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Abstract. We construct a spectral sequence that computes the generalized
homology E∗(

∏
Xα) of a product of spectra. The E2-term of this spectral sequence

consists of the right derived functors of product in the category of E∗E-comodules, and
the spectral sequence always converges when E is the Johnson-Wilson theory E(n) and
the Xα are Ln-local. We are able to prove some results about the E2-term of this spectral
sequence; in particular, we show that the E(n)-homology of a product of E(n)-module
spectra Xα is just the comodule product of the E(n)∗Xα. This spectral sequence is
relevant to the chromatic splitting conjecture.

2000 Mathematics Subject Classification. 55T25, 55N22, 55P60, 18G10, 16W30.

Introduction. The basic tools of computation in algebraic topology are homology
theories. Homology theories preserve coproducts, but can behave very badly on
products. There are examples of homology theories E and sets of spectra (generalized
spaces) {Xα}, for which E∗Xα = 0 for all i and yet E∗(

∏
α Xα) �= 0. Indeed, we can take

E = H�, rational homology, where we have (H�)∗(H�/pk) = 0 for all k, but

(H�)∗

(∏
k

H�/pk

)
=

(∏
k

�/pk

)
⊗ � �= 0

since, for example, the element (1, 1, 1, . . .) is not torsion.
Despite this counterexample, in this paper we build a spectral sequence that

converges to E∗(
∏

Xα) in good cases. The most important good case is when E = E(n),
the Johnson-Wilson theory of great importance in stable homotopy theory. The E2

term of this spectral sequence is made up of the right derived functors of product
applied to {E∗Xα}. Of course, the product is exact in the category of E∗-modules,
so these derived functors are instead taken in the category of E∗E-comodules, where
products remain mysterious.

The usefulness of this spectral sequence will depend on our knowledge of its
E2-term. At this point, the author knows very little about the derived functors∏s

E(n)∗E(n) Mα of product in the category of E(n)∗E(n)-comodules. The most important
conjecture about them is that

∏s
E(n)∗E(n) Mα = 0 for all s ≥ N for some N, so that the

spectral sequence has a horizontal vanishing line at the E2 term (we show that the
spectral sequence does have a horizontal vanishing line at some Er term). We expect
that N is very close to n itself.

We do prove that derived functors of product can be computed using relatively in-
jective resolutions, such as the cobar complex, rather than honest injective resolutions.
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It follows that

E(n)∗
( ∏

Xα
) ∼=

∏
E(n)∗E(n)

E(n)∗Xα

for a family of E(n)-module spectra Xα. We also construct a spectral sequence relating
derived functors of product in the category of E(n)∗E(n)-comodules to derived functors
of product in the category of BP∗BP-comodules. The category of BP∗BP-comodules is
easier to cope with since BP∗BP is connective and free over BP∗. These results give the
author hope that these derived functors will be understood at some point, though at the
moment he does not even understand them in the simple case of E(1)∗E(1)-comodules.

The reason for the author’s interest in this spectral sequence is the chromatic
splitting conjecture [5] of Mike Hopkins. Recall that the simplest form of the chromatic
splitting conjecture is that K(n − 1)∗LK(n)X is a direct sum of two copies of K(n − 1)∗X ,
for X a finite p-complete spectrum. Also recall that LK(n)X is a homotopy inverse limit
holimI (LnX ∧ S/I) analogous to completion at the ideal (p, v1, . . . , vn−1). This result is
due to Hopkins; a precise statement of it can be found in [8, Proposition 7.10]. There-
fore, if one has a spectral sequence for the E(n − 1)-homology of a homotopy inverse
limit, one might be able to compute E(n − 1)∗(LK(n)X) and therefore K(n − 1)∗(LK(n)X).

This approach to the chromatic splitting conjecture is due to Mike Hopkins, and
is based on the work of Paul Goerss [4], who constructed a spectral sequence for the
mod p homology of a homotopy inverse limit of spaces. Hopkins suggested this idea
to Hal Sadofsky and the author after a talk by Goerss. Sadofsky has constructed a
spectral sequence for the E(n)-homology of a homotopy inverse limit, as envisioned
by Hopkins, and has proved some results about it that are relevant to the chromatic
splitting conjecture. Unfortunately, Sadofsky has not yet made a preprint of his work
available.

The author decided instead to begin with the simpler case of products, though
the methods used in this paper can also be used to construct a version of Sadofsky’s
spectral sequence. To the author’s knowledge, Sadofsky has not considered products.
But the author acknowledges his heavy debt to the work of Sadofsky. He also would like
to thank Mike Hopkins for his original suggestion, and Paul Goerss for his paper [4],
without which this paper would never have been written.

1. The modified Adams tower. The first step in constructing a spectral sequence
is to resolve the object one is considering. In our case, the resolution we need is called
the modified Adams tower and is due to Devinatz and Hopkins [3]. The idea is to
mimic the usual construction of an injective resolution using E∗-injectives, where E
is a well-behaved homology theory. We will have to assume that E is a commutative
ring spectrum such that E∗E is flat over E∗; it is well-known [11, Proposition 2.2.8]
that this implies that (E∗, E∗E) is a flat Hopf algebroid and that E∗X is naturally a left
E∗E-comodule for a spectrum X . It also implies that E∗E-comodules form an abelian
category [11, Theorem A1.1.3] with enough injectives [11, Lemma A1.2.2].

The following definition is taken from [3].

DEFINITION 1.1. Let E be a commutative ring spectrum such that E∗E is flat over
E∗. Define a functor D from injective E∗E-comodules to the stable homotopy category
S as follows. Given an injective E∗E-comodule I , consider the functor DI from spectra
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to abelian groups defined by

DI (X) = HomE∗E(E∗X, I).

Then DI is a cohomology functor, so there is a unique spectrum D(I) such that there
is a natural isomorphism

DI (X) ∼= [X, D(I)].

The hypotheses we have given on E are sufficient to define D(I), but apparently
insufficient to compute E∗D(I). For this we need some form of the following definition;
this particular form comes from [6].

DEFINITION 1.2. A ring spectrum E is called topologically flat if E is the minimal
weak colimit of a filtered diagram of finite spectra Xi such that E∗Xi is a finitely
generated projective E∗-module.

Minimal weak colimits are discussed in [7, Section 2.2]. Adams [1, Section III.13]
proves that many standard spectra such as BP are topologically flat; in addition, any
Landweber exact commutative ring spectrum over BP or MU is topologically flat [6,
Theorem 1.4.9]. Note that if E is topologically flat, then E∗E is flat over E∗, since it is
the colimit of projective modules.

The following theorem is a translation of Theorem 1.5 of [3] to this terminology.

THEOREM 1.3. Suppose E is a topologically flat commutative ring spectrum, and
I is an injective E∗E-comodule. Then there is a natural isomorphism E∗D(I) ∼= I.

We can now describe the modified Adams tower. Let E be a topologically flat
commutative ring spectrum, and suppose we have a spectrum X . Let C = E∗X , and
choose an injective resolution

0 → C
η→ I0

τ0→ I1
τ1→ · · ·

of C in the category of E∗E-comodules. Let ηs: Cs → Is denote the kernel of τs, so that
η0 = η.

As explained in [3, Section 1], we can use this resolution of C to build a tower over
X with good properties. More precisely, we have the following lemma, which is easily
proved by induction on n.

LEMMA 1.4. Let E be a topologically flat commutative ring spectrum, let X be a
spectrum, and choose an injective resolution of E∗X as above. Then there is a tower

X = X0
g0←−−−− X1

g1←−−−− X2
g2←−−−− · · ·⏐⏐�f0

⏐⏐�f1

K0 K1

over X satisfying the following properties.
(a) Ks = �−sD(Is).
(b) Xs+1 is the fiber of fs.
(c) E∗Xs ∼= �−sCs.
(d) The map fs is induced by the inclusion Cs → Is.
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(e) E∗gs = 0, and the boundary map Ks → �Xs+1 induces the surjection �−sIs →
�−sCs+1 on E∗-homology.

We call this tower the modified Adams tower for X based on E-homology. Of
course, it actually depends on the injective resolution as well. We obtain a spectral
sequence by applying [Z,−] for any Z to get the modified Adams spectral sequence
of Devinatz [3]; its E2-term is Ext∗∗

E∗E(E∗X, E∗Y ), it is independent of the choice of
resolution from the E2 page on, and in good cases it converges to [Z, LEX ]∗.

2. Products of comodules. In order to understand the spectral sequence for
products of spectra, we need to know a little about products of comodules. So suppose
(A, �) is a flat Hopf algebroid. As mentioned above, basic facts about the category of
�-comodules can be found in [11, Appendix 1], though he does not discuss products. A
more in-depth look at the global structure of the category of �-comodules, including
products, can be found in [6].

The main point of interest here is that the forgetful functor to A-modules does not
preserve products. It is easiest to understand this when � is free over A. In this case,
every element m in a �-comodule M has a diagonal of the form

∑
γi ⊗ mi, where γi

runs through a basis of � as a right A-module, and all but finitely many of the mi are
zero. In the A-module product

∏
α Mα of comodules Mα, there may well be elements

whose diagonal would have to be infinitely long. In fact, when � is projective over A,
the comodule product

∏
� Mα is the submodule of

∏
Mα consisting of those elements

whose diagonal lands in

� ⊗A

∏
Mα ⊆

∏
(� ⊗A Mα).

To construct the product when � is only assumed to be flat over A, one first checks
that ∏

�

(� ⊗A Nα) ∼= � ⊗A

( ∏
Nα

)

for A-modules Nα, where � ⊗A P denotes the extended �-comodule, in which � coacts
only on the � factor. One then constructs

∏
� f α, where f α is an arbitrary map of

extended comodules. Finally, given arbitrary comodules Mα, we have exact sequences
of comodules

0 → Mα ψ→ � ⊗A Mα f α

→ � ⊗A Nα,

where Nα is the cokernel of ψ , and f α is the composite

� ⊗A Mα → Nα ψ→ � ⊗A Nα.

It follows that
∏

� Mα ∼= ker
∏

� f α. Details can be found in [6].
This construction shows that the product of comodules is more complicated

than one would want; in particular, it is not always exact (see the example before
Proposition 1.2.3 of [6]). As a right adjoint, of course, the product is left exact. Since
there are enough injective �-comodules, the product will have right derived functors∏s

� Mα for s ≥ 0. Almost nothing is known about these right derived functors, but they
are what will appear as the E2-term in our spectral sequence.
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For the construction of our spectral sequence, we need the following proposition.

PROPOSITION 2.1. Suppose E is a topologically flat commutative ring spectrum, and
{Iα} is a family of injective E∗E-comodules. Then there is a natural isomorphism

D

(∏
E∗E

Iα

)
→

∏
D(Iα).

Here the notation
∏

E∗E denotes the product in the category of E∗E-comodules.

Proof. Note that
∏

E∗E Iα is again an injective comodule. The functoriality of D
guarantees the existence of this map. Now, if X is an arbitrary spectrum, we have a
chain of isomorphisms[

X, D

(∏
E∗E

Iα

)]
∼= HomE∗E

(
E∗X,

∏
E∗E

Iα

)
∼=

∏
HomE∗E(E∗X, Iα)

∼=
∏

[X, D(Iα)] ∼=
[
X,

∏
D(Iα)

]
.

This gives us the desired isomorphism. �

3. Construction of the spectral sequence. We can now use the modified Adams
towers of Lemma 1.4 to construct our spectral sequence.

THEOREM 3.1. Let E be a topologically flat commutative ring spectrum, and let {Xα}
be a family of spectra. There is a natural spectral sequence E∗∗

∗ ({Xα}) with ds,t
r : Es,t

r →
Es+r,t+r−1

r and E2-term

Es,t
2

∼= (∏s
E∗EE∗Xα

)
t.

This is a spectral sequence of E∗E-comodules, in the sense that each ds,∗
r is a map of E∗E

comodules of degree r − 1. Furthermore, every element in E0,t
2 in the image of the natural

map ⊕
E∗Xα → ∏

E∗E E∗Xα

is a permanent cycle.

Proof. We have modified Adams towers Xα
s for each Xα. Taking the product gives

us the tower below.

∏
Xα

∏
gα

0←−−−− ∏
Xα

1

∏
gα

1←−−−− ∏
Xα

2

∏
gα

2←−−−− · · ·⏐⏐�∏
f α
0

⏐⏐�∏
f α
1∏

Kα
0

∏
Kα

1

By applying E∗-homology, we get an associated exact couple and spectral sequence.
That is, we let Ds,t

1 = Et−s(
∏

Xα
s ) and Es,t

1 = Et−s(
∏

Kα
s ). We define i1: D → D of

bidegree (−1,−1) by is,t
1 = Et−s(

∏
gα

s ), we define j1: D → E of bidegree (0, 0) by
js,t
1 = Et−s(

∏
f α
s ), and we define k1: E → D of bidegree (1, 0) in bidegree (s, t) to be Et−s

of the boundary map
∏

Kα
s → �

∏
Xα

s+1. All of these maps are maps of comodules,

https://doi.org/10.1017/S0017089507003369 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089507003369


6 MARK HOVEY

and therefore the resulting spectral sequence will be a spectral sequence of comodules,
as claimed.

By combining Proposition 2.1 with Theorem 1.3, we see that

Es,t
1

∼= Et−s

( ∏
�−sD

(
Iα

s

)) ∼= EtD

(∏
E∗E

Iα
s

)
∼=

(∏
E∗E

Iα
s

)
t

.

One can easily check that the first differential d1 is
∏

E∗E τα
s , and therefore that the

E2-term is as claimed.
Naturality now follows in the usual way; a collection of maps Xα → Yα induces

non-canonical maps of the injective resolutions in question, and hence the modified
Adams towers. Taking products gives us a map of spectral sequences, which is canonical
from E2 onwards.

Finally, we can also construct a spectral sequence by taking the wedge of the
modified Adams towers of the Xα and applying E∗ homology. This gives a spectral
sequence with Ds,t

1 = (
⊕

Cα
s )t and Es,t

1 = (
⊕

Iα
s )t. The d1 differential is the obvious one,

and so E0,∗
2

∼= ⊕
E∗Xα and Es,t

2 = 0 for s > 0. There is a map from the spectral sequence
to the spectral sequence for the product of the Xα. Anything in the image of this map
of spectral sequences must be a permanent cycle. �

4. Convergence of the spectral sequence. We now discuss the convergence of our
spectral sequence. This is a delicate question, in general, as the example given at the
beginning of the paper shows. However, the spectral sequence always converges when
E = E(n) and each Xα is E(n)-local.

THEOREM 4.1. Suppose E = E(n) and each Xα is Ln-local. Then the spectral sequence
of Theorem 3.1 converges strongly to E(n)∗(

∏
Xα). Furthermore, it has a horizontal

vanishing line at some Er term.

Proof. First note that each Xα
s is Ln-local, since Kα

s = �−sD(Iα
s ) is clearly Ln-local.

Each map gα
s : Xα

s+1 → Xα
s has E(n)∗(gα

s ) = 0. It follows from [10, Theorem 5.10] that
there is an N, depending on n but independent of α, such that each N-fold composite
Xα

s+N → Xα
s is null. Hence each composite

∏
Xα

s+N → ∏
Xα

s is null, giving us our
desired horizontal vanishing line. Hence

limsE(n)∗
(∏

Xα
s

)
= lim1

s E(n)∗
( ∏

Xα
s

)
= 0

so the spectral sequence converges conditionally to E(n)∗(
∏

Xα) [2]. It is also
clear that lim1

r Es,t
r = 0, and so the spectral sequence converges strongly as

well [2, Theorem 7.3]. �

5. Relatively injective resolutions and an application. Although we cannot prove
very much about the derived functors of products, we can at least show that one can
use relatively injective comodules to compute them. This allows us to compute the
E(n)-homology of products of E(n)-module spectra.

PROPOSITION 5.1. Let (A, �) be a flat Hopf algebroid, and suppose Mα is a relatively
injective �-comodule for all α. Then

∏s
� Mα = 0 for s > 0.
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Proof. Since Mα is relatively injective, it is a retract of � ⊗A Mα. It therefore suffices
to show that

∏s
�(� ⊗A Mα) = 0 for all s > 0. To do so, choose an injective resolution Iα

∗
of Mα in the category of A-modules. Since � is flat over A, � ⊗A Iα

∗ is a resolution of
� ⊗A Mα in the category of �-comodules. Furthermore, each � ⊗A Iα

s is an injective
�-comodule [11, Lemma A1.2.2]. Hence∏s

�(� ⊗A Mα) ∼= Hs
( ∏

�(� ⊗A Iα
∗ )

) ∼= Hs
(
� ⊗A

( ∏
Iα
∗
))

.

Since products are exact on the category of A-modules, and since � is flat, these groups
are 0 for s > 0. �

This yields an immediate topological corollary.

COROLLARY 5.2. Suppose Xα is an E(n)-module spectrum for all α. Then

E(n)∗
( ∏

Xα
) ∼=

∏
E(n)∗E(n)

E(n)∗(Xα).

In particular,

E(n)∗
( ∏

E(n) ∧ Xα
) ∼= E(n)∗E(n) ⊗E(n)∗

(∏
E(n)∗Xα

)
.

Proof. Since Xα is an E(n)-module spectrum, it is Ln-local. Furthermore, E(n)∗Xα

is a retract of

E(n)∗(E(n) ∧ Xα) ∼= E(n)∗E(n) ⊗E(n)∗ E(n)∗Xα,

so is relatively injective. Proposition 5.1 then implies that the E2-term of our spectral
sequence is 0 except in bidegree (0, t). It therefore collapses, and we get the desired
isomorphism. �

It also follows, using standard homological algebra, that we can use relatively
injective resolutions to compute the derived functors of product. For example, we can
use the cobar resolution C∗(M) described in [11, Definition A1.2.10].

COROLLARY 5.3. Suppose (A, �) is a flat Hopf algebroid, and {Mα} is a set of
�-comodules. Let C∗(Mα) denote the cobar resolution on Mα. Then∏s

� Mα ∼= Hs ∏
� C∗Mα.

This corollary tells us, for example, that if JMα = 0 for some invariant ideal J and
all α, then J

∏s
� Mα = 0 for all s.

6. B P∗BP-comodules and E(n)∗ E(n)-comodules. In this section, we exploit the
close relationship between BP∗BP-comodules and E(n)∗E(n)-comodules studied in [9]
to get some partial understanding of the product of comodules.

We begin with BP∗BP-comodules, which are easier to handle because BP∗BP is
connective and projective over BP∗. As mentioned in Section 2, the product of a family
{Mα} of BP∗BP-comodules is the submodule of

∏
Mα consisting of those elements

whose diagonal has finite length.

DEFINITION 6.1. A family of BP∗BP-comodules {Mα} is uniformly bounded below
if there is a d ∈ � such that Mα

n = 0 for all n < d and all α.
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The product and its derived functors are particularly simple for a uniformly
bounded below family.

THEOREM 6.2. Suppose (A, �) = (BP∗, BP∗BP), and {Mα} is a family of �-
comodules that is uniformly bounded below. Then∏

� Mα ∼= ∏
Mα and

∏s
� Mα = 0 for all s > 0.

Proof. Since every element of
∏

Mα must have finite diagonal, the first statement is
clear. For the second statement, consider the cobar resolution C∗Mα of Mα by relatively
injective comodules. We have CsMα = � ⊗A �

⊗s ⊗A Mα, so, since � is connective, the
family {CsMα} is uniformly bounded below for each s. We therefore have∏s

� Mα ∼= Hs ∏
� C∗Mα ∼= Hs ∏

C∗Mα = 0

for s > 0, using Corollary 5.3 and the fact that products of modules are exact. �
To relate this to E(n)∗E(n)-comodules, we recall from [9] and [10] the exact functor

�∗ from BP∗BP-comodules to E(n)∗E(n)-comodules defined by �∗M = E(n)∗ ⊗BP∗ M.
The functor �∗ has a fully faithful right adjoint �∗, the composite �∗�∗ is naturally
isomorphic to the identity, and the composite Ln = �∗�∗ is the localization functor
on the category of BP∗BP-comodules with respect to the hereditary torsion theory of
vn-torsion comodules. The functor Ln is left exact, but has right derived functors Lq

n

for 0 ≤ q ≤ n, studied in [10].
As a left adjoint, we do not expect �∗ to preserve products. We do, however, have

the following result.

THEOREM 6.3. Suppose {Mα} is a family of BP∗BP-comodules. Then there is a
natural isomorphism

∏
E(n)∗E(n)

�∗Mα → �∗

⎛
⎝ ∏

BP∗BP

LnMα

⎞
⎠ .

In fact, there is a convergent first quadrant spectral sequence Ep,q
r of E(n)∗E(n)-comodules

with

Ep,q
2

∼= �∗
(∏p

BP∗BP

(
Lq

nMα
)) ⇒ ∏p+q

E(n)∗E(n) �∗Mα.

Proof. Since �∗ is a right adjoint, we have

∏
E(n)∗E(n)

�∗Mα ∼= �∗�∗

⎛
⎝ ∏

E(n)∗E(n)

�∗Mα

⎞
⎠ ∼= �∗

∏
BP∗BP

(LnMα),

as required. The spectral sequence is the Grothendieck spectral sequence for the
derived functors of the composition, described in [12, Section 5.8]. Recall that this
spectral sequence has Ep,q

2 = (RpF)(RqG)(−) and converges to Rp+q(FG)(−), under the
assumption that (RpF)(GI) = 0 for all injectives I and p > 0. In the case at hand, the
functor F is �∗

∏
BP∗BP(−) and the functor G is Ln (applied objectwise to the product

category). Since Ln preserves injectives [10, Corollary 2.4], the Grothendieck spectral
sequence exists. Since �∗ is exact and products of injectives are injective, we can use
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another Grothendieck spectral sequence argument to see that RpF = �∗
∏p

BP∗BP(−).
Similarly, since �∗ is exact and preserves injectives [10, Corollary 2.5], another
Grothendieck spectral sequence argument shows that

Rp+q(FG)(−) = Rp+q
(∏

E(n)∗E(n) �∗
)
(−) = ∏p+q

E(n)∗E(n) �∗(−),

completing the proof. �
This proposition allows us to compute some products of E(n)∗E(n)-comodules.

For example, we have ∏
E(n)∗E(n)

�αE(n)∗ ∼= E(n)∗ ⊗BP∗

∏
�αBP∗,

as long as the α are bounded below. To see this, use the fact that BP∗ is Ln-local [10],
Theorem 6.2, and Theorem 6.3.

In fact, we have ∏s
E(n)∗E(n) �

αE(n)∗ = 0

for 0 < s < n and∏s
E(n)∗E(n) �

αE(n)∗ ∼= �∗
∏s−n

BP∗BP �αBP∗
/(

p∞, v∞
1 , . . . , v∞

n

)
for s ≥ n, again under the hypothesis that the α are bounded below. This follows from
the spectral sequence of Theorem 6.3 and the fact [10] that Lq

nBP∗ = 0 except when
q = 0 and q = n, where

L0
nBP∗ = BP∗ and Ln

nBP∗ = BP∗
/(

p∞, v∞
1 , . . . , v∞

n

)
.

Note that we do not know whether
∏

BP∗BP �αBP∗/(p∞, v∞
1 , . . . , v∞

n ) is all vn-torsion
or not, and therefore we do not know whether

∏n
E(n)∗E(n) �

αE(n)∗ is zero or not.
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