollary 4.4 there is

a stable curve π : C → Spec(R) such that the base change CSpec(F) is a smooth, ge-

ometrically irreducible projective curve and CSpec(f) is isomorphic to C . By flatness

the genus of CSpec(F) is equal to the arithmetic genus of C , which is g. The curve C is

without solvable points over the perfection fp. Now the claim of the theorem follows

from the following lemma.

Lemma 4.9 Let R be discrete valuation ring with residue field f and quotient field F. Let

X be a projective scheme over Spec(R). If the base change XSpec(f) does not have solvable

points over the perfection fp , then the base change XSpec(F) does not have either.

Proof Let L be any solvable extension of a purely inseparable extension of F and let

S be the integral closure of R in L. S is a discrete valuation ring, so by the valuative

criterion of properness any L-valued point of XSpec(F) gives an S-valued point of X.

This S-valued point reduces to a point in the special fiber of X with respect to the

maximal ideal of S. This point is defined over the residue field of this ideal which is

a solvable extension of a purely inseparable extension of f. By assumption there is no

such point, so XSpec(F) has no solvable points over F p.

Remark 4.10 Some of the curves constructed above have a solvable divisor of de-

gree 1. Consider a curve X which degenerates over f to a stable curve C with rational

components whose graph Γ(C) is isomorphic to the graph S5,6(x). C has two smooth

points defined over a degree 5 and degree 6 extension of f, respectively. By the Hensel

lemma we can lift these points to two points of X defined over a degree 5 and degree 6

extension of F, respectively. Their difference is a divisor of degree 1 defined over F.

Theorem 4.11 Let F be field which is finitely generated of transcendence degree at least

one over an algebraically closed field C of uncountable cardinality. Then there are in-

finitely many natural numbers g such that there is a smooth, geometrically irreducible

projective curve of genus g over F without solvable points.

Proof First we remark that if there is a smooth, geometrically irreducible projective

curve X over F without solvable points, then the stronger property in the claim above

also holds for F. The genus of the curve X is not zero by Theorem 5.4 which we will

prove later. As we saw in the proof of Theorem 2.3 there is a ramified separable cover

of X by a smooth, geometrically irreducible projective curve. This curve is without

solvable points and its genus is strictly larger than the genus of X by the Hurwitz

formula. Repeating this argument infinitely many times we can conclude the proof

of the remark.

Next we will show that if the generalized continuum hypothesis holds then for

every S finite subset of C there is an isomorphism ι from the algebraic closure D of

C((t)) onto C such that ι(s) = s for all s ∈ S. The proof below is a slight variant of a

standard argument, but we will include it for the sake of completeness. By assump-

tion there is an uncountable cardinal κ such that there are two bijections i : κ → C
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and j : κ → D. We will define by transfinite induction two sets of subfields Cα ⊂ C

and Dα ⊂ D and an isomorphism ια : Dα → Cα of fields for all α ∈ κ such that

(a) i(α) ∈ Cα ⊆ Cβ and j(α) ∈ Dα ⊆ Dβ for any α ∈ β ∈ κ,

(b) iβ |Dα
= ια for any α ∈ β ∈ κ,

(c) S ⊆ C∅, S ⊆ D∅, and the restriction of ι∅ onto S is the identity,

(d) the cardinality of Cα and Dα are less than κ.

It is clear that C =
⋃

α∈κ Cα, D =
⋃

α∈κ Dα, and the limit ι of the isomorphisms

ια has the required property. We start the proof of the claim above by the following

remark: if K is a subfield of C whose cardinality is less then κ, there is an embedding

ε : K → D, and an element x ∈ C, then ε extends to an embedding ε : K(x) →
D. The latter is clear if x is algebraic over K as D is algebraically closed. If x is

transcendental over K then the same conclusion holds as the algebraic closure of

ε(K) is a proper subset of D since its cardinality is less than κ, so there is an element

of D transcendental over ε(K). Obviously the same holds if the roles of C and D are

interchanged. Let C∅ ⊂ C be the field generated by S and i(∅) over the prime field

and let D∅ ⊂ D be the field generated by C∅ and j(∅) over the prime field. By

the above the inclusion map C∅ → C extends to an embedding ι∅ : D∅ → D. Set

C∅ = ι∅(D∅). Clearly these choices satisfy (a), (c) and (d). In general, if Cα, Dα

and ια are already defined for all α ∈ β, then define Cβ , Dβ and ιβ as follows. Let

Cβ ⊂ C be the field generated by
⋃

α∈β Cα and i(β) over the prime field. Since κ
is a cardinal, condition (d) implies that the cardinality of

⋃

α∈β Cα is less than κ, so

there is an embedding εβ : Cβ → D extending ι−1
α for all α ∈ β. Let Dβ ⊂ D be

the field generated by εβ(Cβ) and j(β) over the prime field. Again the cardinality of

εβ(Cβ) is less than κ, so there is an embedding ιβ : Dβ → C extending ε−1
β . If we set

Cβ = ιβ(Dβ), then these choices satisfy the four conditions above.

Let F be generated by x1, x2, . . . , xn over C subject to a finite set of polynomial re-

lations whose set of coefficients will be denoted by S. Clearly S lies in C ⊂ C((t)) with

respect to the embedding of C((t)) in C via the isomorphism ι constructed above. Let

F ′ ′ ⊂ F ′ denote the function fields C(x1, x2, . . . , xn) ⊂ C((t))(x1, x2, . . . , xn) which

are subfields of F = D(x1, x2, . . . , xn). Note that F ′ ′ is canonically isomorphic to F.

Since the Galois group of the algebraic extension F|F ′ is a subgroup of the absolute

Galois group of the field C((t)) which is solvable, it will be sufficient to construct a

smooth, geometrically irreducible projective curve X over F ′ without solvable points

over (F ′)p , since it will not have solvable points over F either.

By a theorem of Harbater (see [3, Corollary 1.3, p. 284]) every finite group G

occurs as a Galois group over F ′ ′. Hence there is a f (t) ∈ F ′ ′[t] separable monique

polynomial of degree 5 whose Galois group is S5. Let K be the splitting field of f (t)

and write f (t) =
∏5

i=1(t − αi), where αi ∈ K are the roots of f (t). Define

q0(x0, x1, x2) =

5
∏

i=1

(x0 − αix1 + α2
i x2).

The polynomial q0 is homogeneous of degree 5 and its coefficients are in F ′ ′. It is

also clear that it defines a stable curve Q0 ∈ P2 of degree 5 whose graph Γ(Q0) is

isomorphic to S5(0) and Gal(F ′ ′|F ′ ′) acts on this graph without solvable orbits.
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Let q1 be a homogeneous polynomial of degree 5 in F ′ ′[x0, x1, x2] whose zero

scheme Q1 is smooth. Such a polynomial exits by Bertini’s theorem. Define

q(x0, x1, x2) = (1 − t)q0(x0, x1, x2) + tq1(x0, x1, x2) ∈ F ′ ′[t][x0, x1, x2].

This polynomial defines a projective scheme Q over the spectrum of F ′ ′[t] and by

base change a curve Qη over the fields F ′ ′(t) ⊂ F ′. By Lemma 4.9 it is clear that Qη

has no solvable points over the perfection of F ′ ′((t)). The latter field contains (F ′)p as

a subfield, so in order to conclude our proof we have to prove that Qη is geometrically

irreducible and smooth. Since the property of a finite type map being smooth is open,

it is clear that Qη is geometrically smooth. Since it is also a plane curve, Lefschetz’s

theorem on hyperplane sections also implies that Qη is geometrically irreducible.

Example 4.12 The method of the proof of the theorem above can be easily modified

to construct an explicit example of a non-singular geometrically connected curve of

genus 6 without solvable points over C(x) from Qη we must embed the field C((t))

in C. The image of t under this embedding can be any number transcendental over

Q , for example π. Since the coefficients of q0 and q1 are actually in Q(x), their image

under the map induced by the embedding above are themselves. Therefore the zero

scheme of the homogeneous polynomial (1 − π)q0(x0, x1, x2) + πq1(x0, x1, x2) is a

non-singular geometrically connected curve of genus 6 without solvable points over

C(x).

Theorem 4.13 Let F be field which is finitely generated of transcendence degree at least

two over an algebraically closed field. Then there are infinitely many natural numbers g

such that there is a smooth, geometrically irreducible projective curve of genus g over the

perfection Fp without solvable points.

Proof It will be sufficient to construct just one smooth, irreducible projective curve

over Fp without solvable points, as we already remarked at the start of the proof

above. The field F is the function field of a smooth, geometrically irreducible pro-

jective curve C defined over a field f which is finitely generated of transcendence

degree at least one over an algebraically closed field. We can also assume that C has a

f-valued point p by extending f, if necessary, by Theorem 2.3. By the theorem of Har-

bater quoted above Sn occurs as a Galois group over f. The group Sn, n ≥ 5 acts on

the graph Sn(0) without solvable orbits, therefore by Propositions 3.4 and 4.6 there is

a stable curve C over f without solvable points over fp. Let g be the arithmetic genus

of C. The curve C defines a f-valued point q ∈ (Hg)Spec(f)(f).

(Hg)Spec(f) is a smooth variety, hence q has an open affine neighborhood U which

has an étale map into an affine space An
f . The image of the closed sub-variety of tri-

canonical singular curves is a proper constructible subset of An
f . Take a line through

the image of q in An
f which intersects the complement of this image. Let D ′ denote the

component of the inverse image of this line in U which contains q. D ′ is smooth at q

and it is geometrically irreducible, because it has a f-valued point. The normalization

D of D ′ is a smooth, geometrically irreducible curve defined over f with a f-valued

point r and a f-morphism d : D → (Hg)Spec(k) such that d(r) is q and the image of d

intersects the open sub-variety of tri-canonical non-singular curves.
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Applying the same argument to the variety C × D and the point p × r, we get a

smooth, geometrically irreducible curve E defined over f with a f-valued point s and

a f-morphism e : E → C × D such that e(s) = p × r and the compositions of e with

the projections to the factors are non-trivial. The pull-back of the universal family

over Hg in respect to e◦d is a stable curve whose fiber D over the generic point of E is

a smooth, geometrically irreducible curve and its fiber over s is isomorphic to C . The

latter and Lemma 4.9 implies that the base change of D to the perfection K p of the

function field K of E is without solvable points over K p . This implies by Theorem 2.3

that there is a smooth, geometrically irreducible projective curve X over F p , because

K p is a finite extension of F.

Theorem 4.14 Let F be a finitely generated field. Assume moreover that its transcen-

dence degree is at least two, if its characteristic is positive, and it is at least one, otherwise.

Then there are infinitely many natural numbers g such that there is a smooth, geomet-

rically irreducible projective curve of genus g over the perfection F p without solvable

points.

Proof Define K as the composition of F and the algebraic closure of the prime field

of F in some algebraic closure of F. This field is finitely generated of transcendence

degree at least two over an algebraically closed field, unless F is the function field

of a smooth, geometrically irreducible projective curve defined over a number field.

In the former case the claim follows from Theorem 4.13 and Theorem 2.3. In the

latter case the claim will follow using the same argument as above if we show that

the absolute Galois group of every number field is not solvable. This follows from

Hilbert’s irreducibility theorem.

5 Existence Results: Solvable Points

Proposition 5.1 Let F be a field and let c ∈ H2(F, Gm) be a cohomology class. Then

there is a solvable extension L of F such that the image of c with respect to the natural

restriction homomorphism rL|F : H2(F, Gm) → H2(L, Gm) is zero.

Proof First assume that F has zero characteristic. The Brauer group H2(F, Gm) is

torsion, so there is a natural number n such that c is of order n. By a cyclic extension,

if necessary, we can assume that F contains the n-th roots of unity. Let K2(L) denote

the Milnor K-group for any field L. There is a Chern character homomorphism

c2 : K2(K)/nK2(K) → H2(F, Z/nZ) for any field containing the n-th roots of unity

which is an isomorphism by the Merkurjev-Suslin theorem (see [9]). Also for every

extension L of F there is a commutative diagram:

K2(F)/nK2(F)
c2−−−−→ H2(F, Z/nZ)





y

rL|F





y

rL|F

K2(L)/nK2(L)
c2−−−−→ H2(L, Z/nZ)

where the vertical maps are the restriction maps and the horizontal maps are the

Chern character homomorphisms.
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By Hilbert’s Theorem 90, the cohomology class c is the image of a class in

H2(F, Z/nZ) in the long cohomological exact sequence of the Kummer exact se-

quence, hence by the above it will be sufficient to prove that for every element

c ∈ K2(F)/nK2(F) there is an abelian extension L of F such that the image of c re-

spect to the natural restriction homomorphism in K2(F)/nK2(F) is zero. Write c as
∑r

i=1 ai ∧ bi where ai , bi ∈ F∗. Let L be the field which we get by adjoining the n-th

roots of a1, a2, . . . , ar. Then c = n
∑r

i=1 a
1/n
i ∧bi ∈ nK2(L) where a

1/n
i is an n-th root

of ai in L for all i.

Now assume that F is a perfect field of positive characteristic. Clearly a cohomol-

ogy class c ∈ H2(F, Gm) satisfies the property in the claim if and only if a Brauer-

Severi variety representing c has a solvable point. Let W(F) denote the ring of Witt

vectors of F and let Q(F) denote its quotient field. It is a discrete valuation ring

with residue field F. By Corollary 2.13 of [10, p. 148] the canonical homomorphism

H2
(

Spec(W(F)), Gm

)

→ H2(F, Gm) is an isomorphism. Represent the cohomology

class c ∈ H2
(

Spec(W(F)), Gm

)

by a Brauer-Severi scheme B over Spec(W(F)). The

base change BSpec(Q(F)) has a solvable point, since the characteristic of Q(F) is zero.

By Lemma 4.9 the special fiber of B must have a solvable point. But the Brauer-Severi

variety BSpec(F) represents the cohomology class c. Assume finally that F is an arbi-

trary field of positive characteristic. Represent the cohomology class c ∈ H2(F, Gm)

by a division algebra A of rank d over F. By the above there is a solvable exten-

sion K of Fp such that A ⊗F K ∼= Md(K). In particular there is a set of elements

ei j ∈ A⊗F K ∼= Md(K), 1 ≤ i, j ≤ d such that ei jekl = δ jkeil for each 1 ≤ i, j, k, l ≤ d,

where δ jk is the Kronecker-delta. K is the perfection a solvable extension L of F. The

latter follows from the topological invariance of the étale fundamental group (see

Theorem 3.23 of [10, pp. 30–31]) applied to the map Spec(F p) → Spec(F). For a

sufficiently high natural number m we have (idA ⊗ Frm)ei j ∈ A ⊗F L (for all 1 ≤ i,

j ≤ d). The elements (idA ⊗ Frm)ei j also satisfy the identities above, so A splits

over L.

An immediate corollary to this theorem is the following:

Corollary 5.2 A Brauer-Severi variety defined over an arbitrary field F has a solvable

point over F.

Proposition 5.3 Let X be a regular, geometrically irreducible projective variety defined

over the field K. Then for every c ∈ Pic(X)(K) there is a solvable extension L of K and

divisor D ∈ Div(X)(L) defined over L whose linear equivalence class is the restriction

rL|K (c).

Proof We are going to give two proofs of the claim. The first one is purely cohomo-

logical: consider the exact sequence

0 −→ Pr(X) −→ Div(X) −→ Pic(X) −→ 0

of Galois modules, where the second map associates to each divisor its linear equiva-

lence class. The co-boundary map in the cohomological exact sequence of this exact

sequence gives a homomorphism δ : Pic(X)(K) → H1(K, Pr(X)). By exactness it
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is sufficient to prove that the cohomology class δ
(

rL|K (c)
)

is zero for some solvable

extension L of K. The exact sequence of Galois modules

0 −→ Gm −→ Rt(X) −→ Pr(X) −→ 0

induces a long cohomological exact sequence:

· · · −→ H1
(

L, Rt(X)
)

−→ H1
(

L, Pr(X)
) δ
−→ H2(L, Gm) −→ · · ·

for any extension L of K. Let L(X) denote the function field of X over any exten-

sion L of K. Then we have the equality of cohomology groups H1(L, Rt(X)) =

H1(Gal(L(X)|L(X)), Gm). The latter group is trivial by Hilbert’s Theorem 90, so the

co-boundary map δ is injective. The claim now follows from Proposition 5.1.

We will only sketch the second proof. Take a line bundle l on X defined over F

which is very ample over F. For large enough n the line bundle c + n · l is very ample

over the algebraic closure of F. The functor from the category of extensions of F to

the category of sets which assigns to every extension K of F the set of sections defined

over K can be represented by a Brauer-Severi scheme over F. By Proposition 5.1 the

latter has a solvable point over F, which is a divisor defined over a solvable extension

L whose linear equivalence class is the restriction rL|K (c + n · l). The difference of

this divisor and n-th multiple of any divisor defined over F, whose linear equivalence

class is l, has the properties required in the claim.

Theorem 5.4 Let F be any field and let X be a smooth, geometrically irreducible pro-

jective curve defined over F such that its genus is 0, 2, 3 or 4. Then X has a solvable

point.

Proof We can assume that F is infinite, otherwise the claim is obvious. If X has

genus zero then it is a Brauer-Severi variety and hence has a solvable point. Note that

a genus 0 curve has a rational point then it is a rational curve, and the set of rational

points is infinite, so X has a Zariski-dense set of solvable points. Now assume that

the genus g of X is at least 2. We first remark that there is a divisor defined over

F on the curve X such that its class is the canonical divisor class. By applying the

Riemann-Roch theorem to any such divisor we get that there is g-dimensional linear

system of effective divisors on X defined over F whose linear equivalence class is the

canonical divisor class. Now X is either hyper-elliptic and the image of X respect

to the canonical linear system above is a curve of genus zero or the canonical linear

system defines an embedding of X. If X is hyper-elliptic, then the canonical map is a

separable twofold cover, because the genus of X is not zero. Its image has a Zariski-

dense set of solvable points by the above, so there is a solvable point on the image

of X which is not in the ramification locus of the cover by X. Any geometric point

in the pre-image of this point is also defined over a solvable extension, hence we can

assume that X is not hyper-elliptic.

If g is 3 then the degree of the canonical divisor class is 4. By Bertini’s theorem

there are smooth hyper-plane sections respect to the canonical embedding. The ge-

ometric points of these hyper-plane sections are defined over a separable extension

of X, because every smooth map of co-dimension zero is étale. The Galois group of
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the field of definition of the geometric points of such a divisor in the linear system

defined over F is solvable since it is a subgroup of the symmetric group on four letters

which is solvable. If the genus of X is 4, the canonical map gives an embedding into

P3 by assumption. Over the algebraic closure F of F the curve X is the complete in-

tersection of a unique non-singular quadric and a non-singular cubic hyper-surface

in P3. We first prove that these surfaces are defined over F. Consider the restriction

map of sections:

H0(P3, Hd) → H0(X, Kd
X),

where d is a positive integer, H is the tautological bundle on P3, and KX is the canon-

ical class of X. The kernel of this map for d = 2, 3 is one-dimensional after tensoring

with F, so it is one-dimensional. Any non-zero section in these kernels will define the

surfaces above over F. By the next theorem, after a solvable extension, if necessary,

the quadric will have a rational point and hence it will be isomorphic to P1 × P1 and

the two pencils of lines will be defined over this field. The projection of X to either

of these factors is a map of degree 3, so it is either purely inseparable or separable.

The former case is impossible, since the genus of X is not zero, so the intersection

of a generic line in the pencils above with the curve will be smooth, hence it will be

a divisor of degree 3 whose geometric points are defined over a separable extension

of F.

Theorem 5.5 Let F be any field and let X be a smooth, geometrically rational projective

surface defined over F. Then X has a solvable point.

Proof We can assume, as usual that F is infinite. The minimal model theorem for

surfaces says the following (see [7, Theorem 2.2, p. 169]):

Theorem 5.6 Let X be a smooth proper surface over F. Then there is a sequence of

contractions X → X1 → · · · → Xn = X ′ such that X ′ satisfies one of the following

conditions:

(a) its canonical bundle KX ′ is nef,

(b) X ′ is a conic bundle over a curve C,

(c) −KX ′ is ample.

It will be sufficient to prove that X ′ has an L-valued point for some solvable exten-

sion L, because the pre-image of any L-valued point respect to a contraction defined

over F is either an L-valued point or a rational curve defined over L. If X is geomet-

rically rational then (a) is impossible. If (b) holds then the curve C must have genus

0, hence it has a solvable point. If a genus 0 curve has a rational point then it is a

rational curve, and the set of rational points is infinite. Hence we can assume that C

has a solvable point whose pre-image in X ′ is a smooth curve of genus 0. This curve

also has a solvable point over its field of definition, so X ′ has a solvable point over F.

Otherwise X ′ is a Del Pezzo surface. By Propositions 3.4 of [7, p. 173] and 3.9

of [7, p. 176]:

Theorem 5.7 Let X ′ be a Del Pezzo surface over F. Then

(a) the linear system | − mKX ′ | is free if m(K2
X ′) ≥ 2,
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(b) over the algebraic closure F̄ the surface X ′ is either isomorphic to P2, P1 × P1 or it

is obtained from P2 by blowing up 9 − (K2
X ′) points of P2.

By the above the linear system |−mKX ′ | is free, so it defines a map into a projective

space, and its image degree is at most 4, where m = 2, if (K2
X ′) = 1, and m = 1, if 2 ≤

(K2
X ′) ≤ 4. If (K2

X ′) ≤ 4, then X ′ is obtained from P2 by blowing up finitely many

points over F̄, because (K2
P1×P1 ) = 8. Then the linear system of divisors obtained

by pulling back the full linear system |−mKP2 | and adding −m times the sum of

exceptional divisors is a subsystem of the linear system | − mKX ′ |. The restriction

of the former linear system to the complement of the exceptional divisors is very

ample, so the linear system |−mKX ′ | is immersion on the same open sub-variety. By

Bertini’s theorem there is a line defined over F whose intersection with X ′ is smooth,

which does not lie in the image of X ′ and does not intersect the image of the union

of exceptional divisors, because the latter is at most one dimensional. This line gives

a zero-dimensional cycle of degree 4 on X ′ whose geometric points are defined over

a separable extension, and therefore a solvable point.

Lemma 5.8 Let Λ = {(a1, a2, . . . , ad) ∈ Zd : 3|a1 + a2 + · · · + ad}, where d ≤ 4.

Define the quadratic form q on Λ by the formula

q(a1, a2, . . . , ad) =

d
∑

i=1

a2
i −

1

9

(

d
∑

i=1

ai

) 2
.

Then the automorphism group of the quadratic form q is a finite, solvable group.

Proof (See also [8, Theorem 23.9, p. 115]) For any (a1, a2, . . . , ad) ∈ Λ we have the

estimate:

q(a1, a2, . . . , ad) ≥
9 − d

9

d
∑

i=1

a2
i .

If d = 1, then the claim is obvious. If d = 2, then for any (a1, a2) ∈ Λ such that

q(a1, a2) = 4, we have a2
1 + a2

2 ≤ 5. This implies that the set of such vectors con-

sists of ±(1, 2) and ±(2, 1). These vectors span Λ, hence automorphism group of

the quadratic form q acts on them faithfully, so it is an extension of Z/2Z by it-

self. If d ≥ 3, then for any (a1, a2, . . . , ad) ∈ Λ such that q(a1, a2) = 2, we have
∑d

i=1 a2
i ≤ 3. Therefore the set of such vectors consists of vectors v such that ex-

actly three of the coordinates of v is nonzero, and each non-zero coordinate is either

equal to 1 or −1. If d = 4 then these vectors span Λ, hence automorphism group

of the quadratic form q acts on them faithfully. The automorphism group permutes

the four pairs of the form (v,−v) in the set above, hence it is an extension of S4 by

Z/2Z. If d = 3, then they do not span Λ, because there are two of them, but vectors

v with q(v) = 4 do span Λ, since by the above this set consists of ±(2, 1, 0) and all

other vectors which can be obtained by permuting the coordinates of these two vec-

tors. The automorphism group permutes the pairs of triples of these vectors of the

form ±(v1, v2, v3) with v1 + v2 + v3 = ±(3, 3, 3), so it has a normal filtration with

Jordan-Hölder components Z/2Z and S3.
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Assume now that (K2
X ′) ≥ 5. Note that the Picard scheme of any geometrically

rational surface X ′ is geometrically reduced, as its tangent space, being isomorphic

to H1(X ′, OX ′), is equal to zero. Hence every line bundle of X ′ defined over the

algebraic closure of F is defined actually over F̄. We claim that the absolute Galois

group acts on Pic(X ′)(F̄) through a solvable quotient. If the surface X ′ is isomorphic

to P1 × P1 over the algebraic closure F̄, then Pic(X ′)(F̄) ∼= Z2. Gal(F̄|F) fixes the

non-trivial class KX ′ , so it is of order at most two. Otherwise Pic(X ′)(F̄) ∼= Z1+d,

where d ≤ 4. The group is generated by H, the pull-back of the tautological class

on P2, and the classes of the exceptional divisors E1, . . . , Ed. The canonical divisor

class is −3H + E1 + · · ·+ Ed which is fixed by Gal(F̄|F), so its orthogonal complement

is left invariant by Gal(F̄|F). This complement equipped with the restriction of the

intersection pairing is isomorphic to Λ equipped with q, so its automorphism group

is solvable by the lemma above. Any Galois conjugation acts trivially on Pic(X ′)(F̄), if

it fixes this complement. So Gal(F̄|F) acts on Pic(X ′)(F̄) through a solvable quotient,

as claimed. Hence by Proposition 5.1 the full linear system |H| is defined over a

solvable extension of F. This linear system gives a birational morphism from X ′ onto

P2, therefore X ′ has a solvable point.

6 Existence Results: Solvable Divisors

Lemma 6.1 Let R be discrete valuation ring with a perfect residue field f and quotient

field F. Let X be a stable curve over Spec(R). If the base change XSpec(f) does not have

solvable divisors of degree d over f, then the base change XSpec(F) does not have either.

Proof We can assume in any case that d is positive. Hilbd(X), the Hilbert scheme

representing the functor which assigns to each scheme S the set of rank d, finite,

flat sub-schemes of the scheme XS is projective. The claim follows from Lemma 4.9

applied to Hilbd(X).

Lemma 6.2 Let F be an arbitrary field and let n be a positive integer. The following two

claims are equivalent:

(i) Every smooth, geometrically irreducible projective curve X of genus 1 over F has a

solvable divisor over F whose degree is relatively prime to n.

(ii) For every elliptic curve E over F and cohomology class c ∈ H1(F, E)[n] there is a

solvable extension K|F such that the cohomology class rK|F(c) ∈ H1(K, E)[n] is

zero.

Proof First we are going to show that (ii) implies (i). There is an exact sequence

0 −→ Pic0(X) −→ Pic(X)
deg
−→ Z −→ 0

of Galois modules over any extension K of F, where deg(L) for any line bundle L

is equal to its degree. The co-boundary map in the cohomological exact sequence

of this exact sequence gives a homomorphism δ : Z → H1
(

K, Pic0(X)
)

. Let oX|K

denote the cohomology class δ(1). Clearly X has a class c ∈ Pic(X)(K) of degree d

if and only if doX|K = 0. Therefore oX|F is torsion, so there is a positive integer m
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relatively prime to n such that moX|F is n-torsion. The class oX|K is natural, in other

words rK|F(oX|F) = oX|K for every extension K of F. Hence by Proposition 5.3 it is

sufficient to prove that there is a solvable extension K|F such that the cohomology

class moK|F ∈ H1
(

K, Pic0(X)
)

[n] is zero which follows from ii applied to the ellip-

tic curve representing Pic0(X). Next we are going to show that (i) implies (ii). By

the general theory of torsors over algebraic groups there is a smooth, geometrically

irreducible projective curve X of genus 1 over F whose Jacobian is E and whose co-

homological invariant is the class c. Since it is n-torsion the class c is represented by

a divisor of degree dividing n on X defined over a solvable extension by 5.3. By (i)

there is a solvable divisor on X over F whose degree is relatively prime to n, too. A

suitable linear combination of these divisors is a solvable divisor of degree 1. By the

Riemann-Roch theorem this divisor has a non-zero section, so the curve X has a ra-

tional point over a solvable extension K of F hence it is isomorphic to E over the field

K. Therefore the cohomological invariant of its base change to Spec(K) is zero, but

this is rK|F(c) by naturality.

Theorem 6.3 Let F be a perfect field of positive characteristic p or a local field of char-

acteristic zero with a residue field of characteristic p. Let X be a smooth, geometrically

irreducible projective curve of genus 1 defined over F. Then there is a solvable divisor on

X whose degree is relatively prime to 6p.

Proof First assume that F is a perfect field of characteristic p. By Lemma 6.2 we

only have to show that for every elliptic curve E over F and cohomology class c ∈
H1(F, E)[6p] there is a solvable extension K|F such that the cohomology class

rK|F(c) ∈ H1(K, E)[6p] is zero. Let X be a genus 1 over F which is a torsor over

E with cohomological invariant c. Let D be a divisor of degree d dividing 6p on X

representing c. Then there is a map X → E of degree d which assigns the class of

dP − D to each geometric point P of X. Over the algebraic closure of F the curve X

is isomorphic to E and the map above is the composition of a translation and mul-

tiplication by d. Therefore Sred , the reduction of the preimage S of the zero element

of E under this map is a torsor over the smooth algebraic group E[d]et , the étale part

of the finite flat group scheme E[d]. Let e ∈ H1(F, E[d]et ) be the corresponding co-

homology class. On the other hand E[d]et (F) ≤ E[6p]et (F) = F2
2 ⊕ F2

3 ⊕ Fi
p, where

i = 0 or 1, when E is supersingular or ordinary, respectively. Since the automor-

phism group of the group above is solvable, we may assume that the group scheme

E[6p]et is constant. In this case the Kummer and Artin-Schreier theories imply that

the restriction of the cohomology class e, hence the torsor Sred becomes trivial after a

solvable extension. We may conclude that there is a solvable extension K|F such that

all geometric points of Sred are defined over K, therefore the geometric points of S

are defined over a purely inseparable extension of K. Since it is a Galois extension of

a perfect field, K is also perfect, so the geometric points of S are actually defined over

K by the above. Hence X has a K-valued point, so rK|F(c) ∈ H1(K, E)[6p] is zero.

Lemma 6.4 Let F be a local field of characteristic 0 with a residue field of characteristic

p. Let L|F be a finite Galois extension. Then there is a solvable extension K of F such

that the extension KL|K is unramified, where KL is the composition of K and L.

Proof During the proof we will always adjoin sufficiently many roots of unity to F
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so all Kummer extensions encountered will become cyclic extensions without extra

notice. First assume that L|F is tamely ramified. Let T be the largest unramified

subextension of F in the field L. Since the tame inertia group is isomorphic to ⊕l 6=pZl,

the Galois group Gal(L|T) is cyclic of order m, where m is relatively prime to p. By

Kummer theory the extension L|T is the spitting field of a polynomial xm−uπk, where

π is a uniformizer of F and u is a unit in the discrete valuation ring of the extension

T. Over the splitting field K of xm − πk the composition field LK is unramified. Now

let L|F be any finite Galois extension, and let T denote the largest tamely ramified

subextension of F in the field L. By the above we can actually assume that T|F is

unramified by taking a tamely ramified cyclic extension, if necessary. In this case we

will prove the existence of K by induction on the order of Gal(L|T). The Galois group

of the extension L|T is wildly ramified, so it is a p-group. Hence there is a w ∈ L − T

whose minimal polynomial is of the form xp −uπk, where π is again a uniformizer of

F, and u is a unit in the discrete valuation ring of the extension T. Let q(t) ∈ R[t] be a

polynomial, where R is the discrete valuation ring of F such that its reduction modulo

the maximal ideal is the minimal polynomial of the reduction of u. After a sequence

of cyclic of extensions, if necessary, we can assume that all coefficients of q(t) has a

p-th root in F. If r(t) is a polynomial whose k-th coefficient is a p-th root of the k-th

coefficient of q(t), then the splitting field U of r(t) is unramified over F. It has a root

v such that u/vp is congruent to 1 modulo the maximal ideal. Since the extension

TU |F is unramified this implies that u/vp is in F. Therefore the composition K of

the splitting fields of xp − πk and xp − u/vp is a solvable extension of F such that

T(w)K|K is unramified. Since the order of Gal(LK|T(w)K) is strictly less then the

order of Gal(L|T), the induction hypothesis can be applied.

Now assume that F is a local field of characteristic 0 with a perfect residue field f

of characteristic p. Let E denote the elliptic curve Pic0(X). It is sufficient to prove

that for any cohomology class c ∈ H1(F, E)[l], where l = 2, 3 or p, there is a solvable

extension L of F such that rL|F(c) ∈ H1(L, E)[l] is zero. Let R denote the discrete

valuation ring of F. The cohomology class c is the image of a class d ∈ H1(F, E[l]) by

the Kummer exact sequence. We may assume that the action of the absolute Galois

group on E[l] is unramified and the class d is represented by a cocycle defined over

an unramified extension of F, using Lemma 6.4. In this case the cohomology class

c ∈ H1(F, E)[l] is the inflation of a cohomology class in H1(Spec(R), E)[l], where E

is the Néron model of E over R. By Remark 3.11 (a) of [10, p. 116] the canonical ho-

momorphism H1(Spec(R), E) → H1(f, E0) is an isomorphism, where E0 is the fiber

of the Néron model over Spec(f). The latter is either an elliptic curve or the extension

of a finite abelian étale group scheme by Gm or Ga. In the latter case the group of ge-

ometric points of this étale group scheme is either cyclic or has order at most 4, so its

automorphism group is solvable. Therefore in each case for every cohomology class

c ∈ H1(f, E0)[l] there is a solvable extension k of f such that rk|f(c) ∈ H1(k, E0)[l] is

zero. This extension gives a solvable unramified extension of F such that the image

of c under the isomorphism above is zero.

Consider finally the case of a local field F of characteristic 0 with a not necessarily

perfect residue field f of characteristic p. We may use the same arguments as above to

reduce the claim to the following: if E0 is the fiber of the Néron model over Spec(f)
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of an elliptic curve defined over F and c ∈ H1(f, E0)[l] is a cohomology class, then

there is a solvable extension K with residue field k such that rk|f(c) ∈ H1(k, E0)[l]

is zero. We have already shown that there is a solvable extension l of the perfection

of f such that rl|f(c) ∈ H1(l, E0)[l] is zero. Take a zero-dimensional cocycle defined

over l whose coboundary is rl|f(c). Since this cocycle is actually defined over a finite

extension of f, there is a finite extension k of f which is a solvable extension of a purely

inseparable extension of f such that rk|f(c) ∈ H1(k, E0)[l] is zero. The field k is the

chain of extensions f = k0 ≤ k1 ≤ k2 ≤ · · · ≤ kn = k such that k j = k j−1(a
1/n( j)
j )

for all j = 1, 2, . . . , n, where a j ∈ k j−1 and n( j) ∈ N. We define by induction a

chain of extensions F = K0 ≤ K1 ≤ K2 ≤ · · · ≤ Kn = K such that K|F is solvable

and the residue field of K j is k j as follows. If K j−1 is already defined, the we set

K j = K j−1(b
1/n( j)
j ), where b j is an element of the discrete valuation ring of K j−1 such

that the reduction of b j modulo the maximal ideal of the valuation ring is equal to a j .

Remark 6.5 If a smooth, geometrically irreducible curve of genus 1 has a solvable

divisor of degree 1, then by the Riemann-Roch theorem applied to this divisor there

is a solvable point on this curve. Therefore Theorem 6.3 can be considered as a partial

result towards the problem of constructing solvable points on algebraic curves.

Theorem 6.6 Let F be a local field of characteristic zero with a residue field of charac-

teristic p where p = 5 or p = 7. Assume that the absolute Galois group of the residue

field of F has a quotient isomorphic to S5, if p = 5, and has a quotient isomorphic to

PSL3(F2), if p = 7. Then there is a smooth, geometrically irreducible projective curve of

genus g without a solvable divisor whose degree is relatively prime to p if and only if p

divides g − 1 and g is at least 2.

Proof If p does not divide g − 1 and g is at least 2, then any divisor of any smooth,

geometrically irreducible projective curve X of genus g defined over F whose class is

the canonical divisor class, is a divisor whose degree is relatively prime to p. If the

genus of X is 0 or 1 then there is a solvable divisor on X whose degree is relatively

prime to p by Corollary 5.2 and Theorem 6.3, respectively. Assume that p divides

g − 1 and g is at least 2. Let R be the discrete valuation ring of F, a let f denote

its residue field. Fix a quotient G of Gal(f̄|f) which is isomorphic to S5, if p = 5,

and it is isomorphic to PSL3(F2), if p = 7. By Corollary 4.4 and Proposition 4.6

there is a stable curve π : C → Spec(R) such that the base change CSpec(F) is a smooth,

geometrically irreducible projective curve of genus g and CSpec(f) is a stable curve with

rational components such that Γ(CSpec(f)) is isomorphic to S5(
g−6

5
) with the action

of G described in Proposition 3.4, if p = 5, and it is isomorphic to P2( g−8
7

) with the

action of G described in Proposition 3.4, if p = 7. The curve CSpec(fp) does not have

solvable divisors of degree relatively prime to p, hence CSpec(F) does not have either

by Lemma 6.1.

Proposition 6.7

(i) If E is an elliptic curve defined over a field F of characteristic 0, the absolute Galois

group of F acts on E[p] through a non-solvable quotient for some prime p, and
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c ∈ H1(F, E[p]) is a non-zero cohomology class, then for every solvable extension

K|F the cohomology class rK|F(c) ∈ H1(K, E[p]) is non-zero, too.

(ii) There is a local field F of characteristic zero with a residue field of characteristic 5,

an elliptic curve E defined over F and a non-zero cohomology class c ∈ H1(F, E[5]).

Proof We will first prove (i). Let L = F(E[p]) be the field of definition of the geo-

metric points of the p-torsion of E and let G denote the image of the absolute Galois

group of F on GL(E[p]). By Lemma 6.8 below we know that Hq(G, F2
p) = 0 for all

q ∈ N, so we get H1(F, E[p]) = H1(L, E[p])G by looking at the Hochschild-Serre

spectral sequence H p(G, Hq(L, E[p])) ⇒ H p+q(F, E[p]). Therefore the cohomology

class c ∈ H1(F, E[p]) corresponds to an extension Q|F with Galois group isomor-

phic to the semidirect product F2
p n G, where the action of G on F2

p via conjugation

is given by identifying the latter with E[p]. If K is a solvable extension of F such

that rK|F(c) is zero, then the composition fields KQ and KL are equal. As the action

of Galois on E[p] does not trivialize over K the Galois group Gal(KL|K) is non-

trivial and it is isomorphic to a normal subgroup H of G via the natural embedding

Gal(KL|K) → Gal(K|F). Since the extension KQ|KL is trivial, the action of H on F2
p

is also trivial, which is a contradiction.

Now we prove part (ii). We may assume that the field F has an unramified mod-

ular Galois representation ρ : Gal(F̄|F) → GL2(F5) with surjective image. If F is

the quotient field of the Witt vectors of the perfection of a finitely generated field

of transcendence degree one over an algebraically closed field, then there is such an

Galois representation by Harbater’s theorem quoted above. The affine curve Xρ, the

twist of the modular curve X(5) corresponding to ρ has genus zero. Therefore its

completion has a solvable point, so a Zariski-dense set of solvable points. Because Xρ

parameterize isomorphism classes of pairs (E, φ) where E is an elliptic curve and φ
is an isomorphism between the Galois modules E[5] and ρ, there are elliptic curves

over a solvable extension K of F such that the absolute Galois group of K acts on their

5-torsion through a non-solvable quotient. As we saw above non-zero cohomology

classes c ∈ H1(K, E[p]) correspond to extensions L|K with Galois groups isomorphic

to F2
p nG, where G is the image of the absolute Galois group of K on GL(E[p]) and it

acts on F2
p via identifying the latter with E[p]. By Harbater’s theorem there are such

extensions of the residue field which remain non-trivial after solvable extensions by

the argument above.

Lemma 6.8 Let G be a subgroup of GL2(Fp). Then G is either solvable or H i(G, F2
p) =

0 for all i ∈ N, where G acts on F2
p as a subgroup of GL2(Fp).

Proof The claim of this lemma might be deduced from the classification of sub-

groups of GL2(Fp), but we prefer to give a short, simple direct proof instead. Let

H = G ∩ SL2(Fp). It is clear that G is solvable if H is. If H0(G, Fp) 6= 0, then G is a

subgroup of a Borel subgroup of GL2(Fp), so it is solvable. If p does not divide the

order of G, then Hi(G, F2
p) = 0 for all positive i as the exponent of the latter group

divides both p and |G|. Therefore we may assume that p divides |G|, hence |H|, as

the index of H in G divides p − 1. In this case any p-Sylow subgroup of H is cyclic

of order p, and it is also a p-Sylow of SL2(Fp). By the Sylow theorem the number of
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p-Sylows of H is congruent to 1 modulo p, so H either contains exactly one p-Sylow

subgroup, or it contains all p-Sylows of SL2(Fp), since the latter has p + 1 copies of p-

Sylow subgroups. In the former case H is contained in a Borel subgroup of SL2(Fp),

the normalizer of some p-Sylow of SL2(Fp), so it is solvable. In the latter case H

contains a normal subgroup of SL2(Fp), the subgroup generated by the conjugate p-

Sylows. If p is less than 5, then SL2(Fp) is solvable, so all of its subgroups are solvable,

too. If p is at least 5, then the only proper normal subgroup of SL2(Fp) is its center

Z = Z(SL2(Fp)) which has order two. Therefore G must contain Z. In this case con-

sider the Hochschild-Serre spectral sequence H p(G/Z, Hq(Z, F2
p)) ⇒ H p+q(G, F2

p).

Clearly Hq(Z, F2
p) = 0 for all q ∈ N, so all entries of the spectral sequence are zero

and therefore Hi(G, F2
p) = 0 for all i ∈ N, too.

The previous proposition may interpreted as follows: we cannot prove the ex-

istence of a solvable divisor whose degree is relatively prime to 5 for the unique

genus 1 curve X whose Jacobian is the elliptic curve E in part (ii) and whose ob-

struction class oX|F is the image of c above in H1(F, E)[5] by examining the coho-

mology group H1(F, E[5]) only, although we know that there is a solvable point on

X by Theorem 6.3. Let us analyze further the phenomenon described in the proof

of Proposition 6.7. Let E be an elliptic curve defined over the field F such that the

absolute Galois group acts on its 5-torsion through a non-solvable quotient. If the

j-invariant of the elliptic curve E has negative valuation then it has a Tate uniformiza-

tion θ : F̄∗/qZ → E(F̄) which is Gal(F̄|K)-invariant for a quadratic extension K of F.

In this case the pn-th roots of unity form a Gal(F̄|K)-submodule in E[pn], therefore

the absolute Galois group acts on the latter through a solvable quotient, a contradic-

tion.

Hence the j-invariant of the elliptic curve E has non-negative valuation. Con-

sider the Legendre family y2
= x(x − 1)(x − λ) of elliptic curves over the scheme

Spec(R[λ, 1
λ(λ−1)

]). The j-invariant map j : Spec(R[λ, 1
λ(λ−1)

]) → A1
R is an étale,

Galois cover with Galois group S3. The j-invariant of E gives an R-valued point of

A1
R. The pre-image of this point in Spec(R[λ, 1

λ(λ−1)
]) is the spectrum of a discrete

valuation ring S which is étale over Spec(R) with Galois group S3. By the above there

is an elliptic curve E ′ with good reduction over the quotient field of S, denoted by

F by abuse of notation, whose j invariant is equal to the j-invariant of E. Therefore

E ′ is the twist of E respect to a cohomology class c ∈ H1(F, Aut(E)). But the auto-

morphism group of elliptic curve E has order 2, 4, 6 or 12, hence the absolute Galois

group acts on it through an abelian quotient. So there is an abelian extension K of

F such that rK|F(c) is trivial, so E ′ isomorphic to E over K. Because the base change

of the elliptic curve E ′ still has good reduction, there is a solvable extension of F, de-

noted by F by abuse of notation such that E has good reduction. Over this extension

the absolute Galois group still acts on E[5] through a non-solvable quotient.

Let En denote the Galois module over F which assigns to every finite extension K

of F the kernel of the reduction modulo the n-th power of the maximal ideal of the

discrete valuation ring of K. Let K be an unramified Galois extension of F such that

the geometric points of E[5] are defined over K. The Galois module E[5] is absolutely

irreducible, so any reduction map is either injective or trivial. Therefore E[5] is con-

tained in E1, so E has supersingular reduction. Also there is a natural number n such
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that E[5] is contained in En(K), but E[5] injects into En(K)/En+1(K). For any unram-

ified Galois extension K of F the quotients En(K)/En+1(K) are isomorphic to Ga(k)

as a Gal(K|F)-module, where k is the residue field of K. Therefore our result gives a

new way to construct additive polynomials whose Galois group is a prescribed Galois

group after a solvable extension. On the other hand the implicit function theorem

implies that En is isomorphic to A1, where A1 is the functor which assigns to each

finite extension K the additive group of those elements of K whose valuation is posi-

tive for some n ∈ N. Since H1(F, A1) = 0, we get an alternative proof of Theorem 6.3.
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Montréal, Quebec

H3C3J7

email: pal@math.mcgill.ca

https://doi.org/10.4153/CJM-2004-028-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2004-028-0

