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Abstract
Dynamical movement primitives (DMPs) method is a useful tool for efficient robotic skills learning from human
demonstrations. However, the DMPs method should know the specified constraints of tasks in advance. One flexible
solution is to introduce the human superior experience as part of input. In this paper, we propose a framework for
robot learning based on demonstration and supervision. Superior experience supplied by teleoperation is introduced
to deal with unknown environment constrains and correct the demonstration for next execution. DMPs model with
integral barrier Lyapunov function is used to deal with the constrains in robot learning. Additionally, a radial basis
function neural network based controller is developed for teleoperation and the robot to track the generated motions.
Then, we prove convergence of the generated path and controller. Finally, we deploy the novel framework with two
touch robots to certify its effectiveness.

1. Introduction
Robots are now widely used in many fields, from industrial manufacturing to daily life. They are not
limited to structured environments and single, repetitive tasks. To reduce the programming effort for dif-
ferent tasks, learning from demonstrations [1] is proposed. The dynamic movement primitives (DMPs)
[2] method is a flexible and effective way to transfer manipulation skills from humans to robots easily.
DMPs can generalize the actions learning from demonstration and guarantee convergence to a goal posi-
tion. The method has been successfully applied in many robotic scenarios, such as assembly operations
[3–5], robotic surgery [6–8], and collaborative bimanual tasks [9].

However, there are many factors cause task failures using DMPs [10] including: (1) the export can-
not demonstrate every correct action for all the possible states. (2) The environment of the tasks may
be variable in actual (e.g., new obstacles and constrains of manipulator). To solve these questions, some
scholars introduced human supervision as a part of the system. In ref. [11], Losey and O’Malley intro-
duced the kinematic adjustments to successfully deduce parameters of an optimal policy. In ref. [12],
Nemec et al. proposed a learning from demonstration framework where DMPs based on kinematic
corrections to the behavior of an impedance-controlled robot. In ref. [13], Hagenow et al. proposed
corrective shared autonomy system, corrective shared autonomy is introduced to leverage user input to
address uncertainty in robot tasks by targeting corrections to task-specific variables. Hagenow used the
method of supervisory control [14], which is a kind of remote control methods to remain the respon-
sibility of the human operator. Rather than correcting the robot directly, the remote-based approach is
safer and space-free [15]. In this article, corrections of operator are also introduced by a remote control
system.

The correction of expert improves the quality of task completion, but it also raises new questions:
(1) correction imposed by supervisor may cause manipulator over its constraint space and (2) and the
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Figure 1. Block diagram illustrating the constrained system.

correction of trajectory cannot be unable to discern the intent. One effective way to deal with constraint
problems is barrier Lyapunov function (BLF). In ref. [16], an asymmetric time-varying BLF is used to
guarantee the time-varying output constraints. In contrast to the log [17] and tan [18] type BLF, integral
BLF can limit state signals directly, rather than error signals [19]. Integral barrier Lyapunov function
(IBLF) [20] is proposed to guarantee the end-effector of the robot in the constrained task space. As a
result, IBLF is utilized in this article to ensure the manipulator’s end-effector in the restricted task space
following the repair of export.

Then correction is divided into two kinds by supervisor: improve the quality of demonstrations and
avoid the collision in complex environment. The corrected motion can be used as a new quality demon-
stration. Collision information can be got from the correction. In ref. [21], constraints for DMPs have
been successfully treated as point-like obstacles and volumetric obstacles. Based on DMPs model and
BLFs, Lu et al. [22] propose a BLF-based DMPs framework with the classified constraints.

In this article, the proposed framework is illustrated in Fig. 1, which includes motion generation
and single execution. Motion generation uses classic DMPs method with velocity limits inspired by ref.
[23] to learn the corrected path. Single execution part designs a remote control system to ensure the
end-effector of manipulator following the learned trajectory, where radial basis function neural network
(RBFNN) is employed to approximate the unknown robot dynamics. The trajectory is modified by the
correction information of export and the confined space.

The following is a list of the major contributions:

• A novel framework based on supervision is proposed that considers both the motion learning and
task executing, including a modified DMPs method and a remote-control system for supervision.

• A new framework combining DMPs and IBLF is proposed to solve constrained trajectory
planning problem based on the correction. Velocity limits are also met.

• A modified remote-control system is introduced, and constrains of system are limited via
the IBLF. Furthermore, the stability of the system can be ensured using Lyapunov stability
theorem.

The following is the list of paper that is organized as Section 2 introduces basic information of the
DMPs and IBLF. The learning process of the corrected motion and remote corrective control system are
introduced in Section 3. The experiments are presented in Section 4. Section 5 concludes this paper.
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2. Preliminary work
2.1. Dynamics modeling of remote system
The dynamics of the teleoperation system for master and slave in the task space can be modeled as
follows:

Mm(xm) ẍm + Cm(xm, ẋm) ẋm + Gm(xm)+ Dm = fm (1)

Ms(xs) ẍs + Cs(xs, ẋs) ẋs + Gs(xs)+ Ds = fs (2)

where xm, ẋm, ẍm and xs, ẋs, ẍs are the position, velocity, and acceleration signals of end-effort for master
and slave manipulators, Mm(xm) and Ms(xs) are the inertia matrices, Cm(xm, ẋm) and Cs(xs, ẋs) account
centrifugal/Coriolis terms, Gm(xm) and Gs(xs) are the gravitational matrices, Dm and Ds are the modeling
errors and external disturbance, and fm and fs are the control input of master and slave devices.

Property 1: The matrices Ṁm − 2Cm and Ṁs − 2Cs are skew-symmetric.

2.2. RBFNN
RBFNN is used to approximation manipulator uncertainties to handle the uncertainty issue in the
dynamic model. The following introduces the definition of the RBF neural network utilized in this
article:

F(ϑ) = WTS(ϑ)+ ε (3)

where ϑ denotes the input of the neural network, W = [ω1,ω2, . . . ωn]T is the ideal weight parameter, n
is the number of RBFNN nodes, and ε(ϑ) is the approximation errors. S(ϑ) = [s1(ϑ), s2(ϑ), . . . sn(ϑ)]T

is the Gaussian basis function in the form as

si(ϑ)= exp

(
− (ϑ − ci)

2

b2
i

)
(4)

where ci, bi are the center and width of the neuron. The ideal weight vector W∗ is an artificial quantity
for the purposed method, which aims to minimize the value of W.

W∗ = argmin{|ε|} (5)

2.3. General DMPs model
DMPs is used to trajectory learning. DMPs consists of two main components: (1) spring-damper-type
equation which draws our system to the target and (2) a forcing term that gets the desire behaviors.

The DMPs model is first introduced as⎧⎨
⎩
τ v̇ = αz(βz(g − x)− v)+ f (s)
τ ẋ = v
τ ṡ = −αss, s0 = 1

(6)

where αz, βz are the positive parameters, x is the position variable, g is the goal point, v is the velocity, v̇
is the acceleration, τ > 0 is the time constant, s is a phase variable that avoid explicit time dependence,
the initial value of s is set as 1, and αs is the factor to modify the converging time

The forcing term f (s) is defined as

f (s) =
∑N

i=1 ψiwi∑N
i=1 ψi

s(g − y0) (7)

The forcing term has the components that consist of N Gaussian basis functions, enable the encoding
of demonstrated trajectory, where y0 is the starting position state, wi is the column of the weight vector,
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ψi is Gaussian radial basis function, whereψi(s) = exp(−hi(s − ci)2), ci is the center of Gaussian kernels
and hi is the variance. The vector wi can be trained with supervised learning algorithms such as locally
weighted regression.

The calculating process is proposed to minimize the error function as following:

min
{

f t(s) − f (s)
}

(8)

where f (s) is an item calculated by the trajectory in demonstration, and f t(s) represents the target value
as following:

f t(s) = τ v̇ − αz(βz(g − x) − v) (9)

2.4. General IBLF
Consider the strict feedback nonlinear system described as⎧⎪⎨

⎪⎩
ẋ1 = f1 + g1x2

ẋ2 = f2 + g2u

y = x1

(10)

where f1, f2, g1, g2 are smooth functions, x1, x2 are the states, and u and y are the input and output.
Introduce the IBLF candidate in the following:

V1 =
∫ z1

0

ρk2
c

k2
c − (ρ + xr)

2 dρ (11)

where kc is the constant, xr is the variable, ρ is a member of integrating, and the error variable z1 =
x1 − xr, z2 = x2 − α, α is a continuously differentiable function.

The time derivative of V1 is given by

V̇1 = z1k2
c

k2
c − x2

1

ż1 + ∂V1

∂xr

ẋr (12)

where
∂V1

∂xr

= z1

(
k2

c

k2
c − x2

1

− λ

)
(13)

λ= kc

2z1

ln
(kc + z1 + xr) (kc − xr)

(kc − z1 − xr)(kc + xr)
(14)

The virtual control variable α can be designed as follows:

α = 1

g1

(
−k1z1 − f1 + g1

(
k2

c − x2
1

)
ẋrλ

k2
c

)
(15)

where k1 is positive constant. Substituting (15) into (12), we can get

V̇1 = − k1z2
1k

2
c

k2
c − x2

1

+ g1z1z2k2
c

k2
c − x2

1

(16)

Then, a Lyapunov function candidate is chosen as follows:

V2 = V1 + 1

2
z2

2 (17)

The time derivative of V2 is given by

V̇2 = − k1z2
1k

2
c

k2
c − x2

1

+ g1z1z2k2
c

k2
c − x2

1

+ z2(f2 + g2u − α̇) (18)
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The control law is designed as

u = 1

g2

(
−f2 + α̇− k2z2 − g1z1k2

c

k2
c − x2

1

)
(19)

3. Proposed framework
A novel approach that combines DMPs and IBLF is introduced to address limited trajectory planning
based on the correction. The remote-control system is made to guarantee that the manipulator end-
effector is within the restricted space and to offer export corrective information. The controller of master
and salve is designed and analyzed.

3.1. DMPs based on IBLF
The expression of DMPs as (6) can be revised as nonlinear system as follows:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ1 = g1x2

ẋ2 = f2 + u +�u

τ ṡ = −αss, s(0) = 1

τ̇ = −γ0(τ − τ0)+ γ1τvTσ (v), τ0 = 1

y = x1

(20)

where x1, x2, g1 represent the x, v, 1/τ in Eq. (5), f2 = (αz(βz(g − x) − v) + γ σ (v))/τ , u is the forcing
function f (s),�u is a term added by IBLF, γ , γ0, γ1 are the positive constants, to allow the velocity
being close to the limit while still not exceeding it, the σi is designed as

σi(vi)= vi

(Ai − vi)(Bi + vi)
(21)

where Ai, Bi are the positive constants.
Similar to the general form of IBLF, we define z1 = x1 − xr, z2 = x2 − α, xr is the desired state in

control system, while there is no such state in DMPs, so here we introduce the motion generated by
DMPs method without any limits as the desired state:⎧⎨

⎩
ẋr = g1vc

v̇c = αz(βz(g − xr)− vc)+ f (s)

τ

(22)

Theorem 1: The output constraint is never violated, and all closed loop signals are confined if the
following conditions are met for the DMPs function represented by (20).⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
α= 1

g1

(
−k1z1 + g1

(
k2

c − x2
)

ẋrλ

k2
c

)

u +�u = −f2 + α̇− k2z2 − g1z1k2
c

k2
c − x2

1

(23)

where λ is introduced in (14)
To get the form of �u, we calculate u without added term is

u = v̇ − f2 (24)

So

�u = −k2z2 − g1z1k2
c

k2
c − x2

1

+ α̇ − v̇ (25)
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Proof:
We synthesize a Lyapunov function as

Vc = V1 + 1

2
z2

2 (26)

where V1 is the IBLF candidate in (11)
Then

V̇c = z1k2
c

k2
c − x2

ż1 + ∂V1

∂xr

ẋr + zT
2 ż2

= z1k2
c

k2
c − x2

(ẋ − ẋr)+ ∂V1

∂xr

ẋr + zT
2 (v̇ − α̇)

= z1k2
c

k2
c − x2

(g1(z2 + α)− ẋr)+ ∂V1

∂xr

ẋr

+ zT
2 (f2 + u +�u − α̇) (27)

Taking the expressions of (16) into (20), we have

V̇c = g1z2z1k2
c

k2
c − x2

− k1z2
1
k2

c

k2
c − x2

+ z1λẋr

− z1k2
c

k2
c − x2

ẋr + z1

(
k2

c

k2
c − x2

1

− λ

)
ẋr

+ zT
2

(
f2 − f2 + α̇ − k2z2 − g1z1k2

c

k2
c − x2

1

− α̇

)

= g1z2z1k2
c

k2
c − x2

− k1z2
1
k2

c

k2
c − x2

+ zT
2

(
−k2z2 − g1z1k2

c

k2
c − x2

1

)

= − k1z2
1
k2

c

k2
c − x2

− k2z2
2
≤ 0 (28)

where k1, k2 are positive numbers. according to Lyapunov stability theorem, we know that above
expression guarantees global stability and the global tracking convergence in the system.

3.2. Master controller design
The control command on the master robot is designed as an impedance controller, such that the position
of the robot end effector can be moved by export, let us consider the modeling of the operating torque.
In this paper, a damping-stiffness model is considered.

Fe = kmem + dmėm (29)

where km and dm denote designed damping and stiffness matrices, where em = xmd − xm, xmd is the desired
state, in this remote corrective system, it is fixed value. For avoiding the slave robot moving off the edge
of the surface during control, a variable stiffness is proposed

km = kmin + e−d(xm)(kmax − kmin) (30)

where α is the proximity of distance to boundary, closer get to the boundary, the closer get to 1, where
d(xm) is the distance to the nearest edge, kmax, kmin are positive numbers.

Then, the control torque can be designed as

fm = Ĝm + um + Fe (31)

where um is robust term, and
�

Gm is the estimation of G, which satisfies: G − Ĝm = εm.
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3.3. Slave controller design
Inspired by ref. [24], the desired position signal xsd can be derived via the slave trajectory creator. For
simplicity, a filter as

Vf (s) = 1/
(
1 + τf s

)2 (32)

It is used with the input of xm(t − T(t)) to create the correction state xsc, then xsd =�xsd + xsdmp, where
�xsd = xsc − xsd is the forward kinematic function of the Touch xsdmp is the path generate by DMPs.

Due to the disturb and errors in tracking, the trajectory generated by creator may not guarantee the x
in the constraint space all the time, we can obtain x by a soft saturation function, then if the x cross the
bound it will map the inside state. We derive the following via a saturation function to guarantee that
the reference trajectory stays inside the limited region:

xsd =
⎧⎨
⎩

xsd, |xsd| ≤ ηkci

ηkci , xsd <−ηkci

ηkci , xsd >ηkci

(33)

where η is a constant very close to 1.
Because of the uncertainity of robot dynamic and model, reference trajectory cannot ensure the

end-effector stay in the constrained space. IBLF method is introduced to ensure the constrains of the
predefined task space met.

We can obtain the dynamics system of slave⎧⎨
⎩

ẋ1 = x2

ẋ2 = M−1
s (fs − Ds − Gs − Csẋs)

y = x1

(34)

Then, we define z1 = x1 − xsd, z2 = x2 − α, where z1, z2 are error variables, and α denotes the virtual
control variable, we design it as

a = −ks1z1 +
(
k2

c − x2
1

)
ẋrλ

k2
c

(35)

where ks1 is the positive number, kc is the limit in Cartesian space, and λ is given in (14)
The control law is designed as

fs = − z1k2
c

k2
c − x2

1

− ks2z2 + ŴTS(Z) + us (36)

In the actual system, the dynamics parameters and are typically unknown. RBFNN is used to approx-
imation manipulator uncertainties to handle the uncertainty issue in the dynamic model. The neural
network’s input on the slave side can be chosen as Z = [xs, ẋs, α, α̇]. RBF neural network is defined as

WTS(Z) = Msȧ + Csa + Gs + es (37)

3.4. Stability analysis
Define the Lyapunov function of master and salve as

Vm = 1

2

(
ẋT

mMmẋm + eT
mkmem

)
(38)

Vs = V1 + 1

2
zT

2 Msz2 + 1

2
tr
(
W̃T

s G−1
s W̃s

)
(39)

where W̃ = Ŵ − W
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The Lyapunov candidate function of whole system as

V = Vm + Vs

= 1

2

(
ẋT

mMmẋm + eT
mkmem

)+ V1 + 1

2
zT

2 Msz2 + 1

2
tr
(
W̃T

s�
−1
s W̃s

)
(40)

Then, the derivative of Vm can be calculated as

V̇ = ẍT
mMmẋm + 1

2
ẋT

mṀmẋm + ėT
mkmem + V̇1 + zT

2 Msż2 + 1

2
zT

2 Ṁsz2 + tr
(

W̃T
s�

−1
s

˙̃Ws

)
(41)

Combine (1), (2), (16), (41)

V̇ = ẋT
m

(
fm − Cmẋm − Gm − Dm + 1

2
Ṁmẋm

)
− ėT

mkmem

− k1z2
1k

2
c

k2
c − x2

1

+ z1z2k2
c

k2
c − x2

1

+ zT
2 (fs − Gs − Csẋs − Ds − Msα̇)

+ 1

2
zT

2 Ṁsz2 + trW̃T
s�

−1
s

˙̃W (42)

Substituting (31) (36) into (42), we have

V̇ = ẋT
m

(
Ĝm + um + Fe − Cmẋm − Gm − Dm + 1

2
Ṁmẋm

)
− ėT

mkmem

− ks1z2
1k

2
c

k2
c − x2

1

+ 1

2
zT

2

(
Ṁs − 2Cs

)
z2

+ zT
2

(
z1k2

c

k2
c − x2

1

+ fs − Ds − Gs − Csα − Ms(q) α̇

)

+ trW̃T
s�

−1
s

( ˙̂Ws − Ẇs

)
(43)

then

V̇ = ẋT
m(Ĝm + um + Fe − Gm − Dm) − ėT

mkmem − ks1z2
1k

2
c

k2
c − x2

1

+ zT
2

(
z1k2

c

k2
c − x2

1

+ fs − Ds − Gs − Csa − Ms(q) ȧ

)
+ trW̃T

s G−1
s

˙̂Ws

= ẋT
m(Ĝm + um − Gm − Dm) + ėT

m(Fe − kmem) − ks1z2
1k

2
c

k2
c − x2

1

− ks2z2
2 + zT

2

(
us + ŴTS(Z) − Ds − Gs − Csa − Ms(q) ȧ

)
+ trW̃T

s G−1
s

˙̂Ws

= −dmė2
m − ks1z2

1k
2
c

k2
c − x2

1

− ks2z2
2 + ẋT

m(um − em − Dm)

+ zT
2 (us − Ds − es)+ trW̃T

s

(
G−1

s
˙̂Ws + zT

2 S(Z)
)

(44)

Furthermore, the robust term in a controller, which is used to deal with estimating error, external
disturbance, and modeling error, can be created as

um = −(dm + εmb) sgn(ẋm) (45)

where ‖Dm‖ ≤ dm, ‖εm‖ ≤ εmb, dm and εmb are positive constants.

us = −(ds + εsb) sgn(z2) (46)

where ‖Ds‖ ≤ ds, ‖εs‖ ≤ εsb ds and εsb are positive constants.
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Figure 2. Experimental setup for testing.

Thus, the adaptive law, which is used to estimate the RBF neural network parameters online and real
time, can be designed as

˙̂Ws = −�sS(Z) zT
2 (47)

then

V̇ ≤ −ėT
mDėm − ∣∣ẋT

m

∣∣(dm + εmb + εm + Dm)

− k1z2
1k

2
c

k2
c − x2

1

− K2z2
2 + ∣∣zT

2

∣∣(ds + εsb + εs + Ds)

≤ 0 (48)

According to the Lyapunov stability theorem, the Lyapunov function is uniformly positive defined, its
derivative is negative defined. The aforementioned formula ensures global stability and the convergence
of global tracking in the system employing the suggested controller.

4. Experiment
The proposed method has been verified on two touch robots, which are haptic devices manufactured
by 3D Systems. As shown in Fig. 2, the device has three degrees-of-freedom can be driven by a torque
controller. In our experiments, two touch robots were served as master and slave. The dynamics of two
touch robot can be modeled as (1) and (2), where the knowledge of the dynamic parameters is estimated
by RBF neural network in the teleoperation process. The proposed method is tested by two groups of
experiments:

The test of controllers: The slave robot is performed to move along the learned trajectory to accom-
plish the task, and trajectory is modified through operating the master robot in remote environment by
human operator.

The test of trajectory learning: The IBLF-based DMPs is used to generate a learned trajectory.
Constraints of task space and velocity are considered.

4.1. Constrained control effect
In this part, we apply the designed controllers to verify work of the proposed algorithm. The experiments
are performed on the two touch robots. First, a demonstration trajectory is given by operator, then the
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Figure 3. Results of remote corrective control.

slave robot moves along the trajectory and the master robot is operated to modify the trajectory of the
slave robot.

For the master robot, the parameters are chosen as kmin = 10, kmax = 100, dm + εmb = 0.1, D = 1,
�m = 1, xmd = [50, 0, 60] is near the mid of its workspace. For the slave robot, control parameters are
chosen as ks1 = 10, kc = 60 and ks2 = 15, ds + εsb = 0.1, �s = 1. The slave robot receives the correction
information from the master after filter and then applies the soft saturation function to generate the
desired trajectory of the end effector in task space. Parameter of soft saturation function is designed as
η= 0.98, the weight parameters of the RBF NN are initialized as 0, and the centers of the functions are
distributed in the interval [0, 1]. The human operates the master device toward boundaries in the y-axes
orderly.

The experiment results are shown in Fig. 3, our suggested controller guarantees that the end-effector
tracks the reference trajectory in real time while operating inside the restricted area. Operator can feel
the resistance when moving away from the hold position which prevent accidental contact. When the
operator forced the slave to cross the bound of y = 60, the soft saturation function and IBLF controller
work together to ensure the end-effector stay below the limit.

4.2. Trajectory learning
The second group of experiments aims to test the ILBF-based motion model. The ability of constrains of
task space and the velocity are tested. A drawing task is designed for the test. The common parameters
of DMPs are chosen as αs = 5, αz = 10, βz = 100 and others are set separately in each experiment.

To validate the correction performance of the IBLF-based DMPs, the parameters of IBLF are
k1 = 1, k2 = 10, kc = 8. The speed constraint item is added to the IBLF-based method, and the selected
parameter is A = 100, B = −100, γ = 10, γ0 = 5, γ1 = 10.

As shown in Fig. 4, during the operation, the track was corrected by teleoperation equipment, and
an obstacle was added in the early stage of the experiment to make the movement within the edge. The
corrected trajectory will be learned then, we hope that the learned trajectory will not cross the limit
where we get the information from correction.
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Figure 4. Motion generation of different methods.

Figure 5. Motion generation of different methods.

Then the corrected trajectory is learned by a classic DMPs method and a modified DMPs method pro-
posed in this article. As shown in Fig. 5, The classical DMPs method is compared with the IBLF-based
method. In the top of the figure, the generalization process is shown, both can learn the characteristics
of the trajectory, and finally approach the target point. However, it shows that the red line across the
limit around x = −50. While the bule line always stays within the constraints. It can be clear expression
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in the mid of the figure. It is the relationship between time and location. We can see that the red line
over the border at t = 0.4. Compared with the classical method, IBLF-based method can constrain the
motion within the set range. However, due to the few selected neural network nodes, the local features
cannot be perfectly expressed. The bottom of the picture shows the speed constraint capability. The
velocity oscillation at t = 0.3 is a confrontation to prevent crossing the obstacle and the desired trajec-
tory. Comparing to the red line which is the velocity of the classic DMPs, the blue one can always stays
within the constraints. It can be seen that velocity is able to stay within the limits comparing with the
classic DMPs.

5. Conclusion
In this article, an IBLF constrained DMPs has been designed to generate the trajectory under limits.
Our proposed controller guaranteed the state avoid the obstacle and velocity follow the bound. A con-
trol system involving IBLF-based slave controller and impedance master controller has been applied,
and dynamic uncertainties are approximated by the RBFNN learning method. The proposed controller
guaranteed the constrained performance in task space and robustness of the controller. The effectiveness
of the system has been verified on the touch robots experiment platform. In our future work, we will do
further research on the full state constrain problem of constrained DMPs method and focus on varying
constrained methods.
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