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CHARACTERISTIC SUBGROUPS OF RELATIVELY FREE GROUPS

ROGER M. BRYANT

A simple new proof is given of a result of Vaughan-Lee which implies that if G is
a relatively free nilpotent group of finite rank k& and nilpotency class ¢ with ¢ < k
then the characteristic subgroups of G are all fully invariant. It is proved that the
condition ¢ < k can be weakened to ¢ < k + p—2 when G has p-power exponent
for some prime p. On the other hand it is shown that for each prime p there is a
2-generator relatively free p-group G which is nilpotent of class 2p such that the
centre of G is not fully invariant.

1. INTRODUCTION

For each positive integer k let Fj be the free group of rank k freely generated by
the set {z), ..., z+}. The following result was proved in 7].

THEOREM 1. (Vaughan-Lee). If C is a characteristic subgroup of F, which
contains the kth term i (F}) of the lower central series of Fy then C is fully invariant.

One interesting consequence of this result is that every formation of finite nilpotent
groups is subgroup closed — see [6]. A simple proof of Theorem 1 is given in Section 2
below.

A corollary of Theorem 1 is that if G is a relatively free nilpotent group of finite
rank k and nilpotency class ¢ where ¢ < k then every characteristic subgroup of G
is fully invariant. (See [5] for basic facts about relatively free groups.) The follow-
ing stronger result will be proved in Section 3 for the case where G has prime-power
exponent.

THEOREM 2. Let p be a prime number and let G be a relatively free nilpotent
group of p-power exponent with finite rank k and nilpotency class ¢, where ¢ < k+p—2.
Then every characteristic subgroup of G is fully invariant.

In the case where k = 2 and p = 2 Theorem 2 is the best possible result of its sort
because, as is well known, the relatively free group of rank 2 in the variety of groups of
exponent 4 and class 2 has a characteristic subgroup which is not fully invariant (see,
for example, [4, Section 9] and see also Section 6 below). I do not know how close
Theorem 2 is to being best possible in general, but some information can be obtained
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by module-theoretic methods. This is illustrated in Sections 4 — 6. It is shown that
for each odd prime p there is a 2-generator relatively free p-group which is nilpotent
of class 2p — 1 and has a characteristic subgroup which is not fully invariant. The
following result will also be proved.

THEOREM 3. For each prime p there is a 2-generator relatively free p-group G
such that G is nilpotent of class 2p and the centre of G is not fully invariant.

Similar examples of relatively free nilpotent groups of finite rank in which the
centre is not fully invariant may possibly be known in the “folk-lore”. A non-nilpotent
example is certainly known; namely, the relatively free group of rank 2 in the variety
generated by the non-abelian group of order 6. In contrast, every relatively free group
of infinite rank has fully invariant centre.

2. PROOF OF THEOREM 1

If F is a free group on a given free generating set X and z € X we write §, for
the “deletion” endomorphism of F' defined by z6; = 1 and yé; = y for all y € X\ {z}.
Furthermore, for all w € F, w(1 — §,) denotes w(wé,)™*.

As shown in [7], Theorem 1 is an easy consequence of the following lemma (Lemma
1). We shall not repeat the deduction of Theorem 1 here but give a proof of the lemma
which avoids the complexity of the proof in [7].

LEMMA 1. Let C be a characteristic subgroup of F) which contains v,(Fi) and
let we C. Then wé;; € C (1<i<k).

PROOF: The result is trivial if £ =1, so we assume that k > 2. By symmetry, it
is enough to prove that wé,, € C. Write w = w(zy, ..., 24). Let F be the free group
freely generated by 2k elements 21, ..., zx, ¥1, ..., ysx and write Y = {y1, ..., s}-
Let v be the element of F defined by

v=w(z22197", 232293, ..., TRTR_1Y3 ) V12 -+ YR)
and let v* =o(1 =8 )(1—6y,)...(1 —&y,)-

Thus v* is the product, in some order, of elements v;-(s) where S ranges over the

subsets of Y, &(S) = (—=1)'°! and vs = v( 1 s,). Also, by [5, 33.38 and 33.42),
yES

v* € 7u(F).

Let ¢: F — F; be the homomorphism defined by z;§ = z; and y;§ = z; for all 1.
Thus v*§ € v4(Fi) and so v*§ € C. Also, v*§ is the product of the elements (vsf)'(s).
We shall prove (i) vyé = (w&,i)a where a is an automorphism of F}, and (ii) for all
S #Y, vs€ = wf where B is an automorphism of Fi (depending on §). It follows
that (vsf)'(s) € C for all S #Y; whence (wJ,.)a € C and so wé,, € C, as required.
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To prove (i) note that
vyé = w(z22;, 322, ..., ZpTh—1, 1) = (w6,h)a

where « is the automorphism of F; defined by zpa = z; and z;a = z;4,2; for i < k.
To prove (ii), suppose S # Y and, for i = 1,...,k, write y; = 1 if y; € § and
pi =0if y; ¢ S. Thus vgé = wf where § is the endomorphism of Fy defined by
zxf = 2z} M ...zi_"" and z;8 = zip1zi" for i < k. We shall show that 8 is an
automorphism of Fi. By the Hopf property of Fj (see [5, 41.52]) it is sufficient to
show that 8 is surjective. Thus it is sufficient to show that z;, ..., z; all belong to
the subgroup (z:8, ..., z:8).

Let d be the smallest positive integer such that y4 ¢ S. If d < k then 248 = z441,
zi41f = :4+zz:r;l, cery Zao1f = zaz}t7t, and 5O ZTayi, .-, Tk € (T, ..., ZuB).
But z;8 = zdz:_?;‘“ ...zy “*. Hence zq4 € (2,8, ..., zsB). If d > 1 then z4_,8 =

Z4Td—1, +.., T1P = 2221, and 80 24—y, ..., 21 € {18, ..., zxB). 0

3. PROOF OF THEOREM 2

Let G be as in the statement of the theorem and let {a;, ..., ax} be a free gen-
erating set for G. The result is trivial if k =1 or ¢ = 0, so we assume that k > 2 and
c21. Let & be the Frattini subgroup of G. Since G is a finite p-group, G/® is an
elementary abelian group of order p* and an endomorphism 8 of G is an automorphism
if and only if {(a18)®, ..., (axf)®} is a basis of G/P.

Let C be a characteristic subgroup of G. Let u(zi, ..., zx) be an element of
F, such that u(a;,...,ar) € C, and let g;,...,gx € G. It suffices to show that
u(g1,...,9x) € C. Let r be the rank of (¢;®, ..., gx®). Then, for some subset
R of {1,...,k} of cardinality r, (g:®,...,9x®) = (9i®:1 € R). Suppose that
r # 0, let o be a permutation of {1, ..., k} such that {1,...,7} = Reo, and let

u(z1, ..., za) =u(Z10) -+, Zho). Then
u(ay, ..., a) = u(a1q, - .., axo) = u(ay, ..., ax)o*,

where o* is an automorphism of G. Thus u(ay, ..., ax) € C. Also, u(g1, ..., gx) =
%(g15-1 -+ Gao—1) and, by choice of o, (g;,-1®, ..., g,o-18) = (019, ..., g&®).
Thus (by considering u instead of u) we may reduce to the case where R ={1, ..., r}.

Hence there are elements t,41(z1,...,2p), ..., ta(Z1, ..., 2») of F,. and ele-
ments fry1,..., fu of & such that g; = &(g1,...,9-)fi (r+1<i<k). Since
{919, ..., 9.P} is contained in a basis of G/®, there is an automorphism 6 of G
such that a;0 = g; (1 <i < 7). It is enough to prove that u(gs, ..., g4)8~! € C. But

u(gl, ceey g.)e—l = u(al, veey Gpy t,-+1(al, ceey a,.)h,.+1, ceey t;,(a;, veey a,.)h,.)
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where h; = fi0 ' € ® (r+1<i< k). Let
W(Z1, ooy Za) = (21, ooy Zoy Erg1(B1y o ooy Zo) o1y oony ER(Z1, oo oy 2 )ZR)-

Thus we wish to prove that w(ai, ..., @r, Bry1, ..., hi) € C. Note that w(ay, ..., as)
= u(ay, ..., a)7 where 7 is an automorphism of G. Thus w(a;, ..., ax) € C and it
is enough to prove the following lemma, which also covers the case where » = 0. The
proof is a modification of the proof of Lemma 1.

LEMMA 2. With G as in the statement of Theorem 2, let {a;, ..., ax} be
a free generating set for G, let C be a characteristic subgroup of G, and let
w(z1, ..., 2x) be an element of Fy such that w(a;,...,ax) € C. Then, for all
r € {0,1,...,k} and all hpy,,..., hy € & (where & is the Frattini subgroup of
G), w(a, ..., @ry Bry1, ..., hi) belongs to C.

PROOF: As before we may assume that k£ > 2 and ¢ > 1. The result is trivially
true if » = k. Thus, using downward induction on r, we may assume that r < k
and the result is true when r is replaced by r + 1. Let F be the free group freely
generated by a set {z;,...,23} UY where Y consists of the k + p — 2 elements
Yls ooy Ury y,(_l)l, ceey ys.ill)v Yrt2y ---s Yk- Let £: F — G be the homomorphism de-
fined by z;§ = a; for all ¢, y;£ = a; forall i #+ +1, and ysi)lﬁ = Gp41 for all ;.

Let a be the automorphism of G defined by a;a = ai41a; (1 <i<r) and g;a = aq;

(r+1<i< k), and write h; = h;a (r + 1 i < k). Choose elements u,41, ..., ug of
(Z1s .- :c;,) such that u;§ = A} (r+1<i<k). Let v be the element of F defined
by

v=w (zzzlyl_la IER) zr+lzry:1v Y- yry$+)1 ys:-l )yr+2 cYkUrtl, Yri2y -« uk)

and let v* = v 1-4, where the elements of Y are taken in some arbitrary
€Y v
v

order. Thus, by [5, 33.38 and 33.42], v* € Ya4,-2(F), and s0 v*€ € Yr4p-2(G) = {1}.

In particular, v*¢é € C. For each subset S of Y let vg = v( IT 6,) . As in the proof of
yES

Lemma 1, it suffices to prove (i) vy¢ = w(ay, ..., @r, Bry1, ..., Bz)a, and (ii) for all
S#Y,vsé€€C.
To prove (i) note that
vy€ =w(azay, ..., @ry10y, bl y, .oy BY) = w(ay, ..., 8p, Begy,y ..y Ba)a,

as required. To prove (ii), suppose § #Y, write

V= {ys-:-)l: ceey yr+11)} n S|
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and, for i € {1,...,7,r+2,...,k}, write pyy =1ify; € Sand p; =0if y; ¢ S.
Thus vs¢ = w(by, ..., bi) where by = azal?, ..., b, = apy1abr,

bey1 = @) * .. alTPraP i a AT L a) MR,
bey2 = hlyy, ..., b = hj. It is enough to prove that (b;®, ..., b1 ®) hasrank r+1,
for then there is an automorphism 8 of G such that a;8 = b; (1 <i <r+1) which
gives

vsé = u’(a'l, seey Brily h'r-{-zﬂ-ls ceey 'bﬂ_l)ﬂ
and so vg{ € C by the inductive hypothesis.
Suppose first that {y;, ..., ¥} € 5. Then

(b], ey b,-+1) = (agal, eesy Qr41Qyp, a‘:;}-"a:_:;"“ cee ai—“" h:.+1)
and either y; =0 for some : € {r+2,...,k} or 0 < v < p—1. It follows easily that
(b1§, ceay b,-+1§) has rank r +1.
Suppose finally that {y;, ..., y-} is not containedin S andlet N = (aypy2,..., as}®.
It suffices to show that ()N, ..., b41 N) has rank r + 1. But

(01N, ..., bpy1N) = (a2d!* N, ..., ay41a*" N, a; ™™ ...al " #ra? 17" N)

where p; = 0 for some i € {1, ..., r}. By the method of Lemma 1 we can show that
a1N, ..., a,41 N all belong to (01N, ..., b1 N), and this gives the required result.

4. ENDOMORPHISMS AND MODULES

In the remainder of the paper we describe the construction of some relatively free
p-groups with characteristic subgroups which are not fully invariant.

Let p be a prime number and k a positive integer, k > 2. Define subgroups A.(F:)
of F} for each positive integer ¢ by A1 (Fi) = Fj and

A¢+1(Fk) = '\c(Fb)P[Ac(Fb)! Fk]

(see [2, VIII.1.4 and VIII.1.5]). Thus each A (F%) is a fully invariant subgroup of F;,
Ac+1(Fr) € Ac(Fi) and Ac(Fi)/Ac+1(Fi) is a finite elementary abelian p-group. We
write U = A(Fa)/Ac+1(Fs) and regard U, as a vector space over the field GF(p) of
p elements. Furthermore, we write U = U;. Thus U has dimension k.

For each ¢ let End (U,) be the set of all linear transformations of U,.. It is usual to
regard End (U.) as a ring, but for our purposes here the additive structure of End (U.)
is irrelevant and we simply regard End (U.) as a monoid under the operation of com-
position of functions. As usual we write GL(U,.) for the group of invertible elements
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of End(U.). Every endomorphism of F; induces on U, an element of End (U.). Since
Fy is free, each element { of End(U) is induced by some endomorphism of Fj. This
endomorphism induces an element of End(U.) which, by {2, VIIL.1.7a], depends only
upon { and not on the choice of endomorphism of Fj. Thus we obtain a monoid
homomorphism End (U) — End(U.) and, by restriction, a group homomorphism
GL(U) — GL(U.). Hence U, may be regarded as a module for End (U) and GL (U).

Note that Fi /A 4+1(F3) is a finite relatively free p-group of rank k and nilpotency
class at most c. (We shall see below that it has class exactly ¢.) Furthermore, U, is
a central subgroup of Fi/Ac+1(F:). Suppose that V is a subgroup of U.. Then it is
straightforward to verify that V is fully invariant as a subgroup of Fj/Ao4+1(F3) if and
only if it is an End (U)-submodule of U, and V is characteristic in Fj/Ac41(Fi) if
and only if it is a GL (U)-submodule of U.. Thus we shall investigate the submodule
structure of U..

Let A be the free associative algebra (without identity element) over GF (p) on
the free generating set {z1, ...,zx}. Thus A = A; ® A2 @ ... where, for each ¢, A,
is the subspace of A spanned by all monomials of degree ¢ in z,, ..., zx. We identify
U with A, in the obvious way. Thus 4; is an End (U)-module. Since A is free, the
action of End(U) on A; can be extended to A so that each element of End(U) acts as
an algebra endomorphism of A. Under this action A is an End (U)-module and each
A, is a submodule.

The associative algebra A also carries the structure of a Lie algebra over GF (p),
the Lie multiplication being the “commutator” operation defined by {v, w] = vw — wv
for all v, w € A. Let L be the Lie subalgebra generated by {zi, ..., zx}. Then, as
is well known, L is a free Lie algebra on {zi,..., zz} (see (3, Theorem 5.9]). Also
L=L,®Ly®... where L. = LN A, for all ¢, and, in particular, L = A, =U. It is
easy to verify that L and the L. are End (U)-submodules of 4.

The submodule structure of U, is closely related to that of L. In explaining the
connection we shall follow the presentation in [1]: see [1] for references to original
sources.

For each positive integer ¢ there is a certain group homomorphism ¢.: Ac(Fi) —
A (with A regarded as a group under addition). In the case where p is odd these
homomorphisms are determined by the following properties:

zi¢1 =Z; (1 < t S k), fp¢¢:+1 = f¢C)
and [fs g]¢c+] = [f¢n g¢1]’

forall e > 1, f € A(Fi) and g € Ay(F3) = Fj. For p =2 the only difference is in the
formula for fP¢.4; with ¢ = 1: this becomes

2o2=for + (f:)
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for all f € Ai(Fa).

The kernel of ¢, is equa.l to Ac41(F3) forall p, ¢ (see [1]). Thus ¢, induces a vector
space monomorphism d)c U. — A. As noted in [1], ch is a GL (U)-module monomor-
phism, and a similar proof shows that ¢c is in fact an End (U)-module monomorphism.

For p # 2 the image of ;.: is easily calculated to be Ly + ...+ L.: thus U, is isomor-
phic to Ly + ...+ L. as End(U)-module. In the case p = 2, let E be the subspace
of A; + A, spanned by the elements z; +z, (1<i<k)and [z;,2;] (1<i<j<k).

Then the image of ¢1 is L, , the image of ¢z is E, and, for ¢ 2 3, the image of ¢c i8
E+Lsy+...+ L. Thus U, is again determined up to isomorphism.

Clearly v.(Fi) C Ac(Fy) for all ¢. It is easy to prove by induction on ¢ that
Ye(Fr)pe = L. for all c. Hence v(Fi) is not contained in Ac41(Fi) and the group
Fi/Ac+1(Fi) has class exactly c.

In the remainder of this paper we take k = 2 and write z as an abbreviation for the
element [z, z2] of L. Thus z spans L;. Note that, for all { € End(U), z{ = det ({)=.
Commutators in L will be written with a left-normed convention. Also, we shall need
to use the well known fact that if v and w are elements of L such that {v, w] =0 and
w # 0 then v is a scalar multiple of w. This follows, for example, from [3, Theorem
5.10]. We shall now consider separately the cases where p is odd (Section 5) and p =2
(Section 6).

5. ODD CHARACTERISTIC

Suppose that £k = 2 and p is odd. We shall first show that L, + ...+ L2p-1
has a GL(U)-submodule which is not an End (U)-submodule. Let s, and a3 be the
elements of L;,_; defined by s, = [z,, 2, ..., 2] and 83 = 23, 2, ..., 2]. (Here and
subsequently z,..., z will denote a sequence of p — 1 copies of z.) Let V be the
subspace of Ly + L3,—, spanned by z;, +5; and z3 +8;; thatis, V = (21 + 51, 22+ 32).
Note that, for { € GL(U) and i =1, 2,

8i¢ = (det (€)Y [=iC, 2y .- 0, 2] = [2:C, 2, ..., 2).

It follows that V is a GL(U)-submodule of L + ...+ L3p—; isomorphic to L;. But
V is not an End(U)-submodule because if % is the element of End(U) which sat-
isfies 217 = z; and z7 = 0 on A, then (21 + 81 )y =21 ¢ V. Thus Uzp_y has
a GL (U)-submodule which is not an End (U)-submodule, and so the relatively free
group F3/Xy,(F3) has a characteristic subgroup which is not fully invariant. As proved
in Section 4, F3/A2,(F;) has class 2p — 1. ]

We now move towards the proof of Theorem 3 (in the case where p is odd). Let
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t1, t2, s, t4 be the elements of L,, defined by

ty=[z1,2,..., 2, 23] = [81, z3), t2=]22,2,..., 2, z1] = [82, 1],

ts=[21,2,...,2, 1) = [81, 1), t4=][22,2,...,2, 23] = [82, 22
LEMMA 3. The elements 1), t3, ty and t, are linearly independent,

(t1, ta, ts, ta) N[Lap_1, z1] = (ta, ts)
and (tl, tz, ta, t;) N [Lz,,_l, Zz] = (tl, tq).

PRoOOF: We work inside A and use the fact that the monomials of A form a basis
of A. Let §: A — A be the linear transformation which fixes (z22;)" *z2z? and
z3z1(z122)° ~? but maps all other monomials to 0. Then it is straightforward to verify
that

0 =(p—1)(z221 )’_22333

and 140 = 23z, (212,)P 2.

But clearly v = 0 for all v € [Lzp_1, z1]. It follows that ¢; and t, are linearly
independent and
(t1, ta) N [L2p—1, 21] = {0}.

Similarly, t; and s are linearly independent and
(2, ts) N [L2p—1, z2] = {0}

The result follows. 3]

Let W = (z +t1, —z + ta, ts, ta). Then it is easy to verify that W is an End (U)-
submodule of Lz + L3,. Furthermore, the following result holds.

LEMMA 4. V={velL:|v,z;]e Wfori=1,2}.

PROOF: Clearly [v, z:] € W and [v, z3] € W for all v € V. Conversely, let v be
an element of L such that [v, z;] € W and [v, z2] € W. We shall prove that v € V.

Write v = v; + v2 + ... where v; € L; for all j. Then, for j ¢ {1,2p - 1},
fvj, z1) = 0 and [vj, z3] = 0. Hence v; = 0 for all § ¢ {1,2p —1}. Thus v €
Ly + Lap-y.

Let {s1,...,8,} be any basis for L;p_, where s = [2z1,2,...,2] and
83 = [22,2,...,2] as before. If w € Lyp_; and [w,z;] = 0 then w = 0. Thus
[81, Z1],. - [8n, 1] are linearly independent elements of La,. Since v € Ly + Lap_
we can write

v= 12 + paza+vis1 +...+vp8,
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where u,, pa, v1, ..., ¥n € GF(p). Thus

[v, z1]) = —paz + vi[81, 21] + ... + vn[8n, 1] € W.
It follows that
vi[s1, Z1) + ... + vn[sn, 21] € (t1, 12, ts, ta) O [L2p—1, 21].
But, by Lemma 3,
(ta, t2, ts, ta) N {L2p—1, z1] = ([81, 21}, 82, 21]})-

Thus v; =0 for j > 2 and we can write

v = 121 + 222 + 1181 + V282,
Hence

[v, z1) = —paz + vits + vata = (va — pa)z + vits + va(—2 + t2)

and so (13 — p3z)z € W. But, by Lemma 3, z ¢ W. Thus v; = p;. Similarly, by
consideration of (v, z3], ¥; = p1. Thus

v=ypi(z1+81) + pa(z2 +82) €V,

as required.
We shall now make use of the properties of the maps ¢. given in Section 4. Let
M be the inverse image of V under ¢35_1 and let N be the inverse image of W under
¢2p. Thus
A2p+1(F2) C N C Agp(F2) C M C Agp_1(F3).

Since W is an End (U)-submodule of L; + ...+ Lap, N/Aapi1(F3) is a fully invariant
subgroup of Fa/A2,41(F2), and so N is a fully invariant subgroup of F;. Let G =
F,/N. Then G is a 2-generator relatively free p-group which is nilpotent of class at
most 2p. But

(N72p(F2))p2p = W + Lap # W = Négp.

Thus Nv;,(F2) # N and G has class exactly 2p.

Since V is not an End(U)-submodule of Ly + ...+ Lap_1, M/A3,(F;) is not a
fully invariant subgroup of F3/A2,(Fz). Thus M/N is not a fully invariant subgroup
of G. To complete the proof of Theorem 3 (in the case where p is odd) we shall prove
that Z(G) = M/N.

Let f € M. Then f¢z,-1 € V and so, by Lemma 4, [fé2,-1, 2] € W fori =1, 2.
Thus [f, z;]¢2, € W and so [f, z;] € N for i =1, 2. Thus M/N C Z(G).

Conversely, suppose that f € F; and [f, z;] € N for i = 1, 2. We first prove by
induction on ¢ that f € A (F2) for e=1,...,2p—1. Clearly f € A\;(F2). Suppose
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f € A(F2) where ¢ < 2p—1. Then, since N C Ac42(F32), [f, Zi]pe41 =0 fori=1, 2,
and so [f¢c, zi] = 0 for i = 1,2. Thus fé. = 0 and so f € Ac41(F2). Therefore
f € A2p_1(F3) and we can apply the map ¢2,_1. Thus, for i =1, 2,

[f¢2r-h z,-] = [f» zl']¢2p EW.

By Lemma 4 it follows that f¢2,_;1 € V. Thus f € M. Consequently Z(G) C M/N
and so Z(G) = M/N as required.

6. CHARACTERISTIC 2

Suppose that £k = 2 and p = 2. Let E be as defined in Section 4: thus E is

the image of ;z . It is easily verified that the subspace of E spanned by the elements
z1 +z3 + z and z3 + z2 + z is a GL (U)-submodule but not an End (U)-submodule.
Thus F,/As;(F:) has a characteristic subgroup which is not fully invariant — this is the
example referred to in Section 1. But it does not seem possible to use this example to
create a 2-generator relatively free 2-group of class 3 whose centre is not fully invariant.
It seems necessary to go to a group of class 4. Thus we prove Theorem 3 in the case
p = 2. The proof is similar to that for p odd, but rather easier. We omit some of the
details.

Let V{2) be the subspace of E + L3 spanned by the elements z; + z3 +z+ [z, z1]
and z; + 23 + z + [2, z2]. It is easily verified that V(3) is a GL (U)-submodule but not
an End (U)-submodule.

Let W(3) be the subspace of E + Ls + L4 spanned by

[zr 31] + [z’ Z1, 2:1], [z’ 22] + [z7 T2, 22]’

and
z+ [27 zl] + [z) 32] + [za Zi, 32]'

It is easily verified that W(,) is an End (U)-submodule. Furthermore, it can be proved
that
Viy={vEE+Ly:[v,z] € Wy fori=1,2}.

Let M) be the inverse image of V|;) under ¢3 and let N(;) be the inverse image
of W(3) under ¢,. Then F3/N,) is a 2-generator relatively free 2-group of nilpotency
class 4 with centre M(3)/N(3), which is not fully invariant.
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