## ON THE DIOPHANTINE EQUATION $x^m = y^{n_1} + y^{n_2} + \cdots + y^{n_k}$

## TOMOHIRO YAMADA

Department of Mathematics, Faculty of Science, Kyoto University, Kyoto, 606-8502, Japan E-mail: tyamada@math.kyoto-u.ac.jp

(Received 31 March 2008; accepted 3 September 2008)

**Abstract.** We find all solutions of  $x^m = y^{n_1} \pm y^{n_2} \pm y^{n_3} \pm y^{n_4}$  in integers  $m, n_1, n_2, n_3, n_4$  for all relatively prime integers x, y below 100.

2000 Mathematics Subject Classification. 11A05, 11A25.

**1. Introduction.** In 1970, Senge and Strauss [5] proved that the sums of all digits of n in bases a and b cannot be both small if and only if  $\log a/\log b$  is irrational. Denote the sum of all digits in the canonical expansion of n in base a by  $N_a(n)$ . They proved that there are only finitely many integers n with both of  $N_a(n)$ ,  $N_b(n)$  below a fixed bound. Their proof is not effective, depending upon Mahler's generalization of Thue-Siegel-Roth theorem.

In 1980, Stewart [6] proved this result in an effective way, using Baker theory of linear forms in logarithms. Thus, in principle, we can effectively determine all integers n satisfying  $N_a(n)$ ,  $N_b(n) \le k$  for any given a, b, k such that  $\log a/\log b$  is irrational.

Tijdeman and Wang [7], Wang [8] and Deze and Tijdeman [2] determined all integers n with  $N_p(n) + N_q(n) \le 4$  for primes p, q < 200. Indeed, they determined all solutions of the equation  $x \pm y \pm z \pm w = 0$  in integers  $x, y, z, w \in S(p, q)$  for two primes p, q < 200, where S(p, q) denotes the set of integers composed only of p, q.

In this paper, we determine all prime powers  $p^e$  with  $N_q(p^e) \le 4$  for small primes p, q. Indeed, we shall find all the solutions of the slightly generalized equation

$$x^{e} = \epsilon_{1} y^{f_{1}} + \epsilon_{2} y^{f_{2}} + \epsilon_{3} y^{f_{3}} + \epsilon_{4} y^{f_{4}}, \tag{1}$$

in integers  $e, \epsilon_i \in \{-1, 0, 1\}$  and  $f_1 \ge f_2 \ge f_3 \ge f_4 \ge 0$ , for relatively prime integers  $2 \le x, y \le 100$ . The case (x, y) > 1 shall be discussed in the forthcoming papers.

Since the case  $\epsilon_1 \epsilon_2 \epsilon_3 \epsilon_4 = 0$  is dealt in [2], we deal only the case no subsum of the right of (1) vanishes (in particular, none of  $\epsilon_i$ 's is equal to zero).

We begin by noting that we must have  $f_4 = 0$  since (x, y) = 1. Moreover, we find that  $\epsilon_1$  must be positive. Assume that  $\epsilon_1 = -1$  and  $f_1 > f_2$ . Then, we must have  $x^e \le -y^{f_1} + y^{f_1-1} + y^{f_1-1} + 1 \le 1 - y^{f_1-1}(y-2) \le 1$ , which is a contradiction. If  $\epsilon_1 = -1$  and  $f_1 = f_2$ , then we must have  $\epsilon_2 = -1$ .

Moreover, we may assume that x, y are not perfect powers. Otherwise we can replace e by el if  $x = x_0^l$  for some  $x_0, f \ge 2$  and we can replace  $f_i$ 's by  $f_i g$  if  $y = y_0^g$  for some  $y_0, g \ge 2$ .

THEOREM 1.1. Let  $2 \le x, y \le 100$  be relatively prime integers below 100 which are not perfect powers. Any solution of (1) satisfies one of the following conditions:

(1) The solution appears in Table 1.

**Table 1.** Perfect powers representable as  $y^{f_1} \pm y^{f_2} \pm y^{f_3} \pm y^{f_4}$ 

| - ·e            | One of management the management |                 |                                 |
|-----------------|----------------------------------|-----------------|---------------------------------|
| $\frac{x^e}{4}$ | One of representations           | $\frac{x^e}{2}$ | One of representations          |
| 24              | $3^2 + 3^2 - 3^0 - 3^0$          | $15^{2}$        | $2^{7} + 2^{7} - 2^{5} + 2^{0}$ |
| 24              | $3^2 + 3^2 - 3^1 + 3^0$          | $17^{2}$        | $2^8 + 2^5 + 2^0$               |
| 25              | $3^3 + 3^1 + 3^1 - 3^0$          | $17^{2}$        | $6^3 + 6^2 + 6^2 + 6^0$         |
| $2^{5}$         | $3^3 + 3^2 - 3^1 - 3^0$          | $17^{2}$        | $12^2 + 12^2 + 12^0$            |
| $2^{8}$         | $3^5 + 3^2 + 3^1 + 3^0$          | $18^{2}$        | $13^2 + 13^2 - 13^1 - 13^0$     |
| $2^{9}$         | $3^5 + 3^5 + 3^3 - 3^0$          | $20^{2}$        | $7^3 + 7^2 + 7^1 + 7^0$         |
| $2^{9}$         | $3^6 - 3^5 + 3^3 - 3^0$          | $20^{3}$        | $63^2 + 63^2 + 63^1 - 63^0$     |
| $2^{5}$         | $5^2 + 5^1 + 5^0 + 5^0$          | $21^{2}$        | $2^9 - 2^6 - 2^3 + 2^0$         |
| $2^{7}$         | $5^3 + 5^1 - 5^0 - 5^0$          | $22^{2}$        | $3^5 + 3^5 - 3^1 + 3^0$         |
| $2^{8}$         | $5^3 + 5^3 + 5^1 + 5^0$          | $23^{2}$        | $2^8 + 2^8 + 2^4 + 2^0$         |
| $2^{12}$        | $45^2 + 45^2 + 45^1 + 45^0$      | $23^{2}$        | $2^9 + 2^3 + 2^3 + 2^0$         |
| $2^{13}$        | $91^2 - 91^1 + 91^0 + 91^0$      | $23^{2}$        | $2^9 + 2^4 + 2^0$               |
| $3^3$           | $2^5 - 2^1 - 2^1 - 2^0$          | $23^{3}$        | $78^2 + 78^2 - 78^0$            |
| $3^3$           | $2^5 - 2^2 - 2^0$                | $24^{2}$        | $17^2 + 17^2 - 17^0 - 17^0$     |
| $3^3$           | $2^4 + 2^3 + 2^2 - 2^0$          | $26^{2}$        | $3^6 - 3^4 + 3^3 + 3^0$         |
| $3^3$           | $2^4 + 2^4 - 2^2 - 2^0$          | $26^{3}$        | $3^9 - 3^7 + 3^4 - 3^0$         |
| $3^{4}$         | $2^6 + 2^4 + 2^0$                | $26^{2}$        | $15^2 + 15^2 + 15^2 + 15^0$     |
| 3 <sup>5</sup>  | $2^8 - 2^4 + 2^2 - 2^0$          | $28^{2}$        | $3^6 + 3^4 - 3^3 + 3^0$         |
| $3^{3}$         | $5^2 + 5^0 + 5^0$                | $28^{3}$        | $3^9 + 3^7 + 3^4 + 3^0$         |
| $3^{5}$         | $11^2 + 11^2 + 11^0$             | $31^{2}$        | $2^9 + 2^9 - 2^6 + 2^0$         |
| $5^{2}$         | $2^3 + 2^3 + 2^3 + 2^0$          | $31^{2}$        | $2^{10} - 2^6 + 2^0$            |
| $5^{2}$         | $2^4 + 2^3 + 2^0$                | $33^{2}$        | $2^9 + 2^9 + 2^6 + 2^0$         |
| $5^{2}$         | $2^5 - 2^3 + 2^0$                | $33^{2}$        | $2^{10} + 2^6 + 2^0$            |
| $5^{3}$         | $2^6 + 2^6 - 2^1 - 2^0$          | $33^{2}$        | $10^3 + 10^2 - 10^1 - 10^0$     |
| $5^{3}$         | $2^6 + 2^6 - 2^2 + 2^0$          | $39^{2}$        | $2^{10} + 2^9 - 2^4 + 2^0$      |
| $5^{3}$         | $2^7 - 2^1 - 2^0$                | $39^{2}$        | $2^{11} - 2^9 - 2^4 + 2^0$      |
| $5^{3}$         | $2^7 - 2^2 + 2^0$                | 412             | $29^2 + 29^2 - 29^0$            |
| $5^{4}$         | $2^9 + 2^7 - 2^4 + 2^0$          | $44^{2}$        | $3^7 - 3^5 - 3^2 + 3^0$         |
| 5 <sup>2</sup>  | $3^3 + 3^0 + 3^0$                | $45^{2}$        | $2^{11} - 2^4 - 2^3 + 2^0$      |
| $5^{2}$         | $3^3 - 3^1 + 3^0$                | $46^{2}$        | $3^7 - 3^4 + 3^2 + 3^0$         |
| $7^{2}$         | $2^4 + 2^4 + 2^4 + 2^0$          | $47^{2}$        | $2^{11} + 2^7 + 2^5 + 2^0$      |
| $7^{2}$         | $2^5 + 2^3 + 2^3 + 2^0$          | $47^{2}$        | $13^3 + 13^1 - 13^0$            |
| $7^{2}$         | $2^5 + 2^4 + 2^0$                | $49^{2}$        | $2^6 - 2^4 + 2^0$               |
| $7^{2}$         | $2^6 - 2^4 + 2^0$                | $49^{2}$        | $2^5 + 2^5 - 2^4 + 2^0$         |
| $7^{2}$         | $5^2 + 5^2 - 5^0$                | $53^{2}$        | $6^4 + 6^4 + 6^3 + 6^0$         |
| $7^{3}$         | $18^2 + 18^1 + 18^0$             | $56^{2}$        | $5^5 + 5^1 + 5^1 + 5^0$         |
| $7^{3}$         | $19^2 - 19^1 + 19^0$             | $56^{2}$        | $15^3 - 15^2 - 15^1 + 15^0$     |
| $10^{2}$        | $3^4 + 3^3 - 3^2 + 3^0$          | 57 <sup>2</sup> | $5^5 + 5^3 - 5^0$               |
| $10^{3}$        | $3^6 + 3^5 + 3^3 + 3^0$          | 58 <sup>2</sup> | $41^2 + 41^2 + 41^0 + 41^0$     |
| $10^{2}$        | $7^2 + 7^2 + 7^0 + 7^0$          | $63^{2}$        | $2^{11} + 2^{11} - 2^7 + 2^0$   |
| $11^{2}$        | $2^6 + 2^6 - 2^3 + 2^0$          | $63^{2}$        | $2^{12} - 2^7 + 2^0$            |
| $11^{2}$        | $2^7 - 2^2 - 2^1 - 2^0$          | $65^{2}$        | $2^{11} + 2^{11} + 2^7 + 2^0$   |
| 112             | $2^7 - 2^2 - 2^2 + 2^0$          | $65^{2}$        | $2^{12} + 2^7 + 2^0$            |
| $11^{2}$        | $2^7 - 2^3 + 2^0$                | $72^{2}$        | $17^3 + 17^2 - 17^1 - 17^0$     |
| $11^{2}$        | $5^3 - 5^1 + 5^0$                | $80^{2}$        | $3^8 - 3^5 + 3^4 + 3^0$         |
| $11^{3}$        | $6^4 + 6^2 - 6^0$                | $80^{3}$        | $3^{12} - 3^9 + 3^5 - 3^0$      |
| $11^{3}$        | $37^2 - 37^1 - 37^0$             | $82^{2}$        | $3^8 + 3^5 - 3^4 + 3^0$         |
| $12^{2}$        | $5^3 + 5^2 - 5^1 - 5^0$          | $82^{3}$        | $3^{12} + 3^9 + 3^5 + 3^0$      |
| $13^{2}$        | $2^7 + 2^5 + 2^3 + 2^0$          | 89 <sup>2</sup> | $2^{13} - 2^8 - 2^4 + 2^0$      |
| $13^{3}$        | $3^7 + 3^2 + 3^0$                | 97 <sup>2</sup> | $56^2 + 56^2 + 56^2 + 56^0$     |
| $15^2$          | $2^8 - 2^5 + 2^0$                | 99 <sup>2</sup> | $70^2 + 70^2 + 70^0$            |
|                 | ·                                |                 |                                 |

- (2) There exists a pair of integers w, g such that e = 2g,  $(x, y) = (w, w^g \pm 1)$ ,  $(f_1, f_2, f_3) = (2, 1, 1)$  and  $\epsilon_2 = \epsilon_3 = \pm 1$ ,  $\epsilon_4 = 1$ .
  - (3)  $e \le 1$  or  $f_1 \le 1$ .
  - (4) The solution arises from the relations  $2^3 = 3^2 3^0$  and  $3^2 = 2^3 + 2^0$ .

Our method is similar to the one of Deze, Tijdeman and Wang in its essence. Deze, Tijdeman and Wang used de Weger's lower bound for differences between two prime powers [9], which follows from lower bounds for linear forms in two logarithms and classical theory of continued fractions.

However, we need to deal linear forms of three logarithms of the form  $e \log x - f \log y - \log A$ . In order to improve lower bounds for such linear forms, we use a variant of Davenport's method [1].

Our table suggests that an integer solution of (1) with  $\min\{e, f_1\} \ge 3$  can be derived from one of the identities (a)  $2^3 = 3^f - 3^f + 3^2 - 3^0$  and (b)  $(3^g \pm 1)^3 = 3^{3g} \pm 3^{2g+1} + 3^{g+1} \pm 3^0$ , except from finitely many ones.

**2. Results on linear forms of logarithms.** First, we introduce some notations. We denote by  $\|\alpha\|$  the smallest distance between  $\alpha$  and the integers and denote  $v_m(n)$  by the largest integer v such that  $m^v \mid n$ .

We use Matveev's lower bound for linear forms in logarithms, which is the best known result applicable for an arbitrary one.

THEOREM 2.1 (Matveev's theorem). Let  $a_1, a_2, ..., a_n$  be non-zero integers such that  $\log a_1, ..., \log a_n$  are not all zero. Let  $A_1, ..., A_n$  be real numbers such that  $A_j \ge \max\{0.16, \log a_j\}$  for each j.

Put

$$\Lambda = b_1 \log a_1 + \dots + b_n \log a_n \tag{2}$$

and

$$B = \max\{1, |b_1| A_1/A_n, |b_2| A_2/A_n, \dots, |b_n|\},$$

$$\Omega = A_1 A_2, \dots, A_n,$$

$$C(n) = \frac{16}{n!} e^n (2n+3)(n+2)(4(n+1))^{n+1} \left(\frac{1}{2}en\right) (4.4n+5.5\log n+7).$$
(3)

Then we have

$$\log |\Lambda| > -C(n)(\log 3 - \log 2 + 1 + \log B) \max \left\{1, \frac{n}{6}\right\} \Omega. \tag{4}$$

Although Matveev's theorem gives an effective bound for solutions of our equation, this bound is fairly large. We wish to obtain a stronger lower bounds to  $|\Lambda|$  for coefficients below an upper bound given by Matveev's theorem. Davenport's lemma is useful for this purpose (see [1]). We use the following formulation.

THEOREM 2.2 (Davenport's lemma). Let  $\beta$ ,  $\theta_1$ ,  $\theta_2$  be real numbers such that  $\theta = -\theta_1/\theta_2$  is irrational. Let  $x_1, x_2, X_0$  be integers and  $X = \max\{x_1, x_2\}$ . Put  $\Lambda = \beta + x_1\theta_1 + x_2\theta_2$  and  $\psi = \beta/\theta_2$ .

If a convergent p/q of  $\theta$  with  $q > X_0$  satisfies the inequality  $||q\psi|| > 2X_0/q$ , then  $|\Lambda| > X_0 |\theta_2|/q^2$ .

*Proof.* Using the fact that  $q(x_1\theta - x_2) - x_1(q\theta - p) = px_1 - qx_2$  is an integer, we obtain

$$||q\psi|| = ||q\Lambda/\theta_2 + q(x_1\theta - x_2)|| = ||q\Lambda/\theta_2 + x_1(q\theta - p)||.$$
 (5)

We can easily see that this is at most

$$q |\Lambda/\theta_2| + |x_1|/q \le q |\Lambda/\theta_2| + X_0/q. \tag{6}$$

From Theorems 94 and 95 in Nagell [4], we obtain the following lemma.

LEMMA 2.3. For any odd prime q dividing y, we have

$$v_v(x^e - 1) \le (v_q(e) + v_q(x^{q-1} - 1))/v_q(y) \tag{7}$$

and

$$v_{\nu}(x^e + 1) \le (v_q(e) + v_q(x^{q-1} - 1))/v_q(y).$$
 (8)

Moreover, we have

$$v_y(x^e - 1) \le (v_2(e) + v_2(x^2 - 1) - 1)/v_2(y)$$
 (9)

and

$$v_{\nu}(x^e + 1) \le (v_2(x^2 - 1))/v_2(y).$$
 (10)

Let  $a(x, y) = \min v_q(x^{2(q-1)} - 1)/v_q(y)$  over primes q dividing y. We can confirm by computation that  $v_q(x^{2(q-1)} - 1) \le 6$  for any prime q < 100 and integer  $x \le 100$ . This immediately gives the following result.

COROLLARY 2.4. If x, y < 100, then we have

$$v_v(x^e \pm 1) \le a(x, y) + \log e / \log y \tag{11}$$

and

$$v_v(x^e \pm 1) \le 6 + \log e / \log y.$$
 (12)

**3. Proof of main theorem.** Throughout this section, we let x, y be relatively prime integers less than 100 which are not perfect powers and put  $A = y^{f_1 - f_2} + \epsilon_2$ ,  $\Lambda_1 = e \log x - f_1 \log y$ ,  $\Lambda_2 = e \log x - f_2 \log y - \log A$ .

We shall give the first upper bound using Matveev's theorem.

LEMMA 3.1. If  $(e, f_1, f_2, f_3)$  is a solution of (1), then  $e < 3 \times 10^{21}$  and  $f_1 < 3 \times 10^{21} \log x / \log y$ .

*Proof.* Assume that  $(e, f_1, f_2, f_3, \epsilon_2, \epsilon_3, \epsilon_4)$   $(\epsilon_i \in \{-1, 0, 1\}, f_i \ge 0)$  is a solution of (1) such that the right-hand side of (1) has no vanishing subsum.

First we shall obtain an upper bound for A. By (1), we have  $y^{f_2} \ge |x^e - y^{f_1}|/2 - 1$ . Since  $|x^e - y^{f_1}| > |x^{f_1}|/2$ , we have  $y^{f_2} > |x^{f_1}|/3$ . This gives

$$|A| \le y^{f_1 - f_2} + 1 \le 1 + 5/|\Lambda_1| \le \exp(2)/|\Lambda_1|.$$
 (13)

https://doi.org/10.1017/S001708950800459X Published online by Cambridge University Press

Now we apply Theorem 2.1 to estimate  $\Lambda_1$ . We have

$$\log|A| \le 2 + C(2)(\log 3 - \log 2 + 1 + \log B_1)\log x \log y,\tag{14}$$

where  $B_1 = \max\{e \log x / \log y, f_1\}$  if x < y and  $B_1 = \max\{e, f_1 \log y / \log x\}$  if x > y. Since the right-hand side of (1) has no vanishing subsum, we have  $y^{f_1} \le 8x^e$ . Therefore we obtain

$$\log |A| \le 2 + C(2)(\log 3 - \log 2 + 1 + \log(e+3))\log x \log y. \tag{15}$$

Put  $A' = \exp(2 + C(2)(\log 3 - \log 2 + 1 + \log(e + 3))\log x \log y)$ , so that the inequality |A| < A' holds.

Second we shall obtain a lower bound for  $f_3$ . We can easily see that

$$y^{f_3} \ge x^e - y^{f_1} - y^{f_2} - 1 \ge x^e - Ay^{f_2} - 1 \ge x^e |\Lambda_2|/3.$$
 (16)

Applying Theorem 2.1 again, we have

$$\log |\Lambda_2| \ge W \log x \log y \log A',\tag{17}$$

where

$$W = C(3)(\log 3 - \log 2 + 1 + \log B_2),\tag{18}$$

$$B_2 = \max\{e \log x / \log A', f_2 \log y / \log A', 1\}. \tag{19}$$

Combining (16) and (17), we have

$$f_3 \ge \frac{e \log x - \log 3}{\log y} - C(3)(\log 3 - \log 2 + 1 + \log B_2) \log x \log A'. \tag{20}$$

On the other hand, Corollary 2.4 gives

$$f_3 = v_y(x^e \pm 1) \le 6 + \log e / \log y.$$
 (21)

It follows from (16), (17) and (21) that

$$6\log y + \log 3 + \log e + W(\log x)(\log y)(\log A') - e\log x \ge 0. \tag{22}$$

For each pair of relatively prime integers x, y below 100, we see that the left-hand side of (22) is negative for  $e = 2.9 \times 10^{21}$  and decreasing for  $e \ge 2.9 \times 10^{21}$ . This proves the lemma.

LEMMA 3.2. If  $(e, f_1, f_2, f_3)$  is a solution of (1), then we have  $|\Lambda_1| \ge 10^{-27}$  and  $v^{f_1-f_2} < 5 \times 10^{27}$ .

*Proof.* Let  $p_n/q_n$  be the nth convergent of  $\log x/\log y$ . We set n to be the smallest index for which  $q_n > 3 \times 10^{21}$ . We confirmed by computation that  $|q_n \log x - p_n \log y| \ge 10^{-27}$  for all relatively prime integers x, y below 100. By Lemma 3.1, we have  $e < 3 \times 10^{21} \le q_n$ . Hence, by Theorem 184 of [3], we have  $|\Lambda_1| = |e \log x - f_1 \log y| \ge |q_n \log x - p_n \log y|$ . Since we have  $y^{f_2} > y^{f_1} |\Lambda_1| / 5$ , we have  $y^{f_1-f_2} < 5 \times 10^{27}$ .

LEMMA 3.3. If  $(e, f_1, f_2, f_3)$  is a solution of (1), then we have  $x^e \ge 3 \times 10^{35} y^{f_3}$ .

*Proof.* We distinguish two cases according to whether  $A = x^g$  for some integer g > 0 or not.

Assume that  $A = x^g$  for some integer  $g \ge 0$ . Then we have  $x^e = Ay^{f_2} \pm y^{f_3} \pm 1$ . Hence  $y^{f_3} \ge |x^e - Ay^{f_2}| - 1 \ge x^g |x^{e-g} - y^{f_2}| - 1$ . Similarly, with Lemma 3.2, we obtain that  $|(e-g)\log x - f_2\log y| > 10^{-27}$  and therefore  $y^{f_3} \ge 10^{-28}x^e$ .

Assume that A is not of the form  $x^g$  with g a non-negative integer. By definition, A is an integer of the form  $y^f \pm 1$ , where f is a non-negative integer satisfying  $y^f < 5 \times 10^{27}$ , but not of the form  $x^g$  with g a non-negative integer. For all of such integers, we apply Davenport's method to obtain a lower bound for  $|\Lambda_2|$  with  $e < 3 \times 10^{21}$ . Put  $\beta = \log A$ ,  $\theta_1 = \log y$ ,  $\theta_2 = \log x$ ,  $X_0 = 3 \times 10^{21} \log x/\log y$  and apply Theorem 2.2 for all  $x, y, A = y^f \pm 1$  with  $(x, y) = 1, 2 \le x, y < 100$  and  $f < \log(5 \times 10^{27})/\log y$ .

Computation shows that we can apply Theorem 2.2 with an appropriate convergent p/q of  $\theta = -\theta_1/\theta_2$  and we have the inequality  $|\Lambda_2| \ge 10^{-35}$  for all x, y, A satisfying this condition. It follows from (16) that  $y^{f_3} \ge x^e |\Lambda_2|/3 \ge 10^{-35} x^e/3$ .

Now we prove Theorem 1.1. By Lemma 3.3, we have

$$x^e \le 3 \times 10^{35} e y^{a(x,y)} \tag{23}$$

by Corollary 2.4.

Computation shows that  $a(x, y) \le 6$  for x < 100, y = 2,  $a(x, y) \le 4$  for x < 100, y = 3,  $a(x, y) \le 3$  for  $x < 100, 5 \le y \le 23$  and  $a(x, y) \le 2$  for  $x < 100, 24 \le y < 100$ . Hence (23) gives that  $e \le 138$ .

Computer search over all integers of the form  $x^e$  with x < 100,  $e \le 138$  revealed that for any relatively prime integers x, y < 100, all solutions of (1) with  $e, f_1 \ge 2$  are derived from the identities given in the statement of the theorem except those given in Table 1. This completes the proof.

## REFERENCES

- **1.** A. Baker and H. Davenport, The equations  $3x^2 2 = y^2$  and  $8x^2 y = z^2$ , *Quart. J. Math.* **20** (1969), 129–137.
- **2.** M. Dede and R. Tijdeman, Exponential diophantine equations with four terms, *Indag. Math. N.S.* **3** (1992), 47–57.
- **3.** G. H. Hardy and E. M. Wright, *An introduction to the theory of numbers*, 5th ed. (The Claredon Press, Oxford University Press, New York, 1979).
- **4.** T. Nagell, *Introduction to number theory*, 2nd ed. (Chelsea Publishing Co., New York, 1964).
- 5. H. G. Senge and E. G. Strauss, P. V. numbers and sets of multiplicity, *Period Math. Hungar.* 3 (1973), 93–100.
- **6.** C. L. Stewart, On the representation of an integer in two different bases, *J. Reine. Angew. Math.* **319** (1980), 63–72.
- 7. R. Tijdeman and Wang Lianxiang, Sums of products of powers of given prime numbers, *Pacific J. Math.* 132 (1988), 177–193, Corr. 135 (1988), 396–398.
- **8.** Wang Lianxiang, Four terms equations, *Indag. Math.* **51** = *Proc. K. N. A. W. Ser. A* **92** (1989), 355–361.
- **9.** B. M. M. de Weger, Solving exponential diophantine equations using lattice basis reduction algorithms, *J. Number Theory* **26** (1987), 325–367.