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Abstract

Many fundamental tasks in natural language processing (NLP) such as part-of-speech tagging, text chunk-
ing, and named-entity recognition can be formulated as sequence labeling problems. Although neural
sequence labeling models have shown excellent results on standard test sets, they are very brittle when pre-
sented with misspelled texts. In this paper, we introduce an adversarial training framework that enhances
the robustness against typographical adversarial examples. We evaluate the robustness of sequence labeling
models with an adversarial evaluation scheme that includes typographical adversarial examples. We gen-
erate two types of adversarial examples without access (black-box) or with full access (white-box) to the
target model’s parameters. We conducted a series of extensive experiments on three languages (English,
Thai, and German) across three sequence labeling tasks. Experiments show that the proposed adversarial
training framework provides better resistance against adversarial examples on all tasks. We found that we
can further improve the model’s robustness on the chunking task by including a triplet loss constraint.

Keywords: Tagging; Evaluation; Part-of-speech tagging; Information extraction

1. Introduction

Sequence labeling is a common natural language processing (NLP) task. Many NLP tasks such as
part-of-speech (PoS) tagging, named-entity recognition (NER), and chunking can be formulated
as sequence labeling tasks. The goal of sequence labeling tasks is to assign a categorical label to
each word in a natural language sequence. Recent advancements in NLP have shown that neural
networks can be a very effective sequence labeler. The BiLSTM-CRF architecture is one of the
better-known methods which has become a standard technique for building a sequential tagger
(Huang et al. 2015; Lample et al. 2016). Recent works improve the performance of BILSTM-CRF
models by using contextualized word embeddings (Peters et al. 2018; Akbik et al. 2018, 2019).
These methods have been shown to obtain very high evaluation scores across multiple sequence
labeling tasks. However, sequential taggers are often evaluated only on held-out datasets, and their
performances drop substantially when evaluated against misspelled texts. Misspellings are com-
mon in real-world tasks and can adversely affect the performance of sequential labeling models.
Nevertheless, most NLP systems are not explicitly trained to address spelling errors®.
State-of-the-art machine learning systems are sensitive to subtle changes in inputs. These
small changes can lead to a drastic drop in performance. In computer vision, it has been shown

In this work, we consider both intentional and unintentional spelling mistakes as spelling errors.
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that machine learning models consistently misclassify perturbed examples with differences that
are indistinguishable from the original unperturbed examples (Goodfellow et al. 2015). These
examples are also called adversarial examples. While adversarial examples are more common in
computer vision, recent progress has also been made in NLP as well. Due to the discrete nature
of textual inputs, it is almost impossible to create imperceptible perturbation on textual inputs.
Adversarial examples in NLP are perturbations, such as spelling errors or word substitutions. NLP
systems are also vulnerable to these adversarial examples. Textual adversarial examples have bro-
ken NLP systems for fundamental tasks in NLP such as text classification (Ebrahimi et al. 2018),
machine translation (Belinkov and Bisk 2018), and reading comprehension systems (Jia and Liang
2017).

Previous literature on adversarial examples for NLP systems mostly focuses on text classifi-
cation or machine translation. Few studies on adversarial examples for NLP have been done
for sequential tagging tasks, even though these tasks are fundamental tasks in NLP. They are
the building blocks for many NLP applications, especially applications without enough data to
be trained end-to-end. We will illustrate the importance of studying adversarial examples in
sequential tagging tasks with two use cases:

(1) Privacy protection: consider clinical de-identification, we can apply NER to identify and
remove sensitive information from clinical records (Uzuner et al. 2007; Liu et al. 2017).
Nevertheless, it is possible to train an attacker which changes some characters in the text
to reveal a person’s identity and renders a de-identification system useless.

(2) Improving robustness: adversarial examples are designed to maximize a loss function of
a model. Hence, they provide a worst-case scenario benchmark to test the robustness of a
model. Furthermore, we argue that sequential labeling tasks can provide a deeper under-
standing of robustness against spelling errors. Since sequential labeling tasks come with
annotation for every word in the corpus, we can pinpoint precisely where a sequential
tagger fails.

Previous literature on robust sequential taggers focuses on improving the performance of
sequential taggers on out-of-distribution texts. They rely on adversarial training methods to
improve the robustness of their models by perturbing the embeddings in continuous space instead
of perturbing the input texts (Yasunaga et al. 2018; Zhou et al. 2019). Alternatively, Bodapati
et al. (2019) augment training data with upper-cased and lower-cased sentences to improve the
robustness of the target model. Previous literature on sequential labeling does not consider the
worst-case attacks. These works also define the robustness of sequential taggers by testing them
on social media data (Zhou et al. 2019), on infrequent words (Yasunaga et al. 2018) or on sen-
tences with capitalization errors (Bodapati et al. 2019); however, none of them includes adversarial
spelling errors as a benchmark for robustness. Given that adversarial spelling errors can be inten-
tionally crafted to break a sequential tagger, it is important to use it as one of the benchmarks for
robustness.

In this paper, we aim to build a sequential labeling system that is robust against spelling errors.
Drawing inspiration from computer vision, we apply triplet loss (Schroff et al. 2015) to constrain
the similarity between clean texts and their parallel perturbed texts. We propose an adversarial
training framework that combines an adversarial training technique with a deep metric learning
constraint such as triplet loss. In order to simulate the discrete nature of text, instead of adding
noises to the embeddings layer, we explicitly perturb the textual inputs for adversarial training.
We evaluate the robustness against typographical errors with black-box and white-box adversar-
ial examples to reward robust systems. These adversarial examples are created by generating typos
within an input sequence. Black-box adversarial examples do not assume any access to the model
parameters, and they show us the robustness of the models against typographical errors in gen-
eral. On the other hand, white-box adversarial examples are generated with full access to the model
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parameters to find perturbations that maximize loss for each input sequence. Hence, white-box
adversarial examples can provide an insight towards the worst-case perturbations to the textual
inputs. We experimented on multiple sequential tagging tasks (part-of-speech tagging, named-
entity recognition, and chunking) across 3 languages: English—CoNLL2003 (Tjong Kim Sang
and De Meulder 2003), Thai>—~ORCHID (Sornlertlamvanich et al. 1998), and German—TiiBa-
D/Z (Telljohann et al. 2004). Moreover, we also conducted experiments on datasets with natural
spelling errors to benchmark sequential taggers in real-world settings. Here we show that the pro-
posed adversarial training framework yields substantial gains over the baseline training method
on adversarial test sets on all tasks. In addition, triplet loss can further improve the robustness of
the model on the chunking task.
This paper has two main contributions:

(1) An adversarial framework that improves the robustness of a sequential tagger against
adversarial examples and misspelled data. By incorporating adversarial training with triplet
loss, we propose a novel sequential tagger training technique (AT-T) that constrains the
similarity between clean and perturbed samples (Section 3.3.2).

(2) An adversarial evaluation scheme for sequential tagging tasks that uses both white-
box and black-box adversarial examples to reveal weaknesses of sequential taggers
(Section 3.4).

2. Related work

Before the deep learning era, most sequential tagging models were linear statistical models such
as Hidden Markov Models (HMM) and Conditional Random Fields (CRF) (Lafferty et al. 2001;
Nguyen and Guo 2007; Ratinov and Roth 2009). These sequential labeling models are heavily
dependent on task-specific resources and hand-crafted features to improve their performances. It
is important to highlight that these task-specific resources and features are costly to develop and
often do not apply to other tasks (Ma and Xia 2014).

In recent years, deep learning techniques have been successfully applied to linguistic
sequence labeling tasks without having to rely on hand-crafted features. Current top-performing
approaches often use BILSTM-CRF as a core component in their architectures (Akbik et al. 2018;
Peters et al. 2018; Xin et al. 2018; Yasunaga et al. 2018; Strakova ef al. 2019). By finetuning or using
fixed-features extracted directly from the transformer-based models such as Bidirectional Encoder
Representations from Transformers (BERT), sequential taggers also achieve high performance
scores across multiple sequential labeling datasets (Devlin et al. 2019; Heinzerling and Strube
2019). Other top-performing approaches use differentiable neural architecture search (NAS) to
find an optimal architecture for a sequential tagging task (Jiang et al. 2019). However, these
works have shown a strong performance on held-out datasets. They often overlook the ability
to generalize to out-of-distribution cases such as spelling errors.

Previous literature on adversarial examples has exposed brittleness in machine learning systems
by showing that subtle changes to the input can lead to failures in prediction outcomes (Szegedy
et al. 2014; Goodfellow et al. 2015). While adversarial examples are more common in computer
vision, there is a growing literature in NLP on adversarial examples. For instance, Miyato et al.
(2017) construct adversarial examples by using perturbation on continuous word embeddings
instead of discrete textual inputs. A problem with this approach is that it ignores the discrete
nature of textual data.

In order to apply perturbation to the textual input, Jia and Liang (2017) evaluate the robust-
ness of question-answering systems by adding a generated sentence to distract systems without
changing the correct answer. Gao et al. (2018) introduce a black-box attack for text classifiers by

bFor discussion on the implications of applying sequential tagger on the Thai language, please see Appendix B
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injecting small misspelling errors into a text sequence. Belinkov and Bisk (2018) reveal weaknesses
of character-based neural machine translation (NMT) models by evaluating them on misspelled
texts. Belinkov and Bisk (2018) use rule-based synthetic spelling errors and natural spelling errors
to evaluate the model. Ebrahimi et al. (2018) investigate white-box adversarial examples; they
trick a character-level model by generating adversarial examples by choosing character-edit oper-
ations, such as deletion, insertion, and substitution (“flip”), based on the gradients of the target
model. Michel et al. (2019) enforce constraints on adversarial examples so that they are meaning-
preserving on the source side. Wallace et al. (2019) propose input-agnostic universal adversarial
triggers with white-box access to a model’s parameters. They study adversarial attacks to help
analyze and diagnose NLP systems. Furthermore, Gardner et al. (2020) propose a new evaluation
paradigm by creating contrast sets. A contrast set consists of test instances that are manually per-
turbed by domain experts in order to change their gold labels. This is in contrast to adversarial
examples, where inputs are perturbed to change a model’s decisions but their gold label do not
change. Yet, to our knowledge, there is no adversarial attack framework for sequential tagging
task.

To overcome these weaknesses, previous literature shows that NLP systems with subword-
level or character-level embeddings are able to generalize to out-of-vocabulary words (Ling et al.
2015; Sennrich et al. 2016). Moreover, subword embeddings and character-level embeddings can
help avoid filling up word-level embeddings with a large number of vocabulary. However, NLP
systems with subword-level or character-level embeddings are often trained on clean data, and
their performance drops drastically when they encounter misspelled words (Belinkov and Bisk
2018). Piktus et al. (2019) alleviate this issue by training subword embeddings to be robust against
typographical errors by adding the spell correction loss function to the fastText (Bojanowski et al.
2017) loss function, which allows misspelled data to be incorporated. They benchmark the robust-
ness of their models on misspelled texts by perturbing words in the test set. Their perturbations are
based on spelling errors collected from a search engine’s query logs, which is only publicly avail-
able in English. This is not applicable to other languages without such resources. Belinkov and
Bisk (2018) artificially inject a training set with misspelled variants of each word. This technique
of increasing robustness by training on noisy data is called adversarial training.

Adversarial training (Goodfellow et al. 2015) is a standard method for improving robust-
ness against adversarial examples. It improves the robustness of a model by training on both
unperturbed original examples and perturbed examples. Liu et al. (2020) improve robustness by
including noisy sentences in the training process and also using a loss function to constraint the
similarity between clean and perturbed representations. For sequential tagging tasks, Yasunaga
et al. (2018) improve the robustness of the BILSTM-CRF model on infrequent and unseen words
using adversarial training method. They generate adversarial examples by adding small perturba-
tion to continuous word embeddings. Pruthi et al. (2019) overcome adversarial misspellings on
text classification tasks by using a word recognition model. Liu ef al. (2020) use character embed-
dings, the adversarial training method, and a similarity constraint to improve robustness against
character-level adversarial examples on text classification tasks.

Previous literature on robust sequential taggers focuses on improving the performance of
sequential taggers on out-of-distribution texts. They rely on adversarial training methods to
improve the robustness of their models by perturbing the embeddings in continuous space instead
of perturbing the input texts (Yasunaga et al. 2018; Zhou et al. 2019). Yasunaga et al. (2018)
conduct part-of-speech tagging experiments on multiple languages on the Pen Treebank WS]
corpus (English) and the Universal Dependencies dataset (27 languages). Yasunaga et al. (2018)
find that adversarial training improves overall accuracy. In addition, adversarial training alleviates
over-fitting in low resource languages, and it also increases part-of-speech tagging accuracy for
infrequent and unseen words. Yasunaga et al. (2018) benchmark the robustness of the models on
rare and unseen words. Zhou et al. (2019) focus on NER tasks. They address data imbalance issue
by incorporating label statistics to the CRF loss and combine it with focal loss. Zhou et al. (2019)
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Table 1. The typographical errors for creating adversarial examples. * Note that capitalization error is not
applicable to writing systems without capitalization such as Thai

Typographical error English example Thai example German example
Insertion Indonesia — Indonesiia 550N /bant’om/ — UTINN Laufen — Laufjen
Transposition Indonesia — Indnoesia 550N /bant"om/ — UININ Laufen — Luafen
Deletion Indonesia — Indnesia USTNN /banthom/ — usNN Laufen — Lafen
Substitution Indonesia — Indonedia USTNH /banthom/ — UTTHN Laufen — Laofen
Capitalization™ Indonesia — iINDONESIA Laufen — laufen

benchmark the robustness of the models on user-generated data. (Bodapati et al. 2019) improve
robustness to capitalization errors in NER by using data augmentation. Their data augmenta-
tion technique augments the training set with sentences with all upper-cased characters as well
as sentences with all lower-cased characters. This allows a model to learn to exploit or ignore
orthographic information depending on the contextual information.

The main drawback of previous literature on sequential taggers is that they rely on evaluating
the held-out test sets to benchmark sequential tagging models. This leads to an overestimation
of the models’ performance that neglects their ability to generalize. Recent literature on robust
sequential taggers fills this gap by benchmarking sequential taggers on out-of-distribution texts.
In this work, we extend this idea by benchmarking sequential taggers on adversarial texts to esti-
mate the worst-case scenario. We also explore triplet loss as a training strategy for improving the
robustness of sequential taggers.

3. Methodology

The central idea of this work is that we want to train a robust model against misspelled texts.
An ideal model should perform well on sequence labeling tasks on the normal held-out datasets
and robust against text perturbation. In this section, we discuss methods for creating adversar-
ial examples, our training methods, and an adversarial evaluation scheme that benchmarks the
performance of our models in different scenarios.

3.1. Adversarial examples

Adversarial examples are inputs intentionally designed to degrade the performance of well-trained
models. In this work, we create adversarial examples with textual perturbation to simulate a sce-
nario where a model encounters misspelled text. Table 1 shows five types of typographical errors
used to generate adversarial examples used in this paper. Previous literature used insertion, trans-
position, deletion, and substitution errors in their experiments (Belinkov and Bisk 2018; Heigold
et al. 2018; Karpukhin et al. 2019). Because capital letters are essential features to sequential tag-
ging tasks such as NER (Nebhi et al. 2015; Bodapati et al. 2019), we also add capitalization errors
to our experiment, in which we swap lowercase characters to uppercase characters and vice-versa.
By synthetically altering spellings of words within the existing corpora, we do not have to collect
and annotate new corpora.

We apply the following constraints to ensure that these adversarial examples are intelligible
to humans. We only perturb words with at least four characters. We do not alter the first or last
characters except for transposition and capitalization errors. For transposition error, we do not
alter the first character. For capitalization error, almost all alterations to capitalization do not stop
humans from inferring the original text.
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3.1.1. Black-box adversarial examples

In a black-box setting, we do not assume any access to the model’s parameters. For each word, we
sample a type of perturbation from a discrete uniform distribution. Then, we sample one of all
the possible perturbations of the sampled type from a discrete uniform distribution. Note that we
only use insertion for evaluation only, and we exclude it from adversarial training.

3.1.2. White-box adversarial examples

In a white-box setting, we have full access to the model’s parameters to create worst-case adver-
sarial examples. We extend previous literature (Ebrahimi et al. 2018; Michel et al. 2019; Wallace
et al. 2019) to make it suitable for our work, by including typographical errors as adversarial
inputs. Given an input sequence of n words X = {x1, . . ., x,,}, it is typical to form a vector rep-
resentation x; for each word. We first start by selecting the position i* with the largest gradient
magnitude. Then, we find a word-level adversarial example X for the word x; by satisfying the
following optimization problem:

arg maxLarget (xo, s X1 Xy Xid1s e e ,xn) (1)
xeC
where C is all possible combinations of perturbations for the word x;, and % is one of the possible
perturbations. Ltarget is the target loss function. For all white-box attacks, we use a standard loss
function without auxiliary losses: Lireet. TO save computational cost, Equation (1) can be approx-
ry g P q PP

imated using the first-order approximation as discussed in (Ebrahimi et al. 2018; Michel et al.
2019; Wallace et al. 2019):

arg max [f( - xi]T Vi Ltarget 2)
xeC
As shown in Algorithm 1, at each iteration, we select an index with the largest magnitude.
Then, we perturb the selected index by choosing a perturbation that causes the greatest loss. Then,
we replace the perturbed word to the selected index in the input sentence. We repeat the same
process without perturbing the already perturbed word until every word in the input sequence is
perturbed. The final result is a perturbed text sequence (X)).
Figure 1 illustrates a text sequence collected from the CoONLL2003 test set along with its black-
box and white-box perturbed versions. Figure 1 also includes predictions from the baseline model
(ELMo enhanced BiLSTM-CRE, (Peters et al. 2018)) for the NER task.

3.2. Adversarial training

Adversarial training (AT) is a standard technique for improving the robustness of deep learn-
ing models against adversarial examples. It withstands adversarial attacks by injecting adversarial
examples into training data. We follow a black-box adversarial training procedure, where we aug-
ment a training set with their parallel perturbed text sequences without any internal knowledge
of the target neural networks. We generate adversarial examples using the method discussed in
Section 3.1.1.

At the beginning of every epoch, we dynamically generate black-box adversarial examples for
all the training samples to train the model on both clean examples and typographical adversar-
ial examples. Hence, we would have different data augmentation every epoch. This allows us to
obtain robustness against variety of perturbed input texts. At each training step, we define the loss
function for adversarial training as:

Lar = £clean(0; X, )’) + V'Cperturbed (0; Xp»)/) (3)

where Le0,(0; X, y) and Lyerturbed (0; Xps y) represent the loss from a clean text sequence and
the loss from its perturbed pair, respectively. y represents a sequence of n predictions, where

https://doi.org/10.1017/5S1351324921000486 Published online by Cambridge University Press


https://doi.org/10.1017/S1351324921000486

Natural Language Engineering 293

Algorithm 1: White-box adversarial attack.

Input: Original text sequence (X)
Output: Perturbed text sequence (X,,)
(1. Initialize the list of perturbed words and fill it with indexes of words that will not be
perturbed e.g. words with less than 4 characters )
perturbed_list— @;
foreach word x; in the sequence X do
if |x;| < 4 characters then
‘ perturbed_list « perturbed_list U{i};
end
end
(2. Each iteration, generate an adversarial example and replace the original word with it )
while 3i ¢ perturbed_list do
back-propagate Liarge: to get gradient Vy, Liarget;
" argmax |V, Lurgerll:
ig¢perturbed_list
perturbed_list « perturbed_list U{i*};
X" argmax [X — Xi]T Vi, Liargets

xeC
X[i*] « 2%
end
X, —X;
return X,;
Y= (#1)2: - - .»¥n). 0 represents learnable parameters of the model. y € (0, 1) is a constant weight
(hyperparameter) for the loss from the perturbed text input. We used y =0.2 for all of our
experiments.

3.3. Auxiliary losses

Here we introduce two auxiliary losses used in our experiments: pair similarity loss and triplet loss.
The main idea of these losses is that we want to have control over similarity between an encoded
representation of a clean input text sequence and an encoded representation of a perturbed input
text sequence.

A sequential encoder takes an input sequence of vectors (x;, Xy, . . . , X,) and returns an output
sequence of vectors (hy, hy, ..., h,), which represents information about the sequence at each
step.

By averaging the output representations, we produce a fixed dimensional embedding represen-
tation of a text sequence. Therefore, it is possible to compare similarity between multiple input
sequences of different lengths.

Zihi
s==

4
X (4)

where s is a fixed length sequence encoding vector and |X| is a number of words in the
sequence.
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U-MISC o] o] (o] (o] B-ORG L-ORG| O U-ORG
Spanish|first division match between|Real Madrid|and |Barcelona

(a) original text sequence

uU-mMisC |0 o 0 o} B-ORG L-ORG | O o
sPANISH [fisrt divion MATCH befween|Recl Madrjid|and|Bacrelona

(b) black-box perturbation

U-MISC 0 0 0 o B-PER L-PER o U-PER
SpaNish firrst DIVISION MATCH BETWEEN| Raeal Myadrid| and BarcDelona

(c) white-box perturbation

Figure 1. Our adversarial evaluation scheme (see section 3.4) expands one held-out test set into three parallel test sets:
(1) original test set contains original unperturbed text, (2) black-box adversarial test set contains perturbed samples
generated via black-box adversarial attacks, and (3) white-box adversarial test set contains perturbed samples gener-
ated using gradient-based white-box perturbation. This figure shows real samples collected from three parallel CONLL2003
test sets with predictions from the baseline model (ELMo enhanced BiLSTM-CRF) from a supplementary experiment in
Appendix A. Blue texts and boxes refer to correct predictions. Red texts and boxes refer to incorrect predictions.

We normalize s using L2 normalization since the squared Euclidean distance between two
vectors is related to their cosine similarity when they are normalized to unit length.

° )

7= ——
max ([s|2; €)

where € is a small positive constant value to circumvent division by zero. We used € = 107!2 in
all of our experiments.

3.3.1. Pair similarity loss

We can compute a loss function to constrain the difference between the encoded representa-
tion of a clean input text sequence (z°) and the encoded representation of a perturbed input text
sequence (zP).

Loair= |2 = 2|3 ©6)

A perturbed text sequence is dynamically generated from the clean text sequence as mentioned
in Section 3.1.1; therefore, we would have a different perturbation for each text sequence in each
epoch.

3.3.2. Triplet loss

Triplet loss is often used in retrieval tasks where it is important to measure similarity between two
objects, such as facial recognition (Schroff et al. 2015) and answer selection for question answering
(Kumar et al. 2019). We apply the triplet loss from (Schroff et al. 2015) as an auxiliary loss to
ensure that an encoded representation of a clean text sequence is closer to encoded representations
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Perturbed text
|EU rejcts gERMAN CALL to boycott, BritGish ICamb

lEU rejects German call to boycott British lamb.
Cleantext

|Oldest Albania book disappears from Vatican - paper.
Random text

Figure 2. An example of a triplet from the CoNLL2003 corpus. With triplet loss as a part of training objective, we want the
distance between a clean text sequence and its perturbed pair to be closer than the distance between a clean text sequence
and a random text sequence as illustrated in this figure.

of its perturbed text than a random text sequence:
Lot = |7 =215 = |# = 2[; +e], @)

where z" an encoded representation of a random text sequence and « is a margin between per-
turbed and random pairs. This margin enforces a positive sample to be closer to the anchor (clean
sample) than a random sample. Without «, the loss would be zero when a positive sample and a
random sample have the same distance to the anchor or when a positive sample is only slightly
closer to then anchor. We used o = 0.2 in all of our experiments.

For each triplet, we sample a random text sequence by randomly selecting a sequence from a
training set, excluding the clean text sequence. As shown in Figure 2, we provide an example of
a triplet used for training one of our models; the distance between the clean text sequence and
the perturbed text sequence is smaller than the distance between the clean text sequence and the
random text sequence.

In summary, we experiment with four different training objectives:

1) baseline: L = L ,,,
2) adversarial training (AT): L=C AT

(
(
(3) adversarial training + pair similarity loss (AT-P): L=_Lar+ Lpair
(

4) adversarial training + triplet loss (AT-T): L = L7 + Liriplet

The baseline method is an arbitrary differentiable loss function for a sequence labeling task for
an unperturbed corpus. We use this as a baseline to examine whether we can gain robustness by
changing our training strategy.

AT, AT-P, and AT-T methods are training objective functions that allow us to learn models that
can label clean sequential inputs effectively and also learn to handle texts with typographical errors
at the same time. The AT method presents perturbed text sequences to the model at training time,
making it less susceptible to adversarial examples. As illustrated in Figure 3, the AT-P method is
similar to the work by Liu et al. (2020), but instead of constraining similarity at the embeddings
layer, we constrain similarity between clean and perturbed inputs at the encoder layer. This allows
us to freeze pre-trained embeddings and save on computation time since the expensive forward
pass on the frozen parts will only be computed once for the clean inputs. Figure 4 illustrates our
proposed AT-T framework, which combines adversarial training technique with the triplet loss:
this incorporates all the techniques from the first three methods and extends it by enforcing a
margin between perturbed pair and a negative pair.
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EAT = L‘,dmn(ﬂ; .X, y) + 7£perturbed (6: Xp1 y)

AT Loss

o .

Output Layer Output Layer

A i A
Lnair = ||zC = ZPHZ

Pair Similarity Loss

P L

Encoder Layer Encoder Layer
Embedding Layer Embedding Layer
Original Text Perturbed Text

Figure 3. The AT-P framework for training robust neural networks against typographical adversarial examples. It combines
adversarial training with the pair similarity loss.

Lar = Eci’ean(e; X, y) + 'Yﬁ‘perturbed (95 Xp: 'y)

AT Loss
/ \ Loriptet = [l12° = 27113 - 12° — 2"Il3 + o .
Output Layer Output Layer
Triplet Loss
A A
//7 Y
Encoder Layer Encoder Layer Encoder Layer
Embedding Layer Embedding Layer Embedding Layer
Original Text Perturbed Text Random Text

Figure 4. Our AT-T framework for training robust neural networks against typographical adversarial examples. It incorpo-
rates adversarial training with the triplet loss.

3.4. Adversarial evaluation scheme

Despite strong performances on standard evaluation schemes, current sequential tagging systems
perform poorly under adversarial evaluation. To determine whether sequential tagging systems
can handle inputs with spelling errors, we use an adversarial evaluation scheme that contains
parallel test sets with altered input texts.

https://doi.org/10.1017/5S1351324921000486 Published online by Cambridge University Press


https://doi.org/10.1017/S1351324921000486

Natural Language Engineering 297

We cannot directly evaluate the robustness of the models from the standard test sets. Therefore,
it is necessary to simulate an environment where there are typographical errors. We do this by
injecting typographical errors into our test sets. We generate typographical errors by using black-
box and white-box methods as discussed in Sections 3.1.1 and 3.1.2. In order to demonstrate the
ability to generalize to a different adversarial spelling error distribution, we exclude insertion per-
mutation from the training data and use it only on our adversarial test sets. In addition, Jayanthi
et al. (2020) show that insertion attack is the most effective permutation against their adversarial
defense systems.

Our adversarial evaluation scheme tests whether NLP systems can tag text sequences that con-
tain perturbed parallel text sequences without changing the original labels, while it also evaluates
whether our models can maintain their performance on unperturbed texts. We propose that an
evaluation scheme should evaluate models on three parallel test sets:

(1) original test set: We evaluate the models on an original test set without any perturbation
to ensure that our models can also perform well on unperturbed texts.

(2) black-box adversarial test set: We alter and replace the original test set with black-box
adversarial examples. A test set with black-box adversarial examples can show us the
robustness of the models against typographical errors in general. A perturbation for each
word is selected without access to the model’s parameters.

(3) white-box adversarial test set: We alter and replace the original test set with gradient-
based white-box adversarial examples. Instead of sampling a perturbation from a discrete
uniform distribution, the white-box adversarial attack method selects an adversarial exam-
ple using knowledge of the model’s parameters to maximize the loss. Since there are
multiple ways to generate an adversarial example for each word, the white-box adversarial
attack method allows us to approximate the worst perturbation.

An example from each parallel test set can be found in Figure 1.

4. Experiments

In this section, we discuss the experimental setup, evaluation metric, and corpora used for training
our sequence labeling models.

4.1. Experimental setup

Here we discuss the experimental setup details. First, we explain the setup for the main sequential
tagger model used in all of our experiments. Then, we discuss spelling correction, a traditional
method to combat spelling errors.

4.1.1. Main model
Our experiments rely on ELMo enhanced BiLSTM-CREF sequential tagger (Peters et al. 2018) as
a baseline for comparison since it can exploit character-level information as well as contextual
information, making it suitable for dealing with misspelled texts. In addition, El Boukkouri et al.
(2020) suggest that ELMo’s character-CNN module is more robust against spelling errors than
BERT’s wordpiece system.

We follow the AllenNLP (Gardner ef al. 2017) implementation of this model. As shown
in Figure 5, the ELMo enhanced BiLSTM-CRF sequential tagger’s embedding layer concate-
nates 1024-dimensional pre-trained ELMo embeddings (512 dimensions for each direction) with
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Figure 5. ELMo enhanced BiLSTM-CRF sequential tagger Peters et al. (2018) uses both context-independent representa-
tion and contextual representation. In this figure, the word representation for “Spanish” is the concatenation between
context-independent word embeddings (CNN character representation and static word embeddings) and contextual word
embeddings (ELMo).

50-dimensional static word embeddings (we use pre-trained GloVe when it is available for the
language.) and 128 dimensional CNN character representation to create a token representation.
The CNN character representation takes in 16-dimensional embeddings of each character and
uses 128 convolutional filters of size three with ReLU activation and max-pooling. The character
representation contains morphological information of each token, and the static word embed-
dings contains context-independent word-level information, while ELMo captures contextual
information.

The token representation is forwarded to two stacked BiLSTM layers with 400 hidden units
(200 hidden units for each direction) in each layer. The second BiLSTM layer’s output is passed to
a CRF model to predict a label for each token in the input sequence. The dropout rate between each
layer is 0.5 (including dropout between the first and the second BiLSTM layer). During training,
the parameters are optimized using Adam optimizer with a constant learning rate of 0.001. The
gradient norms are rescaled to have a maximum value of 5.0. The pre-trained ELMo embeddings
are not fine-tuned. We train all the models in this research for 40 epochs and use early stopping
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to stop training after 10 epochs with no improvement on the clean validation set. We report the
averaged score across three runs with different random seeds.

Since there is no standard pre-trained ELMo or GloVe for Thai, we used ELMo° trained from
scratch with the word segmented data from the ORCHID (Sornlertlamvanich et al. 1998) training
set. We trained the Thai ELMo on bidirectional language models’ objective for 40 epochs. We also
replaced GloVe with randomly initialized Thai word embeddings of the same dimensional size.

4.1.2. Spelling corrector

To compare our proposed methods with a traditional solution to spelling errors, we also include
additional experiments where we preprocess adversarial examples with a spelling corrector at test
time. A spelling corrector detects spelling mistakes and replaces them with correctly spelled words.
We utilize Peter Norvig’s algorithm? for spelling correction, considering that the off-the-shelf
softwares that implemented this algorithm are widely available in multiple languages, including
Thai. For English and German, we use pyspellcheker®. For Thai, we use PyThaiNLP",

4.2. Evaluation metric

We benchmark our models in three different environments as discussed in section 3.4. We evalu-
ate the performance of our models using the F; metric:

2 x precision x recall
b= — ®)
(precision + recall)

For sequential labeling tasks that a tag can span across multiple words, such as NER and chunking,
a prediction is considered correct only if it is an exact match of a corresponding span in the corpus.
A span is a unit that consists of one or more words. Part-of-Speech tags do not span over multiple
words; therefore, we can calculate F; score at word-level.

4.3. Corpora

In this paper, we present the results obtained from seven benchmarks across four corpora:
CoNLL2003 (NER, English), CoNLL2003 (chunking, English), CoNLL2003 (PoS, English),
ORCHID (PoS, Thai), TiBa-D/Z (PoS, German), Twitter-41 (PoS, Thai), and Misspelled TiiBa-
D/Z (PoS, German).

CoNLL2003 is a language-independent named-entity recognition corpus (Tjong Kim Sang and
De Meulder 2003). It contains data from two European languages: English and German. Only
English data are freely available for research purposes. Therefore, we only use the English ver-
sion in this study. Apart from NER annotations, CONLL2003 also contains part-of-speech and
syntactic chunk annotations.

ORCHID (Open linguistic Resources CHanneled toward InterDisciplinary research) is a Thai
part-of-speech tagged corpus developed by researchers from National Electronics and Computer
Technology Center (NECTEC) in Thailand and Communications Research Laboratory (CRL)
in Japan (Sornlertlamvanich et al. 1998). ORCHID contains texts from technical papers that
appeared in the proceedings of NECTEC annual conferences. The ORCHID corpus is freely

“We used the TensorFlow implementation of the pre-trained biLM for ELMo by AllenNLP (https://github.com/
allenai/bilm-tf). We also provide the hyperparameters for training the Thai ELMo model and the model’s weights
(https://github.com/c4n/elmo_th).

dhttps://norvig.com/spell-correct.html
Chttps://pypi.org/project/pyspellchecker/
fhttps://pythainlp.github.io/
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Table 2. Data statistics of the English CoNLL2003, the Thai ORCHID, and the German TiiBa-D/Z corpora (training
set/validation set/test set). T - For English and German, an input sequence is a sentence. For Thai, an input sequence is
a paragraph

CoNLL2003 ORCHID TiBa-D/Z
Language English Thai German
Task PoS/NER/Chunking PoS PoS
# of classes 44/4/9 47 54
# of input sequencest 14,987/3,466/3,684 925/103/115 15,000/5,000/5,000
# of words 203,621/51,263/46,425 274,006/25,401/43,226 274,729/91,843/93,409
# of characters 890,042/224,197/200,112 1,187,721/107,512/190,394 1,438,304/480,381/489,490
avg. char/word 4.4/4.4/4.3 4.3/4.2/4.4 5.2/5.2/5.2

available. ORCHID segments each text into paragraphs and sentences. Since the Thai sentence
segmentation standard is still under development, we use each paragraph as an input sequence
instead. Also, Thai has no explicit word boundary; therefore, we use gold segmentation provided
by the Thai ORCHID corpus to define our word inputs. We split 10% of the ORCHID corpus for
testing. Then, we split the remaining corpus into a training set (90%) and a validation set (10%).

TiiBa-D/Z (Telljohann et al. 2005) is a German treebank developed by the Division of
Computational Linguistics at the Department of Linguistics of the Eberhard Karl University of
TUbingenen, Germany. It contains POS tags as well as annotation for misspelled words. We use
TiBa-D/Z version 11. TtiBa-D/Z is a large dataset. There are 104,787 sentences and 1,959,474
tokens in the corpus, this is almost 10 times the amount of words in the CoNLL2003 training set,
which might not be feasible for our experiments. Therefore, we sampled some of the sentences in
the corpus for the experiments.

Table 2 shows the detailed statistics of the three corpora. For the CoNLL2003 corpus, the
number of classes does not include the class “O” for non-named entities or non-syntactic
chunks.

For each corpus, we use a separated set of characters for creating insertion and substitution
errors. For the English CoNLL2003 and the German TuBa-D/Z corpora, we use all alphabets,
both lowercase, and uppercase. For the Thai ORCHID, we use all the Thai consonants, the vowels,
and the tonal marks.

In addition to the standard corpora, we extend our experiments by benchmarking on real
datasets with natural misspelling errors. Table 3 shows the data statistics of the following corpora.

Twitter-418 is a small Thai twitter dataset with Universal POS tags" that we collected to bench-
mark the ability of sequential taggers to handle out-of-domain and misspelled data. Each text
sample contains at least one spelling error. We use ORCHID word segmentation standard for
this dataset. All ORCHID POS tags can be converted to Universal POS tags; this allows us to test
sequential taggers trained on ORCHID data.

Misspelled TiiBa-D/Z (Telljohann et al. 2005) includes all sentences with annotated spelling
errors in the TiiBa-D/Z corpus. We separated these misspelled sentences from the TtiBa-D/Z cor-
pus for benchmarking purpose. Hence, they do not appear in training, validation, and TiiBa-D/Z
test set. The Misspelled TiiBa-D/Z test set allows us to assess a sequential tagger’s performance on
in-distribution data with a small amount of spelling errors. There are 4706 misspelled words out
of 115,801 words.

Shttps://github.com/c4n/thai-political-tweets
hhttps://universaldepenclencies.org/ u/pos/ Petrov et al. (2012)
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Table 3. Data statistics of datasets with natural misspelling errors: Twitter-41 and
Misspelled TiiBa-D/Z

Twitter-41 Misspelled TiiBa-D/Z

Language Thai German

Task PoS PoS

# of classes 16 54

# of input sequences 41 4,319

# of words 965 115,801

# of characters 3,472 620,764

avg. char/word 3.6 5.4

5. Experimental results

We performed experiments over three sequence labeling tasks across three languages to better
understand the relative importance of our training objectives. We investigated the robustness of
sequential taggers through a series of black-box and white-box attacks. We only use insertion
perturbation to generate adversarial examples for evaluation. And we use transposition, deletion,
substitution, and capitalization (for English and German) to generate adversarial examples for
adversarial training. This allows us to test whether our adversarial training methods can generalize
to different spelling error distributions. In addition, to test the ability to generalize on real-world
data, we also benchmarked our methods on real datasets that contains natural spelling errors.

Table 4 illustrates the effectiveness of our adversarial attack methods. The baseline method
performs much worse on white-box adversarial examples than black-box adversarial examples,
indicating that white-box attacks can generate stronger adversarial examples. This suggests that
we can select a misspelling variant that is more damaging than the others. It is important to point
out that the NER task is more sensitive to typographical errors than the chunking and PoS tasks.
For the CoNLL2003 corpus, the differences between F; scores on black-box and white-box test
sets are much higher for the NER task. The degradation of the F; scores—when evaluated on
noisy test sets—seems to be less severe for the chunking and PoS tasks. For the Thai ORCHID and
the German TuBa-D/Z corpora, the gap between F) scores on the black-box and the white-box
test sets is much closer than the CoONLL2003 corpus.

Comparing to the baseline, AT, AT-P, and AT-T can improve the robustness against misspelled
text without degrading its performance on the original texts. AT, AT-P, and AT-T can all maintain
competitive results on the original test sets compared to the baseline method. The AT-T method
outperforms all other methods on both black-box and white-box test sets for the chunking task.

Furthermore, we also provide average cosine similarity scores between clean-perturbed pairs
(2% 2P) and clean-random pairs (2%, z") as shown in Table 5. This reveals the effectiveness of our
similarity constraint techniques: pair similarity loss and triplet loss. Ideally, we want the cosine
similarity score of a clean-perturbed pair to be high, and the cosine similarity score of a clean-
random pair to be low.

5.1. Effects of adversarial training

We examined the performance of the models trained by the AT method compared to the base-
line method. Table 4 indicates that adversarial training is a very effective method for improving
the robustness of sequential labeling models against typographical adversarial examples across all
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Table 4. F; scores and associated standard deviations on the English CONLL2003, the Thai ORCHID, and the
German TiiBa-D/Z corpora. The black-box and white-box adversarial test sets only contain insertion perturba-
tion. We use the rest of the perturbation types for adversarial training. We averaged the scores across three
runs with different random seeds and calculated their standard deviations. A bolded number refers to the best
F-1 score for each task in each test set. An underlined number denotes statistical significance against all other

models for all random seeds using McNemar’s Test (p-value <= 0.05)

w/spelling correction

w/spelling correction

Original Black-box White-box Black-box White-box
CoNLL2003 (English, NER)
Baseline 91.72+0.24 52.23 +4.07 39.01+1.92 86.35+0.57 83.95+0.20
AT 92.05 + 0.04 80.17 +0.38 74.61 £ 0.99 88.21+0.16 88.39 £+ 0.99
AT-P 91.85+0.18 79.32+1.09 72.32+2.69 87.87+£0.07 88.27+0.20
AT-T 91.75+£0.18 79.75 £ 0.40 74.20 £ 1.06 88.21+0.16 88.30 £0.39
CoNLL2003 (English, Chunking)
Baseline 91.97 + 0.08 73.14+£0.87 66.04 + 0.97 87.34 £ 0.07 86.47 £0.10
AT 91.83+0.13 83.82+0.74 78.94 +1.41 87.88+0.71 87.02+0.12
AT-P 91.82£0.15 84.27+£0.16 80.05 £ 0.36 87.85£0.09 86.99 £0.16
AT-T 91.75+0.08 84.55+0.62 80.57 +1.18 88.04 +0.14 87.26 £ 0.15
CoNLL2003 (English, PoS)
Baseline 95.83 + 0.05 83.11 £ 0.47 78.04 £0.74 92.95+£0.13 93.29 £0.22
AT 95.64 £ 0.01 91.21 +0.01 8914:t003 9314:t001 9406:t018
AT-P 95.60 + 0.04 91.194+0.16 88.61+0.28 93.11+0.07 93.47 +0.02
AT-T 95.57 £0.05 91.06 £ 0.07 88.55 £ 0.05 93.14 £ 0.03 93.61£0.16
ORCHID (Thai, PoS)
Baseline 93.98 £0.05 78.10+0.37 75.05+0.63 93.42+0.49 92.87+0.18
AT 94.09 £+ 0.10 90.04 +0.18 86.66 + 0.62 94.24 £ 0.05 94.33 +0.29
AT-P 93.88 £0.05 88.67 :t 0.75 84.19 £ 0.66 94.21 £0.13 92.70 :I: 0.06
AT-T 94.02 +0.08 89.77 £ 0.44 85.33+0.50 94.36 + 0.04 93.17 £ 0.09
TlBa-D/Z (German, PoS)
Baseline 99.07 £ 0.02 75.85+0.01 71.59 £0.83 96.12 £ 0.04 94.99 £ 0.18
AT 99.05 + 0.02 92.15+0.02  88.43 +0.59 96.76 £+ 0.04 95.90 + 0.08
AT-P 99.04 £0.01 91.79£0.01 87.36 £ 0.60 96.83 +0.03 95.77 £ 0.08
AT-T 99.03£0.01 91.89+£0.01 88.18 :I: 1.00 96.73 £0.03 95.66 £ 0.10
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Table 5. Average cosine similarity scores between clean-perturbed pairs and clean-random
pairs. We averaged the cosine similarity scores and their standard deviations across three runs
with different random seeds. We want the similarity between each clean-random pair to be
high and the similarity between each clean-random pair to be low. 1 - This shows a difference
between the average cosine similarity scores of clean-perturbed pairs and clean-random pairs

for each model

Clean-perturbed pair Clean-random pair A avgsim. t
CoNLL2003 (English,NER)
Baseline 0.7704 £ 0.0140 0.5874 + 0.0275 0.1830
AT 0.7501 £ 0.0043 0.5424 £+ 0.0056 0.2077
AT-P 0.8520 + 0.0039 0.8134 +0.0109 0.0385
AT-T 0.7103 £ 0.0079 0.2877 +0.0216 0.4226
CoNLL2003 (English, Chunking)
Baseline 0.7745 £+ 0.0015 0.6721 £ 0.0026 0.1024
AT 0.7674 £ 0.0142 0.6575 + 0.0209 0.1099
AT-P 0.8465 + 0.0002 0.8088 £ 0.0003 0.0377
AT-T 0.7013 £ 0.0146 0.3738 + 0.0347 0.3275
CoNLL2003 (English, PoS)
Baseline 0.6597 £ 0.0042 0.3770 4 0.0043 0.2827
AT 0.6594 £ 0.0060 0.3635+0.0118 0.2959
AT-P 0.8202 + 0.0041 0.6922 + 0.0164 0.1280
AT-T 0.6483 £ 0.0018 0.2645 + 0.0074 0.3837
ORCHID (Thai, PoS)
Baseline 0.7173 £ 0.0068 0.3800 £ 0.0164 0.3373
AT 0.7218 & 0.0059 0.3782 + 0.0128 0.3436
AT-P 0.7934 + 0.0019 0.5317 £ 0.0079 0.2618
AT-T 0.7437 £ 0.0060 0.3643 +0.0111 0.3795
TBa-D/Z (German, PoS)
Baseline 0.6582 + 0.0177 0.5454 + 0.0212 0.1128
AT 0.6969 £ 0.0100 0.5480 £ 0.0142 0.1489
AT-P 0.8619 + 0.0020 0.8022 4 0.0041 0.0597
AT-T 0.6997 £ 0.0187 0.4440 + 0.0347 0.2557
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tasks on both black-box and white-box test sets. The adversarial training method also maintains
competitive results on the original test sets.

For the English CONLL2003 corpus, adversarial training obtains the best result on all test sets
for the PoS tagging and NER tasks. For the Thai ORCHID corpus, the AT method obtained the
best scores on all test sets. For the German TiiBa-D/Z corpus, adversarial training obtains the best
results on the black-box test set and the white-box test set. The differences between the F; scores
of black-box and white-box test sets are lower for the PoS tagging task on the ORCHID corpus
and the TiBa-D/Z corpus than the CoNLL2003 corpus.

Table 5 shows that adversarial training slightly improves the similarity between the encoded
sequence representations of clean-perturbed pairs.

5.2. Effects of pair similarity loss

We investigated the performance of the models trained by the AT-P method compared to the
AT method. The AT-P method improves the performance by constraining the similarity between
original texts and perturbed texts. Table 4 shows an improvement on black-box and white-box test
sets only on the chunking task. The AT-P method can also maintain competitive results on the
original test sets. The results suggest that, for the chunking task, we can improve the robustness
against typographical errors by constraining the similarity between original and misspelled text
sequences.

Table 5 shows that the pair similarity loss improves the similarity between the encoded
sequence representations of clean-perturbed pairs substantially. However, it also increases the
similarity between clean-random pairs for which we want to keep low.

5.3. Effects of triplet loss

We observed the performance of the models trained by the AT-T method compared to the AT and
AT-P methods. Triplet loss minimizes the distance between clean text sequence and its parallel
perturbed text sequence and maximizes the distance between clean text sequence and a random
perturbed text sequence. Table 4 indicates that the AT-T method outperforms the AT and AT-
P methods on both black-box and white-box test sets on the chunking task. The AT-T method
maintains competitive results on all original test sets and achieves better scores comparing to the
AT-P method on all adversarial testsets except for the ConLL2003 PoS task. However, comparing
to the AT method, the AT-T method does not improve the PoS tagging and NER performances.

Regarding the fact that both AT-P and AT-T methods did not provide a clear improvement
over the AT method, we can conclude that our sequence-level similarity constraints can improve
the performances over adversarial test sets only for the chunking task. It does not improve the
robustness over adversarial examples for the PoS tagging and the NER tasks. Note that a span
can be a large portion of the sequence; therefore, chunking can benefit more from sequence-level
similarity constraints.

Table 5 shows that triplet loss lowers the similarity between clean-random pairs. However, it
does not improve the similarity between the encoded sequence representations of clean-perturbed
pairs. Nevertheless, the gaps between the similarity scores between clean-perturbed pairs and
clean-random pairs are larger with triplet loss.

5.4. Effects of spelling correction

We found that using a spelling corrector at test time can tremendously improve the robust-
ness over adversarial test sets. It is more effective than any of the adversarial training meth.ds
we proposed. Nevertheless, all of our methods (AT, AT-P, AT-T) can boost the robustness for
all tasks when combined with the spelling corrector. However, on the real misspelled datasets,
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Table 6. F; scores and theirs standard deviations on the Thai Twitter-41 and the German T(iBa-D/Z (mis-
spelled) corpora. We averaged the scores across three runs with different random seeds and calculated their
standard deviations. A bolded number refers to the best F-1 score for each task in each test set. An underlined
number denotes statistical significance against all other models for all random seeds using McNemar’s Test
(p-value <=0.05)

w/spelling correction w/spelling correction

Twitter-41 Misspelled TliBa-D/Z Twitter-41 Misspelled TuBa-D/Z
Baseline 68.84 +0.87 98.18 +0.01 68.84 +0.85 97.76 + 0.04
AT 69.33 +1.22 98.17 £0.02 69.12 £ 1.25 97.85 + 0.04
AT-P 68.81 + 0.66 98.21+0.01 68.74 £ 0.59 97.69 £ 0.03
AT-T 69.08 £ 0.26 98.15+0.01 69.15 +0.18 97.68 £ 0.03

the spelling corrector does not improve the performance and can hinder the performance of
sequential taggers.

5.5, Real datasets

To test the ability to improve the robustness in real data, we benchmarked our methods on two
datasets. Since there is no need to exclude a perturbation type and keep it for evaluation, we use
all the perturbation types to train the AT, AT-P, and AT-T methods to benchmark them on the real
datasets.

Twitter-41 is a Thai social media dataset where each tweet contains at least one spelling error.
Misspelled TiiBa-D/Z contains all misspelled samples in the TiiBa-D/Z corpus. Twitter-41 illus-
trates the models’ performance on misspelled out-of-domain data, while the misspelled TtiiBa-D/Z
corpus reveals the performance on misspelled in-domain data.

Table 6 shows the results on the real datasets. Since the result of each model is similar to each
other, we confirm the result using McNemar’s test. Each model was trained on three different
random seeds. For each model pair that we want to compare, we run nine McNemar’s tests to
confirm the result.

On the Twitter-41 dataset, we found that the AT and the AT-T methods’ improvements over
the baseline model are not significant. This suggests that our methods do not generalize to out-of-
domain data with natural spelling errors.

Our methods do not improve the performance on the misspelled TiiBa-D/Z, since the mod-
els’ performances on the misspelled TtiBa-D/Z are already over 98 F1-score, leaving little room
for improvement. The spelling corrector does not improve the performance on both corpora
and could hinder the performance of the sequential taggers. Although the results on Misspelled
TuBa-D/Z with spelling correction have a poorer performance, the AT method can boost the per-
formance on spelling corrected data with a statistically significant result for all nine McNemar’s
tests against the baseline model.

The results on real datasets show that there is still a gap in improving the robustness for real
world examples.

6. Error analysis

In this section, we examine which classes are harder to predict when there are misspelling errors.
Studying errors on sequential labeling tasks has an advantage because we can analyze word-level
errors by comparing them to their ground truths and whether they are affected by typographical
errors. Therefore, we can study the impact of misspelling errors in each test set. For each task, we
select top 5 categories with highest number of perturbations. We analyze white-box adversarial
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test sets since they simulate a worst-case scenario for each model. For each dataset, first, we
discuss the impact of white-box adversarial examples on the baseline model. Then, we discuss
how adversarial training methods can improve the robustness over these adversarial examples.

Table 7 shows the error rates of top five most frequent classes with adversarial examples, and
the numbers of perturbed words for the top five classes are shown in Table 8. We compare the
error rates between original and white-box test sets. The baseline model is trained on unperturbed
texts only. As shown in Table 7, the baseline model is most sensitive to white-box adversarial
examples. However, there are classes where adversarial attack is more damaging.

CoNLL2003 (NER): Interestingly, the baseline is more sensitive to adversarial examples for
the location (LOC) class than other classes. However, it has less error rate for LOC comparing
to organization (ORG) and miscellaneous (MISC). The baseline model is also sensitive to person
(PER) adversarial examples. Excluding the non-entity class (O), PER has the lowest error rate on
the original test set. However, its error rate exceeds the ORG class which performs much poor in
the original test set. The adversarial training methods (AT, AT-P, AT-T) improve the error rate
for adversarial examples substantially, especially for the LOC class. MISC adversarial examples
have the highest error rate for all adversarial training methods. On the other hand, the non-entity
class (O) has a very low error rate for adversarial examples. This suggests that our methods can
segregate named-entity classes from non-entity class.

CoNLL2003 (Chunking): For the white-box adversarial evaluation, the baseline model has the
highest error rates for all classes except for noun phrase (NP), where it has the lowest error rate
(2.63%) comparing to other methods. Moreover, there is a class imbalance in the data, 60.9% of all
words in the training data are annotated with an NP tag. This suggests that there is a bias towards
NP. In addition, NP also has a larger range of vocabulary comparing to other classes. This makes
it less likely to overfit.

On the original dataset, the baseline model has a lower error rate (4.56%) for prepositional
phrase (PP) than verb phrase (VP), adverb phrase (ADVP), and adjective phrase (ADJP). But
despite that, for adversarial examples, PP has the highest error rate for the baseline model
(98.49%). The following prediction examples of the baseline model, on the original text (1) and
the perturbed text (2), show two errors caused by adversarial examples:

(1) Despite winning the Asian Games title two years ago
PP VP NPNP NP NP NPNP ADVP

(2) * Dhespite wQinning the AsZian Glames tiZtle two yeaprs ago
NP VP NP NP NP VP NP NP ADVP

Since vocabulary for preposition is more limited than other classes, it is easier to fool the model
by injecting spelling errors. Our adversarial methods help reduce the error rates on adversarial
examples, the AT-T method alleviates the error rate of PP from 98.49% to 51.25%. However, there
is still a big gap for improvement.

CoNLL2003 (POS): For adversarial examples, the baseline model has the worst performance
on the adjective class (J]) and gives a poorer performance to the singular noun class (NN) com-
pared to the plural noun class (NNS). The plural noun class often contains a morphological clue
(the letter “s” at the end of the word), since we are evaluating only on insertion perturbation, the
adversarial examples can still contain the clue for NNS. Despite the fact that the cardinal number
class (CD) has the lowest error rate on the original dataset for all methods, it is not the class with
the lowest error rate on white-box adversarial evaluation.

(1) Fourteen years after he bludgeoned
CD NNS IN PRP VBD

(2) = Fjourteen yeaers axfter he bludgeConed
NNP NNS RB PRPVBD
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Table 7. Error rates on perturbed words: We calculate the error rates at word-level only. We excluded non-
perturbed words from the calculation. Only top five classes with the highest number of perturbed words are
shown in this table.

Original White-box

CoNLL2003 (NER) 0 PER  ORG LOC MISC 0 PER  ORG LOC MISC
baseline 132 323 8.28 794 1845 20.14 4469 36.64 73.87 61.26
AT 1.22 3.20 9.3 6.38  18.20 2.44 16.24 30.39 33.69 39.80
AT-P 1.24 3.44 9.50 6.20 19.08 4.23 2148 2945 29.40 44.39
AT-T 1.24 3.58 1029 697 18.71 3.40 17.75 29.42 32.58 40.60
CoNLL2003 (CHUNK) NP VP PP ADVP  ADJP NP VP PP ADVP  ADJP
Baseline 1.47 7.64 456 2476 34.59 2.63 67.76 98.49 91.56 86.48
AT 158 6.68 3.64 24.01 35.05 352 3110 54.05 7565 7274
AT-P 1.84 7.21 453 23.25 32.42 443 29.50 57.17 66.26 69.76
AT-T 1.60 795 460 2778 36.43 3.85 31.27 51.25 69.27 69.64
CoNLL2003 (POS) NNP NN JJ NNS Ccbh NNP NN JJ NNS CcDh

Baseline 4.24 832 16.55 6.35 2.64 9.40 51.16 66.52 3299 23.59
AT 4.08 8.19 15.63 641 2.02 7.22 26.30 42.05 15.49 1345
AT-P 568 897 1581 6.80 2.06 1126  30.84 4565 1815 13.66
AT-T 5.25 8.83 17.50 6.50 2.08 10.48 30.04 48.85 1898 12.78
ORCHID (POS) NCMN VACT VSTA JSBR NPRP NCMN VACT VSTA JSBR NPRP
baseline 3.55 571 1591 17.13 22.98 17.55 61.78 86.21 83.20 44.58
AT 4.42 5.48 15.69 16.63 15.83 11.52 29.95 42.20 39.63 27.76
AT-P 5.38 5.85 1891 20.41 18.54 1527 3236 55.04 5056 33.21
AT-T 477 6,52 1895 1845 22.66 13.65 34.09 49.81 4532 38.22
TiBa-D/Z (POS) NN ADJA NE ADV  VVFIN NN ADJA NE ADV  VVFIN
Baseline 0.77 0.86 4.05 2.33 0.93 2438 40.69 28.79 83.02 38.99
AT 0.69 0.86 2.33 4.64 0.69 7.54 10.49 4331 26.08 14.07
AT-P 0.89 0.96  4.27 2.74 1.08 9.83 14.17 27.56 48.07 1841
AT-T 0.72 1.09 2.46 5.42 0.90 7.54 1436 45.64 30.89 15.77

The above example shows the baseline model’s prediction error of the CD class. Considering
that the vocabulary for cardinal number in word form is limited, it is more likely to overfit and
therefore easier to fool with adversarial perturbation. The three adversarial training methods can

https://doi.org/10.1017/5S1351324921000486 Published online by Cambridge University Press


https://doi.org/10.1017/S1351324921000486

308

C. Udomcharoenchaikit et al.

Table 8. Frequency of unperturbed/perturbed words in each of the top five classes with the highest number of perturbed

words
CoNLL2003 (NER) o] PER ORG LOC MISC Other classes
Non-entity Person OrganizationLocation Miscellaneous
20,761/17,501  219/2,515 375/2,088  143/1,865 142/826 0/0
CoNLL2003 (CHUNK) NP VP PP ADVP ADJP
Noun Verb PrepositionalAdverb Adjective
10,274/18,888  1,764/3916 3,088/906  106/486 40/291 6,368/308
NN JJ NNS cD

CoNLL2003 (POS)

NNP

Proper noun

Noun (singular)

Adjective  Noun (plural)

Cardinal number

1,136/7,625 313/4,528 160/2,212  56/2,199 4,321/1,625 15,654/6,606
ORCHID (POS) NCMN VACT VSTA JSBR NPRP

Common noun  Active verb Stative verb Subordinating  Proper noun

conjunction

1,547/9047 1,231/3268 796/1,400  646/918 42/757 18,763/4,811
TiBa-D/Z (POS) NN ADJA NE ADV VVFIN

Noun Attributive Proper noun Adverb Finite main verb

adjective
439/17,310 140/5,038 687/4,362  861/4258 98/3,940 38,697/17,579

give a large improvement for the CD class. However, the AT-P and the AT-T methods yield a
poorer performance on the proper noun (NNP) class.

ORCHID (POS): Comparing the performance of the baseline model between the original
test set and the white-box adversarial example, we found that the class with the largest surge in
error rate (15.91% — 86.21%) is the stative verb (VSTA). A stative verb refers to a state such
as “to know,” and “to be.” Moreover, other classes with limited vocabulary such as active verb
(VACT) and subordinating conjunction (JSBR) are less robust to adversarial examples compared
to classes with larger set of vocabulary, such as common noun (NCMN) and proper noun (NPRP).
The AT method consistently gives the lowest error rate on adversarial examples, closing the gap
between the limited vocabulary and large vocabulary classes. Yet, there is still a lot of room for
improvement.

TiiBa-D/Z (POS): The baseline model’s result shows that classes with more vocabulary, such as
noun (NN) and proper noun (NE), are more robust against the adversarial examples. This result
agrees with the results from the previously discussed datasets. Although the three adversarial
training methods can improve an overall performance on adversarial examples, they can be detri-
mental to the performance on the NE class. This agrees with the result from the CoONLL2003 (POS)
dataset. Note that for German, all nouns are capitalized. Therefore augmenting capitalization
errors to the training data can reduce the benefit from this orthographic clue.

The error analysis confirms that the three adversarial training methods (AT, AT-P, and
AT-T) can improve an overall robustness against adversarial examples. The analysis shows
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that adversarial examples cause more errors for classes with limited vocabulary. The gap of
performances between classes show us opportunities for future improvement.

7. Conclusion

In this paper, we study an adversarial training framework for sequential labeling model to improve
the robustness against adversarial typographical examples. We also propose an adversarial
evaluation scheme to conduct experiments on both original and adversarial test sets.

We have shown that our adversarial training framework can withstand typographical adver-
sarial examples while maintaining high F; scores on the original test sets. By incorporating
adversarial training method and triplet loss, the novel AT-T method further improves F; scores
on both black-box and white-box adversarial test sets on the chunking task.

Adversarial training can strengthen the robustness of sequential taggers against spelling errors.
Moreover, it increases the similarity between the encoded sequence representations of clean-
perturbed pairs. Using similarity constraints, such as pair loss and triplet loss, at the sentence
level improves the performance for the chunking task. For PoS tagging and NER, no substantial
improvement is observed. Pair loss also increases the similarity between clean-perturb sequence
pairs substantially. However, it also increases similarity between clean-random pairs, and the dif-
ferences between the average cosine similarity scores of clean-perturbed pairs and clean-random
pairs become lower as well. Triplet loss widens these differences.

Using a spelling correction program can tremendously increase the robustness against typo-
graphical adversarial examples. Combining the spelling corrector with our methods (AT, AT-P,
and AT-T) can further improve the robustness of sequential taggers. However, on the real datasets,
the spelling corrector does not improve the performance of the sequential taggers and can even
hinder their performance.

Our adversarial evaluation scheme reveals the weaknesses of deep learning models on typo-
graphical errors. It approximates the worst-case scenario with white-box attacks and approxi-
mates a general performance on misspelled texts with black-box attacks. The adversarial evalu-
ation scheme also includes the performance scores on the unperturbed test sets to ensure that
we can enhance the performance over adversarial examples without degrading our performance
in a standard setting. The experimental results have shown that typographical adversarial attacks
can cause deterioration in the performance of sequential taggers. White-box adversarial exam-
ples can deteriorate the performance of the taggers much stronger than the black-box adversarial
examples. This suggests that there is a perturbation variant that is much more effective than the
others. This adversarial evaluation scheme reveals a weakness of sequential taggers, which can be
exploited to cause harm, such as bypassing a de-identification system.

This paper only addresses typographical adversarial examples. The performance gap between
natural misspelling examples and synthetic adversarial examples is still large. Hence, there is a
research opportunity to close this gap by introducing more constraints to the adversarial exam-
ple generation process to reflect natural spelling errors. In addition, there are many linguistics
capabilities that we should consider to improve the model’s robustness. Nevertheless, adversarial
training and similarity constraint through metric learning are promising research directions for
improving the overall robustness of current sequential labeling systems.

As for future work, we intend to further research into deep metric learning and spelling cor-
rection techniques, since a combination of these two techniques is effective against adversarial
examples. Negative sampling for deep metric learning is one area we aim to explore to further
enhance the triplet loss. In addition, we want to explore deeper into sequential tagging appli-
cations with a real societal impact, such as a clinical de-identification system to prevent harm
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caused by adversarial examples. Furthermore, we intend to incorporate linguistic knowledge to
create adversarial examples that reflect real language usage.
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A. Supplementary results

This section shows the results of adversarial models trained and evaluated on all perturbation
types (insertion, transposition, deletion, substitution, and capitalization). This evaluation setting
is more suitable to build an adversarial defense system against known adversarial examples. The
main difference is that the AT-T method performs better on the NER task, as shown in Table 9.
The error analysis on black-box adversarial examples in Table 10 suggests that the NER task is
more sensitive to insertion adversarial examples.

Table 10 shows the error rates of the models on five typographical error type. The baseline
model is trained on vanilla texts only. As shown in Table 10, the baseline model is the most sensi-
tive to all types of typographical errors on all tasks and corpora. The baseline model is also sensitive
to words without perturbation (Clean) for span-based tasks (NER and chunking); this suggests
that they were also affected by their surrounding perturbed words. The error rate of the baseline
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Table 9. F; scores and theirs standard deviations on the English CONLL2003 and the Thai ORCHID corpora.
We averaged the scores across three runs with different random seeds, and calculated their standard devia-
tions. A bolded number refers to the best F-1 score for each task in each test set. All perturbation types are
used to generate adversarial examples for both adversarial training and adversarial evaluation

original test set black-box test set white-box test set

CoNLL2003 (English,NER)

baseline 91.72+0.24 55.87 £ 1.61 39.53 £1.69
AT—f - ' 52.04 :I: 0.00 ' o 83.87 :t 1‘30 ) ‘ - 71.55 + 2.42

CoNLL2003 (English, Chunking)

baseline 91.92 +0.11 76.48 +0.90 66.03 & 0.60
AT 91.87 £0.07 81.62+0.41 77.90 £0.99
A.i.;T S I 9168i008 [ R .87...3-).:‘: 027 [ R 8079 i l..iG .

CoNLL2003 (English, PoS)

baseline 95.74 £0.12 84.01+0.42 77.31+£0.29
AT ................... 9573i 006 ............... 9303 i004 ................. 8 879 i 014 I
AT-P 95.65 £ 0.03 92.93 £ 0.05 88.86 = 0.05

ORCHID (Thai, PoS)

baseline 93.89 £ 0.08 77.36 £0.31 75.55+1.13
AT 94.13 £ 0.02 90.37 £0.26 85.44 £ 0.52
AT_P ................. 9389i 003 ............... 8965 i044 .................. 8 321 i 110 I
AT-T 93.91£0.07 88.76 & 0.65 83.19+1.11

model on words without perturbation is 25.04 percent for the NER task and 6.31 percent on the
chunking task, while the error rate remains low at 2.53 and 3.30 for the part-of-speech tagging task
on the ORCHID corpus and the CoNLL2003 corpus, respectively. For the English CoNLL2003
corpus, insertion error has the highest error rates for all tasks for the baseline model. Interestingly,
substitution error has lower error rates than transposition error, which contains all the original let-
ters for NER and chunking tasks. For the chunking task, transposition error rates are higher than
deletion error, which also alters the length of each word. Surprisingly, capitalization error also
has a high error rate even we normalized it for word embeddings. The only difference is that the
character-level part of ELMo and the CNN character-to-word embeddings are sensitive to capital
letters. Therefore, capitalization is still an important feature for these sequential tagging tasks.
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Table 10. Error rates and their standard deviations of models on different typographical errors. We calculate
the error rates at word-level only. All perturbation types are used to generate adversarial examples for both
adversarial training and adversarial evaluation. We excluded words with “O” (non-named entities, or non-
syntactic chunks) as their ground truth from the calculation. - “Clean” refers to unperturbed words, these
are words that are shorter than 4 characters. We do not alter words that are shorter than 4 character to ensure
that the perturbed words are intelligible to humans. 1 - Thai has no capitalization

Insertion Deletion Transposition  Substitution  Capitalization  Clean#

CoNLL2003 (English,NER)

Baseline 42.56+1.13 41.61+0.63  40.6840.38 3798 £0.94 3896 £3.74 25.04 +0.07

AT 18.00£0.99 18.53+0.54 18.21+0.54 15.81+£0.15 15.00 £1.57 11.38 £0.97
AT-P 17.69+1.80 17.714+3.53 17.824+2.26 1598+1.76  13.81 £5.76 12.02 +2.59
AT-T 18.21£0.57 17.56+1.70 16.88+0.97 15.09+1.14 12.931+0.83 11.68 + 1.00

CoNLL2003 (English, Chunking)

Baseline 17.214+0.94 1439+0.69  16.13+1.09 1532+£1.32 11.62+0.62 6.31 £ 0.64

AT 7.64+£0.34 7.29+0.16 7.64+0.21 6.95+0.14 5.52+0.08 4.21£0.08

AT-P 7.39+0.29 6.57 £0.07 7.12£0.19 6.59 £ 0.07 5.08 +0.07 416+0.15
AT-T 7.18 +0.58 6.44 +0.40 7.07 +£0.61 6.54 +0.17 5.18 £0.37 4.13 +0.05

CoNLL2003 (English, PoS)

Baseline 34.634+0.23 25.64+2.06 30.76 +£1.41 30.79+1.11 39.18£1.20 2.53+0.08

AT 12.92+0.20 12.13+0.10 14.62+0.28 13.25+0.08 10.62£0.37 2.48 £0.08
AT-P 1297+0.37 12.04+0.19 14.10+0.16 13.154+0.18 10.53+0.13 2.53£0.00
AT-T 13.27+£0.53  12.17+£0.25 14.77+0.53 13.29+£0.18  10.62+£0.59 2.61+0.03
ORCHID (Thait, PoS)
Baseline 44.31+0.80 42.72+0.56 44.73+0.84 46.91+068 N/A 3.30£0.16
AT 16.61+0.81 16.89+047 16.90+0.87 20.28 £0.77 N/A 2.57£0.03
AT-P 19.35+1.80 19.75+1.82 19.92+1.58 2346+2.12 N/A 2.70+0.02
AT-T 20.20+1.81 2047+£159 20.11+1.14 24.05+1.72 N/A 2.79 £0.06

B. Implications of applying sequential tagger on the Thai language

Thai is an isolating language with SVO word order (Minegishi 2011). Here we introduce three
characteristics of Thai language that have implication on the performance of sequential taggers:

« Thai has no word boundary. This introduces more errors early on in the NLP pipeline
when applying word segmentation.

o Thai writing system does not have direct orthographic features or special characters such
as capital letters to help identify named entities and proper nouns. Instead, we rely on clue
words to identify named entities and proper nouns (Tirasaroj and Aroonmanakun 2009).
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o There are Thai words that have gone through grammaticalization which introduces ambi-
guity to part-of-speech tagging. For text with a higher rate of misspellings, we hypothesize
that it is harder to disambiguate the POS tags due to noisy context and spurious ambiguity.
The following examples show the word pal in two different part-of-speech categories:

(1) aliaaa /nit par tala:t/ (Nid goes to the market.)
PN go market
PROPN VERB NOUN
(2) wnadenlud /rau tPétsdip par lébrs/ (We have tested already.)
we test go PAST
PRON VERB AUX ADV

In sentence 1, pal is the main verb. Using pal here can be compared with “to go” in English.
It describes a physical motion away from one place to another (Bilmes 1995). In sentence 2, pal
is a post-verb auxiliary. Here pal is a posthead following the main verb. Using pal here can be
compared with “already” in English. It describes an orientation of the main verb with respect to
time (Bilmes 1995).

Cite this article: Udomcharoenchaikit C, Boonkwan P and Vateekul P (2023). Towards improving the robustness of sequen-
tial labeling models against typographical adversarial examples using triplet loss. Natural Language Engineering 29, 287-315.
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