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1. Introduction

Papers x I, II of this projected series lay the algebraic foundations of the
theory of the Clifford groups; I deals with the case p > 2, II with the case
p = 2. The present introduction refers to both papers.

Our theory has applications in group theory, geometry and number theory.
For example, we prove here that the symplectic group Sp (2m, p) (p an odd
prime) has irreducible representations of degrees \(pm + 1) and %{pm — 1),
but no irreducible representations of degree k, where 1 < ft < \{pm — 1),
(§ 4.3, thm. 10). Geometrical configurations associated with the Clifford
groups have been investigated in the case pm = 32 by A. F. Horadam ([4] —
[7]), in the case pm = 52 by Beverley Bolt ([2]); the locus considered by
Horadam is closely related to the system of lines on a cubic surface. The
Clifford transform group <g'^"J(2m) is the group of automorphs of one of the
extreme forms in 2m variables studied in a recent paper (E. S. Barnes and
G. E. Wall [1]). We hope to deal with some of the applications in later
papers of this series.

Let p be a prime number, and write <o — exp (2m/p). K. Morinaga and
T. Nono ([9]), T. G. Room ([10]), have shown that there exist systems of 2m
complex pm-rowed matrices £/, such that

(1.1) U? = I, £/,.£/, = cot/, C7, (»•</).

Moreover, if Vx, • • •, V2m is a second such system, there exists a complex
"transition" matrix M such that

(1.2) MVi M-1 = U{ (i = 1, • • •, 2m).

We regard the system (Ut) as fixed and consider the systems (Vt) in which
each member is a scalar multiple of one of the pim (linearly independent)
monomials

(1.3) U?U?-'-UH*.
1 Paper I is a development of an unpublished manuscript of Room's, similar in scope to

the paper [10] on the case p = 2.
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The corresponding transition matrices form the Clifford transform group
CT(pm). The scalar multiples of the monomials (1.3) form the Clifford col-
lineation group CG(pm). Obviously, CT is the normalizer of CG in the full
linear group.

A formal consequence of (1.1) is the identity

(1-4) ( I *;^r =(!*?)'•
t=l i=l

When p = 2, this is the well known matrix factorization of the Euclidean
fundamental form, on which the theory of spinors is based. The definition of
the spin group resembles that of CT(2m); the difference is that in the former
case one considers systems (Vt) in which each member is a linear combination
of the Ut. Whereas the spin group is projectively an infinite group, CT is
projectively finite.

When p = 2, (1.1) has real solutions. By admitting only real systems and
transition matrices in the definitions, we get the real Clifford groups
CG1(2

m) and C7\(2m). There are analogous "semi-real" groups CG2(2
m) and

CT2(2
m), whose definitions need not be given at present.

Let PG denote the projective group determined by a given matrix group
G. The central results in our theory are the isomorphisms

(1.5) (I, II; thm. 5) CT(pm)ICG(pm) s Sp(2m,p),

(1.6) (II, thm. 5*) Crj(2
m)/CGi(2

m) ~ Otfm, 2) (» = 1, 2),

(1.7) (I, thm. 5) PCT(pm) ~ ASp(2m,p) (p > 2),

where Olt 02 are the two essentially different 2m-dimensional orthogonal
groups over the Galois field GF(2), Sp is the 2w-dimensional symplectic
group over GF(p) and ASp the group of symplectic affine transformations
a -»• aT' + t (T e Sp). (1.7) implies the existence of a subgroup CS(pm) of
CT(pm) such that

(1.8) PCS(pm) ~ Sp{2m,p) (p > 2);

CS is called the Clifford similarity group. There is, in general, no analogue of
CS when p = 2 (II, thm. 7). CG and CT are irreducible groups (I, II ; thm. 1),
but CS splits into two irreducible components of degrees \{pm + 1 ) and
\{j>m — 1), (I, thm. 6).

The above results are concerned with the projective structure of CT. The
first question to ask about the non-projective structure of a given matrix
group G is whether PG can be realized as a subgroup of G; in other words,
does there exist a subgroup H of G such that PH = PG and H ^ PG}
More generally, we ask: for what values of k do there exist subgroups H of G
such that PH = PG and H provides a k-valued representation of PG ? Such
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questions direct attention to the commutator group G' of G; for if PH = PG,
then H' = G'.

Our main results in this direction are as follows. If pm ^ 5,P(CT) = PCT
and CT' provides a A-valued representation of PCT, where k = p when
p > 2, 4 when p = 2 (I, thm. 7; II, thm. 6). €^(2™) has a subgroup
<S^'i(2

m) which is projectively equal to Cr<(2m) and doubly isomorphic to
PCTt(2

m) (II, thm. 6 et seq.). If p > 2 and £m > 3, P(CS') = PC5 and
CS' £ PCS ^ S£ (I, thm. 8). This last fact is the source of the two represen-
tations of Sp mentioned earlier.

For geometrical and other applications it is necessary to determine the
elements of CS, CT explicitly, and this is done in I, § 4.1 and II, § 5. The
elements of CT', ^ ^ are easily deduced from those of CT when p — 2
(II, § 5). On the other hand, a rather elaborate determinant evaluation is
needed to deduce the elements of CS' from those of CS (I, thm. 9).

The exceptional cases play a more prominent part when p = 2 (see II,
§§ 4.2, 4.3). The sole exceptional case for odd^, viz. pm = 3, is treated briefly
in an Appendix to the present paper.

2. Notation, Preliminaries

2.1 Notation.

P
m
CD

C, R, Ro

GF(q)
Sn,An

X'
X,X*

G'
{«, y, • '• •}

fixed prime (> 2 in the present paper).
fixed positive integer.
exp (2nilp).
complex, real and rational fields.
Galois field with q elements.
symmetric and alternating groups of degree n.
transpose of a matrix X.
conjugate and conjugate transpose of a complex matrix X.
commutator xyx~xy~x of group elements x, y.
commutator group of a group G.
subgroup of a group generated by the elements x, y, • • •.

The product of group automorphisms a, /? is defined by (a/S)(-) = a(/?(*)).

Vector spaces. We consider only finite dimensional left vector spaces over
commutative fields; let W be such a vector space over a field F. Vectors are
printed in Bold type. The product of linear transformations 5, T is defined
by

I : identity linear transformation (or matrix).
scalar : elements X of F; also the corresponding linear transformations

XI.

https://doi.org/10.1017/S1446788700026379 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700026379


[4] On the Clifford collineation, transform and similarity groups. I. 63

JF* : multiplicative group formed by the non-zero elements of F;
also the group formed by the corresponding linear transforma-
tion XI.

transvection: linear transformation of the form Tx = x -\- g(x)a, where a is
a fixed element of W and g(x) a linear form such that g(a) = 0.

Linear groups. Let G, H be groups of non-singular linear transformations
on W.
scalar subgroup of G: F* n G.
PG : the group of projective transformations determined

by G.
G is protectively

equal to H: PG = PH.
GL(W), SL(W) : full linear, and special linear, groups on W.

Vector spaces over GF(p).
^~k(p): ^-dimensional vector space of all row vectors a = (<x.lt «2, • • •, a.k),

/ * = ( & . & . • • • . & ) > • • • over GF(p).
a • Ji : scalar product 2 i a<& °f the vectors a, fi in ^fc(/>).
e,- : i-th. unit vector in T "̂m(/>) (having 1 in the i-th place and 0 else-

where).
£,. : i-th. unit vector in ^ 2 m ( £ ) .

Index to further notation.

§ 2.2: Sp, \Sf, f(a, /*).
§ 3.1: V, vx, W

a, CG, CT, (€'S, linear transformation over a field F, unitary,
projectively unitary.

§ 3.3: % « , ASp.
§ 3.4: CS, J.
§ 4.1: -TT, XT, dT.
§ 4.2: 0, Q, sgn T.

2.2 Symplectic groups. We set down for reference various properties of the
symplectic groups over GF(p); in the present section, p may be 2. For a full
account, see Dieudonn6 ([3]).

Let F(a,/}) be a non-degenerate skew form on ^2m(P):

(2.2.1) F{a,p)= f F^p,,

where

^ « = Fa + Fn = 0, \FU\ ^ 0.

The matrices T such that F(aT', pT') = F(a, ft) form the symplectic group
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Sp (F) of F. A necessary and sufficient condition that T e Sp (F) is that the
rows tx, • • •, t2m of T' satisfy the conditions: F(to tf) = Fu (i, j = 1, • • •,
2m).

It is well known that F is equivalent to the canonical skew form

m

(2-2.2) / («, /?) = 2 («</W« - /?,«»+<);

i.e.

(2.2.3) F(aS' , /IS') = /(«, ft)

for some non-singular matrix S. It is easily seen from (2.2.3) that
Sp(F) = S(Sp(f))S~1, so that all symplectic groups on "T2m are isomorphic.
The standard notation for Sp(f) is Sp(2m,p).

The scalar subgroup of Sp is {—/}. Hence Sp is isomorphic to PSp when
p = 2, doubly isomorphic to PSp when /> > 2. In the latter case we shall
write PSp = \Sp.

(2.2.4) Structure Theorem. If pm ^ 5, the only normal subgroups of Sp (2m, p)
are {I}, {—/} and Sp(2m, p), and PSp(2m, p) is a non-cyclic simple group.
The exceptional groups Sp(2, 2), ^Sp(2, 3), Sp(4:, 2) are isomorphic to S3,
At, Se respectively.

(2.2.5) Witt's Theorem. If alt • • •, a, and Pi, ' ' •, ft, are two sets of linearly
independent vectors in y 2 m such that

F{al,at) = F(pt,ftl) ( . ' , /= 1, • • •, s),

there exists an element T of Sp(F) such that

a.T'^ft, (* = 1, • •-, s).
(2.2.6) Corollary. If a, ft are non-zero vectors in ir

2m, there exists an element
T of Sp (F) such thai aT' = ft. In particular, Sp (F) is an irreducible group.

The transvections in Sp(F) are the linear transformations

(2.2.7) a^a + kF{a, a)a (Aa ̂  0).

3. The Clifford Groups

3.1 The groups CG, <€&', CT. Let V ( = V(pm)) be a £m-dimensional vector
space over the complex field C. We shall define a family of p2m linear trans-
formations Wa on V, the index vector a = (<x1( • • •, oc2m) running over

r 2 m ( = r-2m (/»)).
Choose a basis of V and label its p"L members v^ with the elements

X = [%!,••', Am) of Vm. Write the elements a, ft, • • • of ^"2m
 a s pairs of

elements of V "̂m:
« = ( * ! . « • ) • ft = {t>i, b2), • • •
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where

Then the Wa are defined by:

(3.1.1) W"vx = a)

It may be verified that

(3.1.2) Wa W& =

where /(a, /?) is the canonical skew form (2.2.2). Hence

(3.1.3) [Wa, WB] = a>na-®I,

(3.1.4) (Way=Wka (k=\,2,---).

(3.1.5) Definition. The Clifford collineation group CG(pm) is the group form-
ed by the linear transformations XWa(X e C*, a e 1̂ ~2m). The Clifford transform
group CT(j>m) is the normalizer of CG(pm) in the full linear group GL(V).

Clearly, CG' = {<«/}, PCG ^ "^%m, where y 2 m is regarded as an additive
group. Thus, CG is nilpotent of class 2.

(3.1.6) Definition. The finite Clifford collineation group ^^(j>m) is the sub-
group of CG{pm) formed by the linear transformations a>*Wa (0 ̂  k ^ p—1,

has order £2m+1 and, by (3.1.4), exponent p. Clearly P^'S = PCG.
(4!'& is a fully invariant subgroup of CG: X e CG satisfies Xv = I if, and only
if, X e tgy. Hence CT is also the normalizer of <#& in GL(F).

It is easy to determine a system of generators and defining relations for
C€'S. Let F(a, P) be the non-degenerate skew form (2.2.1) on T^2m. Since
F(a, ji) is equivalent to the canonical form f(a, ji), there exists a basis
«i . • • •. «2m of ̂ zm such that /(a,., a,) = Fti (i, j = 1, • • •, 2m). Therefore,
by (3.1.3), (3.1.4),

(W**)* = I, [Wa't W^] = coF«7 (», / = 1, • • •, 2m).

Consider now the abstract group ®(F) with generators w1, • • •, w2m, w, and
defining relations

(3.1.7) wv
i=w'= [wt,w] = 1, [wi,wi] = wF« (i,i=l,--

Clearly, ®(F) is a /i-group of order sg >̂2m+i. On the other hand, Wai,
T^a«», o>7 satisfy the defining relations for ®(F) and generate the group
of order />2m+1. Hence 'g'^ ~ ®(F).

can be presented in the form (1.1) as follows. Write

( / = ! , . . . , m)t

* = 1
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where et is the i-th unit vector in Tfr
Sm. Then the linear transformations

Ut = Wa< (i = 1, • • •, 2m) satisfy the required conditions (1.1).
Notation. If X is a linear transformation on V, XQ the matrix of X with

respect to the basis v^, then by X, X', X* we mean the linear transformations
whose matrices are XQ, X'o, X* respectively. X is called real if X = X,
unitary if XX* = / , a linear transformation over the field F when the ele-
ments of Xo are in F. X is called protectively unitary when some scalar mul-
tiple of it is unitary; an alternative definition is that XX* e C*, for then
XX* = XI, where X is necessarily real and positive, so that X~lX is unitary.
A group of linear transformations on V is called real, unitary, etc. when each
of its elements has the corresponding property.

3.2 Properties of CG, CT.
LEMMA. If a ^ 0, the trace of Wa is zero.
PROOF. When a2 =£ 0 this is clear from (3.1.1). When a2 = 0,

tr Wa = 2;ie-rm w*1 X = £™~1 SM> <0* = °' s mce the non-zero linear form
a1 • k assumes all values equally often.

THEOREM 1. # ^ is an irreducible unitary group.
PROOF. It is easily seen from (3.1.1) that ^'S is unitary. The irreducibility

of 'tf'S follows from group character theory, for it is an easy consequence of
the lemma that J,Xev9 \tr x\2 = o r d e r (^<s-

The following is a simple direct proof of irreducibility. The linear trans-
formation

M. = p-m V aj-i

maps v^ into v^ and every other ve into zero. Every linear transformation
on V is a linear combination of the M^^ and so of the Wa.

COROLLARY 1. C* is both the centre of CG and the centralizer of CG in GL (V).

COROLLARY 2. The group of inner automorphisms of CG is isomorphic to

PCG, and so to ir
2.m-

COROLLARY 3. Every automorphism of CG which leaves the elements of C*
and PCG fixed is an inner automorphism.

PROOF. Such an automorphism has the form XWa -> Xx(a)Wa, where %
is a homomorphism of T̂ "2m into C*. i.e. a character of ir

2m- Since there are
p2m characters and p2m inner automorphisms, the corollary follows.

THEOREM 2.. CT is a projectively unitary group.
PROOF. Let XeCT.Ye C€<S; then X^YX e <£&, and by theorem 1 both

Y and X-WX are unitary. Hence X^YX = (X^Y^X)* = X*YX*~l,
and so XX* commutes with Y. By theorem 1, cor. 1, XX* e C*, i.e. X is
projectively unitary. Hence CT is projectively unitary.
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THEOREM 3. Every automorphism y> of CG which leaves the scalars fixed is a
similarity over R0(co), i.e. ip(X) = TXT^1 (XeCG) for some linear transforma-
tion T over R0{o).

PROOF. By the lemma, the representations X -»• X and X -*• y>(X) of ^IS

have the same character; therefore they are similar over C. Since ^ ^ is a
group over R0(co), they are in fact similar 2 over R0(co). This is equivalent to
the theorem.

3.3 The Structure of CT. Let T e Sp(2m, p). Then (3.1.2) shows that the
mapping

(3.3.1) ipT(AWa) = XWaT'

is an automorphism of CG. Let it denote the inner automorphism

(3.3.2) it{kWa) = XWtWa{Wt)~l.

LEMMA. Every automorphism y> of CG which leaves the scalars fixed has the
form ip = itxpT.

PROOF. Suppose that v(XWa) = Xp(a)W^. By (3.1.3), a{a)=aT',
where T e Sp. Then yitpx1 is an automorphism which leaves the elements of
C* and PCG fixed. The lemma now follows from theorem 1, cor. 3.

THEOREM 4. Let %j(pm) denote the group of inner automorphisms of CG,
21 (pm) the group formed by the automorphisms of CG which leave the scalars
fixed. Let ASp(2m, p) denote the group of symplectic affine transformations

(3.3.3) a->aT' + t {TeSp(2m,p), t

Then
^ ASp(2m,p),

PROOF. If (T, t) is the affine transformation (3.3.3), then

(S,s)(T,t) = (ST,tS' + s).

By the lemma, itrpT<r^> (T, t) is a one-to-one correspondence between 2t and
ASp. It is easily verified that

('sVsK'/Vr) = lts-+sfsT.
so that this correspondence is an isomorphism and therefore 91 £ ASp.

Under the above isomorphism, $ corresponds to the normal subgroup ~f~
of ASp formed by the "translations" (/, t). Clearly ASp/i^ s Sp and there-
fore 91/3 = Sp.

THEOREM 5.

PCT(pm) ~ ASp(2m, p),
CT(pm)ICG(pm) S Sp(2m, p).

* See, e.g., van der Waerden [11], p. 70.
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PROOF. Let

+ X{XWa)X~l

be the automorphism of CG induced by the element X of CT, and consider
the homomorphism

h : X -> y>x

of CT into the group of automorphisms of CG. By theorem 3, h(CT) = 21
and by theorem 1, cor. 1, the kernel of h is C*. Hence PCT ̂  CT/C* s 91
S ASp. Also, since h'1 (3) = C*(CG) = CG, we have CTjCG ~ 91/3 = •$/>.

3.4 The group CS.
Definition. The Clifford similarity group CS(pm) is the subgroup of

CT(pm) formed by the elements which induce automorphisms (3.3.1) of
CG(p™).

It is clear that the automorphisms (3.3.1) form a group isomorphic to Sp,
so that PCS s Sp. Further, since Sp is obviously a complement of the trans-
lation group ~f~ in ASp, i.e.

(Sp)-r = ASp, Spnr*=l,

it follows that PCS is a complement of PCG in PC7\ We prove now that
every complement H oi ̂  in ASp is conjugate to Sp in ASp. It follows, of
course, that every complement of PCG in PCT is conjugate to PCS in PC7\

From the formula

we deduce that (a) Sp is the centralizer &(— / ) of —/ = (— I, 0) in ASp and
(b) every element (— I, t) is conjugate to —/ in ASp. Now the mapping
X-.h^hrT, is an isomorphism of H onto ASp]^. Hence, if %-x{{—T)ir)) =
(—/, 2<), we have

HQ{&((-I, 2t)) = (I, m(-I)(I, t)~i
= (I, t)Sp(I, t)-\

and therefore, since H and Sp are isomorphic,

H = (7, t)Sp(I, t)~\
as required.

LEMMA. CS is the centralizer in CT of the involution

(3.4.1) 7»A = »-A ( ^ e i r J -
PROOF. Since JWaJ~1 = W~a, J is an element of CS which corresponds to

the element —I of ASp. Therefore, since Sp is the centralizer of —I in
ASp, CS consists of the elements X of CT which commute projectively with
J-
(3.4.2) XJX'1 = XJ.
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It remains to prove that A = 1. Since J2 = I, the only other possibility is
A = - 1 .

Let V+, V~ denote the eigenspaces of / corresponding to the eigenvalues
1 , - 1 . Since V+ is spanned by the vectors v^ + v_^ and V~ by the vectors
v^ — v_ji, their dimensions are \{pm + 1), \{pm — 1) respectively. If
A = — 1, then we should have XV+ = V~, which is impossible because
V+, V~ have different dimensions. Therefore A = 1 as required.

COROLLARY. The subspaces V+, V~ are invariant under CS.

THEOREM 6. CS{pm) is the direct sum of irreducible groups CS+{pm), CS-(pm)
of degrees \{pm + 1), \(pm — 1) respectively. If pm > 3,

PCS+(pm) £ PCS~(pm) ~ \Sp(2m, p).

PROOF. Consider the homomorphisms i+ : X ->• X+ and i_ : X ->• X~,
where X+, X~ are the restrictions of ,X e CS to the eigenspaces V+, V~ of / .
CS is the direct sum of CS+ = i+{CS) and CS~ = t_(CS), and these groups
have the degrees stated in the theorem. In order to prove that they are
irreducible, it is sufficient to prove that the commutator algebra .Tof CS has
dimension ^ 2 (the dimension will then be precisely 2 because I, J e F).
Let Y e F. Since the Wa are linearly independent (theorem 1), Y can be
expressed uniquely in the form

Let TeSp and choose XTeCS such that XTWaX^ = WaT". Since Y
commutes with XT, we have

and therefore Aa = XaT. whenever a e T̂ *2i»- Since this is true for all T e Sp,
it follows by (2.2.6) that Xa = Â  for any two non-zero vectors a and j}.
Therefore Y is a linear combination of W° and 2a#o Wa, so that dim F fS 2
as required.

Let K+, K~ be the kernels of i +, i_. It is clear that neither K+ nor K~ con-
tains scalars other than the identity, and we may therefore identify these
groups with subgroups L+, L~ of Sp. Since / + and {—J)~ are the identity
transformations on V+, V~, both Z.+ and L~ contain the element —/ of Sp.
Suppose now that pm > 3. Then \Sp is a simple group, so that the only
possibilities for L+, L~ are {—/} and Sp. If L+ or L~ = Sp, then PCS+ or
PCS~ would reduce to the identity, which is impossible because both CS+

and CS~ are irreducible groups of degree > 1. Therefore L+ = L~ = {—/}.
It is now easily deduced that PCS+ ^ PCS' s

3.5 The commutator group of CT.

THEOREM 7. The commutator group CT' of CT has the following properties:

https://doi.org/10.1017/S1446788700026379 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700026379


70 Beverley Bolt, T. G. Room and G. E. Wall [11]

(i) CT' is unitary;
(ii) CT' is a group over R0(co);

(iii) CT' is finite and has scalar subgroup {col};
(iv) P(CT) = PCT if pm > 3.

PROOF, (i), (ii) follow from theorems 2, 3 respectively. Let XI e CT. Then
X e R0(co) and \XI\ = Xp" = 1. Since every pfi-th root of unity in R0{<o) is a
power of co, we have XI e {col}. Conversely, {col} = CG' C CT'. Hence {col} is
the scalar subgroup of CT'. The finiteness of CT' is an immediate consequence
of the finiteness of its scalar subgroup.

We prove next that

(3.5.1) CGCC*(CT);

i.e., CT' contains an element of the form XWa for every a e ^r
2m- Write a

as the difference fl — y of non-zero vectors /}, y. By (2.2.6), /} = yT' for
some T e Sp and therefore XW"? X~x = jaW^ for some X e CT. Then
[X, Wy] is an element of CT' of the required form XWa.

Suppose now that pm > 3. Then Sp' = Sp and therefore, by theorem 5,

(CTICG)' = CTjCG,
so that

(CT')(CG) = CT.

Hence, by (3.5.1), C*(CT') = CT and therefore P(CT) = PCT. This
proves (iv) and the theorem.

The theorem shows that (when pm > 3) there is a one-to-one correspond-
ence between subgroups H of CT such that PH = PCT and subgroups S
of C* such that col c S. In fact, let PH = PCT and let S be the scalar sub-
group of H. Then H' = CT so that col € S and H = S(CT).

4. The Commutator Group of CS

The investigation of CS' is more complicated than that of CT and requires
the explicit determination of the elements of CS. Our main result is that
CS' = Sp [pm> 3).

4.1 The elements of CS. Let T e Sp. We wish to determine an element of CT
which induces the automorphism (3.3.1) of CG. It is sufficient to determine
a non-zero linear transformation X such that

(4.1.1) XWa=WaT'X (ae~r2m).

For if Xo is a non-singular solution of (4.1.1), then X^X commutes with
every element of CG and therefore, by theorem 1, X = XX0.

Write

(4.1.2) («lf a2)T = (Alt At). (blt b,)T = (Blf Bt) • • •
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and

Then (4.1.1) is equivalent to the homogeneous linear system

Since TeSp, we have, by (4.1.2),

(4.1.4) ax b2-a2 b1 = A1B2-A2 Bt.

In particular, if b2 = a2 and B2 = A2, we deduce that

" 1 ' " 2 ' l ' " 2 = = **1 ' " 2 " 1 ' ^ 2 -

Therefore the value of Ax • A2 — at • a2 depends only on a2 and A2. A second
consequence of (4.1.4) is that

(4.1.5) ^((A, + BJ • (A, + Bt) - (a, + bj • (a, + b2))
= *i • (Bt + $A2) - ax • (b2 + \a2) + J(BX B2-bx b2).

Let 1̂ -r denote the subspace of 'fr
2m formed by the vectors (a2, A2), where

(«!, a2) runs over T̂ "2m- Then the following is a solution of (4.1.3):

U j 6 ) h,n = c o i ^ - ^ - ^ ^ wA«» (A, ii) = (a2, A2) e -TT,

For if (A, i*) 4 -fT then {A + a2, f* + A2) 4 VT, so that both sides of
(4.1.3) are zero. On the other hand, if (A, pi) — (b2, B2) e VT then (4.1.3)
reduces to (4.1.5). The linear transformation defined by (4.1.6) will be de-
noted by XT.

It is clear from the form of XT that X* = XT~i. Let

(4.1.7) dim yT = m + dT.

Then, if a e ir
m, p T is both the number of vectors b such that (a, b) e ir

T

and the number of vectors c such that (c, a) e Y~T; in other words, the
matrix {Sx<ft) of XT has p T non-zero elements in each row and column. It
follows from theorem 2 that

(4.1.8) XTXT-i = XTX* = pdTI.

We note the following alternative characterizations of dT.
(a) Let ^T denote the subspace of "fm formed by the vectors a such that

(a, 0)T has the form (A, 0). Then

(4.1.9) dim <%T = m — dT.

(b) Let
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T =
\C D)

where A, B, C, D are m X m matrices. Then

(4.1.10) dT = rank C.
(a) follows from the fact that the vectors (a, 0) (a e ̂ T) form the kernel of
the linear mapping (a1( a2) -> (az, A2) of ~VZm onto i^T. (b) follows from
(a) because (a, 0)7" = (aA', aC).
4.2 Arithmetical Results.

Write

Then
(4.2.2) 0 = pi(p~ 1 (mod 4)), 0 = *>*(/> = 3 (mod 4)),

(4.2.3) Q = (—) &»,

where I 1 is Legendre*s symbol. See e.g. Landau [8].

LEMMA A. / / q(X) is a quadratic form on i^k{p) and pk > 3, then

(4.2.4) 2

LEMMA B. If q(A) is a quadratic form on T "̂»(̂ >), then

(4.2.5) J a)'U) = ±0r,

where r is a non-negative integer.
These lemmas follow easily from the fact that q(A) is equivalent to a

diagonal form 2?=ic<^<- ^ e o mi t the details of the proofs.
If T is a non-singular k x k matrix over GF(p), we define

In other words, if det T = yK, where y is a generator of the cyclic group
GF{p)*, then sgn T = (-1)*.

LEMMA C. Sgn T is the sign of the permutation A -*- XT' of the ph elements
of -Tk.

PROOF. Let D denote the k x k diagonal matrix diag {y, 1, • • •, 1}, o(T)
the sign of the given permutation. Then T = DKTlt where det 7\ = 1. Since
the special linear group is the commutator group of the full linear group,
a(Tt) — I, so that a(T) = a(D)K. Now the permutation A -+AD' leaves
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pt-i vectors fixed and permutes the remaining ph~x{j> — 1) vectors in cycles
of length (p — 1), whence a{D) = —1 . It follows that a(T) = (—1)* =
sgn T as required.

LEMMA D. Let XT ft' be a non-degenerate bilinear form on 'fr
k, and Y the

pk x pk matrix

Then

(4.2.6) det Y = (sgn

PROOF. Applying the permutation X -*• XT to the rows of Y, we have, by
lemma C, det Y = (sgn T) det (<out>). Since {co*f*') = ( )
is the ^-th Kronecker power of the matrix (<w°), det (oy^*') = fi***"1. This
gives the lemma.

4.3 The group CS'.
LEMMA E. If S,T e Sp, then

where As T is a scalar. AST has the form i©* . where k is an integer 5; 0.

PROOF. The first statement follows from the isomorphism PCS s Sp.
To prove the second, let

Then

(4-3.1)

In the notation of § 4.1, the expression ^(At • A2 — ax • a2) is a quadratic
form qT((a2, A2)) on y T . (4.3.1) can be written

where "W is the subspace of y"2m formed by the vectors (0, /*) in y*T n l^s-1 •
By lemma B, Xs T has the required form ±0*-

THEOREM 8. CS'(j>m) s Sp(2m,p) if pm > 3.

PROOF. If />m > 3, P(CS') = PCS = S/>. It is therefore sufficient to
prove that the scalar subgroup of CS' is the identity.

Let XI c CS'. Then A/ can be written in the form
yei yet . . .

where each e,- is ± L Since

A = A i X i
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it follows that A is a product of ASj r ' s and their inverses. By lemma E, A =
±0* , where k is a (possibly negative) integer. On the other hand, since
XI e CT', A is a power of w. Hence A/.= / as required.

We now determine the elements of CS' explicitly. The chief difficulty is to
establish the correct sign.

THEOREM 9. Let pm > 3. Let T = ( ) e Sp, where A,B,C,D are

m X m matrices. Since the rank of (C, D) is m and the rank of C is dT (see
(4.1.10)), it is possible to choose m — dT columns of D which together with the
columns of C span y m ; suppose that the columns of D numbered id +1, id +2,
• • •, im satisfy this condition. Let M be the m x m matrix whose i-th column is
the i-th column of D when i is one of id +1, • • •, im, and the i-th column of C
otherwise. Then M is non-singular and

(4.3.2) (sgn M) ( ( | ) 6>j ^ XT * CS',

where I — I is Legendre's symbol.

PROOF. It is sufficient to prove that

detXT= (sgnM)
/ / 2 \ VrP

For if this is so, and if YT denotes the element (4.3.2), then (a) det YT = 1
and (b) YSYT = fiStT YST, where fiST has the form ±&k. Hence, by the
argument of theorem 8, the group generated by the YT has scalar subgroup
{/} and so coincides with CS'.

We write d = dT. Let a'i,b'i,ci, d[ denote the i-th. columns, at, fit, yt, d,-
the i-th rows, of A, B, C, D respectively. As usual, e,. denotes the i-th unit
vector of Vm. With id+1, • • •, im as in the statement of the theorem, the
vectors

(4.3.4) ( e v d ' « > [K = d + 1 , • • ; m )

belong to i^T; for (0, et )T' = (6,- , dt ) . Let c\ , c\ , • • -, c\ be linearly
independent columns of C. By the choice of the dt, the vectors

(4.3.5) ctK (K = I , • • ; d), d i K (K = d + 1 , - - ; m)

form a basis of 1r
m. Since (e( ,0)T'= (a{ , ci), the vectors

(4.3.6) (0, ciK) (K - 1, • • -, d)

belong to y^r. L e t X = [ {|; since T e Sp, we have T'KT = K, and so

https://doi.org/10.1017/S1446788700026379 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700026379


[16] On the Clifford collineation, transform and similarity groups. I. 75

T-i = K-iT'K; therefore T~* = (_£ , ~ ^ . Let yh, yi%, • • •, yu be

linearly independent rows of C. Since (—e5 , O)^'"1 = (—df , yt ) , the
vectors

(4.3.7) (yJK,0) ( * = 1 , ••-,<*)

belong to ~fT.
Let {X, /*) e "TT. Since ft is a linear combination of the vectors (4.3.5),

there is a linear combination, say L, of the vectors (4.3.4) and (4.3.6) such
that {X, fi) — L has the form (v, 0). Since (*>, 0) is a linear combination of
the vectors (4.3.7), it follows that {k, ft) is a linear combination of the vec-
tors (4.3.4), (4.3.6), (4.3.7). Therefore these m + d vectors form a basis of
"TT. In particular, it follows that the vectors

(4.3.8) y,K (K = 1, • • •, d), • eiK (K = d + 1, • • •, m)

form a basis of ~f"m.
Let P and Q be the m X m matrices whose rows are the vectors (4.3.5) and

(4.3.8) respectively. Let k1,---,kd be the integers complementary to
id+1, • • •, im in the set 1, 2, • • •, m. Since det Q ^ 0, the columns c^, • • •, c'ki

of C are linearly independent. Altering our original choice of the columns
c'{ (K = 1, • • •, d) if necessary, we may therefore suppose that i1, • • •, im

is a permutation of 1, • • •, m. Then, on permuting the rows of P so that the
subscripts appear in natural order, we get the transpose of the matrix M
in the statement of the theorem. Hence M is non-singular. Let C = (cit).
Applying the same permutation to the rows of Q we get a matrix whose
determinant is the same as that of the d X d matrix

f — (C)K i A ) ( t , A = l , ••-,<*•

In the notation of (4.1.6), det XT = det ( f ^ ) . If

T * a+i

then we write ^Xtf4, = Cv,g, where

v = (v1( • • •, vj, p = (Pi, • • ', pj-

By lemma C,

(4.3.9) det XT = (sgn M) (sgn T) det (Cv,g).

Now, if (vd+1, • • •, vm) ^ (pd+1, • • -, Pm) then (A, ft) 4 VT and so £„,<, = 0.
Hence, writing
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n = {vlt • • -, vt), r = (Pl, • • -, Pd), s = (ad+1, • • -, am),

£s — ^ t (C(n,S), (r,s))a,re-ri>
we have

(4.3.10) det (£„,<,)= n ts-

N o w <Mii, s)(r,s) h a s t h e f o r m

f- ,Ms,a,r)
Wn.s), (r,s) — w

t{s, n, r) = a(s) + b(n) + c(r) + d(s, a) + e(s, r) + g(n, r),
where a, b, c axe quadratic forms, d, e, g bilinear forms, a, b, c, d, e correspond
to constant factors of the rows or columns of Cs, and it can be seen (with the
help of lemma A) that the product of all these factors in det (CVtg). is 1. Hence

(4.3.11) det (C,,e) = (det (tofi"'*'))""-".

Since
d

1 *

we have

d

"T" Z.P*
1

g(". r=)

d

1

d

K, A = l

d

1

^ • S + ^

I
d

1

PA)

d

2
i

Hence, by lemma D,

(4.3.12) det (co«(">r)) = (sgn (~

The required formula (4.3.3) now follows from (4.3.9), (4.3.11) and (4.3.12).

COROLLARY. The symplectic group Sp(2m, p) (p > 2) has irreducible rep-
resentations of degrees \(pm — 1) and %{pm + 1 ) .

This follows from theorems 6 and 9. If t+ and i_ are the isomorphisms in
the proof of theorem 9, we write

Theorem 12 shows that

7 € csr,

where J is the involution (3.4.1). Therefore we have (if pm > 3)

CS'+z $Sp, CS'~ s Sp if pm= 1 (mod 4),
C5'+ ~ 5/>, CS'~ s ^S/> t/ />m = 3 (mod 4).
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THEOREM 10. If p > 2, Sp(2m, p) has no irreducible representations of
degree k, where 1 < k < %{pm— 1).

PROOF. Let h be an irreducible representation of Sp of character y> and
degree n > 1. It is required to prove that n :> \{pm — 1). We may, of course,
suppose in the proof that pm > 3 and thus that h(Sp) ~ Sp or \Sp.

Consider the subgroup G of Sp generated by the transvections

Ta:a->a + f(a, a)a,

where a runs over the w-dimensional subspace "fm = {elt e2, • • •, sm] of
^2m (£i being the i-th unit vector in T^2m). In general, T% = I and TaTb

= TbTa when /(a, b) = 0, so that G is an elementary abelian ^-group. Let

(4.3.13) V(T) = Xl(T) + X,(T) + • • • (r«G),

where Xi> Xz> ' ' ' a r e irreducible characters of G. We shall prove our theorem
by showing that there are at least \(pm — 1) summands in (4.3.13).

Let X be any non-singular linear transformation on T "̂m, % o n e °f the ir-
reducible characters in (4.3.13). By Witt's theorem (2.2.5), we can choose an
element S of Sp such that Xa = aS' (a e *Tm). Since ^{STS'1) = y>(T), the
irreducible character xs °f ^ defined by

(4.3.14) Xs(T) = x(STS-i) (TeG)

is also a summand in (4.3.13). Since S r a 5 - 1 = Txax we have

(4-3-15) Xs(Ta) = X(Txa).

Let x(Ta) = ft>*(a). Since # is multiplicative, and since TXa+/lb =
^ g ^ ^ we have

+ /«*) = (A» - V)^(a) + (^ - ^)^(ft) + A^(a + b),
so that ^ is a quadratic form on y*m. By (4.3.15), the quadratic form asso-
ciated with xs is

(4.3.16) 4>s(a) = <f>(Xa).

Since h(Sp) s Sp or ^S/>, /»(G) ^ G and therefore at least one of the com-
ponents in (4.3.13) is not the unit representation, i.e. the corresponding
quadratic form is not identically zero. In view of (4.3.16), our theorem will
follow when we have proved:

(4.3.17) if <f>(a) is a non-zero quadratic form on "Tm, there are at least
\(pm — 1) different quadratic forms on Vm which are equivalent
to 4>(a).

Let r be the rank of <j>.lfr = m, the number N of forms equivalent to <f> is
the order of the full linear group on /Vm divided by the order of the ortho-
gonal group of <f>, viz.

https://doi.org/10.1017/S1446788700026379 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700026379


78 Beverley Bolt, T. G. Room and G. E. Wall [19]

— l)(pm~z — l)(pm-* - 1) • •• {p - I)/)*1™"-1* (m odd ) ,

± l)^™-1 — l){pm-3 — 1) •••(/> — 1)/>K (w even).

The inequality AT :> £(/>"* — 1) is easily verified. Suppose now that 1 5g r < m.
Without loss of generality we may suppose that <£Qa* atEi) = 2 i ^ia^>
where klt • • -, kr are non-zero. If ux, • • •, um is any basis of ir

m then <f>'
defined by <f>'(£™ «,«!;) = 2 i ^ia< *s equivalent to <f>. Since the (w — r)-
dimensional subspace {ur+1, • • •, um} consists of the vectors a such that
<f>'(a + a) = <f>'(a) for all ae-f~m, it follows that </>' is different from j>"
defined by <f>"(2T atvt) = 2J A;,a? unless {ur+1, • • •, um} = {vr+1, • • >, \m).
Also, the \(p — 1) forms A2<£'(a) (A # 0) are equivalent to </>'(a) and corre-
spond to the same subspace {ur+1> • • •, um}. Hence N 2> ̂ (p — l)Am>m_r,
where kmm_r is the number of subspaces of ~Vm of dimension (m — r). Let /
be the smaller of r and (m — r). Then

- 1 ) ,

so that N ^ J(̂ >m — 1). This proves (4.3.17) and the theorem.

Appendix

The results in the exceptional case pm — 3 are as follows.
(1) Sp is isomorphic to the binary tetrahedral group of order 24, Sp' to

the quaternion group of order 8. Sp is generated by the two elements

of orders 3, 4 respectively, Sp' by T, STS*1.
(2) The linear transformations

Zvx = (co2 -

satisfy

" Z - 1 = WaT';

therefore {Y, Z) is a subgroup of CS which is projectively equal to CS. Since

{Y, Z} is the kernel of the homomorphism t_ and therefore isomorphic to Sp
(see the proof of theorem 6).
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(3) CS contains three subgroups isomorphic to Sp, viz. {a*Y, Z} (i = 0,
1, 2). (Cf. thm. 8.).

(4) CT contains three subgroups which are projectively equal to CT and
have scalar subgroup {col}, viz. {e'Y, Z^'S (i = 0, 1, 2), where e =
exp (2m/9). Only {Y, Zj&'g is a group over R0(a>). (Cf. thm. 7).
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