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Continuum kinetic simulations are increasingly capable of resolving high-dimensional
phase space with advances in computing. These capabilities can be more fully
explored by using linear kinetic theory to initialize the self-consistent field and
phase space perturbations of kinetic instabilities. The phase space perturbation of
a kinetic eigenfunction in unmagnetized plasma has a simple analytic form, and in
magnetized plasma may be well approximated by truncation of a cyclotron-harmonic
expansion. We catalogue the most common use cases with a historical discussion of
kinetic eigenfunctions and by conducting nonlinear Vlasov–Poisson and Vlasov–Maxwell
simulations of singlemode and multimode two-stream, loss-cone and Weibel instabilities
in unmagnetized and magnetized plasmas with one- and two-dimensional geometries.
Applications to quasilinear kinetic theory are discussed and applied to the bump-on-tail
instability. In order to compute eigenvalues we present novel representations of the
dielectric function for ring distributions in magnetized plasmas with power series,
hypergeometric and trigonometric integral forms. Eigenfunction phase space fluctuations
are visualized for prototypical cases such as the Bernstein modes to build intuition. In
addition, phase portraits are presented for the magnetic well associated with nonlinear
saturation of the Weibel instability, distinguishing current-density-generating trapping
structures from charge-density-generating ones.
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1. Introduction

Kinetic equations describe fundamental dynamics in collisionless plasma, so their linear
analysis and nonlinear simulation is a perennial topic (Bertrand & Feix 1968; Cheng &
Knorr 1976; Birdsall & Langdon 1991; Heath et al. 2012; Morrison 2017). Plasma kinetic
theory and non-equilibrium thermodynamics are closely connected, and the basic problem
in collisionless kinetic theory is to describe the stability of a distribution to collective
perturbations (Penrose 1960). In the simplest, spatially homogeneous plasmas instability
modes arise from non-thermal distributions due to streaming, anisotropic pressure
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(Weibel 1959), loss-cones (Rosenbluth & Post 1965), etc. Put simply, these instabilities
arise from entropically unfavourable distributions of relative velocity. Historically, kinetic
instabilities have been a key part of transport theory in collisionless plasma (Drummond
& Rosenbluth 1962; Yoon & Lui 2006), and kinetic simulations of instability have
contributed to advances in dynamical sciences (Escande 2016) and modelling for fluid
closures (Conner & Wilson 1994). The intrinsic complexity of phase space turbulence
arising from kinetic instabilities has made nonlinear simulation key to the construction
of more comprehensive models, and a huge potential remains for kinetic simulations to
enrich plasma theory as advances in technique and computing power overcome the curse
of dimensionality (He et al. 2016; Choi, Christlieb & Wang 2021).

We begin by stating the purpose of this work and its context in the existing literature,
by clarifying commonly used terms here and by listing which codes may benefit from the
described techniques. This work reviews eigenfunction solutions to the linearized plasma
kinetic equations, here also referred to as ‘self-consistent plasma-field configurations’ or
‘kinetic eigenfunctions’, and discusses how these kinetic eigenfunctions can be utilized to
cleanly initialize kinetic instabilities simulated by the continuum kinetic method. Here
‘continuum kinetic method’ means that the kinetic equation is solved by an Eulerian
method in the phase space, for example the finite element method (Heath et al. 2012),
in contrast to the particle-in-cell method. The phase space configuration corresponding to
the kinetic eigenfunction will be referred to as a ‘phase space eigenfunction’. Then, having
reviewed the basic theory and discussed the benefits of eigenfunction initialization, the
method is illustrated with model problems of streaming, pressure anisotropy and loss-cone
cyclotron instabilities. Commentary on the instability physics is made throughout and
some novel results are noted. A summary is made of novel results in the conclusion.

Historically, phase space eigenfunctions have been utilized in the space physics
community for analysis of collisionless energy transfer, for example in the role played
by kinetic slow modes in the solar wind (Verscharen et al. 2016; Verscharen, Chen &
Wicks 2017) or by phase space perturbations in Alfvenic turbulence (Wu et al. 2019; Zhao
et al. 2022). In the realm of simulation, the major continuum fusion gyrokinetic codes
(GENE, GS2, GYRO/CGYRO) all have a kinetic eigenfunction initialization capability
regularly employed in studies of astrophysical and laboratory fusion plasmas (Howes et al.
2006, 2011; Watanabe et al. 2014; Verniero, Howes & Klein 2018). On the other hand,
codes solving the unreduced kinetic models (Vlasov–Poisson or Vlasov–Maxwell) with
continuum kinetic method appear, to the best of our knowledge, not to utilize kinetic
eigenfunctions. The methodology advocated for in this work should be applicable and
beneficial for all continuum kinetic codes, such as HVM (Valentini et al. 2007), Vlasiator
(Kempf et al. 2013; Palmroth et al. 2018), Gkeyll (Juno et al. 2018; Hakim & Juno
2020), ViDA (Pezzi et al. 2019), the Lawrence Livermore Vlasov–Poisson code (Vogman,
Shumlak & Colella 2018), the Ruhr University Vlasov code (Allmann-Rahn, Lautenbach
& Grauer 2022), WARPXM (Shumlak et al. 2011; Datta & Shumlak 2023) and the Los
Alamos spectral Vlasov solver (Vencels et al. 2016; Roytershteyn & Delzanno 2018).
Eigenfunctions of the unreduced kinetic equations are analytically tractable in many
situations of interest, for example the unmagnetized (streaming) or magnetized (loss-cone)
electrostatic instabilities and the electromagnetic unmagnetized (Weibel) or magnetized
(field-parallel whistler) pressure anisotropy instabilities. Of these examples, the whistler
is not treated in this work.

Kinetic eigenfunctions consist of structure in both the field and the phase space
self-consistently. It is fairly common practice to initialize simulations using only
the field-part of the eigenfunctions but without the corresponding phase space
configuration, with field sources obtained by spatial moments of a Maxwellian distribution
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(Vásconez et al. 2014; Ng et al. 2019). For example, to achieve density perturbations
n1/n0 = A sin(kx) the equilibrium distribution function f0 is perturbed as f1(x, v) =
A sin(kx)f0(v). Indeed, linear modes (namely, self-consistent plasma-field configurations)
have a phase space structure more like f1(x, v) = (ζ − v)−1∂vf0eikx with ζ = ω/k a
complex phase velocity, and so a significant portion of the perturbation energy is
channelled into the Landau-damped modes and the model’s energy trace begins by a
transient energetic reorganization via Landau damping. The consequence is that spatial
moment-based perturbations partition perturbation energy in a manner different from
what the researcher may have intended. The partition of energy into non-eigenfunction
perturbations is not harmful to the intended solution when initial amplitudes are small,
but at larger perturbation amplitudes Landau damping may non-physically contribute to
nonlinear phenomena as these modes are usually activated by thermal fluctuations. There
is an additional numerical consideration of perturbations with both growing and damped
components, in which case precise measurement of growth rates is obscured by Landau
damping.

To recapitulate, the numerical and theoretical methods and results presented here should
be beneficial for those conducting continuum kinetic simulations, including researchers
utilizing the major codes listed above, those investigating new numerical methods for
kinetic equations (Einkemmer 2019) and for problems considered with smaller targeted
codes (Crews & Shumlak 2022; Paul & Sharma 2024). The methods presented here apply
most directly to approaches where the perturbed distribution may be functionally specified.
This is the case in most continuum kinetic numerical methods, such as in our work where
we use a mixed Fourier spectral–finite element method discussed in Appendix A, with
some variations noted throughout the applications. However, it seems to the authors that
sophisticated particle-in-cell methods (Kraus et al. 2017; Glasser & Qin 2020; Barnes &
Chacón 2021; Perse, Kormann & Sonnendrücker 2021) can utilize these results as well.

This article is organized as theory followed by simulation, treating progressively the
unmagnetized and magnetized electrostatic and unmagnetized electromagnetic problems.
Section 2 reviews unmagnetized electrostatic phase space eigenfunctions and Landau
modes, including a historical summary, a review of the initial-value problem and an
energetic analysis. The difference between kinetic eigenfunctions and Landau damping
modes is discussed, with only unstable perturbations resulting in genuine eigenfunctions.
Section 2.8 notes the importance of kinetic eigenfunctions in quasilinear theory (QLT).
Section 3 then discusses the electrostatic cyclotron modes, making new connections
to the theory of special functions through hypergeometric functions and the Laguerre
polynomials in the dielectric tensor of loss cones, and explores the helical phase
space structure of Bernstein modes. Section 4 considers the vector eigenmodes of the
Vlasov–Maxwell system by casting the dielectric tensor as an eigenvalue problem for a
system of integral equations and presents a practical method to calculate them. The natural
consistency of the plasma-field configuration resulting from this method is observed
as a benefit, so that the initial condition automatically satisfies Poisson’s equation, for
example. The distinction between phase space eigenfunctions and Landau damping modes
is generalized to the vector case, and the one-dimensional and two-dimensional Weibel
instabilities are explored for the anisotropic Maxwellian distribution.

Illustrative simulations are presented in the relevant sections and include the
multidimensional multimode two-stream instability in § 2.7, single-mode Dory–Guest–
Harris instability in § 3.6, single-mode Weibel instability in § 4.4 and multidimensional
multimode Weibel problem in § 4.5. Commentary is provided throughout on the physics
of these problems as nonlinear structures evolve from the initialized linear eigenfunctions.
The general numerical method is described in Appendix A and problem-specific
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modifications are noted for each problem prior to initialization specifics. The magnetized
electromagnetic problem is not treated here, but we mention that the analytic kinetic
eigenfunctions are fairly simple, as parallel-field whistler modes, for example, involve
only the first cyclotron harmonic. The linear theory for whistler emission can be found
in Gurnett & Bhattacharjee (2017, p. 415), and the eigenfunction is briefly described in
Chapter 7 of Crews (2022).

2. Electrostatic plasma modes with zero-order ballistic trajectories

Perhaps the simplest problem in plasma kinetic theory is that of electrostatic modes
in unmagnetized homogeneous plasma, meaning that the zero-order orbits are simply
free streaming ballistic motions. Here the problem is treated beginning with a historical
discussion, followed by analysis of the initial-value problem, and an energetic analysis
of response to eigenfunction and non-eigenfunction phase space perturbations. Recall
that there are two ways of considering the linearized dynamics: the eigenvalue problem
(t ∈ (−∞,∞)) and the initial-value problem (t ∈ [0,∞)). A somewhat subtle theoretical
point is the distinction between eigenfunctions and Landau-damped modes; to clarify this
distinction requires a review of the Case–van Kampen modes and the theory of linear
Landau damping, which can be found in Crews (2022) and is omitted here for brevity.
Nevertheless, in the following the distinction is reviewed at a qualitative level.

2.1. Historical summary and context
The study of eigenfunctions of collisionless and collisional plasma kinetic equations has
a long history. Vlasov was the first to suggest a method to estimate the plasma oscillation
frequencies by prescribing that the principal value be taken at the resonant velocity in the
dispersion function. Following this, Bohm & Gross (1949) side-stepped the resonant term
by considering high-enough phase velocities that the distribution function was effectively
zero at the pole. Famously, Landau (1946) formally solved the linearized initial-value
problem for Vlasov–Poisson dynamics using a Laplace transformation, discovering a
discrete set of solutions for the Maxwellian plasma, wherein the electric potential
damped in time. This collisionless decay phenomenon is called Landau damping. For the
collisionless plasma the decaying Landau modes are not eigenfunctions, meaning that such
solutions cannot evolve independently. Yet Landau’s analysis also found unstable modes
for certain distributions f0. Thus, despite both unstable and dissipative modes sharing a
similar phase space structure like (v − ζ )−1∂vf0eikx, unstable modes evolve as a single
analytic function while dissipation spreads across the entire Landau spectrum.

As the eigenvalue problem remained unsolved, Van Kampen (1955) and Case (1959)
formally solved the problem and determined the spectrum of the linearized kinetic
equation to be continuous with a possibly discrete component. Discrete eigenvalues arise
only for unstable modes where Im(ω) > 0. The continuous part of the spectrum consists
of ballistic modes in the form ε(k, ζ )δ(v − ζ ), while the discrete part is in the analytic
form (v − ζ )−1∂vf0. Here ε(k, ζ ) is the dielectric function and f0(v) the homogeneous
equilibrium. The discrete part of the Case–van Kampen spectrum is identical to Landau’s
unstable modes. Landau’s damping modes are represented as an integral expansion
over the continuous Case–van Kampen spectrum. As a complete orthogonal system
the Case–van Kampen modes are a useful though under-utilized tool. An insightful
application was accomplished by P.J. Morrison and colleagues in constructing a linear
integral transform, termed a ‘G transform’, to reduce the linearized Vlasov equation to
an advection problem by utilizing the Case–van Kampen modes as a basis (Morrison &
Pfirsch 1992; Morrison 2000; Heninger & Morrison 2018).
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As the Landau damping modes are not collisionless eigenfunctions their status has
remained somewhat obscure. Light is shed on this problem by considering weak
dissipation in the Vlasov equation, such as the collision operator of Lenard & Bernstein
(1958). The landmark studies of Ng, Bhattacharjee & Skiff (1999) and Short & Simon
(2002) have shown that as dissipation tends to zero the dissipative eigenfunctions
converge to the Landau damping modes, with the conclusion that dissipation is a
singular perturbation of the collisionless dynamics. Bratanov et al. (2013) numerically
confirmed this limit for discrete systems and Ng, Bhattacharjee & Skiff (2004) extended
and formalized the results for weakly collisional plasma. However, the authors wish to
highlight here that the Case–van Kampen modes still play a role in the dissipative picture.
Namely, one can show (Bratanov et al. 2013; Crews 2022) that the propagator of the
linearized kinetic equation with the Lenard–Bernstein operator limits to the Case–van
Kampen modes as the dissipation ν → 0+. This fact clarifies the relationship between
the continuous Case–van Kampen spectrum and Landau damping modes, as even in the
dissipative picture the Landau modes are represented as an integral over the diffusive
propagator, and the collisionless Case–van Kampen modes indeed play the role of
non-diffusive propagators (Balescu 1997). To understand why Landau modes are easily
identified in the initial-value problem, consider that Landau damping originates from
phase mixing (Mouhot & Villani 2011) and so the modes possess the peculiar property
of decaying in both directions of time. Thus, they arise by propagating initial data, or
otherwise must be represented as an interference of free streaming modes unmixing from
t ∈ (−∞, 0) and remixing from t ∈ (0,∞).

In summary, in collisionless plasma kinetic theory unstable modes are normal modes
and evolve independently, while dissipative modes either occur as a summation of
non-orthogonal transient modes or must be represented in the Case–van Kampen
spectrum. The Case–van Kampen spectrum has found fruitful application as the basis of
constructing an integral transform theory for linearized dynamics, most recently explored
in Heninger & Morrison (2018). In weakly collisional dynamics dissipative modes are
also eigenfunctions and limit to the collisionless Landau mode spectrum as dissipation
tends to zero. As a consequence, it is possible to excite a single-mode instability by
initializing its eigenfunction, but one may not excite a lone Landau-damping plane wave
under collisionless dynamics. The following discussion illustrates this point.

2.2. Phase space linear response and the dielectric function
The electric susceptibility χ is the linear response function which relates in the
spatiotemporal frequency domain (x, t) → (k, ω) the polarization P̃(k, ω) and electric
field Ẽ(k, ω) by the constitutive relation P̃ = ε0χẼ. In the scheme of electrostatic theory
one aims to determine the susceptibility and consequently the dielectric permittivity
ε(k, ω) = ε0(1 + χ) of a plasma with equilibrium distribution f0(v). The susceptibility is
determined through the self-consistent particle response f1(k, v, ω) such that f = f0 + f1,
leading to the sought-after modal structures in the charge density. The distribution f1
encodes a linear response of the charges to the electric potential ϕ according to the relation
f1 = h(k, v, ω)ϕ for some response function h. For this reason, we mean by ‘phase space
linear response function’ the self-consistent particle response f1 to the potential ϕ. The
permittivity is often referred to as simply the dielectric function because the permittivity
tensor reduces to a scalar for isotropic equilibria.

The following review of the initial-value problem is done in detail for the simplest
case in order to build intuition for the electromagnetic and magnetized problems where
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propagation of the initial data is tedious.1 Using the results, we then consider the
evolution of perturbations in a plasma with Maxwellian f0, namely a so-called Maxwellian
perturbation (that is, where f1(x, v) = A sin(kx)f0(v)) and a special perturbation describing
a propagating, damping plane wave. When this plane wave is unstable the special
perturbation grows as an eigenmode, i.e. a constant phase space structure with
time-dependent amplitude, and when damped its structure evolves in phase space.

Rather than the usual Laplace transform notation, we use a more standard notation for
the one-sided temporal Fourier transform pair as

f (ω) =
∫ ∞

0
f (t)eiωt dt, (2.1)

f (t) = 1
2π

∫ ∞+is

−∞+is
f (ω)e−iωt dω, (2.2)

where the factor s keeps the contour above all poles of the integrand in order that (2.1)
converges. The contour in (2.2) is closed at infinity around the lower half-plane, and the
inverse transform is then given by the residue theorem as

f (t) = −i
∑

Res( f (ω)) (2.3)

with the sum over all poles of the response function f (ω). The spatial Fourier transform
x → k is defined as usual over all of space by f (k) = ∫ dxe−ik·xf (x). We consider for
simplicity the response of a single species of particle charge q and mass m amidst a
uniform neutralizing Maxwellian background, so we do not write a species subscript.

The Vlasov–Poisson system linearized by f (x, v, t) = f0 + f1 with f1 � f0 is given by

∂f1

∂t
+ v · ∇f1 − q

m
(∇xϕ) · ∇vf0 = 0, (2.4)

∇2ϕ = −qn0

ε0

∫
f1 dv. (2.5)

Fourier transforming for all of space and for time t ∈ (0,∞) as described, the phase space
linear response is obtained as

f1(k, v, ω) = i
g(k, v)
ω − k · v

− q
m
ϕ

k · ∇vf0

ω − k · v
, (2.6)

where g(k, v) = f1(t = 0, k, v) is the initial condition.
The following result is as described in Landau (1946) with some change in notation.

Define the Cauchy integral g∗(k, ζ ) ≡ ∫C(g(k, v)/(ζ − v)) dv, with C Landau’s contour
(that is, analytically continued into the lower-half ζ -plane). Choose the coordinates such
that one axis aligns with the wavevector k, so that when computing the zeroth velocity
moment of f1, two of the velocity coordinates integrate out. The potential is found to be

ϕ(k, ζ ) = i
σ

k3

g∗(k, ζ )
ε(k, ζ )

, (2.7)

where σ = q/|q| and ε(k, ζ ) = 1 + k−2
∫
C(1/(ζ − v))(∂f0/∂v) dv is the electrostatic

dielectric function. Here the wavenumber k is normalized to the Debye length. If each

1The following analysis applies quasianalysis, which considers the eigenvalue problem and analytically continues
the dispersion function from the upper-half to the lower-half complex frequency plane. The analysis does not consider
damped modes to be eigenfunctions.
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FIGURE 1. Locations of solutions to ε(k, ω) = 0 showing contours of Re(ε) = 0 in red and
Im(ε) = 0 in green for a Maxwellian f0(v) at short wavelength, kλD = 0.5. Solutions to
ε(k, ω) = 0 occur at the intersection of the real and imaginary zero-contours. These damped
modes represent the transient Landau spectrum which accompanies any simulation of kinetic
instability not initialized with an eigenfunction.

root ζj of ε(k, ζ ) = 0 is simple and g∗(k, ζ ) has no poles then inverse transforming in time
gives

ϕ(k, t) = σ

k3

∑
j

g∗(k, ζj)

εω(k, ζj)
e−iωjt (2.8)

with εω ≡ ∂ε/∂ω. Figure 1 shows the typical locations of the infinite set of zeros ε(k, ω) =
0 in the lower-half frequency plane making up the Landau damping mode spectrum. The
amplitude of each mode ζj is given by the Cauchy integral of the initial perturbation
weighted by that mode’s factor ε−1

ω . For example, a typical perturbation used in numerical
simulations is Maxwellian in velocity space, namely g(v) = (

√
πvt)

−1e−v2/v2
t . In this case

our Cauchy integral is g∗(ζ ) = v−1
t Z(ζ/vt) with Z(ζ ) the plasma dispersion function

defined by Fried & Conte (1961). Normalizing phase velocity to vt, the self-consistent
electric potential response for the Maxwellian perturbation is

ϕ(k, t) = −σ
∑

j

Z(ζj)

Z′′(ζj)
e−iωj t (2.9)

as ε(ζ ) = 1 − k−2Z′(ζ ) and ε′(ζ ) = −k−2Z′′(ζ ).
In the theory of continuous dielectrics (Landau & Lifshitz 1946; Nicholson 1983),

wave energy density consists of electric field energy density multiplied by the so-called
Brillouin factor ∂ω(ωεr). The denominator of (2.8) evokes the Brillouin factor because
for each root ωn = kζn, we have ∂ω(ωε) = ωnεω(ωn). This energy factor εω(k, ζj) is
monotonically increasing towards the higher Landau modes. For this reason we speculate
that in Landau damping the lowest-energy state is also the least-damped mode, and that
the lower-energy states are also of greater amplitude in general perturbations.

2.3. Electrostatic eigenfunctions and transient responses
Equation (2.8) is the response when the initial data g∗(k, ζ ) is an entire function of ζ .
However, the phase space linear response (2.6) itself has a simple pole. Since the initial
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data supplied to the kinetic equation is supposed to simulate the self-consistent response
of the plasma to some perturbation, it follows that appropriate initial data may also have a
pole. Consider the initial condition to be the linear response,

g(k, v) = − q
m

1
k2

1
ζn − v

∂f0

∂v
, (2.10)

where ζn is a root of the dielectric function, ε(k, ζn) = 0. The Cauchy transform of (2.10)
is the dielectric function with an added residue for Im(ζ ) < 0,

g∗(k, ζ ) = σ

ζ − ζn

⎛
⎝ε(k, ζ )+

⎧⎨
⎩

0, Im(ζn) > 0,
2πi
k2

∂f0

∂v

∣∣∣∣
v=ζn

, Im(ζn) < 0.

⎞
⎠ (2.11)

Consider first Im(ζ ) > 0. Combining (2.7) and (2.11) and performing an inverse Fourier
transform with (2.2) gives the potential ϕ = k−2ei(kx−ωnt). The phase space structure is
given by (2.6), and again observing the form of (2.10) and combining with the expression
for the potential gives

f1(x, v, t) = g(k, v)ei(kx−ωnt). (2.12)

Therefore, (2.12) is a linear eigenfunction of the Vlasov equation. The phase space
fluctuation grows in time and there is no phase mixing. On the other hand, in the case
of Im(ζ ) < 0 the spectral potential contains a residue,

ϕ(k, ζ ) = i
k3

1
ζ − ζn

− 2π

k3

1
(ζ − ζn)ε(k, ζ )

1
k2

∂f0

∂v

∣∣∣∣
v=ζn

. (2.13)

Equation (2.13) has a double pole at ζ = ζn in the second term, and a simple pole at all
other roots ε(k, ζj) = 0 with j �= n. Inverting the solution obtains the expression

ϕ(k, t) =
{

1 + iπ
k2

εωω(k, ζn)

ε2
ω(k, ζn)

∂f0

∂v

∣∣∣∣
v=ζn

}
e−iωnt

k2

+
∑
j�=n

(
1

(ωn − ωj)εω(k, ζj)

2π

k2

∂f0

∂v

∣∣∣∣
v=ζn

)
e−iωjt

k2
. (2.14)

Although the kinetic mode with frequency ωn is preferentially excited by this
perturbation, it is evident that all Landau modes are also necessarily involved. The form of
(2.14) demonstrates phase mixing and decay at the Landau damping frequencies. However,
at long wavelength the mode propagates decoupled from the others to O(k−2).

So far the results are independent of the specific form of f0(v) other than its spatial
uniformity. Now, to illustrate the partition of energy into the damped modes, the relative
response amplitudes to (i) a Maxwellian perturbation and (ii) one with a single pole,
namely (2.10), are computed for a Maxwellian equilibrium distribution f0(v). In case (i)
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(a) (b)

FIGURE 2. Relative potential amplitudes (normalized to the highest magnitude) of the Landau
damping spectrum for the first ±10 frequencies ωj given a Maxwellian equilibrium distribution
f0(v) at kλD = 0.5 for (a) the Maxwellian perturbation with g∗(ζ ) = Z(ζ ), and (b) initial data
as (2.10) with a single complex pole. The modes are ordered by the real part of their frequency.
Higher modes are rapidly damped, as seen in figure 1 which is computed for the same equilibrium
Maxwellian distribution. Panel (b) shows that while (2.10) can excite a propagating, damping
plane wave it is necessarily accompanied by transient oscillations in its phase space structure
with initial amplitudes up to 20 % of the primary oscillation.

the Maxwellian perturbation evolves with the potential

ϕ(k, t) = −2
∑

j

Z(ζ̃j)

Z′′(ζ̃j)
e−iωjt, (2.15)

where ζ̃j = ζj/vt, while case (ii) evolves with the potential

ϕ(k, t) = 1
k2

{(
1 − 2πi

Z′′′(ζ̃n)

(Z′′(ζ̃n))2

∂f0

∂v

)
e−iωnt − 4

√
2π
∂f0

∂v

∑
j�=n

e−iωj t

(ζn − ζj)Z′′(ζ̃j)

}
. (2.16)

Figure 2 compares these relative potential amplitudes for the two cases (i) and (ii), where
figure 2(b) represents a rightward-propagating Langmuir wave. While mostly the primary
plasma oscillation mode is excited, the higher modes make a substantial contribution.

In summary, Landau damping modes are not eigenfunctions of the Vlasov equation. If
they are initialized and time is run either forward or backward they damp through phase
mixing in either direction of time. However, their phase space structure is essentially the
same as that of the unstable eigenfunctions, namely the plasma part of the plasma-field
configuration occurring in a plasma wave. On the other hand, unstable modes are true
eigenfunctions whose phase space structures do not change in time.

2.4. Visualizing the electrostatic phase space eigenfunctions
Let us visually explore the phase space structure just discussed mathematically. Given a
solution ζn to ε(ζn, kn) = 0 for particular kn (for instability, Im(knζn) > 0) the perturbed
distribution is given by (2.12) in complex-conjugate pair. Examining the real part gives

f1(x, v, t0) = αRe(ψ)
∂f0

∂v
, (2.17)

ψ(x, v) ≡ eikn(x−ζnt0)

ζn − v
(2.18)
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FIGURE 3. Depicted is the phase space eigenfunction of an unstable two-stream mode on two
drifting Maxwellians of drift velocities vd = ±4vt, which appears as coupled plasma waves on
each drifting distribution in the specific sense that the phase space structure on each beam is
visually and mathematically similar to a Landau-damped mode of a thermal Maxwellian (i.e. the
phase space structure of (2.10)). However, these plasma wave structures only occur as a normal
mode, or eigenfunction, when unstable. The mode has structure in both x and v, but its zeroth
velocity moment is a pure sine wave and its first moment is zero.

where α is the perturbation amplitude. Provided that no solution to ε(ζ, k) = 0 has
Im(ζ ) = 0, the denominator of ψ does not vanish and the function is well-defined. The
complex function ψ is defined for convenience to account for all phase information in
the perturbation. The real part is chosen arbitrarily as the linear modes come in conjugate
pairs. Note that one can think of the mode as an instantaneous Cauchy transform of the
distribution gradient.

For example, consider the unstable two-stream mode of two drifting Maxwellians
of drift velocities vd = ±4vt with wavenumber k0λD = 0.1, giving a growth rate ωi ≈
0.28ωp. Figure 3 visualizes the phase space of the corresponding mode given by
(2.17)–(2.18). The perturbation is a two-dimensional oscillatory structure in phase space,
yet the zeroth moment is a pure sine wave resulting in an initial electric potential ϕ(x) =
ϕ0 sin(x). The non-separability of the perturbation is evident in figure 3.

2.5. Kinetic eigenfunctions applied to nonlinear initial-value problems
The physically correct initial data is usually discussed in the context of the thermal
fluctuation spectrum (Ichimaru 1992). Linear eigenfunctions grow from spontaneous
thermal fluctuations until nonlinear saturation at some significant fraction of the thermal
energy (Yoon 2007; Crews & Shumlak 2022). The Vlasov model does not resolve thermal
fluctuations, but this is acceptable for typical plasmas as the magnitude of such fluctuations
is much less than the thermal energy.

The eigenfunction part of a general perturbation amplifies its energy while the
non-eigenfunction part decays with the same time scale ω−1

p . Clearly, with sufficiently
small initial amplitude the non-eigenfunction part of a general perturbation does not
participate in nonlinear saturation, so that sufficiently low-amplitude general perturbations
are physically correct. Yet in the same way, an eigenfunction perturbation of initially
large amplitude compared with the thermal fluctuation level is also physically correct.
For this reason, eigenfunction perturbations yield a physically meaningful computational
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Mode 1 2 3 4 5 6

Frequency, ωr/ωp ±1.42 ±0.0157 0 ±1.10 ±1.20 ±1.29
Growth rate, γ /ωp −3.2 × 10−7 −0.341 0.335 −0.228 −0.377 −0.488
Amplitude, |ϕj|/max(|ϕ|) 1 0.710 0.335 0.0701 0.0581 0.0466

TABLE 1. Relative amplitudes of electric potential for the first six linear mode pairs in a
separable perturbation of two counterstreaming thermal plasmas of drift velocities vd = 5vt
and at wavenumber kλD = 0.126. In this case, for each non-zero frequency ω there is a pair
of solutions. Due to these mode pairs the unstable mode (here of growth rate γ /ωp = 0.335)
has only the fifth-largest relative amplitude of electric potential in the initial condition (counting
the modes twice, as they come in pairs). The significance is that the unstable mode contains
only a small fraction of the initialized energy, as all modes occur at the same wavelength. The
amplitude and growth rate matching is here only a coincidence.

cost-savings when initialized with amplitudes just below nonlinear levels, while
high-amplitude general perturbations introduce nonlinear Landau damping. Initialization
at high amplitude translates to considerable computational savings for high-dimensional,
computationally intensive continuum kinetic problems.

We mention an application of eigenfunction perturbations to small-amplitude
perturbation problems. Sometimes linear instability growth rates are measured for
verification of model implementation (Ho, Datta & Shumlak 2018; Einkemmer 2019).
Small-amplitude eigenfunction perturbations allow linear instability growth rates to be
deduced from data with basically arbitrary precision because there is a complete absence
of Landau damping.

2.5.1. Phase space eigenfunctions applied to the two-stream instability problem
Here we refer to perturbations as ‘separable’ when they factor as g(x, v) = h(x)f0(v)

with h(x) representing the desired density perturbation. Given the preceding discussion,
it is illustrative to compare energy traces of fully nonlinear Vlasov–Poisson simulations
initialized both with general separable perturbations and eigenfunction perturbations.
Consider, for example, the two-stream unstable distribution

f0(v) = 1

2
√

2πvt

(
exp
{
−(v − vd)

2

2v2
t

}
+ exp

{
−(v + vd)

2

2v2
t

})
. (2.19)

Initialization with a separable Maxwellian perturbation, namely g(x, v) = αf0(v)eikx with
α a scalar amplitude, leads to the linear solution

ϕ(k, t) = −2α
∑

j

Z(ζ+,j)+ Z(ζ−,j)
Z′′(ζ+,j)+ Z′′(ζ−,j)

e−iωj t, (2.20)

where ζ±,j ≡ (ζj ± vd)/
√

2vt are the beam-shifted phase velocities. Table 1 lists the
greatest amplitudes of (2.20) for drifts vd = 5vt at wavenumber kλD = 0.126, and shows
that the unstable mode is only the fifth-largest amplitude. Langmuir waves influence
dynamics by masking the growing mode or through nonlinear Landau damping.

Figure 4 compares the energy traces of nonlinear simulations of the two-stream
instability initialized by both separable and eigenfunction perturbations. When initialized
at small amplitude the type of perturbation does not make a difference to saturation
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(a) (b)

FIGURE 4. Comparison of energy traces for nonlinear simulations of a single wavelength
two-stream instability of drift velocities vd = 5vt at wavenumber kλD = 0.126 showing
(a) separable perturbation and (b) eigenfunction perturbation. Two subcases are shown. The
black trace represents a small-amplitude perturbation and the blue trace a large-amplitude one.
The large-amplitude Maxwellian perturbation introduces nonlinearity, polluting the solution,
while the large-amplitude eigenmode saturates equivalently as if seeded from small amplitude.
In any case solutions initialized by eigenfunction perturbation undergo pure growth in the linear
phase.

dynamics. On the other hand, a perturbation of large amplitude reaches saturation
much faster. The large amplitude Maxwellian perturbation in figure 4(a) introduces
nonlinearities and changes the energy trace from the desired evolution. Observe that the
simulations initialized with the eigenfunction perturbations undergo a pure growth.

2.6. Multidimensional dispersion function for the two-stream instability
Electrostatic turbulence at the Debye length scale generated by streaming instability
of electron beams is a ubiquitous plasma phenomenon (Rudakov & Tsytovich 1978;
Che 2016), and is inherently three-dimensional. This section considers the two-stream
instability in the computationally tractable two-dimensional configuration space as an
example of the methodology used to compute electrostatic phase space eigenfunctions
in multiple dimensions. Recall that the electrostatic dielectric function is determined by

ε(ω,k) = 1 + ω2
p

k2

∫
k · ∇vf0

ω − k · v
dv = 0. (2.21)

Now consider a thermal two-stream distribution with equal temperatures on each beam,

f0(u, v,w) = e−(v2+w2)/(2u2
t )

2(2π)3/2u3
t

(
exp
(

−(u − ud)
2

2u2
t

)
+ exp

(
−(u + ud)

2

2u2
t

))
, (2.22)

which differs from (2.19) in retaining three components of velocity. Having assumed an
isotropic thermal velocity ut greatly simplifies analysis; otherwise complications arise due
to the elliptical level-sets of f0. Let the wavevector lie in the (x, y)-plane and consider
(2.21). The w-component integrates out immediately, while the (x, y)-directed velocities
must be rotated into the frame of the wavevector. Rotating through an angle ϕ to
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coordinates (v‖, v⊥), the distribution function is f0(v‖, v⊥) = ( f+ + f−)/2 with

f± ≡ 1
2πu2

t

exp
(

−(v‖∓ cos(ϕ)ud)
2

2u2
t

)
exp
(

−(v⊥± sin(ϕ)ud)
2

2u2
t

)
. (2.23)

Evaluating the integral for each drifting component f± as −Z′(ζ±)/2u2
t as in Skoutnev et al.

(2019) with drift velocity-shifted phase velocity ζ± ≡ (ζ ∓ cosϕud)/
√

2ut gives

ε(k, ζ, ϕ) = 1 − 1
(kλD)2

Z′(ζ+)+ Z′(ζ−)
2

= 0. (2.24)

The wavevector having transverse components to the drift axis decreases the effective
drift by the cosine of ϕ, leading to maximum growth rate of longitudinal waves parallel to
the streaming velocity. However, the growth of these transverse-axis components seeds a
multidimensional turbulence, depending on the configuration space dimensionality.

2.7. Nonlinear simulation of two-stream instability in two spatial dimensions
Although the fastest growing mode of the two-stream problem has a beam-axis-aligned
wavevector, eigenmodes with a long-wavelength transverse part k⊥ � k‖ grow comparably
to the fastest mode, as illustrated in figure 5 by the dielectric function ε(k‖, k⊥)
computed using (2.24). In this way, streaming in unmagnetized plasma generically
produces multidimensional Langmuir turbulence. In practice this is a three-dimensional
phenomenon, but for computational tractability a streaming simulation is presented here
with two space and two velocity dimensions (2D2V). We speculate that 2D2V nonlinear
phase mixing is quite similar to three space and three velocity dimensions (3D3V) because
the ‘total dimensionality’ of the phase space turbulence is greater than two. On the other
hand, nonlinear spatial dynamics of the saturated state are likely quite different in 2D2V
versus full 3D3V. A dedicated study of this issue with sufficient computer capability would
be welcome.

2.7.1. Initialization of the two-dimensional two-stream simulations
Our numerical method is summarized in Appendix A. The domain used is periodic

and set by fundamental wavenumbers kxλD = 0.05 and kyλD = 0.02. The x-axis is divided
into 40 evenly spaced collocation nodes and the y-axis into 50 nodes. Velocity space
is truncated at vmax = ±11.5vt, and each axis divided into 14 finite elements each of a
seventh-order Legendre–Gauss–Lobatto polynomial basis. A non-uniform velocity grid
is used; 10 elements are linearly clustered between v ∈ (−7.5, 7.5)vt and two elements
into v ∈ ±(7.5, 11.5)vt. The drift velocity in (2.22) is set to ud = 3vt. Finally, a spatial
hyperviscosity ν∇4

x f with ν = 10 is added to the kinetic equation to mitigate spectral
blocking with this low spatial resolution, as in Crews & Shumlak (2022). Many modes
of comparable growth rates are initialized using the eigenfunction perturbations

f1(x, y, u, v) = α

k
Re
(

kx∂uf + ky∂vf
ω(kx, ky)− kxu − kyv

exp(i(kxx + kyy + θ))

)
(2.25)

with α an amplitude scalar, ω(kx, ky) solution to the dispersion relation for the mode
(kx, ky), and of random phases θ . A total of 33 modes are excited, each with the amplitude
α = 0.01; for each harmonic of the x-fundamental kn,x = nk1,x with n = 2, 3 and 4, 11
harmonics of the y-fundamental are excited with km,y = mk1,y with m = 0, ±1, ±2, ±3,
±4 and ±5. There is no symmetry in the y-direction as different phases θ are used for the
modes ±m. Mode n = 1 has small growth rate and is not initialized.
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FIGURE 5. Growth rates of the electron two-stream instability as Im(ω)/ωpe for two
counter-streaming Maxwellians with drift speeds relative to the thermal speed of ud/ut = ±3,
in terms of parallel and perpendicular wavenumbers relative to the beam axis vector ûd. The red
contour indicates the line of marginal stability where Im(ω) = 0. While the fastest growing mode
is aligned with the beam axis (occurring at (kλD) · ûd ≈ 0.2), modes of comparable growth rates
occur with transverse wavelengths roughly five-to-ten times the unstable wavelength on-axis.

2.7.2. Two-dimensional nonlinear simulations of the streaming instability
The simulation is run to a stop time of tωp = 30. Figure 6 shows the simulation’s electric

field energy trace. Hyperviscosity with this spatial resolution leads to a domain energy loss
of O(10−3) while electric energy saturates at O(10−1). Due to the use of eigenfunction
perturbations there are no oscillations in the electric field energy trace. Therefore, the
simulation was initialized with a perturbation energy just two orders below saturation. In
this case, this saves approximately 10ω−1

p of simulation time compared with, for example,
a perturbation of initial energy 10−6.

Figure 7 plots evolution of electric potential. Beam-axis wave energy initially
predominates as electron holes form with wavenumber kx � ky, yet the transverse
perturbations with comparable growth rates to the maximal beam-axis part lead to
two-dimensional structures. Following nonlinear saturation, wave energy significantly
increases in the transverse direction as the holes tilt, consolidate and isotropize.
Figure 8 visualizes the domain-averaged (coarse-grained) distribution and demonstrates
that isotropization associated with beam-driven electrostatic turbulence distributes
coarse-grained energy into the beam-transverse directions. That is, beam-transverse
temperature increases significantly in the resulting marginally stable double-humped
distribution (Penrose 1960), as heat transfers from coarse-grained wave energy to the
coarse-grained distribution (Nicholson 1983). These results support the notion that the
continuum of electron hole solutions is key to strongly driven plasma transport (Schamel
2023).

2.8. Quasilinear kinetic simulation with phase space eigenfunctions
Quasilinear theory is the name given to the simplest closure in the hierarchy of equations
resulting from separating the variables of a turbulent system into fluctuating and mean
components (Vedenov 1963). The scheme of the theory is as follows: a suitable method
of averaging is defined, typically temporal, spatial or ensemble averaging; the dynamical
equation is averaged and the mean subtracted from the original equation to obtain the
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FIGURE 6. Electric energy trace of the 2D2V two-stream instability with thirty-three excited
domain modes. Initialization with eigenmodes enables a perturbation just two decades below
saturation energy. The aggressive spatial hyperviscosity of ν = 10 leads to an energy loss of
O(10−3) by the stop time of this simulation. This artificial dissipation would not be necessary
with greater spatial resolution, but the loss is well beneath the electric energy at the stop time.

mean and fluctuating components of the system; lastly a closure hypothesis is made
by neglecting the ‘second fluctuation’. Under this procedure, known as ‘classic QLT’,
the equation for the fluctuation becomes quasilinear and can be solved by spectral
methods (Crews & Shumlak 2022). Substitution into the equation for the mean gives a
diffusion equation in velocity space. Beyond classic QLT, a formulation more applicable
to inhomogeneous plasmas is presented in Dodin (2022).

Diffusion equations are numerically stiff when diffusivity is large. A drawback of QLT
posed as a diffusion problem is that the diffusivity is asymptotically singular in the relaxed
state of an unstable system. The singularity arises as Im(ζ ) → 0 around the purely real
frequencies of the relaxed state (Crews & Shumlak 2022). This singularity is side-stepped
by solving the equations of QLT as an initial-value problem for a system of first-order
equations, resolving the linear kinetic eigenfunctions, linear Landau damping and the
asymptotic (t → ∞) saturation of the distribution function. There is no dimensionality
reduction like in the diffusion theory, but significant advantage remains over the fully
nonlinear theory because the turbulent nonlinear cascade does not form and only the
unstable scales need be resolved. Further, as a first-order system there is no need to solve
the dielectric function in a quasilinear simulation. To prevent spurious Landau damping it
is wise to utilize kinetic eigenfunction perturbations as in § 2.5.

To demonstrate we consider the kinetic equation for electrons in a neutralizing
background. Splitting the distribution function f = 〈 f 〉L + δf where 〈·〉L is a spatial
average, the quasilinear system in normalized units is (Crews & Shumlak 2022)

∂〈 f 〉L

∂t
= ∂

∂v
〈Eδf 〉L, (2.26)

d(δf )
dt

= ∂

∂v
E〈 f 〉L, (2.27)
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(a) (b) (c)

FIGURE 7. Electric potential ϕ(x, y) of the 2D2V electron two-stream instability for three times:
(a) tωp = 8 (linear phase); (b) tωp = 18 (nonlinear phase); (c) tωp = 27 (isotropizing). The
evolution begins with the formation of one-dimensional electron holes, or phase space vortex
lines, transverse to the streaming axis. These vortex lines then break up after saturation into
two-dimensional hole structures with more complex orbits which maintain connection to one
another by the Vlasov-dynamical conservation of phase space circulation. The lines of potential
in this simulation may be understood as a projection of these phase space vortex tubes.

with d/dt = ∂t + v∂x the change along a zero-order trajectory. Consider a finite periodic
domain x ∈ (0,L) and the expansion of the distribution in Fourier series,

f (x, v, t) = f0 +
∞∑

n=1

(
fneiknx + f ∗

n e−iknx
)
. (2.28)

The n = 0 component of (2.28) is the average distribution, f0 = 〈f 〉L, and the remaining
Fourier coefficients make up the Fourier spectrum of the fluctuation with f ∗

n = −fn. Thus,
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(a) (b)

FIGURE 8. Domain-averaged (coarse-grained) distribution 〈 f 〉(x,y)(vx, vy) showing relaxation
to a Penrose-stable distribution on averaged scales due to multidimensional Langmuir turbulence,
for two times: (a) tωp = 0, the unstable initial condition; (b) tωp = 30, the stop time of the
simulation. At the end of the simulation the average distribution is double-humped, having heated
significantly in the direction transverse to the beam axis compared with the initial state.

dropping the symbols δ(·) and 〈·〉L, (2.26) and (2.27) are

∂f0

∂t
= ∂

∂v
〈Ef 〉L, (2.29)

∂fn

∂t
= −iknvfn + ∂

∂v
(Enf0) , n ≥ 1, (2.30)

En = ik−1
n

∫ ∞

−∞
fn dv, n ≥ 1, (2.31)

where (2.31) is obtained from Gauss’s law in the Fourier basis.

2.8.1. Numerical method for the initial-value problem for the quasilinear equations
Equations (2.29) and (2.30) are discretized in velocity space and (2.31) is applied as

a constraint. First, the Fourier series is truncated at a chosen mode number (Galerkin
projection) to resolve the range of instability, with the corresponding spatial grid
identified as the evenly spaced collocation nodes of the frequency range in a standard
manner through the fast Fourier transform. The velocity axis is to be discretized by the
discontinuous Galerkin (DG) method similarly to the method in Appendix A. We consider
the two velocity fluxes in (2.29) and (2.30),

T (v) ≡ 〈Ef 〉L = L−1
∫ L

0
Eδf (x, v) dx, (2.32)

Mn(v) ≡ Enf0 =
(

ik−1
n

∫ ∞

−∞
fn(v

′) dv′
)

f0(v). (2.33)

We evaluate the flux T (v) by the trapezoidal rule because of its ideal trigonometric
quadrature properties (Boyd 2001) using the inverse fast Fourier transform of the spectra
En and fn(v). On the other hand, the fluxes Mn(v) depend only on the local field mode En
and the mean distribution f0(v), so this quantity is simply computed by quadrature in v.
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(a) (b)

FIGURE 9. Electric energy traces are compared for (a) the quasilinear evolution, and (b)
the fully nonlinear Vlasov–Poisson simulation (from the data of Crews & Shumlak (2022))
from identical initial conditions and perturbations. The quasilinear system approaches the
marginally stable state asymptotically, while the fully nonlinear system saturates in a finite
time due to nonlinear particle trapping. Both simulations are initialized at high though
subnonlinear amplitude without subsequent Landau damping oscillations because they utilize
kinetic eigenfunction perturbations, while non-eigenfunction perturbations would oscillate
significantly.

Both fluxes T and Mn are then utilized in the DG method as a nonlinear flux. The linear
translation operator iknvfn is discretized by quadrature and the system is integrated in time
semi-implicitly by Strang splitting, as outlined in Appendix A.

2.8.2. Simulation of the bump-on-tail instability using phase space eigenfunctions
We repeat the calculation of Crews & Shumlak (2022) for the nonlinear and quasilinear

evolutions of the bump-on-tail instability, with the difference that here QLT is solved
as an initial-value problem in phase space instead of as a diffusion problem for the
reduced distribution, and using the numerical method described in § 2.8.1. See Crews &
Shumlak (2022) for the details of initialization including the domain and the zero-order
distribution. In Crews & Shumlak (2022) the perturbation is constructed using the phase
space eigenfunctions given by (2.10). Figure 9 compares the energy traces of the nonlinear
and quasilinear simulations where QLT is solved as an initial-value problem, while
figure 10 compares the spectral phase space at saturation and demonstrates the absence
of phase space cascade in QLT. In addition, there is an absence of Landau damping as the
perturbation is constructed from eigenfunctions.

3. Electrostatic eigenmodes with zero-order cyclotron motion

Here the electrostatic kinetic eigenfunctions of strongly magnetized plasma are
illustrated by first reviewing the linearized theory (see Gurnett & Bhattacharjee (2017,
p. 382) for step-by-step derivation) and then applying the linearized theory to the
particular case of ring distributions of the Dory–Guest–Harris or χ -distribution type
(Dory, Guest & Harris 1965) that are of special interest in space plasmas and magnetic
traps. By strongly magnetized plasma we mean that the zero-order thermal magnetic force
qvthB0 exceeds the first-order perturbation force qE1 such that the zero-order trajectories
are cyclotrons. Strongly magnetized electrostatic modes are longitudinal oscillations
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(a) (b)

FIGURE 10. Spectral (kλD, v/vt) phase space is compared at saturation t = 150ω−1
p between

(a) the quasilinear system, and (b) the corresponding fully nonlinear Vlasov–Poisson simulation.
The spectral phase of the quasilinear system is grossly over-resolved in kλD space only for the
purpose of comparison; energy remains spatially localized in QLT because the system is unable
to cascade through turbulent mixing of phase space eddies, a fully nonlinear phenomenon. The
phase space structures in a simulation of QLT always remain linear eigenfunctions of the form
of (2.10). In this way sub-Debye length scales need not be resolved in simulation of QLT.

characterized by two fundamental frequencies, the plasma frequency ωp and the cyclotron
frequency ωc. Defining the obliquity through k · B = kB cos(φ) = k‖B, the wavevector
decomposes as k = k‖ê‖ + k⊥ê⊥. The spectrum is determined by the dielectric function
roots ε(ω, k⊥, k‖) = 0, and depends strongly on the angle between the wavevector k
and magnetic field B. In contrast to the unmagnetized case there are undamped waves
perpendicular to B, including the well-known Bernstein modes of Maxwellian plasma
(Bernstein 1958). We will see that electrostatic kinetic eigenfunctions have helical
structure in the perpendicular velocity phase space.

3.1. Review of the Harris dispersion relation
Our treatment here follows Gurnett & Bhattacharjee (2017, § 10.2.1) with a particular
focus on the phase space perturbation as a kinetic eigenfunction. Coordinates are chosen
such that B = Bẑ, k = k⊥x̂ + k‖ẑ and the velocity space is expressed in cylindrical
coordinates as v = v⊥ cos(φ)v̂x + v⊥ sin(φ)v̂y + v‖v̂z. In these coordinates the Vlasov
equation linearizes around f0(v⊥, v‖) as, with ωc = qB/m,

∂f1

∂t
+ v⊥ cosφ

∂f1

∂x
+ v‖

∂f1

∂z
− ωc

∂f1

∂φ
= q

m

(
Ex cosφ

∂f0

∂v⊥
+ Ez

∂f0

∂v‖

)
. (3.1)

The linearized equation is then Fourier transformed (x, z, t) → (k⊥, k‖, ω) to yield

df1

dφ
+ i
ω − k⊥v⊥ cosφ − k‖v‖

ωc
f1 = −i

qϕ
m

(
k⊥ cosφ

∂f0

∂v⊥
+ k‖

∂f0

∂v‖

)
. (3.2)

Equation (3.2) is a first-order inhomogeneous equation in the cylindrical velocity-space
angle φ and can be solved by the usual methods. Integrating the inhomogeneous term
along the solution of the homogeneous equation yields

f1(v⊥, φ, v‖) = −qϕ(k)
m

exp(ik⊥vy/ωc)

[
1
v⊥

∂f0

∂v⊥
Υ1 + k‖

∂f0

∂v‖
Λ1

]
, (3.3)
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where the terms Υ1 and Λ1 are auxiliary wavefunctions defined as the polar Fourier series

Υ1 =
∞∑

n=−∞

nωc

ω − k‖v‖−nωc
Jn(k⊥v⊥/ωc)einφ, (3.4)

Λ1 =
∞∑

n=−∞

ωc

ω − k‖v‖−nωc
Jn(k⊥v⊥/ωc)einφ, (3.5)

with Jn(z) a Bessel function of the first kind. The terms of Υ1 associated with perpendicular
propagation decay one order slower in n than Λ1, meaning that high-order resonances are
more important for perpendicular propagation. Equation (3.3) is the phase space linear
response for electrostatic fluctuations in a strongly magnetized plasma.

The self-consistent spectrum consists of all pairs (ω, k⊥, k‖) such that the zeroth
moment of f1(ω, k⊥, k‖, v⊥, φ, v‖) results in an electric potential mode of wavenumber
(k⊥, k‖). Integration of the phase space fluctuation gives the density fluctuation as

n1(ω, k⊥, k‖) = −i
qϕ
m

∫ ∞

−∞

∫ ∞

0

[
1
v⊥

∂f0

∂v⊥
Υ2 + k‖

∂f0

∂v‖
Λ2

]
2πv⊥ dv⊥ dv‖ (3.6)

where a set of additional series, analogues of (3.4) and (3.5), are defined as

Υ2 =
∞∑

n=−∞

nωc

ω − k‖v‖−nωc
J2

n(k⊥v⊥/ωc), (3.7)

Λ2 =
∞∑

n=−∞

ωc

ω − k‖v‖−nωc
J2

n(k⊥v⊥/ωc). (3.8)

Substitution of n1 into Poisson’s equation gives Harris’s dispersion relation

ε(ω, k⊥, k‖) ≡ 1 −
(
ωp

ωc

)2 1
(kλD)2

∫ ∞

−∞

(
V⊥f‖+k‖V‖

∂f‖
∂v‖

)
dv‖ = 0, (3.9)

where the integration over perpendicular velocities is broken out into the two quantities

V⊥ =
∫ ∞

0

1
v⊥

∂f⊥
∂v⊥

Υ2(v⊥, v‖)2πv⊥ dv⊥, (3.10)

V‖ =
∫ ∞

0
f⊥Λ2(v⊥, v‖)2πv⊥ dv⊥, (3.11)

and separability of the background f0(v⊥, v‖) = f⊥(v⊥)f‖(v‖) has been assumed.

3.2. Amplitude limitation of linearization around zero-order cyclotron orbits
Given a zero-order spatially uniform magnetic field B = B0 and first-order electric field
perturbation E = E1, the zero- and first-order kinetic equations are

(v × B0) · ∇vf0 = 0, (3.12)

∂tf1 + v · ∇xf1 + q
m
(v × B0) · ∇vf1 + q

m
E1 · ∇vf0 = 0 (3.13)

assuming a homogeneous zero-order distribution f0 = f0(v). Equation (3.12) indicates
gyrotropy of f0. This ordering is valid when the zero-order cyclotron acceleration is much
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greater than the electrostatic acceleration of a typical particle. Validity translates to an
amplitude restriction on electric potential and the density fluctuation. Assuming k‖ = 0
and comparing terms proportional to ∇vf0 in (3.12) and (3.13) for a thermal particle gives
E1 � vthB0. Estimating the field E1 of wavenumber k by Gauss’s law gives E1 = eδn/kε0
for density fluctuation δn. Combining these estimates results in equivalent conditions on
amplitude as measured by δn or ϕ,

δn
n0

�
(
ωc

ωp

)2

(krL), (3.14)

eϕ
kT

� 1
krL
, (3.15)

for Larmor radius rL = vth/ωc. Amplitudes which exceed these inequalities are subject
to electrostatic Landau damping as the dielectric function of (3.9) is not valid. Typical
cyclotron instabilities have k⊥rL ≈ 1 which limits the amplitudes of the linear modes
considered in this section to amplitudes δn/n0 � (ωc/ωp)

2 and eϕ � kT .

3.3. The dielectric function for ring (χ-) distributions
The linear mode spectrum depends on the background distribution (the zero-order
equilibrium). Plasma theory textbooks consider Maxwellian plasmas by expansion in
the cyclotron harmonics (Gurnett & Bhattacharjee 2017, § 10.2.3). Of course, in ideal
collisionless plasmas with plasma parameter Λ → ∞ distributions are expected to be
observed only close enough to Maxwellian such that the Penrose criterion is satisfied.

Recent analytical work on non-Maxwellian distributions focuses on the kappa
distributions (Mace & Hellberg 2009) to model observations in space plasma (Pierrard
& Lazar 2010). Kappa (κ-) distributions, also called q-Gaussians, are motivated by recent
advances in entropy methods (Livadiotis & McComas 2023; Zhdankin 2023). It is thought
that such entropy methods may facilitate the extension of maximum entropy principles
to the prediction of metastable equilibria such as non-Maxwellian velocity distributions
or self-organized equilibria in magnetic confinement including tokamaks (Dyabilin &
Razumova 2015) and Z pinches (Crews et al. 2024). Ewart et al. (2022) is a significant
recent advance with a lucid description of collisionless relaxation.

Spatially uniform strongly magnetized plasmas must have zero-order gyrotropy so
that non-Maxwellian features in perpendicular velocity space are typically ring-shaped.
Ring distributions commonly arise from the loss-cone mechanism of magnetic traps
or planetary magnetospheres. Early identifications of velocity-space instability in
ring-distributed plasmas were made by Dory et al. (1965). Dory’s ring distribution,
known in the mathematics literature as a χ -distribution, is a type of maximum
entropy distribution subject to two constraints on variance. The studies of Tataronis &
Crawford (1970a) and Tataronis & Crawford (1970b) extended the theory to oblique
propagation, showing maximal growth rates for near-perpendicular propagation, though
analytical work was performed only with singular ring distributions. Around the turn
of the millennium q-analogues of Dory’s analytic ring distributions were introduced
by Leubner & Schupfer (2001) and extended in Pokhotelov et al. (2002), motivated by
the successful use of κ-distributions as q-deformations of Maxwell–Boltzmann statistics.
Dory’s χ -distribution is the q → 1 limit of Leubner’s κ-like ring distributions in the same
way that the Maxwell–Boltzmann distribution is the q → 1 limit of the q-Gaussian (or κ-)
distributions.
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For this reason, in this section we focus on Dory’s ring distribution and analyse the
dielectric function for such rings assuming separability of the zero-order distribution as

f0(v‖, v⊥) = f‖(v‖)fγ (v⊥), (3.16)

where f‖(v‖) is a Maxwellian of thermal velocity vt and fγ (v⊥) is Dory’s ring function

fγ (v) = 1
πα2

1
Γ (γ + 1)

(
v2

α2

)γ
exp
(

− v
2

α2

)
(3.17)

of thermal velocity α and parameter γ , where Γ (z) is the Gamma function. The function
fγ is a polar distribution,∫ ∞

0
fγ (v)2πv dv = 1, for Re(γ ) > −1 (3.18)

yet is bounded at zero only for γ ≥ 0. Equation (3.17) is also known as a χ -distribution
and is ‘two-temperature’. That is, the ring distribution fγ (v⊥) is the maximum
entropy distribution for v⊥ ∈ [0,∞) subject to the two constraints 〈v2

⊥〉 = (γ + 1)α2

and 〈(v⊥ − 〈v⊥〉)2〉 = α2(1 + γ − (Γ (γ + 3/2)/Γ (γ + 1))2) or 〈(v⊥ − 〈v⊥〉)2〉 = 1
4α

2 +
O(γ −1) such that the temperature in the gyrating frame is independent of γ as γ → ∞.
Thus, the physical meaning of α is the thermal velocity in the gyrating frame, while γ is
the boost to thermal energy in the laboratory frame (and need not be an integer). In this
sense the distribution has two temperatures.

The ring distribution satisfies the recurrence (and f−1 = 0),

1
v

dfγ
dv

= 1
α2

fγ−1 − fγ
2

. (3.19)

In the case of ring distributions of the form of (3.17), the integrals in both quantities V⊥
and V‖ involve only fγ due to the recurrence Eq. (3.19), and suggests defining

Fn,γ (k) ≡
∫ ∞

0
fγ (v)J2

n(kv)2πv dv (3.20)

which, as shown in Appendix B, is a type-2F2 hypergeometric function with series
representation (Gradshteyn & Ryzhik 2015)

Fn,γ (x) = 1
Γ (γ + 1)

∞∑
�=0

Γ (2n + 2γ + 2�+ 1)
Γ 2(n + �+ 1)Γ (2n + �+ 1)

(−1)�

�!
x2(�+n). (3.21)

We now proceed with integrating this power series over the parallel velocities.
First, we can make a note on an alternative possibility. Rather than integrating the
auxiliaries (3.7) and (3.8) in their summation form, it is possible to first close the
summation with the Lerche–Newberger summation theorem (Newberger 1982), and to
determine the perpendicular velocity integrals in (3.10) and (3.11) in closed form as
hypergeometric functions, as in Appendix C, for arbitrary k‖. However, the integration
over parallel velocities must then proceed by a series expansion around the poles of these
hypergeometric functions, making a power series approach inevitable. On the other hand,
the power series developed in this section maintains separability of terms containing the
parallel velocity.
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Proceeding to the integration over parallel velocities, with the parallel distribution f‖(v‖)
taken as a Maxwellian distribution, the two integrals are∫ ∞

−∞

nωc

ω − k‖v‖−nωc
f‖ dv‖=− n

k‖
Z(ζn), (3.22)

∫ ∞

−∞

ωc

ω − k‖v‖−nωc

∂f‖
∂v‖

dv‖ = 1
2k‖

Z′(ζn), (3.23)

where Z(ζ ) is the plasma dispersion function and the cyclotron harmonic-shifted phase
velocity is defined as ζn ≡ (ω − nωc)/

√
2k‖vt. Thus, the dielectric function for loss-cones

is

ε(ω, k) = 1 −
(
ωp

ωc

)2 1
(krL)2

∞∑
n=−∞

[
Z′(ζn)Fn,γ (k⊥rL)

+ n
k‖rL

Z(ζn)
{
Fn,γ−1(k⊥rL)− Fn,γ (k⊥rL)

}]
. (3.24)

Equation (3.24) reduces to the standard series for a Maxwellian (γ = 0) by the identity
Fn,0(k) = e−k2 In(k2) where In(k) is the modified Bessel function of the first kind.

3.4. Perpendicular propagation in ring distributions
In the limit of perpendicular propagation, k‖ → 0, the series (3.24) in the cyclotron
harmonics simplifies as the terms proportional to Z(ζn) vanish. Further, by use of the
Lerche–Newberger summation theorem two alternatives to the power series for the
perpendicular cyclotron wave dielectric function may be developed which incorporate
the contributions from the cyclotron harmonics to all orders. The derivation of these
expressions may be found in Appendix C. The first is a closed form, a hypergeometric
function with complex poles at the cyclotron resonances,

ε(ω, k⊥) = 1 +
(
ωp

ωc

)2 1
(k⊥rL)2

{
2F2

[ 1
2 , γ + 1

1 + ω/ωc, 1 − ω/ωc

]
(−2(k⊥rL)

2)

− 2F2

[ 1
2 , γ

1 + ω/ωc, 1 − ω/ωc

]
(−2(k⊥rL)

2)

}
= 0 (3.25)

and the second form is a representation of (3.25) as a trigonometric integral generalizing
that used in Tataronis & Crawford (1970a), Vogman, Colella & Shumlak (2014) and Datta,
Crews & Shumlak (2021),

ε(ω, k) = 1 +
(
ωp

ωc

)2

csc(πω/ωc)

∫ π

0
sin(θ) sin(θω/ωc)Lγ (β) exp(−β) dθ (3.26)

with β ≡ 2 cos2(θ/2)(k⊥rL)
2 and Lγ (β) the Laguerre polynomial of order γ . Equation

(3.26) is particularly suited to numerical calculation by quadrature. Hypergeometrics
similar to (3.25) have been obtained for the Maxwellian plasma and for κ-distributions
(Mace 2004; Mace & Hellberg 2009), and reduce to the Maxwellian result for the
parameter γ = 0. Observe that (3.25) and (3.26) are functions of frequency and not
of phase velocity as there is no ballistic contribution to the zero-order motion. It is
expected that (3.24)–(3.26) will be the basic dispersion functions from which to build
the q-analogues for χ -distributions proposed by Leubner & Schupfer (2001).
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(a) (b)

FIGURE 11. Contours of Re(ε) = 0 (green) and Im(ε) = 0 (red) for the electrostatic dispersion
function of a loss-cone-distributed plasma with parameters ωp = 10ωc, γ = 6, and k⊥rL = 0.9
for case (a) 90◦ propagation and case (b) 85◦ propagation. Either a solution or a pole occurs at
an intersection of these two curve families. Solutions to the dispersion relation ε(ω, k) = 0 are
labelled S while simple poles are labelled P. There are no poles for oblique (< 90◦) propagation.
Solutions correspond to the first few electron Bernstein modes. The dispersion function shows
Gaussian-like responses in the lower-half plane for the oblique wave, an indicator of dissipative
wave–particle resonance near the cyclotron harmonics.

3.5. Visualization of the dispersion function and phase space eigenfunctions
Figure 11 plots the electrostatic dispersion function in the complex frequency plane for
a ring distribution of γ = 6 for magnetization ωc/ωp = 0.1 at wavenumber krL = 0.9.
A plethora of solutions to the complex dispersion function ε = 0 is illustrated by the
intersection of the zeros of the real and imaginary parts, which take place at both solutions
and poles. Complex poles at the cyclotron harmonics occur only for the case k‖ → 0, as
evident from the cosecant function csc(πω/ωc) in (3.26). In this way solutions and simple
poles can be clearly distinguished. It is clear that, given zero-order cyclotron orbits, oblique
modes are Landau damped but perpendicular modes are not. When wave amplitudes
violate the inequality of (3.14) nonlinear phenomena occur, and perpendicular waves are
also Landau damped. In this situation one may see streaming instabilities in numerical
experiments in the magnetization transition regime ωc ≈ ωp.

Therefore, perpendicularly propagating linear modes do not experience Landau
resonance so that all such modes are true eigenfunctions. The phase space structure
associated with these cyclotron waves (that is, (3.3)) consists of helical modes in the
perpendicular velocity space, since the primary phase component is exp(i(kx + nφ − ωt))
for a mode with frequency ω ≈ nωc, with φ the cylindrical velocity space angle. The
simplest example of such helical phase space modes are the electron Bernstein modes.
Figure 12 visualizes the eigenfunctions of the first and second cyclotron harmonics for
a Maxwellian background distribution f0(v⊥) in the phase space (x, u, v) with (u, v)
the perpendicular velocity space and x the propagation coordinate perpendicular to the
background magnetic field. With non-zero real frequency these helical modes propagate
through phase space.

3.6. Simulation of perpendicular electron cyclotron loss-cone instability
Here kinetic eigenfunction initialization is illustrated for the instability of an electron loss
cone to perpendicular cyclotron waves in a neutralizing background, as studied in Vogman
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(a)

(b)

FIGURE 12. Phase space eigenfunctions of (a) the first and (b) the second cyclotron-harmonic
electron Bernstein waves propagating orthogonal to B0, visualized in the phase space (x, u, v).
The order of the cyclotron harmonic determines the number of helical strands of a given sign.
The phase space eigenfunction propagates in the laboratory frame, but when the velocity space
is observed at a fixed spatial coordinate the eigenfunction rigidly rotates in the perpendicular
velocity space. Balanced counterpropagating modes produce a stationary wave.

et al. (2014). Normalizing to the Debye length, plasma frequency and thermal velocity,
and the fields by E0 = vthB0, the Vlasov–Poisson equations are

∂tf + F j∂jf = 0, (3.27)

d2ϕ

dx2 =
∫ ∞

−∞

∫ ∞

−∞
f (x, u, v) du dv − 1, (3.28)

F =
[

u,
dϕ
dx

− vBext, uBext

]T

(3.29)

with coordinates (x, u, v). The external magnetic field Bext is set such that the
magnetization parameter ωc/ωp = Bext is in normalized units. Two single-mode
simulations termed A and B are performed for (3.27)–(3.29) in the highly unstable
over-dense parameter regime ωp = 10ωc using as eigenvalues two solutions to
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(a) (b)

FIGURE 13. Shown here are the perturbations f1 ≡ f − f0 at time t = 0 for (a) simulation A
with ωr = 0 and (b) simulation B with ωr �= 0, each with isosurfaces at 30 % of the minimum
(green) and maximum (yellow). The considered eigenfunctions f1(x, u, v) consist of twisting
islands in the phase space, capturing the combined physics of translation, electric acceleration
and magnetic gyration. Translating modes (ωr �= 0) are associated with a helical structure.

ε(ω, k) = 0, namely (kAλD, ωA/ωc) ≈ (0.886, 0.349i) and (kBλD, ωB/ωc) ≈ (1.4, 1.182 +
0.131i) found using the integral form of (3.26) with 50-point Gauss–Legendre quadrature.

In this situation, case A corresponds to a stationary mode with wavelength long
compared with the thermal Larmor radius, similar to the two-stream instability studied
in the unmagnetized case, while case B corresponds to a destabilized propagating
Bernstein-like mode at the first cyclotron harmonic with more significant finite Larmor
radius effect. The spatial domain is set to L = 2π/k in each case and the velocity
boundaries to umax, vmax = ±8.5. We perturb these nonlinear simulations using the phase
space eigenfunctions corresponding to the eigenvalue pairs (kA, ωA), (kB, ωB).

Figure 13 shows isocontours of the phase space eigenfunctions used as the initial
perturbations. Case A has a phase space structure similar to the basic plasma wave
seen in the two-stream instability, while case B has a helical structure as a cyclotron
mode with ωr ≈ ωc. We reiterate here that the eigenfunction perturbation allows arbitrary
perturbation amplitude and still produces the same nonlinear phenomena, namely the
saturated state or mode coupling/conversion. However, with zero-order B0 the initial
amplitude must not exceed the limit of (3.14) or nonlinear phenomena will develop as
the perturbation electric force is not first order compared with the thermal magnetic force.

3.6.1. Numerical method for loss-cone simulations
The problem is evolved numerically using the DG method described in Appendix A

and in Crews & Shumlak (2022), with the difference that the spatial coordinate is not
Fourier transformed but also discretized by DG method. We use an element resolution
(Nx,Nu,Nv) = (25, 50, 50) and nodal basis of n = 8 Legendre–Gauss–Lobatto nodes per
dimension, while the Shu–Osher SSPRK3 method is used to integrate the semidiscrete
equation in time. These instabilities grow on a slow time scale relative to the plasma
frequency; that is, they grow at a fraction of the cyclotron time scale ω−1

c , while time t
is normalized to the plasma frequency ω−1

p . Thus, these instabilities take many plasma
periods to reach nonlinear saturation beginning from amplitudes below the limit of (3.14).
Simulation A reaches saturation around t = 100 and runs to t = 175 while simulation B
saturates at around t = 175 and stops at t = 200.
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Three-dimensional isosurface plots were produced using PyVista, a Python package for
VTK (visualization toolkit). To prepare the data, an average is taken of nodal values lying
on element boundaries for smoothness, and the eight-nodes per element are resampled
to 25 linearly spaced points per axis and per element onto the basis functions of the
DG method. These isocontours are shown for simulations A and B in figures 14 and 15,
respectively.

3.6.2. Fully nonlinear single-mode loss-cone simulation results
Figure 16 shows the electric potentials ϕ(x) in simulations A and B, computed using

the numerical method described in § 3.6.1. In simulation A the wave potential ϕ(x) is
stationary with a weakly fluctuating boundary, so that part of the density f (x, v) within
the potential well executes trapped orbits. This results in a trapping structure with orbits
tracing a nonlinear potential similar to the characteristic pendulum-like cats-eye separatrix
of the single-mode electrostatic two-stream instability. In this case the electrons are
magnetized and execute zero-order cyclotron motion so that the trapping separatrix in
simulation A is instead in the form shown by the isosurfaces. The saturated state of
simulation A is a lattice of one-dimensional strongly magnetized electron holes. The
continuum of such hole solutions is key to strongly driven plasma transport physics
(Schamel 2023). Two-dimensional axisymmetric magnetized holes are the focus of
analytical work in Hutchinson (2020) and Hutchinson (2021).

The saturated wave potential of simulation B, on the other hand, translates with positive
phase velocity ζ ≈ ωr/k. The region of particle interaction translates along with the wave
potential and forms a vortex structure in the phase space density f (x, u, v). The centre
of this kink continues to tighten as the simulation progresses, leading to progressively
finer structures just as in simulation A. This effect is in agreement with the filamentation
phenomenon and introduces simulation error as the structures lead to large gradients on
the grid scale where discreteness produces dispersion error. For this reason the simulation
is stopped at t = 200. This solution is perhaps somewhat artificial as it is obtained by
single-mode initialization via its phase space eigenfunction, thereby not disturbing modes
of greater growth rate. This is demonstrated through the energy traces in figure 17, showing
that simulation A saturates with a greater proportion of the plasma thermal energy than
simulation B. The solution of simulation B has the significance of a propagating train of
nonlinear electrostatic cyclotron waves with associated electron holes, driven unstable by
the free energy of a ring distribution.

3.6.3. Experimental consequences of cyclotron loss-cone instabilities
Magnetic mirror trapping requires the maintenance of a loss-cone distribution in

the confined plasma. Simulations such as these, and QLTs, maintain that kinetic
instabilities lead to a relaxation of the distribution function on macroscopic scales towards
near-Maxwellian distributions, along with long-lived vortical structures in the phase space.
By examination of the dispersion functions one finds that phase space instability may be
suppressed when ωp � ωc. Assuming equal electron and ion temperatures and densities,
we may write for the plasma beta

β =
(vti

c

)2
(
ωpi

ωci

)2

=
(

rLi

λi

)2

(3.30)

with λi = c/ωpi the ion skin depth. Thus, non-Maxwellian features such as ring
distributions, as χ -distributions or their κ-analogues (Pokhotelov et al. 2002; Leubner
2004), are expected to persist in very low-β plasma, in much the same way in which for
weakly magnetized plasma the κ-distributions persist in the collisionless regime when the

https://doi.org/10.1017/S0022377824000862 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000862


28 D.W. Crews and U. Shumlak

(a)

(b)

(c)

FIGURE 14. Phase space view (x, u, v) of simulation A focused on (x, u)-plane as isocontours
at 15 % of max( f ) shown in yellow, at times (a) t = 0, (b) t = 80 and (c) t = 120. The domain
within the original ring is shown with (u, v) ∈ (−3.5, 3.5) to focus on the trapping dynamics.
The trapping structure consists of a ribbon winding around a separatrix, while the outer bulk ring
distribution maintains passing trajectories. This saturation geometry is typical for electrostatic
potentials in a magnetic field as the magnetic force depends on the sign of the transverse velocity.
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(a) (b) (c)

FIGURE 15. Phase space view looking on (−x, v)-plane of simulation B at 15 % isocontours of
max( f ) (yellow), with (a) the nonlinear mode developing at t = 100, (b) the developed vortex
at t = 160 and (c) the saturated vortex translating at t = 180. The mode is seen to be a growing,
translating electrostatic potential ϕ(x) of positive phase velocity vϕ = ωr/k with an underlying
phase space vortex structure centred at (u, v) = 0. The vortex shape is explained by considering
the trajectory of a test particle in the wave. That is, particles with a velocity close to that of
the wave see a stationary potential and are accelerated to a high u-velocity. They then translate
towards positive x while their velocity vector is rotated by the Lorentz force to −u at a rate close
to the wave frequency (as ωr ≈ 1.2ωc) and repeats the cycle.

(b)(a)

FIGURE 16. Electric potentials ϕ(x) at saturation of the two studied cases, for (a) simulation A
at t = 120 and (b) simulation B at t = 180. The potential of A is stationary while that of B is
translating to the right. The negative of potential −ϕ(x) is shown in order to account for the
electron’s negative charge. In both cases electron holes develop in the potential wells of −ϕ(x).

plasma parameter Λ � 1. Further discussion on the consequences of mirror instability in
high-β space plasma can be found in Pokhotelov et al. (2004).

4. Electromagnetic eigenmodes with zero-order ballistic trajectories

We return to weakly magnetized plasma where the zero-order magnetic field is
weak enough compared with perturbations such that zero-order motion is ballistic.
We consider the electromagnetic linear response, determine the plasma and field
configurations of the kinetic eigenfunctions and utilize them to initialize one- and
two-dimensional nonlinear simulations of collisionless electromagnetic instability. We
then study the magnetic-trapping electron holes resulting from electromagnetic instability.
Purely electromagnetic instability arises from pressure anisotropy, in which case the
linear eigenfunctions are known as Weibel instabilities (Weibel 1959), although streaming
instability may still be determined as electrostatic theory is contained in the limit ζ � c.
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(a) (b)

FIGURE 17. Domain-integrated electric field energy traces for simulations (a) A and (b) B. The
thermal energy of the zero-order distribution is 0.25 per unit length with γ = 6 and α = 1.
In simulation A this corresponds to a domain-integrated thermal energy of EA ≈ 17.8 and in
simulation B to EB ≈ 11.2. Therefore, in both cases the instability saturates with an electric
energy a few per cent of the thermal energy, approximately 6 % in A and 2.5 % in B.

Linearization of the Vlasov–Maxwell system around a weakly magnetized spatially
uniform equilibrium f0(v) with no mean drift yields the system

∂tf1 + v · ∇xf1 + q
m
(E + v × B) · ∇vf0 = 0, (4.1)

∂tB = −∇ × E, (4.2)

c−2∂tE = −μ0j1 + ∇ × B. (4.3)

Faraday’s equation gives B = ω−1k × E such that the spectral Lorentz force is

E + v × B = ω−1 ((ω − k · v)E + (v · E)k) , (4.4)

and a two-sided-in-time quasianalysis produces the Vlasov linear response as

iωf1 = q
m

E · ∇vf0 + q
m
(v · E)

k · ∇vf0

ω − k · v
. (4.5)

The spectral time-derivative of the perturbed current follows as

μ0(−iωj1) = ω2
p

c2

(
E −

∫
v(v · E)

k · ∇vf0

ω − k · v
dv

)
. (4.6)

The first term of the phase space linear response has no resonant denominator and thus
yields a non-thermal perturbed current independent of the zero-order distribution function,
while the second term encodes resonance between the plasma and its wave field.

4.1. Tensor components for arbitrary Cartesian coordinates
In Cartesian coordinates (x, y, z) with wavevector k = kxx̂ + kyŷ + kzẑ, the dielectric
tensor (Skoutnev et al. 2019) is obtained from combination of (4.6) and (4.3) as

εijEj = 0,

εij = δij − c2k2

ω2

(
δij − kikj

k2

)
− ω2

p

ω2

(
δij −

∫
vivj

k · ∇vf0

ω − k · v
dv

)
.

⎫⎪⎬
⎪⎭ (4.7)
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In the formal initial-value problem an initial-value vector results in the system εijEj = gi.
Typically in Cartesian form the moment integrals are inseparable because of the resonant
denominator ω − k · v, yet are separable when the frame is chosen with one coordinate
aligned with the wavevector such that the resonant denominator appears as ω − kv‖.

4.2. Electromagnetic susceptibility and the eigenvalue problem
Reformulation of (4.7) as an eigenvalue problem for the phase velocity ζ allows calculation
of electric field eigenfunctions E naturally consistent with the corresponding phase space
eigenfunction f1 given by (4.5). This facilitates construction of initial conditions for
simulation of Vlasov–Maxwell instabilities. Multiply by ω2 and pull out the diagonal
tensor ω2δij. Define the integrals encoding resonant wave–particle interaction into the
self-consistent perturbation current as

Iij ≡
∫
C
vivj

k · ∇vf0

ω − k · v
dv, (4.8)

where the integral is evaluated on the Landau contour C, i.e. analytically continued to the
lower-half complex ω-plane. The dielectric tensor system may then be rewritten as{

δij − Iij + (kλc)
2

(
δij − kikj

k2

)}
Ej =

(
ω

ωp

)2

Ei, (4.9)

where λc = c/ωp is the inertial length. The resonant integrals are naturally functions of
the phase velocity ζ = ω/k, so one can also express the system as

1
(kλD)2

{
δij − Iij + (kλc)

2

(
δij − kikj

k2

)}
Ej =

(
ζ

vt

)2

Ei. (4.10)

Equation (4.10) casts the problem in eigenvalue form as the system of integral equations

χ(k, ζ )E = ζ 2E. (4.11)

As in the scalar Poisson problem there is a spectrum of solutions ζ for a given k, obtained
by determining a root of the characteristic function D(k, ζ ) ≡ det(χ − ζ 2I) = 0. As in the
scalar problem only unstable solutions satisfying Im(ζ ) > 0 constitute normal modes of
oscillation. In unmagnetized spatially uniform plasma these modes are either streaming
instabilities (two-stream, Buneman, ion-acoustic) or generalized Weibel instabilities. In
either case their effect is thermalizing on coarse-grained scales by reducing relative
velocities far from equilibrium. Casting the dielectric tensor for zero-order cyclotron
motion (Gurnett & Bhattacharjee 2017, p. 408) into an eigenvalue problem proceeds in the
same manner; the main difference is that the integrals Iij are sums over Doppler-shifted
cyclotron resonances and their calculation, though methodical, is lengthy.

Having determined a particular eigenvalue ζ 2
n such that D(k, ζn) = 0, the corresponding

electric field eigenfunction En is found by solving for the eigenvector of the matrix χn ≡
χ(ζn, k) with eigenvalue ζ 2

n . The other two eigenvalues of the matrix χn are spurious as
they do not correspond to solutions of (4.11). The magnetic field eigenfunction is obtained
through Bn = ζ−1

n k̂ × En, and the phase space eigenfunction f1,n from (4.5).

4.3. Dielectric tensor components for the anisotropic Maxwellian
In order to illustrate the Weibel instability due to anisotropy in a plasma with
zero-order ballistic trajectories it is useful to consider the anisotropic Maxwellian, or
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multiple-temperature, zero-order distribution (Davidson et al. 1972). Anisotropy is a key
element of kinetic equilibrium in flowing magnetized plasmas (Mahajan & Hazeltine
2000), and the anisotropic Maxwellian is the simplest anisotropic model distribution to
investigate pure Weibel instability. Let (x, y, z) and (u, v,w) be Cartesian coordinates
in configuration space and velocity space, respectively. Consider a three-temperature
Maxwellian distribution given by

f0 = 1
(2π)3/2θuθvθw

exp
{
−1

2

(
u2

θ 2
u

+ v2

θ 2
v

+ w2

θ 2
w

)}
. (4.12)

For purpose of illustration we obtain from (4.12) one- and two-dimensional model
problems of Weibel instability by letting the wavevector lie in the (x, y)-plane and the
ẑ-direction be the wave binormal. These model problems have the advantage of zero-order
electrostatic stability such that all eigenfunctions are fully electromagnetic.

With the wavevector in the (x, y)-plane the off-diagonal integrals I13, I23 vanish as
〈w〉 = 0, so that the ẑ-directed perturbation does not contribute to the (x, y)-plane’s
perturbation current, decoupling the binormal from the longitudinal and transverse
components (Sharma & Bhatnagar 1976; Datta et al. 2021). A fully general wavevector
would couple all three components of the perturbation. Equation (4.7) simplifies to⎧⎨
⎩
ω2 − ω2

p(1 − I11) ω2
pI12 0

ω2
pI12 ω2 − c2k2 − ω2

p(1 − I22) 0
0 0 ω2 − c2k2 − ω2

p(1 − I33)

⎫⎬
⎭
⎧⎨
⎩

E1
E2
E3

⎫⎬
⎭ = 0.

(4.13)

Focusing on the (x, y)-plane we consider a reduced distribution, the bi-Maxwellian
f0(u, v) = ∫ f0(u, v,w) dw whose level sets form ellipses in the (u, v) velocity plane. Take
θv > θu so that the semimajor axis of each ellipse is v-directed and the characteristic
eccentricity is e2 = 1 − θ 2

u /θ
2
v . To ensure separability of the resonant integrals Iij, the

(x, y)-plane is rotated through an angle ϕ, transforming velocities (u, v) → (v‖, v⊥) such
that the resonant denominator is ω − kv‖. By completing the square on v⊥, the anisotropic
Maxwellian of (4.12) in the reduced coordinates (u, v) → (v‖, v⊥) is

f0(v‖, v⊥) = 1
2πθ‖θ⊥

exp

(
− v2

‖
2θ 2

‖

)
exp
(

−(v⊥−αv‖)2

2θ 2
⊥

)
, (4.14)

where the rotated thermal and mean velocities are defined as

θ 2
‖ ≡ (1 − e2)θ 2

u

1 − e2 cos2(ϕ)
, θ 2

⊥ ≡ θ 2
u

1 − e2 cos2(ϕ)
, α ≡ e2 sin(ϕ) cos(ϕ)

1 − e2 cos2(ϕ)
. (4.15a–c)

Equation (4.14) shows that in the rotated frame the distribution is a shifted Maxwellian.
That is, in the frame of a resonant particle the distribution has a mean velocity αv‖
transverse to the wavevector, as illustrated in figure 18. The off-diagonal integrals are
non-zero, Iij �= 0, for anisotropic distributions as the apparent transverse current in
the resonant particle frame couples the longitudinal and transverse wave components
for propagation not aligned with the principal axes, even though there is no net
current in the laboratory frame. In general all three components are coupled for
non-principal propagation. This coupling is characteristic of anisotropy and contrasts with
isotropic distributions for which the longitudinal plasma wave and the two transverse
electromagnetic wave components have fully independent dispersion relations.
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FIGURE 18. In the frame of reference of a particle propagating in a direction not aligned
with the principal axes of an anisotropic distribution there is a mean drift velocity in
the direction transverse to the particle’s motion which couples together the electromagnetic
wave’s longitudinal and transverse components. In other words, in a frame where the velocity
coordinates (u, v) are rotated through an angle ϕ into coordinates (v‖, v⊥), for a particular value
of v‖ there is a non-zero mean value of v⊥ such that the off-diagonal integrals Iij �= 0 of (4.8).

To evaluate the integrals I11, I12 and I22 for the distribution in (4.14) in the rotated
coordinates, note the following integrals related to the plasma dispersion function Z(ζ ):

1√
π

∫ ∞

−∞

x
ζ − x

e−x2/2a2
dx = a

2
Z′(ζ̃ ), (4.16)

1√
π

∫ ∞

−∞

x2

ζ − x
e−x2/2a2

dx = −a2

2
(Z′′(ζ̃ )+ 2Z(ζ̃ )), (4.17)

1√
π

∫ ∞

−∞

x3

ζ − x
e−x2/2a2

dx = a3

23/2
(Z′′′(ζ̃ )+ 6Z′(ζ̃ )), (4.18)

where ζ̃ = ζ/
√

2a. These identities are found through integration by parts using the
Hermite relation ψn(x) = (dn/dxn)e−x2/2 and the identity Z′(ζ ) = −2(1 + ζZ(ζ )). With
the gradient ∂f /∂v‖ = (−v‖/θ 2

‖ + α(v⊥ − αv‖)/θ 2
⊥)f the integrals Iij in (4.13) work out to

I11 = −1
4
(Z′′′(ζ̃ )+ 6Z′(ζ̃ )), (4.19)

I12 = −α
4
(Z′′′(ζ̃ )+ 6Z′(ζ̃ )), (4.20)

I22 = −α
2

4
(Z′′′(ζ̃ )+ 2Z′(ζ̃ ))− θ 2

⊥
θ 2

‖

Z′(ζ̃ )
2

, (4.21)

I33 = −θ
2
w

θ 2
‖

Z′(ζ̃ )
2

, (4.22)
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where ζ̃ ≡ ζ/
√

2θ‖. Let the angular eccentricity be γ = arcsin(e). The characteristic
anisotropies are then A1 ≡ θ 2

⊥/θ
2
‖ − 1 = e2/(1 − e2) = tan2(γ ) for the in-plane anisotropy

and A2 ≡ θ 2
w/θ

2
‖ − 1 for the binormal anisotropy. These two anisotropy parameters

induce the electromagnetic Weibel instability to relax the anisotropy of their respective
dimensions. For propagation along the principal axes, ϕ → 0,π/2 the parameter α → 0,
decoupling the x̂- and ŷ-components as I12 → 0 and I22 → −(θ 2

v /θ
2
u )(Z

′(ζ/
√

2θu)/2) as in
(4.22).

4.3.1. Dispersion function for the classic Weibel instability
Focusing on the decoupled component in (4.13), namely ε33E3 = 0, leads to

1 −
(
ζ

c

)2

+ 1
(kλc)2

(
1 + Z′(ζ̃ )

2
+ A2

Z′(ζ̃ )
2

)
= 0 (4.23)

with A2 the binormal anisotropy. Equation (4.23) is valid for all propagation angles. For
principal propagation at ϕ = 0 (the x̂-direction) the principal anisotropies A1 = A2 such
that (4.23) describes both the transverse and binormal components. It is instructive to
observe that isotropy reduces (4.23) to the ordinary wave kinetic dispersion relation. The
coupled branch of solutions to (4.13) is described by(

−
(
ζ

c

)2

+ 1
(kλc)2

(1 − I11)

)(
1 −

(
ζ

c

)2

+ 1
(kλc)2

(1 − I22)

)
− 1
(kλc)4

I2
12 = 0 (4.24)

with transverse magnetic field out-of-plane and two components of electric field in-plane.

4.4. Single-mode saturation of Weibel instability in one spatial dimension
Just as electrostatic instability saturates by nonlinear trapping of near-resonant particles
in an electric potential energy well, electromagnetic instability saturates by magnetic
trapping. As a supplement to this section, Appendix D builds an analytic model
of the phase portraits associated with ideal magnetic trapping and a conceptual
model of magnetic trapping as a magnetic potential momentum well. Simulation of
a single-mode Weibel instability by initialization with kinetic eigenfunctions allows
one to self-consistently visualize the saturated phase space structures. The foundational
simulations of an electromagnetic instability due to anisotropy considered Weibel
instability evolving from the anisotropic Maxwellian using the particle-in-cell method
(Davidson et al. 1972). Later, Califano, Pegoraro & Bulanov (1997) conducted one- and
two-dimensional simulations in an inhomogeneous plasma using anisotropy induced by
streaming beams. Building on this, Cagas et al. (2017) simulated single-mode Weibel
saturation with a continuum-kinetic method using a zero-order counter-streaming electron
beam distribution. In Cagas et al. (2017) an electrostatic streaming instability was proposed
to explain the growth of a beam-axis directed electric field close to nonlinear saturation.

Zero-order beam distributions are often used because Weibel instability is induced
in the laboratory by colliding high velocity plasmas (Hill et al. 2005; Fox et al. 2013;
Huntington et al. 2015; Shukla et al. 2018). While zero-order beam distributions are
inherently anisotropic they are also possibly unstable to electrostatic streaming instability.
The possible introduction of electrostatic streaming instability can confuse and complicate
an attempt to isolate Weibel instability. On the other hand, there is no possibility of
streaming instability when the Weibel instability is induced by a zero-order anisotropic
Maxwellian distribution. For this reason the anisotropic Maxwellian is considered here
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using the continuum kinetic method, as originally considered with particle-in-cell method
by Davidson et al. (1972).

4.4.1. Numerical method for single-mode Weibel instability simulation
We use the mixed spectral-DG method presented in Appendix A and Crews & Shumlak

(2022), where the space coordinate is represented using Fourier modes and the two
velocity dimensions are discretized with the DG method. The field equations are chosen as
follows: Ampere’s law and Faraday’s law are used to evolve the transverse electrodynamic
field, and Gauss’s law is used to constrain the electric field along the axis of the
wavevector. When considering only a single spatial coordinate, three field equations can
be chosen in this way (one component each of the electrodynamic equations and Gauss’s
law) as there are only three field components.

The geometry is established by aligning the hot direction of the bi-Maxwellian
with the y-coordinate, the growing magnetic field with the z-direction and perturbing
the distribution function with wavenumber in the x-direction. This necessitates two
dimensions of velocity, vx in the x-direction and vy in the y-direction, for a one space and
two velocity dimensions (1D2V) phase space geometry. Phase space is discretized using
Nx = 100 evenly spaced collocation nodes in the x-direction, and Nvx = Nvy = 22 finite
elements in velocity, each of 11th polynomial order. Fourteen elements are evenly spaced
between the velocity intervals [−7, 7]vt, and four elements are evenly spaced within each
interval [−15,−7]vt and [7, 15]vt. A spatial hyperviscosity 10−4∇4

x f is used to prevent
spectral blocking by the turbulent cascade saturation. The field equations are discretized
by a standard Fourier spectral method.

4.4.2. Initialization with field and phase space eigenfunctions
The characteristic parameters are chosen such that vt/c = 0.3 and anisotropy A = 3

(or ratio θv/θu = 2) with the zero-order distribution given by (4.12) and the direction of
propagation set to ϕ = 0. This is equivalent to using (4.23) for the dispersion function.
Velocities are normalized to θu, time to ω−1

p and lengths to λD = θu/ωp. The domain
length is then specified by the chosen wavenumber kxλD = 0.1. Solution of (4.23) gives
the eigenvalue of the problem as the phase velocity ζ/vt = 1.23i. The phase space
perturbation is constructed using (4.5) for the phase space eigenfunction in the form

f1(x, vx, vy) = Re
{

i
A
k

(
vy

ζ − vx

∂f0

∂vx
+ ∂f0

∂vy

)
exp(ikx)

}
, (4.25)

longitudinal field Ex1 = 0 and the initial transverse electrodynamic fields by

Bz1 = Re (A exp(ikx)) , (4.26)

Ey1 = Re (ζA exp(ikx)) , (4.27)

where the amplitude is set to A = 10−3. This initial condition is consistent in the sense
that the charge density is zero and the current density satisfies Ampere’s law.

4.4.3. Fully nonlinear simulation results for single-mode Weibel saturation
The simulation is run until tωp = 100 using the numerical method of § 4.4.1 with

time step �t = 2.0 × 10−3. The change in domain-integrated wave energies is shown
in figure 19. Of note is the oscillating transverse electric field at saturation, and how
longitudinal electric energy corrects from zero to trend with magnetic energy.

Figure 20 shows the time evolution of magnetic field and electron density in increments
of tωp = 20. As magnetic energy grows, electrons are progressively magnetically trapped
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(a) (b) (c)

FIGURE 19. Growth of domain-integrated wave energies towards saturation of Weibel
instability in one spatial dimension, namely (a) the magnetic energy, (b) the transverse electric
energy of Ey and (c) the longitudinal electric energy of Ex, or energy along the axis of the
wavevector. A nonlinear phase is reached at tωp = 40, with peak magnetic energy around
tωp = 50. Longitudinal electric energy is observed to grow with a similar trend to the magnetic
energy.

(a) (b)

FIGURE 20. Evolution of (a) magnetic field Bz(x) and (b) electron density ne(x), to nonlinear
saturation of a single unstable Weibel mode. The mode saturates around tωp ≈ 45. Prior to
saturation the magnetic field has a spectrum consisting of only even mode numbers with
an apparent power law in logarithmic amplitudes. Since the function is clearly analytic this
spectrum is consistent with an elliptic cosine function until nonlinear saturation. It is interesting
that this higher-order phenomenon arises even from a single-mode eigenfunction perturbation.
The electron holes at saturation are bounded by the maxima of magnetic energy B2/2μ0, or
equivalently bounded by the potential wells Ay(x).

as described analytically in Appendix D. With the initial free energy released, the
distribution function attempts to evolve towards a function of the constants of motion,
namely the energy H = 1

2 m(v2
x + v2

y )− eΦ(x) and canonical momenta Py = mvy − e
Ay(x), Px = mvx whereΦ(x) is the electric potential and A = Ay(x)ŷ is the magnetic vector
potential. Specifically, trapped and passing phase space trajectories are determined by the
equation (Morse & Nielson 1971)

mvx =
√

2m(H + eϕ(x))− (Py + eAy(x))2, (4.28)

for a particle’s energy H = 1
2 m(v2

x0 + v2
y0)− eϕ(x0) and momentum Py = mvy0 − eAy0(x0)

constants. Figure 21 visualizes the phase space structure at nonlinear saturation by an
isocontour of the distribution at 10 % of its maximum. Trapped and passing trajectories
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FIGURE 21. Phase space vortex shown by contour at 0.1 max( f ) in the coordinates (x, vx, vy)
at saturation of a single Weibel mode. The mid-domain x-coordinate corresponds to x = 0.
The magnetic trapping phase space vortex is distinguished from the electrostatic vortex as
velocity-dependent since the momentum py in (4.28) is linear in vy. In this way the single-mode
phase space vortex is antisymmetric, with trapped and passing orbits swapping under vy → −vy.
For this reason there is no magnetic trapping along the vy = 0 plane.

are seen at the right- and left-hand of the figure, respectively, for vy > 0. Trapped
trajectories circulate within a phase space vortex while passing trajectories execute motion
in the vicinity of the separatrix. Upon inversion of the transverse velocity, vy → −vy, the
positions of the trapped trajectories and passing trajectories are inverted, x → −x.

Linear electrostatic instability is not possible due to the zero-order anisotropic
Maxwellian, so here we explain the growth of electrostatic energy observed both here and
in Cagas et al. (2017) as a second-order phenomenon arising from space-charge-generating
filamentation (that is, the magnetic-trapping electron holes of figure 20). While saturated
filaments can be understood intuitively as electron holes, the progressive development of
longitudinal electric energy in the linear phase can be understood as mode coupling of
the longitudinal field to the transverse field at second order in the transverse dynamic
field (Taggart et al. 1972). Appendix D presents a visual description of the density
filamentation phenomenon as resulting from a bifurcation in phase space topology as
the thermal trapping parameter mvth/eAmax passes through unity. When eAmax � mvth the
primary phase space vortex structures are antisymmetric across the vy-plane, producing
a perturbation in current density without a perturbation in charge density. Once eAmax ≈
mvth particle orbits with low Py become more symmetric across the vy-plane and produce
a coherent perturbation in the density.

Thus, both electric and magnetic field trapping are associated with local variations in
the electron density which manifests as space charge. In the case of magnetic trapping
the charge density is a higher-order effect, and the first-order effect is production of
electric currents to sustain the magnetic mode. The development of space charge from
magnetic pressure is anticipated in Morse & Nielson (1971), and the longitudinal field
is explained in Taggart et al. (1972) to arise at second order from the coupling of two
magnetic modes. Dynamic space charge, or filamentation, has been observed in modelling
to modify growth rates, in both early and more recent studies (Taggart et al. 1972; Tzoufras
et al. 2006), pointing to the importance of higher-order effects prior to saturation. Since
the fraction of trapped electrons is proportional to the magnetic energy, with saturation
when the characteristic magnetic bounce frequency reaches the growth rate (Davidson
et al. 1972), it follows that longitudinal electric field should trend nonlinearly with the
magnetic field. Finally, the theory of Appendix D interprets the density perturbation as
arising from particles with vy ≈ 0 and energies H < (eAmax)

2/2m.
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FIGURE 22. Growth rates of multidimensional Weibel instability as Im(ω)/ωpe for an
anisotropic bi-Maxwellian of anisotropy A = 3 where the electric field is assumed to lie
in the (x, y)-plane and the first-order transverse magnetic field to be out-of-plane. The
higher-temperature direction is assumed to lie in the ŷ-direction assuming vt/c = 0.3. The red
line identifies marginal stability.

4.5. Saturation of many unstable Weibel modes in two spatial dimensions
Weibel instability of a homogeneous unmagnetized plasma is inherently multidimensional
as wavevectors oblique to the principal anisotropy axes have comparable growth rates
to the principal axes (similar to the multidimensional streaming instability studied
in § 2.7). We consider for example the branch of the dispersion function for the
anisotropic Maxwellian given by (4.24) with transverse magnetic field out-of-plane and
the longitudinal and transverse electric fields in-plane. The out-of-plane magnetic field
allows a reduced 2D2V phase space geometry for tractable continuum-kinetic simulation
(Skoutnev et al. 2019). It should be kept in mind that the instability dynamics are truly
three-dimensional just as in the multidimensional Langmuir turbulence simulation of
§ 2.7. Figure 22 plots the growth rate as a function of the wavevector k = kxx̂ + kyŷ
of the unstable branch of (4.24) for a zero-order bi-Maxwellian of anisotropy A = 3
and with vt/c = 0.3. If the destabilized ordinary wave studied in § 4.4 were included in
the simulation, the magnetic field would also take in-plane components, necessitating a
third velocity dimension. We point out the same caveats for this simulation as for the
two-dimensional two-stream simulation; the nonlinear phase space dynamics are likely
similar to the three-dimensional problem, but the nonlinear dynamics of the saturated
state (that is, the turbulence statistics) will likely be different. The essence of the problem
lies in restricting the cylindrical symmetry of the near-maximal-growth-rate modes about
the principal anisotropy axis to a plane. Fully three-dimensional simulations are necessary
to clarify these issues.

4.5.1. Numerical methods for the two-dimensional multimode Weibel instability
The simulations are conducted with the methods of Appendix A and Crews & Shumlak

(2022) with a few key differences. Specifically, Ampere’s and Faraday’s laws are used
for the field equations which are time-integrated in Fourier spectral space with the same
third-order Adams–Bashforth method as the kinetic equation. There is also an important
difference in initialization of the unstable modes. In the Vlasov–Poisson system the
field part of the kinetic eigenfunctions is described by the scalar potential, yet in the
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(a) (b) (c)

FIGURE 23. Evolution of domain-integrated energy for (a) the out-of-plane magnetic field Bz,
(b) the electric field transverse to the maximum growth-rate axis and (c) the electric field parallel
to that axis (formerly the longitudinal field of the one-dimensional simulation). A difference from
the one-dimensional simulation is a steadily decreasing transverse electric energy rather than a
coherent oscillation after saturation time. The x̂-directed electric energy increases at a rate faster
than the growth of the linear modes due to the same space charge effects as in the single-mode
simulation discussed in § 4.4.

multidimensional Vlasov–Maxwell system the kinetic eigenfunctions consist of a vector
self-consistent field-plasma configuration. Initialization with kinetic eigenfunctions in an
electrodynamic problem necessitates solving the eigenvalue problem χE = ζ 2E in the
wavevector frame, as discussed in § 4.2. In our implementation, the eigenfunctions are
computed in the rotated wavevector frame and then antirotated back into the (x, y)-plane
with components E = Exx̂ + Eyŷ. Thus, for each desired pair of wavenumbers (kx, ky) a
perturbation is applied as

f1 = ARe
[

q
iω

{
Ex

(
∂f0

∂u
+ vx(k · ∇vf0)

ω − k · v

)
+ Ey

(
∂f0

∂v
+ vy(k · ∇vf0)

ω − k · v

)}
ei(k·x+ϕ̃)

]
(4.29)

with ϕ̃ a randomly chosen phase shift per wavevector and the amplitude A = 2 × 10−3.
The magnetic field is then initialized as Bz = ζ−1k̂ × E where ζ is the eigenvalue.
A higher amplitude than the one-dimensional problem is chosen to reduce time to
saturation.

4.5.2. Initial conditions for the two-dimensional Weibel instability simulations
The domain is specified by fundamental wavenumbers kxλD = 0.125 and kyλD = 0.01.

Physical space is represented with Nx = 32 and Ny = 128 evenly spaced collocation points,
while velocity space is represented as a Cartesian tensor product of linear finite elements
with 11 finite elements per velocity axis, each linear element of seventh-order polynomial
basis for (vx, vy) ∈ [−11, 11]θu. As in § 2.7 many modes are excited; for each of the
first two harmonics of the fundamental wavenumber, namely nkxλD with n = 1, 2, five
transverse wavenumbers ±mkyλD are excited with m = 0, 1, 2. The normalized thermal
velocity vt/c = 0.3 and the anisotropy is A = 3, as in the one-dimensional problem.
The simulation is run to tωp = 40 using a time step of �t = 8 × 10−3 with an added
hyperviscosity ν∇4

x f with ν = 1 to prevent spectral blocking. Due to the hyperviscosity
total energy is conserved only to O(10−4) by the simulation stop time.

4.5.3. Nonlinear simulations of the two-dimensional Weibel instability
The problem described in § 4.5.2 was simulated using the methods of § 4.5.1. Figure 23

shows the energy traces of the electrodynamic field during the linear phase and beyond
instability saturation. Nonlinear saturation occurs around tωp = 17, as gauged by the
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(a) (b) (c)

FIGURE 24. Evolution of current at times (a) tωp = 0, (b) tωp = 25 and (c) tωp = 39.5. Plotted
are streamlines of j and its magnitude |j| as filled contours. Current tends to form closed paths
at long wavelength in y. The indicated spiral vortices in the streamlines demonstrate rapid local
space charge production (∇ · j �= 0) as expected from the filamentation and trapping dynamics
of the one-dimensional problem. The large circulating configuration space electron current
vortices manifest on small scales as counter-propagating electron streams which sustain a train
of magnetic-trapping electron phase space vortices. In this unmagnetized model problem, these
structures isotropize from four-dimensional phase space dynamics.

ŷ-directed transverse electric field. The x̂-directed electric field energy follows a similar
trend as the one-dimensional problem, its growth composed of two effects: to first-order
from the initialized oblique modes, and to second-order in the magnetic field as discussed
in § 4.4. At nonlinear saturation, magnetic-trapping electron holes form between the
counter-streaming mean flows.

Figure 24 illustrates the dynamics of the multidimensional instability through
streamlines of the current density j(x, y) and filled contours of its magnitude for three
times in the simulation output. Trigonometric interpolation is used to visualize the
current density by zero-padding the spectrum and inverse Fourier transformation, as the
spectrum is properly resolved up to the chosen spectral cutoff. In figure 24(b) one can
observe spiral current streamlines indicating the local production of space charge as
the electron density filaments into two-dimensional analogues of the magnetic-trapping
electron holes studied in the single-mode problem, also observed in Califano et al.
(1997). By the simulation’s end, nonlinear mixing has caused some of the filaments to
rotate, as in the multidimensional electrostatic problem considered in § 2.7, indicating a
similar isotropization on averaged scales. Inspection of figure 25, which plots the spatially
averaged distribution function 〈f 〉(x,y)(vx, vy) at tωp = 0 and tωp = 40 in figure 25(a,b)
and in figure 25(c) the trace of the anisotropy parameter A, shows the anisotropic
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(a) (b) (c)

FIGURE 25. The relaxing spatially averaged distribution function 〈f 〉(x,y)(vx, vy) shown at two
times: (a) the initial condition tωp = 0, (b) the stop-time tωp = 40 and in addition (c) the
time evolution of the anisotropy parameter A = 〈v2

y 〉/〈v2
x 〉 − 1. The turbulence of magnetic

trapping phase space vortices in the turbulent currents of the saturated instability isotropizes
the distribution function. Note that A = 0 would indicate isotropy, so that the saturated state
consists of persistent anisotropy coexisting with the wave field (Davidson et al. 1972).

Maxwellian to relax towards isotropy through Weibel-induced turbulence. The initial
anisotropy A = 3 is observed to decrease monotonically until at saturation A ≈ 1, meaning
that the saturated state is weakly anisotropic. This persistent anisotropy coexists with the
fluctuating filamentation currents, consistent with the observations of Davidson et al.
(1972). Indeed, persistent anisotropy accompanying sheared flows in the saturated state
is expected for collisionless dynamics (Del Sarto & Pegoraro 2017).

5. General discussion and summary

This work advocates for the application of kinetic eigenfunctions to initialize
Vlasov–Poisson, Vlasov–Maxwell and quasilinear kinetic simulations. It reviews
linearized kinetic theory and presents example simulations of the most commonly
treated model problems. The historical discussion of § 2 reviews the kinetic eigenvalue
and initial-value problems, and highlights that the instabilities identified by Landau’s
initial-value analysis are indeed true eigenfunctions which may be utilized as simulation
perturbations. Perturbation of a kinetic problem using its eigenfunctions provides
several benefits, such as a controlled partition of perturbation energy, initialization of
perturbations at close-to-nonlinear amplitudes and measurement of linear instability
growth rates up to machine precision unpolluted by linear Landau damping activity.

Notable findings for researchers utilizing kinetic theory and simulation include the
following.

(i) A historical overview of eigenfunctions for the Vlasov–Poisson system (§ 2.1).
(ii) Worked examples of eigenfunction initialization for the Vlasov–Poisson and

Vlasov–Maxwell systems to illustrate the method’s advantages (§ 2.5.1, single-mode
two-stream; § 2.7, two-dimensional multimode two-stream; § 3.6, single-mode
loss-cone; § 4.4, single-mode Weibel; § 4.5, two-dimensional multimode Weibel).

(iii) Eigenfunction initialization of quasilinear kinetic simulations (§ 2.8 as applied to
quasilinear bump-on-tail dynamics) for which the phase space fluctuation is always
an eigenfunction of the instantaneous state.

(iv) Power series representations of the dielectric function for ring distributions in
strongly magnetized plasmas at arbitrary propagation angles (§ 3.3 and Appendix B).
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(v) Closed form hypergeometric and trigonometric integral representations of the
dielectric for ring distributions in strongly magnetized plasmas (§ 3.4 and
Appendix C.1).

(vi) Helical geometry of phase space fluctuations in magnetized plasmas (§ 3.5).
(vii) Description of the generation of electron density holes by magnetic trapping in the

saturating Weibel instability (§ 4.4.3 and Appendix D) occurring without invoking
electrostatic streaming effects as hypothesized in Cagas et al. (2017).

This work is by no means an exhaustive overview of the possible applications of
kinetic eigenfunctions. Indeed, many other applications are noted in § 1. Nevertheless,
a few notable problems are demonstrated here to significantly benefit from eigenfunction
initialization. Namely, the electrostatic problem in a static magnetic field is treated in detail
for ring distributions, and new analytic results for the ring dielectric function are presented.
Nonlinear saturation of the multidimensional Weibel instability of an anisotropic
Maxwellian, originally treated by Davidson et al. (1972) with the particle-in-cell
method, is revisited and new light shed with a phase portrait analysis and nonlinear
continuum-kinetic simulations. However, a simple and important model problem is left
for future work, namely anisotropy-induced field-parallel whistler emission.

A few further notes are in order regarding the importance of phase space eigenfunctions
in numerical plasma theory. In this work the emphasis is on observing the evolution of
strongly unstable linear eigenfunctions into nonlinear structures. Another important class
of problems are the weakly unstable distributions that are commonly treated by QLT. In
numerical solutions of QLT there is no transition to nonlinear structures and the phase
space dynamics of the obtained spectra are necessarily linear eigenfunctions. As another
way of phrasing this, one can say that in weak turbulence the linear eigenfunctions contain
most of the fluctuation energy. The application of kinetic phase space eigenfunctions to
numerically study QLT potentially offers a multitude of interesting and valuable avenues
of further exploration.
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Appendix A. General description of our numerical methods

Our numerical method is a combination of the pseudospectral method for spatial fluxes
(Boyd 2001) with high-order DG method for velocity space (Crews & Shumlak 2022). The
Vlasov–Poisson system is discretized in configuration space by Galerkin projection onto
a truncated multidimensional Fourier basis, for example (x, y) → (kn, km). That is, if the
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original kinetic equation is

∂tf + v · ∇xf + F · ∇vf = 0 (A1)

with F the vector of momentum fluxes, then the Galerkin-projected kinetic equation is

∂fnm

∂t
+ iknufnm + ikmvfnm + ∇v · (F nm) = 0 (A2)

with F nm the vector of spectral momentum fluxes. Equation (A2) is discretized by
truncating the velocity domain and applying the DG method (u, v) → (ujk, vpq), with
( j, p) the element indices and (k, q) the subelement indices (that is, the collocation nodes)
and a set of basis functions ψk are chosen. We use the Legendre–Gauss–Lobatto basis
(Hesthaven & Warburton 2007). The semidiscrete equation obtained is

dfnmjkpq

dt
= Nnmjkpq[ f ] + L�rnmjkpqfnmj�pr, (A3)

where N is a nonlinear operator representing the discretized velocity flux divergences,
while L is the advective part of the semidiscrete operator and is linear in f . Advection is
not linear in v, but is integrated over the basis functions ψk to form a linear operator

T
�
njk ≡ −ikn(v̄jI�k + Jm〈ψk|ψ s〉−1〈ξψs|ψ�〉), (A4)

with 〈· | ·〉 an inner product over the reference element with coordinate ξ ∈ [−1, 1], and v̄j
the velocity in the midpoint of element j with transformation vj(ξ) = v̄j + (�v)jξ/2 with
(�v)j the element width. Then advection is represented by a linear operator

L�rnmjkpqfnmj�pr ≡ T
�
njkfnmj�pq + T

r
mpqfnmjkpr. (A5)

Poisson’s equation is solved algebraically in Fourier space, and the velocity fluxes N are
computed by the pseudospectral method. That is, the spectral field and distribution are
both zero-padded using Orszag’s two-thirds rule and transformed to nodal values on the
spatial collocation points where the fluxes are calculated. The velocity element boundary
fluxes are then calculated in (x, v) space by an upwind method and transformed back
to spectral space for time integration. However, element-internal fluxes are calculated in
(k, v) space by inverse transformation as the spectral symmetry from Im( f (x, v)) = 0
reduces the operations by a factor of two. Finally, the semidiscrete equation is advanced
through �t = h using second-order Strang splitting of linear L and nonlinear N fluxes,

f n+1 = S[L]h/2S[N ]hS[L]h/2f n, (A6)

where S[·] represents evaluation of the separated operator by any method of
approximation. In this simulation the explicit third-order Adams–Bashforth method is used
for the nonlinear flux S[N ]h while advection is advanced implicitly by Crank–Nicholson
stepping,

(
S[L]h

)�r
nmjkpq =

(
I�njk − h

2
T
�
njk

)−1 (
I�njk + h

2
T
�
njk

)(
Ir

mpq − h
2

T
r
mpq

)−1 (
Ir

mpq + h
2
T

r
mpq

)
(A7)

with Ir
mpq the identity matrix Ir

q for each (m, n). Fractional stepping for advection is
advantageous as it reduces the O(N2) operations per cell into two O(N) operations. The
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calculation of the nonlinear momentum flux operator N is treated in Crews (2022),
and we briefly recapitulate this here. In this work, the quadratically nonlinear fluxes
are not integrated consistently as described in Crews (2022, § 2.5) and Hakim & Juno
(2020), and instead an alias error is incurred. Consistent integration of the quadratically
nonlinear fluxes in discretization of the Vlasov equation greatly improves the conservation
of Casimirs (nonlinear functionals) such as phase space entropy density. However, in this
work an alias error is accepted because the smoothing spatial hyperviscosity used here
breaks the Casimirs near the aliased grid scales. Thus, inaccuracy in conservation of
nonlinear functionals is accepted in exchange for less computational effort.

Appendix B. Polar Fourier integrals of ring distributions

This appendix integrates the ring distribution of (3.17) over perpendicular velocities,

Fn,m,γ (k) ≡
∫ ∞

0
fγ (v)Jn(kv)Jm(kv)2πv dv, (B1)

for integer n,m. By this formula one can also determine the integral of products,
Jn(v)J′

n(v), etc., by recursion of the derivatives J′
n(z). The result is that (B1) is a type-3F3

hypergeometric function,

Fn,m,γ (k) =
Γ

(
γ + n + m

2
+ 1
)
(kα)n+m

Γ (n + 1)Γ (m + 1)Γ (γ + 1)

× 3F3

[n + m
2

+ 1
2
,

n + m
2

+ 1, γ + n + m
2

+ 1

n + 1, m + 1, n + m + 1

]
(−(2kα)2) (B2)

which is equivalently written as a power series with Gamma function coefficients,

Fn,m,γ (k) = 1
Γ (γ + 1)

∞∑
�=0

Γ (n + m + 2γ + 2�+ 1)
Γ (n + �+ 1)Γ (m + �+ 1)Γ (n + m + �+ 1)

(−1)�

�!
(kα)2�+n+m.

(B3)

Setting n = m as in electrostatic theory reduces to a more manageable 2F2 function,

Fn,γ (k) = Γ (γ + n + 1)(kα)2n

Γ 2(n + 1)Γ (γ + 1) 2F2

[
n + 1

2 , γ + n + 1
n + 1, 2n + 1

]
(−(2kα)2) (B4)

with the power series for practical computation given in (3.21).

B.1. The product of integer-order Bessel functions
The product of integer-order Bessel functions is a generalized 2F3-type hypergeometric,

Jn(z)Jm(z) = 1
n!m!

( z
2

)n+m

2F3

[ n + m
2

+ 1
2
,

n + m
2

+ 1

n + 1,m + 1, n + m + 1

]
(−z2) (B5)

which for n = m reduces to a type 1F2 function,

J2
n(z) = 1

(n!)2

( z
2

)2n

1F2

[
n + 1

2

n + 1, 2n + 1

]
(−z2). (B6)
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B.1.1. Demonstration of (B5)
Multiplying term-by-term the power series of Jn, Jm and diagonalizing by � = j + k,

Jn(z)Jm(z) =
( z

2

)n+m ∞∑
j,k=0

1
Γ (n + k + 1)Γ (m + j + 1)

(−z2/4)j+k

j!k!

=
( z

2

)n+m ∞∑
�=0

[ ∞∑
k=0

1
Γ (k + n + 1)Γ (�− k + m + 1)Γ (�− k + 1)Γ (k + 1)

](−z2

4

)�
.

(B7)

Using properties of Pochhammer symbols and Gauss’s hypergeometric theorem,

∞∑
k=0

1
Γ (k + n + 1)Γ (�− k + m + 1)Γ (�− k + 1)Γ (k + 1)

= 1
Γ (n + 1)Γ (�+ 1)Γ (�+ m + 1) 2F1

[−�,−�− m
n + 1

]
(1)

= Γ (n + m + 2�+ 1)
Γ (�+ 1)Γ (m + �+ 1)Γ (n + �+ 1)Γ (n + m + �+ 1)

(B8)

one obtains a single summation for Jn(z)Jm(z),

Jn(z)Jm(z) =
( z

2

)n+m ∞∑
�=0

Γ (n + m + 2�+ 1)
Γ (m + �+ 1)Γ (n + �+ 1)Γ (n + m + �+ 1)

(−z2/4)�

�!
.

(B9)

The numerator factorial is then written in Pochhammer symbols by the formulae

(x + �)� = (x)2�
(x)�

, (B10)

(x)2� = 22�
( x

2

)
�

(
1 + x

2

)
�

, (B11)

yielding a series identical to (B5) and proving the identity,

Jn(z)Jm(z) = 1
n!m!

( z
2

)n+m ∞∑
�=0

(
n + m

2
+ 1

2

)
�

(
n + m

2
+ 1
)
�

(m + 1)�(n + 1)�(n + m + 1)�

(−z2)�

�!
. (B12)

B.2. Integration of (B5) with a loss-cone distribution
Having developed the product of two Bessel functions in terms of a single entire function
the integration over perpendicular velocities is now shown to be (B2).
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B.2.1. Demonstration of (B2)
The ring distribution fγ (v) is combined with (B12) and integrated term-by-term,

Fn,m,γ (k) = kn+m

n!m!γ !(α2)γ+1

(
k
2

)n+m ∞∑
�=0

(
n + m

2
+ 1

2

)
�

(
n + m

2
+ 1
)
�

(m + 1)�(n + 1)�(n + m + 1)�

(−k2)�

�!

×
∫ ∞

0
v2(�+γ+(n+m)/2)e−v2/α2

2v dv. (B13)

The interior integral is Euler’s form of the Gamma function upon substitution u = v2/α2,

Fn,m,γ =
Γ

(
γ + n + m

2
+ 1
)

Γ (n + 1)Γ (m + 1)Γ (γ + 1)
(kα)n+m

×
∞∑
�=0

(
n + m

2
+ 1

2

)
�

(
n + m

2
+ 1
)
�

(γ + n + m
2

+ 1)�

(m + 1)�(n + 1)�(n + m + 1)�

(−4α2k2)�

�!
. (B14)

The series is a hypergeometric function of type-3F3, demonstrating (B2). While the form
of the integral as a type-3F3 function reveals connections to the theory of special functions,
in a practical computation it is more practical to use the Gamma function form of the series
as in (B3).

Appendix C. The Harris dispersion function for ring distributions

This appendix demonstrates (3.25) and (3.26) for electrostatic modes in a plasma with
zero-order cyclotron orbits distributed as a loss-cone, beginning from (3.9) known as the
Harris dispersion function. We begin by constructing the function in closed form as a
hypergeometric function, and then consider a convenient trigonometric integral form by
calculation of the loss-cone’s Hankel transform. These forms of the dielectric function
ε(ω, k⊥), which sum the contribution of the cyclotron resonances to all orders, enable
precise numerics to determine eigenvalues in continuum kinetic simulations.

C.1. The perpendicular wave dielectric function in closed form
We demonstrate (3.25) for the closed form of the dielectric function for perpendicular
cyclotron waves in a loss-cone distributed plasma using the Lerche–Newberger summation
theorem (Lerche 1974; Newberger 1982), which sums the Bessel series in (3.7) and (3.8)
to all orders in the cyclotron harmonics,

Υ2 =
∞∑

n=−∞

n
ω′ − n

J2
n(β) = πω′

sin(πω′)
Jω′(β)J−ω′(β)− 1, (C1)

Λ2 =
∞∑

n=−∞

1
ω′ − n

J2
n(β) = π

sin(πω′)
Jω′(β)J−ω′(β), (C2)

with each sum limiting to a product of Bessel functions Jz(β)J−z(β) of complex order.
Here the auxiliary quantities are ω′ = (ω − k‖v‖)/ωc and β = k⊥v⊥/ωc. The polar
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velocity-space integrals over v⊥, when considering the closed forms of (C1) and (C2),
result in a generalized hypergeometric function (see the following for a demonstration),

1
2γ α2γ+2Γ (γ + 1)

∫ ∞

0
v2j+1e−v2/2α2 πω

sin(πω)
Jω(qv)J−ω(qv) dv = 2F2

[ 1
2 , γ + 1

1 + ω, 1 − ω

]
(−2(αq)2).

(C3)

First note that with k‖ = 0 the Harris dispersion function is

ε(ω, k⊥) = 1 +
(
ωp

ωc

)2 1
(kλD)2

∫ ∞

0

Υ2

v⊥

∂f0

∂v⊥
2πv⊥ dv⊥. (C4)

Using the identity (C3), and the recurrence relation for fγ (v⊥) of (3.19), one obtains∫ ∞

0

Υ2

v⊥
∂f0
∂v⊥

2πv⊥ dv⊥=2F2

[ 1
2 , γ + 1

1 + ω′, 1 − ω′

]
(−2(k⊥rL)

2)− 2F2

[ 1
2 , γ

1 + ω′, 1 − ω′

]
(−2(k⊥rL)

2)

(C5)

which was to be shown.

C.1.1. Demonstration of (C3)
Observe that term-by-term multiplication of the power series for both Jω and J−ω, and

diagonalization of the double sum with � = m + k, leads to the expression

πω

sin(πω)
Jω(z)J−ω(z) =

∞∑
m=0

∞∑
k=0

Γ (1 + ω)Γ (1 − ω)

Γ (m + ω + 1)Γ (k − ω + 1)
(−1)m+k

m!k!

( z
2

)2(m+k)
(C6)

=
∞∑
�=0

[ ∞∑
m=0

Γ (1 + ω)Γ (1 − ω)

Γ (m + ω + 1)Γ (�− m − ω + 1)
1

m!(�− m)!

]
(−1)�

( z
2

)2�
(C7)

having used Euler’s reflection formula πz csc(πz) = Γ (1 + z)Γ (1 − z) with Γ (z) the
Gamma function. Recall an identity for the rising factorial (z)n (or Pochhammer symbol),

(z)n = Γ (z + n)
Γ (z)

= (−1)n
Γ (z + 1)

Γ (z − n + 1)
(C8)

as well as Gauss’s hypergeometric summation theorem,

2F1

[
a, b

c

]
(1) = Γ (c)Γ (c − a − b)

Γ (c − a)Γ (c − b)
, Re(c) > Re(a + b). (C9)

Application of (C8) and (C9) to (C7) shows that the inner summation becomes

∞∑
m=0

Γ (1 + ω)Γ (1 − ω)

Γ (m + ω + 1)Γ (�− m − ω + 1)
1

m!(�− m)!
= 22�

(
1
2

)
�

(1 + ω)�(1 − ω)�

1
�!
. (C10)

Therefore, the function expressed by the Lerche–Newberger theorem is a hypergeometric,

πω

sin(πω)
Jω(z)J−ω(z) =

∞∑
�=0

(−1)�
(

1
2

)
�

(1 + ω)�(1 − ω)�

z2�

�!
= 1F2

[ 1
2

1 + ω, 1 − ω

]
(−z2). (C11)

Now to compute the integral, the power series in (C11) is integrated term-by-term,
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1
2γ α2γ+2Γ (γ + 1)

∫ ∞

0
v2j+1e−v2/2α2 πω

sin(πω)
Jω(qv)J−ω(qv) dv

= 1
2γ α2γ+2Γ (γ + 1)

∫ ∞

0
v2γ+1e−v2/2α2

1F2

[ 1
2

1 + ω, 1 − ω

]
(−(qv)2) dv

=
∞∑
�=0

( 1
2)�(γ + 1)�

(1 + ω)�(1 − ω)�

(−2(αq)2)�

�!
(C12)

as the coefficients reduce to Euler’s integral Γ (1 + z) = ∫∞
0 xze−x dx, establishing (C3).

C.2. The trigonometric form of the dielectric function
The closed form of complex order connects the characteristic frequencies to the theory of
special functions. However, presently there are limited practical options to calculate with
complex index. For this reason ε(ω, k) represented as a trigonometric integral (Tataronis
& Crawford 1970a; Vogman et al. 2014; Datta et al. 2021),

ε(ω, k) = 1 + ω2
p

ω2
c

∫ π

0

sin(θ) sin(θω)
sin(πω)

[∫ ∞

0
f⊥(v)J0(λ(θ)v)2πv dv

]
dθ (C13)

with λ = 2k cos(θ/2)/ωc. The inner integration is a zero-order Hankel transform
H0[ f (r); k] = ∫∞

0 f (r)J0(kr)r dr. The Hankel transform has a Fourier-multiplier property,

H0[r2nf (r); k] = (−∇2
k )

nH0[ f (r); k]. (C14)

Further, the radial Laplacians of the Gaussian are precisely the Laguerre functions,

(∇2
k )

n[exp(−α2k2/2)] = (−2α2)nLn(α
2k2/2) exp(−α2k2/2). (C15)

Therefore, the Hankel transform of fγ (v) is the family of polar Hermite functions

H0[ fγ (v); q] = Lγ

(
α2q2

2

)
exp
(

−α
2q2

2

)
. (C16)

Substitution of (C16) into (C13) gives (3.26), as was to be shown.

Appendix D. Magnetic potential well of the Weibel instability

The concept of a potential energy well is familiar to every physicist, and essential,
among other things, to understanding nonlinear phase space dynamics. Unfortunately,
the companion concept of potential momentum has been neglected historically due to
confusing issues which arose in the development of electromagnetic and relativistic
theory, and this has hindered an analogous understanding of magnetic trapping as a
potential momentum well. The conceptual consistency of potential momentum is reviewed
positively in Griffiths (2012, § III). Fortunately, simple magnetic trapping in a potential
momentum well is reducible to an effective potential energy in a lower-dimensional phase
space. This effective potential is useful to model the collisionless trajectories of any
magnetic trap, and is commonly utilized to analyse particle beams in magnetic fields
(Davidson & Chen 1998; Dodin & Fisch 2006). Here the effective potential method is
applied to describe the saturation of Weibel instability.

Ideal magnetic trapping occurs when only magnetic potential A is present in the
laboratory frame. For example, consider the one-dimensional chain of electron holes
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formed by magnetic trapping at nonlinear saturation of the Weibel instability of § 4.4.
The motion is periodic in the x-direction with a transverse vector potential A = Ay(x)ŷ.
The two constants of motion for a particle of mass m and charge q are the energy H and
the momentum Py (both of which are fixed by the particle’s initial conditions),

H = 1
2

mv2
x + 1

2
mv2

y , (D1)

Py = mvy + qAy, (D2)

where for simplicity we neglect the second-order electric potential energy associated with
the charge density of magnetic trapping in a fixed neutralizing background. The energy
consists of only kinetic energy and is constant because the Lorentz force qv × B does
no work on the particle. On the other hand, constancy of momentum Py implies an
exchange between kinetic momentum and potential momentum with a change in position.
Eliminating vy between (D1) and (D2) results in

H = 1
2

mv2
x + U(x), (D3)

representing one-dimensional motion in an effective potential

U(x) ≡ 1
2m
(Py − qAy)

2. (D4)

In stark contrast to trapping in a potential energy well (for example, ϕ(x) = ϕ0 sin(kx)),
the magnetic well depends on the initial position x0 and velocity vy0 of the charge because
the integrable dynamics are characterized by two constants of motion. Indeed, motion is
perturbed but not trapped in the direction associated with A.

To model Weibel instability saturation, take q = −e and Ay = A0 cos(kx) of amplitude
A0 and wavenumber k. As a quadratic, the potential U(x) has harmonics at k and 2k,
the self-consistent currents of which generate the harmonic cascade of the saturating
instability. The potential takes its extremum when Ay = A0 for any initial position x0.
Thus, in terms of the parameter α ≡ mvy0/(eA0)measuring the ratio of kinetic-to-potential
momentum, the normalized form of the potential is

U(x)
Umax

= (α + cos(kx))2

(|α| + 1)2
(D5)

with Umax = (m/2)(eA0/m)2(|α| + 1)2. Around α = 0 the second harmonic dominates as
U = Umax cos2(kx), while with α � 1 the first harmonic k dominates. Figure 26 illustrates
this effect by plotting phase portraits using the normalized Hamiltonian

H
Umax

= 1
2

(
vx

v0

)2

+ (α + cos(kx))2

(|α| + 1)2
, (D6)

where v0 ≡ Py,max/
√

2m measures the particle’s momentum. Equation (D6) bifurcates
from a double-well around α = 0 to a single-well through α = 1, physically indicating
trapped trajectories transitioning from closed cyclotron orbits into magnetic bounce
orbits. Passing orbits have H > Umax, which at approximately vy = 0 occurs for H >

(m/2)(eA0/m)2. In plain words, cyclotron orbits fill the inner well, magnetic bounce orbits
fill the outer well, and purely passing trajectories exceed the well barrier altogether. In a
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(a) (b)

FIGURE 26. (a) Effective potentials of (D5) and (b) phase portraits of trajectories in reduced
phase space (x, vx) associated with motion in the unreduced phase space (x, vx, vy) from
magnetic trapping in a transverse magnetic vector potential Ay(x) = A0 cos(kx). The parameter
α ≡ mvy0/(eA0) measures the ratio of kinetic-to-potential momentum and the vx-axis is scaled
to the transverse momentum Py of the particle by v0 ≡ (1 + |α|)(eA0/m)/

√
2. The opposite

side of the phase space across the plane vy = 0 is observed through the inversion vy0 → −vy0
taking α → −α. The trapping potential bifurcates through |α| = 1 from a single-well around
α → ∞ into a double-well around α = 0, as trajectories transition from bounce orbits to
cyclotron orbits. This transition accomplishes the density filamentation associated with nonlinear
magnetic trapping. That is, for |α| > 1 inversion exchanges the elliptic and hyperbolic fixed
points, but for |α| < 1 the elliptic fixed points and their reflection nearly coincide. Thus, for
eA0 � mvth the decrease of particles by trapping is exactly balanced by an increase of passing
particles of opposite transverse momentum. For this reason the low-amplitude bounce trapping
has no associated density perturbation and instead produces a velocity perturbation. However,
for eA0 ≈ mvth the near coincidence of the elliptic fixed points with their reflections produces
a coherent density perturbation and filamentation. The electron density evolution shown in
figure 20 can be understood through this bifurcation in the phase space topology.

fully three-dimensional model, the third component of kinetic energy associated with the
z-direction shifts the energy level in the well by an amount 1

2 mv2
z . Equation (D4) is the

main result of this appendix as a conceptual tool to understand the nonlinear phase space
dynamics in the saturating Weibel instability.
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