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THE AVERAGE DISTANCE PROPERTY OF
CLASSICAL BANACH SPACES 11

AICKE HINRICHS AND JORG WENZEL

A Banach space X has the average distance property if there exists a unique real
number r such that for each positive integer n and all z;,...,z, in the unit sphere
of X there is some z in the unit sphere of X such that

1 n
. Z log — 2|l = =
k=1

We show that [, does not have the average distance property if p > 2. This completes
the study of the average distance property for [, spaces.

1. INTRODUCTION

The aim of this note is to finish the study of the average distance property of I/, and
L,[0,1] for 1 £ p £ oo using and refining the method introduced in [1]. We start by
giving a short review of that method. The reader is referred to [1] for further information
and to the pointers to the literature therein.

A rendezvous number of a metric space (M, d) is a real number r with the property
that for each positive integer n and z,...,z, € M there exists z € M such that

1 n
— E d(zp,z) =7
n

k=1

We say that a (real or complex) Banach space X has the average distance property if its
unit sphere has a unique rendezvous number. It is known that [, and L,[0,1] have the
average distance property ([4]) and that I, and L,[0, 1] do not have the average distance
property if 1 € p < 2 and if p > 3, see [3] and [1], respectively. Here we prove the
following result.

THEOREM 1. Forp > 2,1, and L,[0,1] do not have the average distance property.
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In [1], using an improved Clarkson inequality, the study of the average distance
property for [, and L, in the case p > 2 was reduced to the study of a scalar function
as follows. Forn € N, p > 2 and z,¥1,...,ys € I, or L, such that ||z||” = 1/n and

S |lyillP = 1 define
=1

— P
(1) 0; = Mz = wlP and o =

lzllP + [lysll”
llzllP + lly:llP '

2
1t follows that

1 n+1
2n<a,$ o and Za,—l

i=1
Let u; € [—1, +1] be defined by the relation
_ (1 — ui)”
. e

and let y
— i (1 -+ eiu,-)") P
T, Y1y, =27" O e
ol v o) £ .‘gzil (g Clful

As pointed out in [1], in order to prove Theorem 1 for a fixed p > 2, it suffices to find n

such that ¢ > 1 for (uy,...,u,) # (0,...,0).
Considering the case u; = 1 fori=1,...,n, 04 =1/(2n) fori=1,...,n 1, and
an = (n+ 1)/(2n) yields that

n

€1,yEn=%1 i=1

1 n—1 1 1/p
D (BT STy
i=1

£1,En==%1

1= n+1 \7
=9 3 (21§ _z .
= 274/P (2 " (1 + o ‘ € + o En) )

En==%1 El,Ep—1=%1

/
<2~2/pz (1+2—n+1 Z 2nzt+n+1 )11J

en=x%1 E1yensbn-1=%1

= 22/17((% + %)1/” + (% _ ;1;)1/?)

<2 (()7+ (1)) - Lot

which is smaller than 1 for p < 2.10528 ... .

This shows that, in contrast to [1], we have to take into account the concrete defi-
nition of the u;'s and «;’s to be able to cover also the cases where p is close to 2. This
will be done in Proposition 2. '
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The remaining part of the paper is the proof of Theorem 1, which follows from the
upcoming Propositions 6 and 8.

2. THE RELATION OF «; AND u;

We begin by providing an auxiliary estimate.

LEMMA 1. e
ATy 2142717~ 1)y
for u € [0, 1].
PROOF: Let g(u) := (1 +u)/(1 + uP)/?. Note that
Pl
g'(u) = ﬁ;l—/? 20
while

— yP-1 -1 _ uP~
() = _(p+1)(Q-u ()lu:- up—;g/p 1)(1 + vP)uP~? <o

This means that g is a concave function on [0, 1] and therefore g(u) > g(0)+ (¢(1)—g(0))u.
This proves the assertion. . 0

PROPOSITION 2. Ifo; and u; are defined by (1) and (2), then

lug] € cln‘l/”a:l/p,

where ¢; = max(2!71/7,1/(2 - 21/7)).
PrROOF: We split the proof into three cases.
FIRST CASE.

S|=

o &
Since ¢; 2 1, in this case
- - -1
lui] € 1 < (new) ™7 < eyn= VPP,
SECOND CASE. )
a,->; and wu; > 0.

Then

Il _ (- L Ly e

(2¢;) 1P T 2a;m 204m (204)i/?

and it follows from the definition (2) of u; that

A-w)p _ 7wl =[| A “P
L+uf = 7 el +llwdle 112007 (200) 7

P
> (- 5n) - ) ")
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Now, using the relations

] 1 < (1 1 )1/1’ d 1 < ( 1 )I/P
- < - and — £ | ——
2a;n 2a4n 2a4n 2a4m

which follow from «; > 1/(2n), we obtain

<1 (1 1 )1/p+( 1 )1/p< 1 +( 1 )1/P<2( 1 )1/p
Ui 20,m 204m = 204m 204n = "\ 2qun )

From this we get

Up..—1/p -1
|ug| = uy < 21 YPp~ Ve P,

THIRD CASE. )
a; > — and wu; <0.
n

It follows from Lemma 1 for u = —u; that
1 l/p 1 1/ 1 1/
L@ - u <ol < (1-2) T () <1+ (50m)
21 2a;n 204m
Finally in this case
1 ~1/p,~1/p
luil = —u; < STt T 0

With this proposition in hand, we can forget about the concrete nature of the a;’s
and u;’s. All we have to show is that for given n and o, ..., a, such that

1 n+1 z
— <o K d ; =1
277. o 211 an ;Oﬁ,

the function . y
- (1 + E,’U,‘)p P
— n —
is bigger than one as long as
(3) Jui] < cln'l/”ai_l/"

and (uy,...,u,) # (0,...,0).
Since all relations on the u;’s are symmetric and since the function ¢ is symmetric
in u;, we can henceforth assume that u; > 0.

3. PROOF OF ¢ > 1, THE CASE OF MANY LARGE u;’'S

COROLLARY 3.

n 1/2
(Z(aiui)2) <ean” ',
=1
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Proor: It follows from (3) that
n 1/2 n 1/2
(Stewr?)” <am oot )
i=1 i=1
Since 2 — 2/p > 1 and ¢; < 1 we have

ia?_z/p < iai =1,
i=1

i=1
which proves the assertion. 0

LEMMA 4. We have

_(d+up+(d-up

(4) v(u): ) 214+ cu?
and
(5) wiu) = EFW A —wP

2(1 +w)
for u € [0,1], where ¢y := 2P"2 — 1 and c3 := p2P~L.
PRrROOF: To see (4), we let

A+u)?+(1-u)P—2
uP

9(u) =
and use the fact that (1 + u)?~! + (1 — u)P~! is non-increasing for p > 2, to compute
g(u) = ﬁ(z A+ uP = (1 - wr) <0,
Therefore g(u) > g(1) = 27 — 2, which yields
Q4+u)P+(1—u)?’ 22+ (2% - 2)u” =2(1 +vP) + (2° — ).

Division by 2(1 + »?) and 1 + v? £ 2 proves (4).
Since 2u/(1 + ) < 1, Bernoulli’s inequality states

(l—u)"’_(1 2u )P>1_ 2pu
(1+u)p 1+u/ 7 1+u

It follows that

(1+u)p_(1—u)1’_(1+u)”(1_(l—u)p)s M< 2Py

1+ u? T l+wr (1+u)y l+w

which proves (5). 0

The following Lemma is known as a subgaussian tail estimate for Rademacher aver-
ages and is by now classical. A proof can be found for example, in (2, p. 90].
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LEMMA 5. For a given vector x = (&,...,&), let ||z|l2 == (émil?)l/? and
B:= {(s,, - E ii:lsif,- > tl}a:||2}, then
2°"|B| < et/
We are now ready to tackle the case, where ‘many’ of the u;’s are bigger than 1/2.
PROPOSITION 6. There exists n, such that for all n > n, we have
Py, .., uq) >1

if |A| > n/2, where A := {i:u; > 1/2}.
ProoOF: With v and w defined as in Lemma 4, observe that

(1+eu)
1+4+wr

v(u) + ew(u) =

for e = £1. Put
= {(51, ey En) 20&6: (w) € (2 logn)1/2C3cln‘l/”}.

Since by (5) and Corollary 3

n

(Z (aiw(ui))2> " <e ( tX;: (a,-u,»)z) v < eseyn~ VP

i=1

it follows from Lemma 5 that
27"Bl 21— =

With these preliminaries we can estimate ¢ as follows

1/
WU, .-y Un) 2277 Z (Za, u,)+Za.ewut) ’

(€1,..,6n)€EB

/
(1 - ;) (Za,v u;) — (210gn)l/""C3c n 1/”>1 p.

From (4) and the assumption on A it follows that

nl
Za,v(u,) Za, + Za,czu 1+ —2"2;022_” =1+¢y,

i€A

where ¢4 1= 2772,
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Since ¢4 > 0, we can now choose n, so that for all n > n,

1 ca\ VP cy\ /P
V20,0 n-1P < &4 - _) ( _4) ( 2]
(2logn)/2c3ein < 5 and (1 - 1+ 5 >(1+ 4) .

By these assumptions on n

1 i/p
o(uy, .- ug) = (1 -~ (1 +e— (2 logn)‘/203cln‘1/”)

> (-)0+9)"

N’

This proves the assertion. 0

4. PROOF OF ¢ > 1, THE CASE OF FEW LARGE ;'S

From now on, we shall only deal with the case |A| < n/2. So for the rest of this
section, we assume that

(6) |Al € g, where A = {i:u; > 1/2}.

LEMMA 7. Denote
(1 - u2)P (1 + up~1)p/0=1) — (1 — yp~1)P/(P—1)
Y flu) = 14w (1+u)P(l —up~1)P/-1) — (1 — u)P(1 4 wp-1)p/(-1)°

Then lin(l) flu)= lirr} f(u) =0 and f is bounded on [0,1].

PROOF: Note that the derivative of the function (1 & u)P(1 F uP~1)P/(P-1) js
+p(1+u)P (1 F up-l)p/(p—l) Fp(l+u)’(F up—l)l/(p—l)up—?
Since p > 2 we therefore have

d
li_% %(1 +u)P(1 - up—l)p/(p-l) — 1l‘1_r)r(1) a(1 —u)?(1+ up—l)p/(p—l) = 2p.

By I’'Hopital’s rule

(1 4 up~p/(P=1) — (1 — yP-1)P/(P-1)
lim f(u) = lim
40 w0 (1 + u)P(1 — wp~1)P/(p=1) — (1 — u)P(1 + up-1)p/(P-1)
p(1 4 wP~ )Y P=DyP=2 4 p(1 — yP~ 1)/ (P-1)yp-2
usd (T + u)p(1 — w)ple-D — L(1— u)p(1 + w-)p/te-D)
=0.

On the other hand, again by I'Hopital’s rule it follows that

. (1- up~ V-1 I uf~2
M Ty A AT - T
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Therefore
oY (-1 (1 — 2y
lim f(u) = (1= P
u—1 u—bl 1+ u)P(l — up- l)p/(p 1) — (1 —w)r(1+ up—l)p/(p—l)
91/(p-1)
= lim
u=l (1 — P~ 1)P/(P-1) (1 + up-l)p/p—l)
1 —u)p 1+ u)p?
= 0.

The boundedness of f on [0,1] now follows from its continuity in (0,1) and the bound-
edness of the limits of f(u) for u — 0 and u — 1. 0

We can now also treat the remaining case, where only ‘few’ of the u;’s are bigger
than 1/2. In this case, the next proposition shows that @(uy,...,u,) > ¢(0,...,0) =1,
provided that n is big enough. This completes the proof of Theorem 1.

PROPOSITION 8. There exists ny = n; such that for all n > n, we have

9y

oy, (U, un) >0

forall j =1,...,n and all uy, ..., u, satisfying (6).

PRrOOF: Note that

a8 . 1+e;u)P Y1 —euf™?
a—(’i(uh--wun) = —aJp—zz_" > EJ'( e i G 11_1/2»'
Ui (1+4f) €lrn=1 Za' (1 +ew)?
¢ Yl4uf
=1 1
We shall show that for every €;,...,€;_1,€j41,...€n the summand

Z (1 +6ju]‘)P_1(1 — 5,"&?-1)

€5 -

e;=%1 ia(l +Eiui)p 1-1/p
p— Yl

is positive.
To this end we denote

S
1#1
and show that
(1+u,)"'(1 — ™) S (-wpasw
(aj(ul’ ot F aj%%)l_l/p (“j(ul, ) &j%%’?—p)l—w
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Some manipulations show that this is equivalent to
aj(u‘ly L] 711'11) > a]f(“’])i

where f is the function defined in (7) in Lemma 7.
Using (6), we see that

(1—u,~)">(n_1)1 27r >1 1

(uy,. .. > i35 Z |5 on 8
ol ,un)/§a 1+u? 2 2n 1+277 8 1+2°
i#j

= Cs,

if n > 4 and ¢5 := 1/(8 + 2P*3%). It is hence enough to show that
(8) cs > o f(uj).
Since limy—g f(u) = 0 by Lemma 7, we can find § > 0 small enough such that
flu) <es

for u? < §. Since f is also bounded by Lemma 7, we can choose
Al £ lloo
> = —_— .
n 2Ny ma.x( P ,n1,4)

If o; < ¢5/|| fllo then obviously (8) holds.
If on the other hand a; > ¢s5/|| f||co then

Cs Cf“f”oo - i
]

S ——

a;n
! Ifllo cs6
and by (3)

u’;

V/A\

5 % <d.
j
Consequently
a; f(u;) < ajcs < cs,
since o; < 1.
This proves the assertion. 0

REMARK. Using the methods developed in Sections 3 and 4, it can be shown that without
Relation (3) one can prove the result of the main theorem for all p > py, where

po :=inf{p>2:g > 20*+/M}=229751. .

and

(1+ u)"’)llxvJ + (1 + (1- u)")llp'

=11
9(u) ( BT 1+w
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