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Abstract. We find all solutions of x" =)™ +y"™ +y"™ +)™ in integers
m, ny, ny, n3, ng for all relatively prime integers x, y below 100.
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1. Introduction. In 1970, Senge and Strauss [5] proved that the sums of all digits
of n in bases ¢ and b cannot be both small if and only if loga/logb is irrational.
Denote the sum of all digits in the canonical expansion of # in base a by N,(n). They
proved that there are only finitely many integers n with both of N,(n), Ny(n) below a
fixed bound. Their proof is not effective, depending upon Mabhler’s generalization of
Thue-Siegel-Roth theorem.

In 1980, Stewart [6] proved this result in an effective way, using Baker theory of
linear forms in logarithms. Thus, in principle, we can effectively determine all integers
n satisfying N,(n), Ny(n) < k for any given a, b, k such that loga/logb is irrational.

Tijdeman and Wang [7], Wang [8] and Deze and Tijdeman [2] determined all
integers n with N,(n) + N,(n) < 4 for primes p, ¢ < 200. Indeed, they determined all
solutions of the equation x +y+z+ w = 0 in integers x, y, z, w € S(p, ¢) for two
primes p, g < 200, where S(p, g) denotes the set of integers composed only of p, ¢.

In this paper, we determine all prime powers p¢ with N,(p¢) < 4 for small primes
P, q- Indeed, we shall find all the solutions of the slightly generalized equation

X = ey + ey + ey + ey, (M

in integers e, €; € {—1,0,1} and f] > f, > f3 > f4 > 0, for relatively prime integers
2 < x,y < 100. The case (x, y) > 1 shall be discussed in the forthcoming papers.
Since the case €€3e3¢4 = 0 is dealt in [2], we deal only the case no subsum of the
right of (1) vanishes (in particular, none of €;’s is equal to zero).
We begin by noting that we must have f; = 0 since (x, y) = 1. Moreover, we find

that €; must be positive. Assume that €, = —1 and f; > f>. Then, we must have x¢ <
—y iyl 41 <1 —y/i71(y —2) < 1, which is a contradiction. If ¢, = —1
and f; = f>, then we must have e; = —1.

Moreover, we may assume that x, y are not perfect powers. Otherwise we can
replace e by el if x = x(’) for some xo, f > 2 and we can replace f;’s by fig if y = ) for
some g, g > 2.

THEOREM 1.1. Let 2 < x, y < 100 be relatively prime integers below 100 which are
not perfect powers. Any solution of (1) satisfies one of the following conditions.
(1) The solution appears in Table 1.
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Table 1. Perfect powers representable as /1 /2 4 /3 4 /4

One of representations

113

324323030
3243231430
3343143130
334323130
35432430430
3P 4343330
363543330
52450 450450
53 451 50 _50
53 453 451450
452 4452 4451 4450
912 —91' +919 4910
25 ol _pl_20
25 2220
2442342220
244242220
20 4 24 4 20

28 2440220
52450450
11241124110
2423423420
24423 420
25 —23 420

20 426 _pl_20
20 426 224 20
27—l _20
2722420
29427 — 24420
33430430
33— 31430
24424404 420
25423423420
25 424420

20 _ 24 4 20
5245250
182 + 18! + 18°
192 — 19! 4+ 190
3443332430
36435433430
P47 4+7047°
20 426 23420
2722 _pl_20
272222420
2723420

53 —51450
6*+6%—¢°
372 — 371 — 370
53452 _51_50
27 425423420
37 432430

28 25420

x¢ One of representations
152 27 427 25420
172 28 425 420

172 6>+ 62 +6*+6°
172 122 41224120

182 132 4132 — 131 — 130
202 B+7P4+71470
203 63% + 632 + 63! — 630
212 29 26 23420
222 3543531430
232 28 428 404 420
232 20423423420
232 20424420

233 782 + 782 — 780

242 1724172 =17 — 17°
262 36 34433430
26° 3937 43430
262 152 + 152 4+ 152 + 159
282 30 43433430
283 39437 434430
312 29 429 26420
312 210 26 4 20

332 20 429 426420
332 210 4 26 4 20

332 103 + 102 — 10! — 10°
392 210 + 29 _ 24 + 20
392 211729724+20
412 292 4292 — 290

442 373532430
452 2l 24 _ 234920
462 37 34432430
472 211+27+25 +20
472 133 + 131 — 130

492 26 24420

492 2542524420
532 6*+6*+6°+6°
562 55450451450
562 153 — 152 — 151 4150
572 55453 50

582 412 + 412+ 410 + 410
632 211+211_27+20
632 212 _ 27 + 20

652 211 +211 +27+20
65% 212 4 27 420

722 1B +172=17" =170
802 33434430
803 312 -39 435 30
822 3843534430
823 312 +39 +35 +30
892 213 28 _p4 4 20
972 56% + 562 + 56% 4 560
992 70% 4 702 + 70°
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(2) There exists a pair of integers w, g such that e =2g, (x,y) = (w, ws £ 1),
(1,/2,./3) =2, 1, N)andey = e3 = Fl,eqg = 1.

Be<lorfi<l

(4) The solution arises from the relations 2* = 3> — 3% and 3> = 23 + 2°.

Our method is similar to the one of Deze, Tijdeman and Wang in its essence. Deze,
Tijdeman and Wang used de Weger’s lower bound for differences between two prime
powers [9], which follows from lower bounds for linear forms in two logarithms and
classical theory of continued fractions.

However, we need to deal linear forms of three logarithms of the form elogx
— flogy —log A. In order to improve lower bounds for such linear forms, we use a
variant of Davenport’s method [1].

Our table suggests that an integer solution of (1) with min{e, fi} > 3 can be
derived from one of the identities (a) 2> =3/ — 3/ +32—-3% and (b) 32+ 1)’ =
33 4 3%+ 4 3¢+ £ 30 except from finitely many ones.

2. Results on linear forms of logarithms. First, we introduce some notations. We
denote by ||| the smallest distance between « and the integers and denote v,,(n) by
the largest integer v such that m" | n.

We use Matveev’s lower bound for linear forms in logarithms, which is the best
known result applicable for an arbitrary one.

THEOREM 2.1 (Matveev’s theorem). Let ai, ay, ..., a, be non-zero integers such
that logay, ..., loga, are not all zero. Let Ay, ..., A, be real numbers such that A; >
max{0.16, log a;} for each j.

Put

A =biloga; +---+ b,loga, 2)
and
B = max{l, |b1| A1/A,, |ba| A2/ Ay, ..., |bul},
Q=A14s,..., Ay, 3)

C(n) = L—?e”(Zn + 3)(n + 2)(4(n + 1))"*! (%en) (4.4n+ 5.5logn + 7).

Then we have

log|A| > —C(n)(log3 — log2 + 1 + log By max [1, g} Q. @)

Although Matveev’s theorem gives an effective bound for solutions of our
equation, this bound is fairly large. We wish to obtain a stronger lower bounds to
|A| for coefficients below an upper bound given by Matveev’s theorem. Davenport’s
lemma is useful for this purpose (see [1]). We use the following formulation.

THEOREM 2.2 (Davenport’s lemma). Let B,60y,0, be real numbers such that
0 = —0,/6, is irrational. Let x|, x;, Xy be integers and X = max{xi, x,}. Put A
= B+ x10) + x26, and y = B/0;.

If a convergent p/q of 0 with q > Xy satisfies the inequality ||lq¥| > 2Xy/q, then
|Al > Xo 1621 /4.
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Proof. Using the fact that g(x,0 — x2) — x1(¢0 — p) = px| — gx» is an integer, we
obtain

gyl = llgA /0> + q(x10 — x2)Il = llgA /6> + x1(q0 — p)II - &)

We can easily see that this is at most

qIA/O| + Ix1l /g < qIA/02] + Xo/q. (6)

From Theorems 94 and 95 in Nagell [4], we obtain the following lemma.

LEMMA 2.3. For any odd prime q dividing y, we have

(X = 1) < (vg(0) + vy (x7" = 1))/vy() ()
and
Uy(x¢ + 1) < (vg(e) + vg(x?" = 1)) /vy(»). ®)
Moreover, we have
v (x = 1) < (v2(e) + v2(x* = 1) = D)/1a(y) (€]
and
(X + 1) < (0(x* = 1)/v2(p). (10)

Let a(x, y) = min v, (x*4~Y — 1)/v,(y) over primes ¢ dividing y. We can confirm
by computation that v,(x*?~" — 1) < 6 for any prime ¢ < 100 and integer x < 100.
This immediately gives the following result.

COROLLARY 2.4. If x, y < 100, then we have
vy(x® £ 1) < a(x,y) +loge/logy (11)
and

vy(x* £ 1) <6+ loge/logy. (12)

3. Proof of main theorem. Throughout this section, we let x, y be relatively prime
integers less than 100 which are not perfect powers and put 4 =1 + ¢, A| =
elogx — filogy, Ay = elogx — f,logy — log A.

We shall give the first upper bound using Matveev’s theorem.

LEMMA 3.1. If (e, f1, 2. /3) is a solution of (1), then e < 3 x 10?! and f; < 3 x
102! log x/ log y.

Proof. Assume that (e, f1, />, f3, €2, €3, €4)(€; € {—1, 0, 1}, f; > 0) is a solution of (1)
such that the right-hand side of (1) has no vanishing subsum.

First we shall obtain an upper bound for 4. By (1), we have > > |x¢ — y/1|/2 — 1.
Since |x¢ — 1| > /' |A{]| /2, we have y > 3/t |A{| /5. This gives

Al < Y"1 <145/ |A1] < exp(2)/|A1]. (13)
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Now we apply Theorem 2.1 to estimate A ;. We have
log|A|l <2+ C(2)(log3 —log2+ 1+ log B;)logxlogy, (14)

where B; = max{elogx/logy, fi} if x < y and B; = max{e, fi logy/log x} if x > y.
Since the right-hand side of (1) has no vanishing subsum, we have /' < 8x¢.
Therefore we obtain

log|A] <2+ C(2)(log3 —log2 + 1 + log(e + 3))log xlog y. (15)

Put A" =exp2+ C(2)(log3 —log?2 + 1 + log(e + 3))logxlogy), so that the
inequality |4| < A’ holds.
Second we shall obtain a lower bound for f3. We can easily see that

Vi xt =y =y 1> — A — 1> x| Ay /3. (16)

Applying Theorem 2.1 again, we have

log |Az| > Wlogxlogylog A, (17)

where
W = C(3)(log3 —log2 + 1 + log By), (18)
B, = max{elogx/logA’, f,logy/log A’, 1}. (19)

Combining (16) and (17), we have

elogx —log3

£ os — C(3)(log3 — log2 + 1 + log B>) log xlog A'. (20)
Y

On the other hand, Corollary 2.4 gives
Sr=u,(x*£1) <6+loge/logy. (21)

It follows from (16), (17) and (21) that
6logy +log3 + loge + W(log x)(log y)(log A") — elog x > 0. (22)

For each pair of relatively prime integers x, y below 100, we see that the left-hand
side of (22) is negative for e = 2.9 x 10?! and decreasing for e > 2.9 x 10%!'. This proves
the lemma. ]

LEMMA 3.2. If (e, f1, />, f3) is a solution of (1), then we have |A| > 10" and
Y < 5% 107,

Proof. Let p,/q, be the nth convergent of logx/logy. We set n to be
the smallest index for which ¢, > 3 x 10?!. We confirmed by computation that
|gnlogx — p,logy| > 10727 for all relatively prime integers x,y below 100. By
Lemma 3.1, we have e < 3 x 10*! < g,. Hence, by Theorem 184 of [3], we have
|A1] = |elogx — filogy| > |g,log x — p,log y|. Since we have y> > /' |A;| /5, we have
Y < 5% 1077, |

LEMMA 3.3. If (e, f1. f>., f3) is a solution of (1), then we have x° > 3 x 1033y/5,
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Proof. We distinguish two cases according to whether 4 = x¢ for some integer
g > 0 or not.

Assume that 4 = x2 for some integer g > 0. Then we have x¢ = 4y” + /5 + 1.
Hence y/ > |x¢— Ay?| — 1 > x¢ [x*°¢ —y”| — 1. Similarly, with Lemma 3.2, we
obtain that |(e — g)logx — f>logy| > 10727 and therefore y* > 10-28x¢.

Assume that A4 is not of the form x# with g a non-negative integer. By definition, 4 is
an integer of the form ' & 1, where f is a non-negative integer satisfying y/ < 5 x 10%7,
but not of the form x% with g a non-negative integer. For all of such integers, we
apply Davenport’s method to obtain a lower bound for |A,| with e < 3 x 102!, Put
B =logA, 6 =logy, 6, =logx, Xo=3 x 10> logx/logy and apply Theorem 2.2
forall x,y, 4 =y £ 1 with (x,y) =1,2 < x,y < 100 and /' < log(5 x 10*")/log y.

Computation shows that we can apply Theorem 2.2 with an appropriate convergent
p/qof @ = —0,/6, and we have the inequality |A>| > 1073 for all x, y, 4 satisfying this
condition. It follows from (16) that y* > x°|A,| /3 > 10~3x¢/3. O

Now we prove Theorem 1.1. By Lemma 3.3, we have
X6 < 3 x 103y (23)

by Corollary 2.4.

Computation shows that a(x,y) <6 for x <100,y =2, a(x,y) <4 for x <
100,y =3, a(x,y) <3forx < 100,5 <y <23 and a(x,y) <2 for x < 100,24 <y <
100. Hence (23) gives that e < 138.

Computer search over all integers of the form x¢ with x < 100, ¢ < 138 revealed
that for any relatively prime integers x, y < 100, all solutions of (1) with e, f; > 2 are
derived from the identities given in the statement of the theorem except those given in
Table 1. This completes the proof.
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