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Topological Free Entropy Dimensions in
Nuclear C*-algebras and in Full Free
Products of Unital C*-algebras

Don Hadwin, Qihui Li, and Junhao Shen

Abstract. In the paper, we introduce a new concept, topological orbit dimension of an n-tuple of
elements in a unital C*-algebra. Using this concept, we conclude that Voiculescu’s topological free
entropy dimension of every finite family of self-adjoint generators of a nuclear C*-algebra is less than
or equal to 1. We also show that the Voiculescu’s topological free entropy dimension is additive in the
full free product of some unital C*-algebras. We show that the unital full free product of Blackadar and
Kirchberg’s unital MF algebras is also an MF algebra. As an application, we obtain that Ext(C;" (F>) *c
C(F>)) is not a group.

1 Introduction

The theory of free probability and free entropy was developed by Voiculescu starting
in the 1980’s. His theory plays a crucial role in the recent study of finite von Neumann
algebras (see [5,7,9, 10, 12-14, 17, 21, 22, 26-28]). The notion of topological free
entropy dimension of an n-tuple of elements in a unital C*-algebra, as a C*-analogue
of free entropy dimension for finite von Neumann algebras, was also introduced by
Voiculescu in [29], where basic properties of free entropy dimension are discussed.

We started our investigation on topological free entropy dimension in [18], where
we computed the topological free entropy dimension of a self-adjoint element in a
unital C*-algebra. Some estimations of topological free entropy dimensions in in-
finite dimensional, unital, simple C*-algebras with a unique trace, which include
irrational rotation C*-algebra, UHF algebra, and C ;(F) ®min C(F,), were also
obtained in the same paper. In [19], we proved a formula for topological free en-
tropy dimension in the orthogonal sum (or direct sum) of unital C*-algebras. As a
corollary, we computed the topological free entropy dimension of every finite fam-
ily of self-adjoint generators of a finite dimensional C*-algebra. In this article, we
continue our investigation.

To study Voiculescu’s topological free entropy dimension, it is necessary to con-
sider the unital C*-algebras A having a set {x;, ..., x,} of self-adjoint generators for
which the topological free entropy dimension dop(x1, . . . , X,) is defined. In [19] we
used the terminology “approximation property” to describe such algebras. We show
(Lemma 2.9.7) that these algebras are precisely the finitely generated MF algebras
introduced by Blackadar and Kirchberg [1].
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We then introduce the notion Rg; of topological orbit dimension of an n-tuple
of self-adjoint elements in a unital C*-algebra, a modification of “topological free
orbit dimension” in [18] that is inspired by [17]. We prove that Rg})) is a C*-algebra
invariant. More precisely, we have the following result.

Theorem [3.2.1] Suppose that A is a unital MF algebra and {x,...,x,},
{»1,...,yp} are two families of self-adjoint generators of A. Then

K1, %) = K (1, 7).

This allows us to unambiguously use the notation Rﬁﬁ@, (A) for any finitely gener-
ated unital C*-algebra A to denote Rg; (x1,...,x,) for any set {x1,...,x,} of self-
adjoint generators.

Later (Definition[£.2.T]) we define the orbit dimension capacity RR%Z) (1, .0y %)

Here is a list of some of our main results for finitely generated unital MF algebras

A and B.
(i) (Theorem[B.1.2) diop(x1, ..., Xpm) < max{ﬁgz, (A),1}, wherex,, ..., x,afam-
ily of self-adjoint generators of A and diop (1, . . . , Xy) is Voiculescu’s topologi-

cal free entropy dimension.

(ii) (TheoremB33) K() (A ® M,(C)) < Ky (A) forn=1,2,... .

(iii) (TheoremBZ3) &) (A @ B) < K (A) + Ko (B).

(iv) (Theorem [£.3.1) Rﬁﬁg (A) < RREZ)(xl, .+ .y Xm), where x1, ..., x, a family of
self-adjoint generators of A and RR;Z) (x1,...,%,) is the orbit dimension ca-
pacity in Definition[4.2.1}

(v) (CorollaryE4T]) If A is nuclear, then

KROA) =0 and  Foplxr, ... %) < 1,

where x,, . .., x,, a family of self-adjoint generators of A.

The lower bound of topological free entropy dimension of a family of self-adjoint
generators of a nuclear C*-algebra depends on the choice of a nuclear algebra. For

example, diop(x1, ... ,x,) = 0ifxy,. .., x, is a family of self-adjoint generators of the
unitization of the C*-algebra of compact operators (see [18, Theorem 5.4.5]). On
the other hand, diop (%1, ...,%,) = Lifx,. .., x, is a family of self-adjoint generators

of a UHF algebra (see [18, Theorem 5.4.2]).

More applications of Theorem [£.3.1] can be found in Corollaries 5.1 £5.3] and
461

The last part of this paper deals with free products. We show that a free product
of a countable family of MF algebras is MF, and we show that, under certain con-
ditions, the topological free entropy dimension is additive over free products (see
Theorem[5.4.1). As a consequence, we show in Theorem[5.Z.@lif the self-adjoint gen-
erators xi, . . ., x, of an MF algebra are fully free (Definition[5.4.5]), then

n n
1
5t0p(x17"';x11) = E 5top(xi) =n- § ;7
i=1 i=1
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where #; is the number of elements in the spectrum of x; in A; (we use the notation
1/00 = 0).

The concept of MF algebras was introduced by Blackadar and Kirchberg in [1].
This class of C*-algebras plays an important role in the classification of C*-algebras
and is connected to Brown, Douglas, and Fillmore’s extension theory (see the striking
result of Haagerup and Thorbjérnsen on Ext(C; (F,)). We show that the unital full
free product of countable collections of separable unital MF C*-algebras is again an
MF algebra (See Theorem [5.1.4). Based on Haagerup and Thorbjernsen’s work on
Ext(C;(F,)), we are able to conclude that Ext(C; (F,) *¢ C}(F,)) is not a group. This
result provides us a new example of a C*-algebra whose extension semigroup is not
a group.

The organization of the paper is as follows. In Section 2, we give the definitions
of topological free entropy dimension and topological orbit dimension of n-tuple
of elements in a unital C*-algebra. We observe that these dimensions on an -
tuple are defined precisely when the generated unital C*-algebras are MF algebras
defined by Blackadar and Kirchberg. Some properties of topological orbit dimension
are discussed in Section 3. In Section 4, we introduce the concept of orbit dimen-
sional capacity and discuss its application in the computation of topological orbit di-
mension in finitely generated nuclear C*-algebras and several other classes of unital
C*-algebras. In Section 5 we consider free products. We prove that topological free
entropy dimension is additive in unital full free products of some unital C*-algebras.
We also show that the unital full free product of a sequence of MF algebras is again
an MF algebra, which allows us to show that Ext(C? (F,) *¢ C;(F,)) is not a group.

2 Definitions and Preliminaries

In this section, we are going to recall Voiculescu’s definition of topological free en-
tropy dimension of an n-tuple of elements in a unital C*-algebra and give the defini-
tion of topological orbit dimension of an n-tuple of elements in a unital C*-algebra.

2.1 A Covering of a Set in a Metric Space

Suppose (X, d) is a metric space and K is a subset of X. A family of balls in X is called
a covering of K if the union of these balls contains K and the centers of these balls lie
in K.

2.2 Covering Numbers in Complex Matrix Algebra (M (C))"

Let M (C) be the k x k full matrix algebra with entries in C, and let 74 be the normal-
ized trace on M (C), i.e, 7, = % Tr, where Tr is the usual trace on M (C). Let U(k)
denote the group of all unitary matrices in My (C). Let M (C)" denote the direct sum
of n copies of M (C). Let M;*(C) be the subset of M (C) consisting of all self-adjoint
matrices of M(C). Let (IV;*(C))" be the direct sum (or orthogonal sum) of 1 copies
of M3;?(C). Let || - || be the operator norm on M (C)" defined by

[(Ar, - Al = max{[|A4 ][, ..., [[An]]}
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for all (Ay,...,A,) in Mi(C)". Let || - ||, denote the trace norm induced by 74 on
M(C)" ie.,

H(A17 e 7An)||2 = \/Tk(ATAl) +oeeet Tk(A;:An)
forall (Ay,...,A,) in M (C)".

For every w > 0, we define the w-|| - ||-ball Ball(By,...,Bs;w, || - ||) centered at
(By,...,B,;) in My(C)" to be the subset of M (C)" consisting of all (Ay,...,A,) in
Mi(C)" such that

||(A1,. ..,An) — (Bl,...,Bn)” < Ww.

Definition 2.2.1 Suppose that X is a subset of M (C)". We define the covering
number V4, (X, w) to be the minimal number of w-|| - ||-balls that constitute a cover-
ing of ¥ in My (C)".

For every w > 0, we define the w-|| - ||o-ball Ball(By, ..., B, w, || - ||2) centered at
(B1,...,B,) in My(C)" to be the subset of M (C)" consisting of all (A;,...,A,) in
M (€)" such that

(A1, ... A;) — (By, ..., Byl < w.

Definition 2.2.2 Suppose that X is a subset of M (C)". We define the covering
number (X, w) to be the minimal number of w-|| - ||,-balls that constitute a cover-
ing of ¥ in M (C)".

2.3 Unitary Orbits of Balls in M, (C)"

For every w > 0, we define the w-orbit-|| - ||-ball U(By, ..., By w, || - ||2) centered at
(B, ..., By) in M(C)" to be the subset of M (C)" consisting of all (A;,...,A,) in
Mi(€)" such that there exists a unitary matrix W in U(k) satisfying

(A1, ..., A) — (WBiW™, ..., WB,W")|, < w.

Definition 2.3.1 Suppose that ¥ is a subset of My (C)". We define the covering
number 0,(%, w) to be the minimal number of w-orbit-|| - ||,-balls that constitute a
covering of 3 in M (C)".

2.4 Noncommutative Polynomials

In this article, we always assume that A is a unital C*-algebra. Let xi,...,xp
Y1, -+, ¥m be self-adjoint elements in A. Let C(Xy,...,X,,Y1,...,Y,) be the set of
all noncommutative polynomials in the indeterminants X;,...,X,, Y, ...,Y,,. Let
Cp = Q+1Q) denote the complex-rational numbers, i.e., the numbers whose real and
imaginary parts are rational. Then the set Cq(X,...,X,,Y1,...,Y,,) of noncom-
mutative polynomials with complex-rational coefficients is countable. Throughout
this paper we write

(CQ<X17...,X",Y1,...,Ym> :{Pr re N} and (CQ<X1,...7X"> :{Qr re N}

Remark 2.4.1 We always assume that 1 € C(Xy,..., X, Y1,...,Y,).
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2.5 Voiculescu’s Norm-microstates Space

For all integers r, k > 1, real numbers R, € > 0,r € N, we define
FgOp)(xl, e ,Xn,yl, e ,ym;k, E,Pl, e ,Pr),

where Py, ..., P, are the first r polynomials in Cq (X3, ..., X,,Y1,...,Y,) to be the
subset of (M*(C))"™ consisting of all these

(A1, Ay, By, .o, By) € (VGO

satisfying
max{[[Aul], -, [Aull, [Bull; - s [[Bul[} < R

and
Hlpj(Al)"'aAﬂaBl)"-aBm)H_HPj(xb'-';xnaylv"'7ym)||| S €, V1 S ] S T.

Define the norm-microstates space of xp,...,x, in the presence of y1,..., ¥,
denoted by

Fgop)(xla"'vxn:ylv-"7ym;ka€7plv"'7pr)7

to be the projection of FgOP)(xh ey Xpy Y1y Ymsk, €, Py, ..., P,) onto the space
(M3*(C))" via the mapping

(Ala-"7Aﬂ7Bla-' '7Bm) - (AI)"-aAn)'

2.6 Voiculescu’s Topological Free Entropy Dimension (see [29])

Recall that if 7 is a positive integer, 3 C (M;*(C))", and w > 0, we define v (X, w)
to be the covering number of the set X by w-|| - ||-balls in the metric space (M3*(C))"
equipped with an operator norm.

Definition 2.6.1 Define

Otop (X1, -y Xp3w) =

. . log(yw(rgop)(xl,...,xn;k,e,Ql,...,Q,),w))
sup inf limsup

R0 E>0,7EN T L —k?logw
The topological free entropy dimension of x1, . . . , x,, is defined by
Otop (X1, -+ 5 X)) = limsup Giop (1, . - . , X5 W)
w—0*
Similarly, define
5t0p(x17' s Xn D Y1y 7}’m§w) =

) ] log(uoo(I‘gOP)(xh...,xn:)/1,...7ym;k7e7P1,...7P,),w))
sup inf limsup >
R>0 €>0,7EN p_, o —k?logw
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The topological free entropy dimension of x, ..., x, in the presence of y1,..., ¥
is defined by
Otop(X1s vy X 2 Y1y vy ¥) = IMSUP Sop (X1, - o -3 X 2 Y1, - vy Yy W)
w—0*

Remark 2.6.2 It is clear from the definition that the supremum over R > 0 is
unnecessary. In fact,

6top(x17 ceey Xp) =

. o og(vee (TR (1, Xk € Q- Q)W)
limsup inf limsup
wot E>0EN —k?logw

whenever R > max{||xi]|, ..., [|x.]|}, and

Otop (X1, e oy Xu 2 Y1,y Ym) =

. . . log(l/oo(rgop)(xlv"'axn:)/17'"7ym;k767P17"'7Pr);w))
limsup inf limsup
w0t ES0rEN —k?logw

whenever R > max{||x1], ..., [|%:l, |¥1ll, - - -, [[¥m]|}. This is because when ¢ is suf-
ficiently small and r is sufficiently large, the conditions involving R are automatically
satisfied.

2.7 Topological Orbit Dimension Rgz,

Recall that if 7 is a positive integer, ¥ C (M;(C))" and w > 0, we define 0, (X, w)
to be the covering number of the set ¥ by w-orbit-|| - ||,-balls in the metric space
(M3*(C))" equipped with the trace norm.

Definition 2.7.1 Define

2
Rgoz)(xlﬂ BERE) xn;w) =

. ) log(oz(rgop)(xl,...,xn;k,e, Ql,...,Qr),w))
sup inf limsup
R>0e>07EN k*

and

KXoy X0 Py Ymi W) =

log(oz(FEztOP)(xl7 e Xn iYL Yk, €, P P w))
2

sup inf limsup

R>0€>0,7€N (o
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Remark 2.7.2 The values of
QRO

2
top(X1, -+, Xp3w)  and Rgofj(xl,...,xn SVl Vs W)

increase as w decreases.

The topological orbit dimension of xi,...,x, in the presence of xi, ... ,x, is de-
fined by
K (x1, . %) = lim Kb (1, X3 w)
The topological orbit dimension of x1,...,x, in the presence of y1,..., y,, is de-
fined by
Riﬁ%(xl, ey Xy PV V) = JEI&+R£§%(x1, ey X YLy e Yy W)

Remark 2.7.3 In the notation ngl)), the subscript “top” stands for the norm-micro-
states space, and the superscript “(2)” stands for the using of unitary-orbit-|| - ||;-balls
when

counting the covering numbers of the norm-microstates spaces.

Remark 2.7.4 As with the definition of topological free entropy dimension, in the
definition of topological orbit dimension, the supremum over R > 0 is unnecessary.

2.8 C*-algebra Ultraproducts

For an introduction to ultraproducts of C*-algebras, see [11]. Suppose { M, (C)}52,
is a sequence of complex matrix algebras where k,, goes to infinity as m goes to in-
finity. Let «y be a free ultrafilter in S(N) \ N. We can introduce a unital C*-algebra

[T, My, (C) as follows:

T My, (C) = {(Ym),‘jf:l IV m>1, Yy € My, (C) and sup ||V, < oo}.
m=1 m>1

We can also introduce a norm closed two-sided ideal I as follows.
o0
Too = {(Ym)f,f:l € ] Mi,(C): lim ||Y,] = o}.
m=1 m—y

Definition 2.8.1 The C*-algebra ultraproduct of {My,, (C)}° | along the ultrafilter
7, denoted by []"Mj, (C), is defined to be the quotient algebra, [[>° , My, (C)/Too,
of TT,°, My, (C) by the ideal Jo. The image of (Y,)r2, € [[~, My, (C) in
[T" M4, (C) is denoted by [(Y),].

2.9 MF Algebras

In the definitions of dyp (X1, . . ., x,) and RE(Z)E, (x1,...,%,), where x1,...,x, are self-
adjoint generators of a unital C*-algebra A, it is necessary that a suitable number
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of the Voiculescu’s norm-microstate spaces I'yp-sets be nonempty. More precisely,

for every family {P,}", of noncommutative polynomials in Cq(Xj,...,X,) with
rational coefficients and R > max{||x[|,...,[|x]|}, r > 0, and € > 0, there is a
sequence of positive integers k; < k, < --- such that

T8 ey, Xk €, Py, P) £ @, Vs> 1

In [19] we used the term approximation property to describe the preceding condition.
However, it turns out that this property is equivalent to A being an MF algebra in the
sense of Blackadar and Kirchberg [1], i.e., there is a unital embedding from A into
[ M., (©)/ >° M, (C) for a sequence {n} 2, of positive integers. The next lemma
follows immediately from [1, Theorem 3.2.2] and [18, Lemma 5.6]. We will give a
new characterization of MF algebras (Theorem [5.1.2)), and use it to show that MF
algebras are closed under free products (Theorem 5.1.4)).

Lemma 2.9.1 Suppose that A is a unital C*-algebra and x,, ..., x, is a family of

self-adjoint generators in A. The following are equivalent:

(1) Soplx1s - -+, ) is defined;

(ii) A is an MF algebra;

(ili) There are a sequence of positive integers {mi}p>, and self-adjoint matrices
Agk), o, AW i M (C) fork =1,2,..., such that, YV P € C(X,, ..., Xy),

Jm 1PAP, . ADY | = ||P(xy, ..., x|,

where C(X,, ..., X,) is the set of all noncommutative polynomials in the indeter-
minants Xy, ..., X,.

In view of the preceding lemma we should only talk about dyp (x1, ... ,%,) or

Rgz) (x1,...,%,) when the unital C*-algebra A generated by x1, ..., x, is an MF al-
gebra.

3 Properties of Topological Orbit Dimension K)
In this section, we are going to discuss properties of the topological orbit dimen-
sion Rﬁf,[{.

3.1 Some Basic Properties

The following result explains the relationship between Voiculescu’s topological free
entropy dimension and topological orbit dimension of n-tuple of elements in a unital

C*-algebra.
Lemma 3.1.1 Suppose that A is a unital C*-algebra and x,,...,x, is a family of
self-adjoint elements in A. Ifﬁgl))(xl, ey Xn) < 00, then diop (X1, ..., %) < 1.
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Proof Let Co(Xy,...,X,) ={P,}22, be the collection of all noncommutative poly-
nomials X, . .., X, with rational coefficients. For any
0<w<1/10, R>max{|x]],...,[xl},

we know from Remark[2.7.2] that

(top)
inf  limsup log(0a(I'y ™ (x1, ..., xn, k, €, Py, ..., Pr),w)) <
reN, >0 o0 —k?logw

1

Rt(él))(xh ey X)) - Tgw'

By a result of S. Szarek’s in [23], there is a family of unitary matrices {U) }rea in U(k)
such that

(i) {Ball(Ux; %, |l - )} rea is a covering of U(k) and
(ii) the cardinality of A, |A| < (CR/ w)¥, where C is a constant independent of k, w.

Thus from the relationship between covering number (see Definition [2.2.2]) and the
unitary orbit covering number (see Definition 2.3.1]), we have

. . log(VZ(Pgop)(xla"'7xn7k767P1a"'7Pr)73w))
inf limsup
reN, >0 o —k?logw

w

1og(0, (TSP (xy. ... xp. k. € Py P, w) - (SR)F
< inf limsup 0g(0(TR™ (x1, ..., xu, k, €, Py ),w) - ()7

reN, >0, oo —k?logw
logC +logR 1
s loBCHIOBR oo L
—logw —logw

Now the result of the theorem follows directly from the definitions of the topolog-
ical free entropy dimension and the topological orbit dimension, together with Re-
marks2.6.2land2.7.4land the remark in [29, Section 6] (or [18, Proposition 5.1]). M

A direct consequence of the preceding lemma is the following theorem.

Theorem 3.1.2 Suppose that A is a unital C*-algebra and x,, . .., x, is a family of
self-adjoint elements in A. Then

Srop (X1, - -5 Xn) < max{RgI))(xl, ceeyXa), 1}

In particular, 1fﬁgz,(x1, oo Xy) = 0, then dip(x1, ..., x,) < 1.

The following lemma will be needed in the proof of Theorem 3211

Lemma 3.1.3 Letx,...,X,,y1,...,yp beself-adjoint elements in a unital C*-alge-
bra A. If yi1,...,y, are in the C*-subalgebra generated by x,, ..., x, in A, then, for
everyw > 0,

Kiop (01, X3 4w) < KREVCE, X 2 Y1 Yps2w) < Rl X w).
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Proof It is a straightforward adaptation of the proof of [27, Prop. 1.6]. Suppose
that {P,}°, = Co(X1,..., Xn, Y1, .., V), and {Q,}2, = Co (X1, ..., X,) respec-
tively, are families of noncommutative polynomials in C(X,...,X,,Y,...,Y,),
and C(X,, ..., X,) respectively, with rational coefficients.

Given R > max;<j<, ||xj| + max;<j<, ||yjll, s € Nand € > 0, we can find
r1,s1 € Nand ¢; > 0, ¢, > 0 such that, forall k € N,

t 1
FEQOP)(xla"'7xn;k5617Q1a--~7Q51) g FEQOP)(xlw-'axn:y17"'ayp;kaeaplv"'apr)a
FSOP)(Xl,...,Xn:yl,...,)/p;k,€27P1,...,Prl) g FSOP)(Xl,...,Xn;k,G,Ql,...,QS).

Hence,

0 (T (1, xurk €, Qi e, Q) 4w)
< Ol(rgop)(xlanwxn : yla"'7yp;ka67Pl7"‘7Pr)72w)
02 (DR (X1, 3%t Y1y oy Vpiky €2, 1y, Py, 20)

S OZ(Fgop)(xh <o Xns k7 €, Q17 ey Qs)vw)7

for all w > 0. Therefore, for all w > 0,

log(0x (U™ (x1, -, Xk €1, Q1+, Q) 4w))

inf limsup

€>0,51EN k—s 00 k2
. 10g(02 (T8 (X1, -+, X 2 Y1y ¥pi ko € Py, P, 20))
lim sup > ;
k— o0 k

and

log(oz(Fgop)(xl,...,x,, YL Yp ki€, Pry oL Pr), 2w) <

inf limsu

e>0neN o k2
li log(OZ(Fl(Qmp)(-xh ceey Xns k7 €, Q17 DR Qs)aw))
im sup .
k—o00 k?
It follows that, for all w > 0,
(top) .
inf limsup log(OZ(FR (X],...,xn,k,Eth...,Q51)74W)) <
€,>0,51€EN k— 00 k2

. . log(OZ(Fgop)(xla"'vxn:yla"'ayp;ka€7pl7"'7pr)32w))
inf limsup ;
e>0,reN k—o00 k2
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and
1 T {top) : ; Py,...,P )2
il’lf limsup Og(OZ( R (X1, sXn 2 Y1, 7}’p k7 €2, I, ) ‘rl)a (U)) S
€>0,r EN k—o00 k2
1 TP (xy, .. xsk Qs
il’lf hm sup Og(OZ( R (-x17 » X , € Q17 ) Q )’W)).
e>0seN o k2
The rest follows from the definitions. [ |

3.2 A C*-algebra Invariant

Our next result shows that the topological orbit dimension Rﬁ; isin facta C*-algebra

invariant. In view of this result, we use RSI),(.A) to denote Rg; (x1,...,x,) for an
arbitrary generating set {xi, ..., x,} for A.

Theorem 3.2.1 Suppose that A is a unital C*-algebra and {x,, ..., xa}, {y1,-- -, ¥p}
are two families of self-adjoint generators of A. Then

2 2
Rgo}))(xl, ey Xy) = REOE,(yl, ce V)
Proof Notethatx,...,x, are elements in A that generate A as a C*-algebra. For ev-
ery 0 < w < 1, there exists a family of noncommutative polynomials ©;(x1, . . ., X,),

1 <1i < p, such that

P 1/2 w
(Zyi¢i(xl,...,xn)||2) <Z
i=1

For such a family of polynomials 91, . .. , %, and every
R > max{|lxl, ..., [lalls Iall, - s lypll}
there always exists a constant D > 1, depending only on R, ¢/, . .. , 1, such that

p 1/2
(Z H’l/)i(Aly- -'aAn) _wi(Blv'-- 7Bn)||%) S D”(AhaAn) - (Bla" '7Bn)||27

i=1

forall (A, ..., A), (By,...,B,) in M(C)", all k € N, satisfying ||A;]|, || Bj|| < R, for
1<j<n

Suppose that {P,}2°, and {Q,} 2, are the families of noncommutative polynomi-
alsin C(Yy,...,Y,, Xy,...,X,), and C(X, ..., X,) respectively, with rational coef-
ficients.

For any s > 1, € > 0, when r is sufficiently large and ¢’ is sufficiently small, every

(Hi,... Hp, Ay, .. Ay)
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in
FE;OP)()/la~~o»}’p,xb...,xn;k,el,Ph...,P,)
satisfies
b 2
(Z|Hi_¢i(A1,...,An)2> <%
i=1
and

(A17'~~7An) € Fgop)(xl7"~axn;k>67 Ql?"'7QS)'

On the other hand, by the definition of the orbit covering number, we know there
exists a set {U(BY, ..., B); 15, || - l2) }rea, of 55-orbit-]| - [|2-balls that cover

FR(top)(xla N 7xn;ku67Q17 R Qs)

with the cardinality of Ay satisfying
w
|Ak| = 02<Fgop)('x17 ctt axn;kv 67 Q17 Tt QS)) E) .

Thus for such (Ay,...,A,) in I‘I(Qmp)(xl, Xk, €,Qu, ..., Q), there exists some
A € Apand W € U(k) such that

(A1, ..., Ay) — (WBIW*, ... WBAW™)||, < 2.
4D

It follows that

p 1/2
(31— w1
i=1

14 1/2
— (Z |H; — ¢i(WBiW*,...,WBﬁW*)||§>

i=1

p 1/2
< (ZHH,- —wi<A1,...7An)||§>
i=1
P 1/2
+ (Z li(Ay,. .., Ay) — Y (WBYW™ .. .,WBﬁW*)H%)
i=1

p o
< (ZIIHiz/},-(Al,...,An)nZ) +2 <
i=1

forsome A € Ayand W € U(k), i.e,

w
(Hy,...,H,) € u(wl(Bi,...,Bﬁ),...,wp(Bi,...,Bﬁ);E).

https://doi.org/10.4153/CJM-2011-014-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2011-014-8

Topological Free Entropy Dimensions 563

Hence, for given s € N and € > 0, when €’ is small enough and r is large enough,

OZ(FEQP)(yl,...,yP X1, Xk, €/ P P w) <

Ag| = o0y (TP o Xk i.
| k| 02( R (xla )y X 567Q13 7Q5)74D)

It follows that
(top)
inf  lim 108(02@12t P, JYp X1, Xk, € Py, P w)) <
reN, €/>0 k— o0 12
. log(02(Fgop)(x1, s Xk €, Qry Qs 55))
khrn - )

Therefore, by the definition of the topological orbit dimension and Remark[2.7.4] we
get

2 2
Rgoz,(yl,...,yp TX], e, Xy W) = Rgoz,(yl,...,yp PX1, ..., X w, R)

. 1og(0 (T8 (y1y oy yp X1,y X ks € Pry L, Py W)
= inf lim

e’>0,reN k—oo k2
top) ,
o it i e 08O TRT 0, Xk 6 Qo Q) 35)
T e>0,5eN k—)oop k2
2
< REO}),(xl, ey Xn),
where the last inequality follows from the fact that Rgl),(xl, ..., Xy w) increases as w

decreases. Thus, by Lemma[3.1.3] we get
K1y yp) < KRG, x).

Similarly, we have
Kiop(x1, - %) < K11+, 7p),
which completes the proof. ]

A slight modification of the proof of Theorem[B.Z]will prove the semicontinuity
of RS}), with respect to direct limits.

Theorem 3.2.2 Suppose that A is a unital finitely generated MF C*-algebra. Suppose
Ai, 7 =1,2,... is an increasing sequence of unital finitely generated C*-subalgebras of
A such that U]Oil A; is norm dense in A. Then

Kigp(A) < liminf K (A,).
]*}OO
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Proof Suppose x1,...,x, is a family of self-adjoint generators of A, and, for each
j > 1, xij ), . ,x,(é) is a family of self-adjoint generators of A;. For every 0 <
w < 1, there exist a positive integer j and a family of noncommutative polynomials
z/J,-(xgj), .. 7x%)), 1 <i < p, such that

P _ ' E R
(Z lyi = it ,xi,f,.))HZ) <2
i=1

The rest of the proof is identical to the proof of Theorem[3.2.11 [ |

3.3 Tensor Products with M,(C)

Suppose A is a finitely generated unital C*-algebra and n is a positive integer. In this
subsection, we are going to compute the topological orbit dimension in the unital
C*-algebra A @ M,,(C).

Assume that {eq }!,_, is a canonical system of matrix units in M, (C) and I, is the
identity matrix of M, (C).

The following statement is an easy adaptation of [2, Lemma 2.3].

Lemma 3.3.1 ([2, Lemma 2.3]) For any ¢ > 0, there is a constant § > 0 so that the
following holds. For any k € N, if {Eq }{,_, is a family of elements in My (C) satisfying

”EsltlESztz - 5t152E51t2|| < 57 HESlfl - E:sl H

n
S 57 HZEII 7IkH S 6a V1 S 51752;t17t2 S n
i=1

(where 0,5, is 1 if |y = s, and is 0 if t; # s,), then n|k and there is some unitary matrix
W in My (C) such that

n
D IWEW — Iy @ e < €.

sit=1

Lemma 3.3.2 Suppose A is a unital C*-algebra generated by a family of self-adjoint
elements xy, . .., Xxy,. Suppose that {P,}°°,, and {Q;}3, respectively, is the family of
noncommutative polynomials in C(Xy, . .., Xy, {Ys }1,_), and C(Xy, ..., X,,) respec-
tively, with rational coefficients. '

Let R > max{|x||,...,||xm|,1}. Foranyw > 0,1y > 0and ey > 0, there are
somer > 0 and e > 0 such that the following holds. If

n
t=
(Al)"'7Ama{ESt}5, ]) S

top

FEQ )(-xl ®In7"'axm®1n7{lﬂ ®est}zt:13ka€7plv"'7Pr) 7£ @7
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then nl|k; there are a unitary matrix W in My (C) and

k
(Bla'-';Bm) S Fgop)(xla"-axma ;ae())Qla-' '7QTu)

such that

n m
D IWEW — Ly @ e + Y [WAW — B @ L[| < w.

sit=1 i=1

Proof We will prove the result by using contradiction. Suppose, to the contrary, that
the result of the lemma does not hold. There are w > 0, r, € N, and ¢y > 0 such
that, for any r € N, there are k, € N and

(AY)’ ce 7A§;)’ {Egzr)}gtzl) €
TP (01 @ Ly ey X © Ly {Ia ® €}y ke 1/, Py, .. P) # 2,

satisfying either # { k,, or if W is a unitary matrix in My (C) and

k
(31) (Bla e 7Bm) € FE;EOP)(Xla sy Xmy ;a€07Q13 ceey Qro)a

then

n m
(3.2) S IWEYW — Iy @ eql| + > [IWAYW = B, @ L, || > w.

sit=1 i=1

Let 7 be a free ultra-filter in S(N) \ N. Let [T_, My (C) be the C* algebra ultra-
product of matrices algebras (M, (C)):2, along the ultra-filter v, i.e., H::l M, (C) is
the quotient algebra of the C*-algebra [ [, My, (C) by Jo, where

Let ¢ be the *-isomorphism from the C*-algebra A ® M, (C) into the C*-algebra
T, My, (C) induced by the mapping

%@L — [(A7),] € T Mg (C), Ly ® ey — [(EY),] € T[ My, (C)

2 Y
r=1 r=1

Vi<i<m,1<st<n.
Thus {¢(I4 ® est)}gtzl is also a system of matrix units of a C*-subalgebra (*x-isomor-
phic to M,(C)) in [T, My, (C). By the preceding lemma, without loss of generality,
we can assume that n|k, and there is a sequence of unitary matrices {W,}°°,, where

W, is in My, (C), such that

(3.3) [(ED)] = (WL @ )W), ], V1<st<n
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Note that
[AMIED)] = [EDIAD),],  V1<i<ml<st<n
Thus by (33), there are B(I'), ...,B"in M, /4(C) for each r > 1 such that
[(A)] = [(W,(B @ )W),  V1<i<m,

which contradicts our assumptions (3.1)), (3.2)), and (3.3). This completes the proof
of the lemma. [ |

Now we are ready to prove the main result in this subsection.

Theorem 3.3.3 Suppose that A is a unital C*-algebra and n is a positive integer.
Suppose that B = A ® M,,(C). Then

K2 (A ®M,(C) < KO (A).

Proof Suppose xi, ..., X, is a family of self-adjoint generators of A and y1, ..., y,
is a family of self-adjoint generators of A ® M, (C). Suppose that {P,}°, and
{Q;}%, are families of noncommutative polynomials in C(Xy, ..., X, {Ys}'1)
and C(X,, ..., X,,) respectively, with rational coefficients. '

Let R > max{||x||,...,[|%mll,1}. Foranyw > 0,7y > 0, and ¢y > 0, by the
preceding lemma, there isa r > 0 such that, Vk € N,

OZ(PSOP)(-’CI & Inv sy Xm ®Im {IA & est}?‘[zl;k’ 1/7‘, P17 e 7Pr72w)

< oz(FgOP)(xl, cey X ky 110, Quy oy Qpyw).

Thus,
oo 10g(02 (T8 (X1 ® Ly .+, % @ I, {In @ €4} 13k, L, Pr, . Py 2w)
inf lim sup :
reN k—s 00 k2
- og(oa MR Gxry %k, 1, Q1 QW)
< lim sup > .
k— o0 k
So
o 10g(02(TR (61 @ Ly« X @ Ly {14 © €4}l i3k, L, Py Py 20))
inf lim sup ’
reN Lo k2
o 1og(02 (TR (x1, . X3k, 1,Q1, -0, Q)
< inf limsup > .
neN o k

It follows easily that
KO0 @ Ly X @ Iy {1 @ e} ) < KREDx1, -y Xim).
By Theorem[3.2.1] we have
KA @ M (C) = KRG (11, 7p) < KGGx1, - 2x) = RG(A),

where y1, ..., y, is any family of self-adjoint generators of B. ]
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The following corollary follows directly from the preceding theorem.

Corollary 3.3.4 Suppose that A is a finitely generated unital C*-algebra with
Rg}))(fl) = 0. Then, for every positive integer n,
Kiop(A @ M,(C) =0 and  Sop(A @ M,(0)) < 1.

Example 3.3.5 Suppose that x1,...,x,, is a family of self-adjoint generators of a
full matrix algebra M,,(C). Then Rgl))(xl, ey Xy) = 0.

3.4 Direct Products of C*-algebras

In this subsection, we assume that A and B are two unital C*-algebras and A &
B is the orthogonal sum of A and B. We assume xi,...,X,, OF ¥1,...,Ym, IS @
family of self-adjoint generators of A, or B respectively. Suppose that {P,}2°,, and
{Qs}2, respectively, is the family of noncommutative polynomials in C(X, ..., X,),
and C(Y7, ..., Y,,) respectively, with rational coefficients. Suppose that {S,}22, is the
family of noncommutative polynomials in C(X;,...,X,,Yi,...,X,,) with rational
coefficients.

Let R > max{||x1]|, ..., 1%, |¥1ll,- - - » |¥m]|} be a positive number. By the defi-
nition of topological orbit dimension, we have the following.

Lemma 3.4.1 Let
a> KRG (..., x) and B> KD, m)-

(i) For each w > 0, there is r(w) satisfying

r(w)’

ki

. 10g(0y (T (xy, . . . xus ki, ==, Py, .. Pyy)s )
lim sup <
k1—>OO

a,

10g(02(CE (y1, .-, ymi ko 75, Q1 -, Q) w)) <5

lim sup g

ky—o00

(ii) Therefore, for each w > 0 and r(w) € N, there is some K(r(w)) € N satisfying

log(oz(rgop)(xl, ce X K, ﬁ,Pl, e ,Pr(w)),w)) <aki, Vk >K(rw));

1 Iy ko, B, Vk>K

og 02( R (}/1,-~-,}’m) 27r(w)7Qla"'7Qr(w))7w) <ﬂ 2 2 = (T((.A.)))
Lemma 3.4.2 Suppose that A and B are two unital C* algebras and xy, . .., x,, or
V1, -, Ym is a family of self-adjoint elements that generates A, or B respectively.

Let R > max{||x1], .., 1%l [71ll, - - - lym|} be a positive number. For any w >
0, 1o € N, there is some t > 0 so that the following holds: ¥ r > t,V k > 1, if

(Xl,...,Xn,Yl,...7Ym) €

FgOP)(xl@O,...,xn@O,O@yl,...,O@ym;k,%,Sl,...,Sr),
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then there are
(Ala'”vAn) € Fgop)(xlw"axn;kh%aply"'aPro)a
(Bl)"'aBm) S Fgop)(yb-"7ym;k2?i7Ql7"'7Q‘rU)7
and U € U(k) so that k; + k, = k, and
(X1, X Y, V) — U*(A1 80,..., A, ® 0,08 By,...,08 B,)U| < w.

Proof The proof of this lemma is a slight modification of the one of [ 18, Lemma 4.2].
|

Theorem 3.4.3 Suppose that A and B are finitely generated unital MF C*-algebras.
Then,
KA D B) < K (A) + ] (B).

Proof Suppose {xi,...,%:}, {y1,...,ym},and {z,...,z,} are self-adjoint gener-
ating sets for A, B, and A ® B, respectively. Recall that {S,}°,, {P,}2°,, and {Q,}°,
respectively, are the families of noncommutative polynomials in

CXp, .. X Y1, X)), CX,....X,), and C(Yy,...,Y,)

respectively, with rational coefficients.
Let
a>R£§l)3(x1,...,x,,) and ﬂ>RE§I)D()/1,...,ym),

and R > max{||x|[,..., |x:ly1ll;- -, [[¥m||} be a positive number. By definition,
the values of topological orbit dimension R&), can only be —oco or > 0. Without loss
of generality, we can assume that & > 0 and 8 > 0. By Lemma[3.4]] for any w > 0,
there are r(w) € N and K(r(w)) € N satisfying

2

(3.4) 0 (TR (xr,. .. xuski, 755, Pry e Pry),w) < e, Vg > K(r(w)),
A12

(3.5) 02T (y1, -y ko 755, Qi+, Quiy)s w) < €72, W kg > K(r(w)).

On the other hand, for each w > 0 and r(w) € N, it follows from Lemma [3.4.2] that
thereissomet € NsothatVr > ¢, Vk > 1,if

Xy ooy Xy Yy, Vi)
(top) 11
EFR (JC] @07---axn@070@y17"'70@ym)k7 rash'"asr)a
then there are
(Ar, o Ag) €T (a1, xk, 2Py P,

(Bla"'7Bm) S Fgop)(yh"')ym;kZai?Qla"'va)v
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and U € U(k) so that k; + k, = k, and

(X1, X Y, oo Y) — U (A 0, ..., Ay 0,0 By,...,00B)U| < w.

It follows that
(3.6) (TP (0 @0,...,%,®0,08 y1,...,0® ysk, 1,S1,...,S,),3w)
S Z <02(F$0p)()€1,...,Xn;kl,r%_,Pl,...,Prw),W)
ki+ko=k

: Oz(Fﬁgmp)(yl,---,ym;kz,le,---,Qm),w))

(oz(Fgop)(xl, . ,Xn;kl, %,Pl, . ,P,w),w)

: OZ(FSOP)(}/M ... 7ym;k27 %7 Q17 ceey Qrw)aw))

Let
t
M, = max OZ(F;OP)(xl,...,xn;kl,%,Pl,...,Prw),w)—l— 1,
1<k <K(r(w)) @
N, = max oy(T\P e Yk, w) + 1.
w 1<k <K(r(w)) 2( R (}’h 7}’m 27rw7Ql7 7Qr“))7 )

By (B4) and (3.35)), we know that

B8) < K(r(@)Moe™ + K(r@)Nue™ + (k= 2K (r(w)) - (577 + 1)
< K(r(w)Mye™ + K(r(w))N,e™ + 2k - @K < 3. lotDE

when k is large enough. Now it is not hard to show that

Rgfy(xl@07--~7xn@070@}’1,-~-70@}’m) S O[+ﬂ.
Thus, by Theorem[3B.2.1] we have

Rg}))(zla cee 7Zp) < R%))(Xla s a-xm) + Rggy(}/la s 7ym)7
where zy, . . ., z, is any family of self-adjoint generators of A®B. Hence, by Theorem
21

KO (A®B) < KO (A) +KQ(B). ]

The following corollary follows directly from the preceding theorem.
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Corollary 3.4.4 Suppose that A and B are finitely-generated unital MF C*-algebras.
If
Kigp(A) = KG(B) =0,

then

Kep(A®B) =0 and bp(AeB) <1.

By Example[38.3.5 Corollary[3.4.4] and Theorem [3.2.2] we have the following re-
sult. This result will be extended to nuclear C*-algebras in Corollary[4.4.1]

Corollary 3.4.5 IfAisan AF C*-algebra with self-adjoint generators xy, . . . , X, then

KOA) =0 and  Gp(xr,...,x,) < 1.

4 Orbit Dimension Capacity

In this section, we are going to define the concept of “orbit dimension capacity” of
n-tuple of elements in a unital C*-algebra, which is an analogue of “free dimension
capacity” in [29].

4.1 Modified Free Orbit Dimension in Finite von Neumann Algebras

Let M be a von Neumann algebra with a tracial state 7, and let x;,...,x, be
self-adjoint elements in M. For any positive R and ¢, and any m, k in N, let
Lr(xi,...,x:5m,k, 6 7) be the subset of M;*(C)" consisting of all (A,,...,A,) in
M;:#(€)" such that

max [|A;| <R and [7(A; - Ap) — T, x| <€
1<j<n

foralll <ij,...,ip<nand1<q<m.
For any w > 0, let 0,(I'r(x1, ..., %, m, k,€7),w) be the minimal number of

w-orbit-|| - ||,-balls in M (C)" that constitute a covering of T'r(x1, . . . , X3 m, k, € 7).
Now we define, successively,

. . log(oa(Tr(x1, -« -, xpsm k6 7),w
R;Z)(xl,,...,xn;w;T):sup inf limsup 80Tty -y X3 1, K, 6 7), w))
R>0 meN,e>0 k— 00 kZ
2 . 2
R(z )(xl, e X3 T) = hmsupﬁg )(xl, e X W T,
w—0*
where Rgz)(xl, ..y Xy 7) is called the modified free orbit-dimension of xi, ..., x, with

respect to the tracial state 7.

Remark 4.1.1 1If the von Neumann algebra M with a tracial state 7 is replaced by a
unital C*-algebra A with a tracial state 7, then R(zz) (x1, ..., %, 7) is still well defined.

Our next result follows directly from the previous definition.
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Lemma 4.1.2 Suppose x1,...,x, is a family of self-adjoint elements in a von Neu-
mann algebra with a tracial state 7. Let R,(x1, . . ., x,; T) be the upper orbit dimension
of x1,...,x, defined in [17, Definition 1]. We have, if R,(x1,...,x,37) = 0, then
Rgz)(xl, ey X3 T) = 0.

4.2 Definition of Orbit Dimension Capacity
We are ready to give the definition of “orbit dimension capacity”.

Definition 4.2.1 Suppose that A is a unital C*-algebra and TS(A) is the set of all

tracial states of A. Suppose that x1, .. ., x, is a family of self-adjoint elements in A.
Define

2 2
RRE)(xl,...,xn): sup Rg)(xl,...,xnn)
TETS(A)

to be the orbit dimension capacity of xi, . . ., x,,.

4.3 Topological Orbit Dimension is Majorized by Orbit Dimension Capacity

We have the following relationship between topological orbit dimension and orbit
dimension capacity.

Theorem 4.3.1 Suppose that A is a unital C*-algebra and x1, . .., x, is a family of
self-adjoint elements in A. Then

Rgz)(xlv cee axn) S RR;Z)(X:], e ,Xn).
Proof The proofis a slight modification of the one in section 3 of [29]. For the sake

of completeness, we also include Voiculescu’s arguments here.
If .ngl),(acl7 ..., Xy) = —00, there is nothing to prove. We might assume that

2
Riog(xl, cey X)) > > —00.

We will show that

RR&Z)(xl,-.an) = Ssup R(ZZ)(xlw"axn;T) > a.
TETS(A)

Let {P,}2°,be a family of noncommutative polynomials in C(Xy,...,X,) with
rational coefficients. Let R > max{||x||,...,||x.||}. From the assumption that
R&)D(xl, ...,Xy) > a, it follows that there exist a positive number wy > 0 and a
sequence of positive integers {k,}2°, with k; < k; < ---, so that for some o’ > a,

_ log(oa (TR ety - Xuskgy 3, Py, Py), i)
lim >

2
q— 00 kq

.
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Let A(n) be the universal unital C*-algebra generated by self-adjoint elements
ai,...,a, of norm R, that is the unital full free product of n copies of C[—R, R]. A
microstate

n=(A1,...,A) €% (x1, ..., x5kg, L, Py, ... Py) = T(q)

1
qvaa

defines a unital x-homomorphism ¢,: A(n) — My, (C) so that ¢, (a;) = A; (1 <
i < n) and a tracial state 7, € TS(A(n)) with

Trk,, Ow"
™=
q
Similarly, there is a *-homomorphism : A(n) — A such that ¢(a;) = x; for
1<i<n.
It is not hard to see that the weak topology on 2 = TS(A(n)) is induced by the
metric

d(ri,m) =) Y QR T(n - ), - a)
s=1 (i1,0si) €({1,00yn} )

Therefore, 2 is a compact metric space and
Ky={r,€Q|necl(g}

is a compact subset of {2 because 7 — 7, is continuous and I'(q) is compact. Further,
let K C Q) denote the compact subset (TS(A)) o 4.
Given € > 0, from the fact that 2 is compact it follows that there is some L(e) > 0
so that for each g > 1,
K,=K, UK;U-- UK

where each compact set qu has diameter < e. Let
I'(q,j) ={n€T(q)|m € Kj}.

We have
I'(q) =T(q,1)U---UTL(q,L(e)).

Further, let I/ (q) denote some I'(g, j) such that

02(T'(g), wo)

02(I'"(q), wo) > (0

Thus we have
lim —logog(F’(q),wo) >al.

2
q— o0 kq
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Giving e the values 1,1/2,1/3,...,1/s,..., successively we can find a subse-
quence {g}2°, such that the chosen set Kj; C K, has diameter < 1 and the cor-
responding set I'’(g,) satisfies

/
lim 080("(q),wo)
s—00 K,

Without loss of generality, we can assume that 7 is the weak limit of some sequence
(Tn(g))Z1- Then T € K. In fact,

I7(Q(ay, ..., a,)| = Jlim [Tig) (Qay, . .., ay))|
S 111’1'1 sup ||¢7}(qs)(Q(a17 oo 7an))”
< Slinolo(% +[[QMx1, ..., x|

= [|Q(x1, ..., x)|| = [|[¥(Qlay, . .., a.)|-

Now it follows from the density of the polynomials Q in A(n) that 7 € K.

We can further assume that there is a subsequence {gs) };°; of {q,}%; so that the
chosen set qus((f)’ C Ky i € B(7,1/t), the ball of radius 1/t and center 7. Therefore,
for any m € Nand € > 0, we have

F/(qs(t)) - FR(xla <oy Xns k

40> M 6 T)

when ¢ is large enough. Thus

. logo, (I’ w
Rgz)(xl, e X3 T) > Rgz)(xl, e Xy W03 T) > thm 8.02( kz(qs(t))’ 0) >a,
— 00
As(t)
and hence
RR;z)(xl, ce.y Xp) = sup R(zz)(xl7 e X3 T) Riﬁﬁ,(xl, e Xp)- [ ]
TETS(A)

4.4 Nuclear C*-algebras

Now we can compute the topological free entropy dimension of a family of self-
adjoint generators in a unital nuclear C*-algebra.

Corollary 4.4.1 Suppose A is an MF unital nuclear C*-algebra with a family of self-
adjoint generators x1, . . . , x,. We have that

KROA) =0 and  Gup(xr,...,x) < L.

https://doi.org/10.4153/CJM-2011-014-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2011-014-8

574 D. Hadwin, Q. Li, and J. Shen

Proof It is known that every representation of a nuclear C*-algebra yields an injec-
tive von Neumann algebra. From Lemma[4.T.2land [17, Theorem 2], it follows that

Rgz)(xl,...,xn;T) =0, V7 eTSA),
where TS(A) is the set of all tracial states of A. Then, by Theorem[4.3.Tlwe know that
Rgg,(xl, ey X)) = 0.
By Theorem[B.1.2} dop (x1, - - ., %) < 1. [ |

Remark 4.4.2 By [1] , we know that a nuclear C*-algebra A is an MF algebra if
and only if A is an NF algebra with a finite family of generators. Thus Corollary[4.4.1]
can be restated as follows: If A is an NF algebra with a family of self-adjoint generators
X1, ..., X then

Rgé(ﬂ) =0 and Srop(X1, -+ %) < 1.

4.5 Tensor Products
In this subsection, we are going to prove the following result.

Corollary 4.5.1 Suppose that By and B, are two unital C*-algebras, and A,, A, with
1 € Ay C By,1 € A, C B, are infinite dimensional, unital, simple C*-subalgebras
with a unique tracial state. Suppose that B = B, ®, B, is the C*-tensor product of B,
and B, with respect to a cross norm || - ||,,. If B is an MF algebra, then

Rgl),(xl, o Xy) =0 and  Op(xy, ..., x,) =1,

where x1, . . . , X, is any family of self-adjoint generators of B.

Proof Assume that 7 is a tracial state of B and J{ is the Hilbert L?(B, 7). Let 1 be
the GNS representation of B on H. Note that A,, A, are infinite dimensional, unital
simple C*-algebras with a unique tracial state. It is not hard to see that both /(A,)
and 1(A,) generate diffuse finite von Neumann algebras on H. Thus both ¥ (B;)
and 1 (B,) generate diffuse finite von Neumann algebras on H. Moreover, ¥(B;)
and ¢(B,) commute with each other. Thus, by [17, Corollary 4], we have that

RZ(Q/J(le cee aw(xn); T) = 07

where K,(¥)(x1), . .., 1¥(x,); T) is the upper free orbit dimension of ¥ (x1), ..., ¥(x,)
(with respect to 7) defined in [17]. By Lemma[3.1.1] we have

KPW(x1), .., P(xa); T) = 0.

Since 7 is an arbitrary tracial state of B, we have RR;Z) (x1,...,%,) = 0. By Theorem

3.1.2] we have Rgl)p(xl, ..., %) = 0. Therefore, diop(x1,...,%,) < 1. On the other
hand, a consequence of [18, Theorem 5.2] says that

5t0p(xla s 7xn) Z 13
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if B is an MF algebra. Hence,
Rig;(xl, v Xx) =0 and  Goplxr, ..., x0) = 1,
where x1, . .., x,, is any family of self-adjoint generators of B. ]

Example 4.5.2 Assume that A is a finite generated unital MF algebra. By Theo-
rem [5.1.4] and [20, Proposition 3.1], we know that (C}(F,) *¢ A) ®min C;(F) is
an MF algebra, where C7(F,) is the reduced C*-algebra of free group F, . Thus, by
Corollary 4.5.T] we know that, for any family of self-adjoint generators x1, . . ., x, of
(CH(B>) ¢ A) @pin CH(B>),

6top(x17 .o ,Xn) =1.

An argument similar to the one used in the proof of the preceding corollary shows
the following result.

Corollary 4.5.3 Suppose that B is a unital C*-algebra and B, is an infinite di-
mensional, unital simple C*-algebra with a unique tracial state T. Suppose that B =

B ®, B, is the C*-tensor product of By and B, with respect to a cross norm || - ||,,.
Suppose that zy, . . ., z, is a family of self-adjoint generators of B, and xi,...,x, isa
family of self-adjoint generators of B. If B is an MF algebra and 9(22) (z1,...,2p57T) =0,
then

Rgg,(xl, o Xy) =0 and  Op(x1,. .., x,) = 1.

Example 4.5.4 Assume that A is a UHF algebra, or an irrational rotation algebra,
or C}(F,) Qumin C;(F,) and B is a finitely generated unital MF algebra. Then, by [1]
or [20], A ®uin B is an MF algebra. Suppose that x1, . . . , x, is a family of self-adjoint
generators of A ®y,iy B. Then dop (%1, ..., %,) = 1.

Example 4.5.5 By [20, Theorem 3.1], C*(F;) ®max (C}(F2) Qmin Cr(F;)) is an
MF algebra, where C*(F,) is the full C*-algebra of the free group F,. Suppose that
X1, ...,%X, is a family of self-adjoint generators of C*(F,) ®@umax (C}(F2) ®@min C; (F2)).
Then dop (1, ..., %) = L.

4.6 Crossed Products

In this subsection, we are going to prove the following result.

Corollary 4.6.1 Suppose that A is an infinite dimensional unital simple C*-algebra
with a unique tracial state T. Suppose G is a countable group of actions { o }eec on A.
Suppose that D = A x G is either a full or reduced crossed product of A by the actions

of G. Suppose that zy, . . . , z, is a family of self-adjoint generators of A, and x,, . . . , x, is
a family of self-adjoint generators of D. If D is an MF algebra and 8 (zy, . . . , Zp3T) =
0, then

K1 x) =0 and  Siop(xy, ..., x,) = 1.
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Proof Assume that 7, is a tracial state of D and  is the Hilbert L>(D, ). Let v
be the GNS representation of D on H. Note that A is an infinite dimensional unital
simple C*-algebra with a unique tracial state 7. Thus 7|4 = 7. It is not hard to see
that ¢)(A) generates a diffuse finite von Neumann algebra on J{. Moreover, for any
g € G, (g~ )(A)(g) C ¥(A). It follows from the fact that R (2, ..., zp;7) = 0
and Theorem 4 in [17], that

KPP @), ., Y3 m) = 0.
Since 7y is an arbitrary tracial state of D, we have RR&Z) (x1,-..,%,) = 0. By Theorem

B.1.21 we have Rgg,(xl, ...,X,) = 0. Therefore, diop(x1,...,%,) < 1. On the other
hand, a consequence of [18, Theorem 5.2] says that

Orop (X1, -+, X)) > 1,
if D is an MF algebra. Hence,
K1y x) =0 and  Siop(x1, . %) = 1,
where x,, . . ., x, is any family of self-adjoint generators of D. ]

Example 4.6.2 Let C}(F,;) ®min C;(F;) be the reduced C*-algebra of the group
F, x F,. Let uy, uy, or vy, v, respectively, be the canonical unitary generators of the
left copy, or the right copy respectively, of C;(F,), and let 0 < § < 1 be a positive
number. Let a be a homomorphism from Z into Aut(C;(F,) ®uin C}(F,)) induced
by the following mapping: Vn e Z, j = 1,2

) _ 62n7r9~i ) — 62n7r9~i

a(n)(u; u; and a(n)(v; V.
Then, by [20, Theorem 4.2], (C} (F,) ®umin C; (F2)) X4 Z is an MF algebra. Therefore,
by Corollary 4.6.1} we have dip(x1,...,%,) = 1, where xy,...,x, is any family of

self-adjoint generators of (C (Fy) ®@min C; (F2)) X4 2.

5 Full Free Products of Unital C*-algebras

Assume that {A; : i € I} is a family of unital C*-algebras. Recall the definition of
unital full free product of the A;’s as follows.

Definition 5.0.3 The unital full free product of a family {A; : i € I} of unital
C*-algebras is a unital C*-algebra D equipped with unital embeddings o;: A; —
D for each i € I, such that: (i) D = C*(Uiel 0i(A;)), and (ii) if ¢; is a unital
*-homomorphism from A; into a unital C*-algebra B for each i € I, then thereis a
unital *-homomorphisms v from D to B satisfying ¢; = 1) o g}, for each i € I. Since
we can identify each A; with p(A;), we usually assume that A; C D for eachi € I.
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5.1 Full Free Products of MF Algebras

The concept of MF algebras was introduced by Blackadar and Kirchberg in [1]. This
class of C*-algebras is of interest for many reasons. For example, it plays an important
role in the classification of C*-algebras and is connected to the question of whether
or not the extension semigroup (in the sense of Brown, Douglas, and Fillmore) of a
unital C*-algebra is a group (see the striking result of Haagerup and Thorbgrnsen on
Ext(C; (F;)). Thanks to Voiculescu’s result in [25], we know that every quasidiagonal
C*-algebra is an MF algebra. Many properties of MF algebras have been discussed
in [1]. For example, it was shown there that the inductive limit of MF algebras is
an MF algebra, and every subalgebra of an MF algebra is an MF algebra. In this
subsection, we will prove that unital full free product of a countable family of unital
separable MF algebras is, again, an MF algebra.

Let us fix notation first. We always assume that J{ is a separable complex Hilbert
space and B(J) is the set of all bounded operators on H. Suppose {x,x(}p2, is a
family of elements in B(J(). We say x; — x in *-SOT (x-strong operator topol-
ogy) if and only if x; — x in SOT and x{ — x* in SOT. Suppose {xi,...,x,} and

{x(lk), ..., x{P}22 are families of elements in B(J). We say
G0 x WY S (kL k), ink-SOT, as k — oo
if and only if

xgk)ﬂxiin*-SOT,askHoo, Vi<i<n

1

Suppose {A}£2, is a family of unital C*-algebras. Let [ [ Ay be C*-direct product
of the Ay, i.e., the set of bounded sequences (x¢)7°,, with x; € Ay, with pointwise op-
erations and sup norm; and let > A be the C*-direct sum, the set of sequences con-
verging to zero in norm. Then [ [ Ay is a C*-algebra and ) Ay is a closed two-sided
ideal. Let 7 be the quotient map from [] Ak to [[Ax/ > Ak. Then [T Ax/ >  Axisa
unital C*-algebra. If we denote m((xx)2,) by [(x)k] for any (x)g2, in [ [ A, then

1[G || = Tim sup [ ].

k—oo

Suppose A is a separable unital C*-algebra on a Hilbert space H. Let H> =
@D, K, and for any x € A, let x® be the element P x = (x,%,x,...) in [[A® C
B(H>), where A® is the k-th copy of A.

In [24], Voiculescu shows the following result:

Let A be a separable unital C*-algebra and 7;: A — B(3;) be unital faithful
x-representations for i = 1, 2 satisfying m;(A) NK(H;) = 0 fori = 1, 2, where
K(H;) is the set of compact operators on H;. Then m, is approximately unitary
equivalent to 7.

The following statement is a variation of Voiculescu’s result and can be found in
[16, Theorem 5.1].
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Proposition 5.1.1 Suppose A is a separable unital C*-algebra, and H,, H, are sep-
arable infinite dimensional Hilbert spaces. Let i1 A — B(3;) be unital x-represen-
tations for i = 1,2. If, for every x € A,

rank (7 (x)) < rank (m; (x)),

then there is a sequence {U, },- | of unitary operators, with U,: 3, — H,, such that,
foreveryx € A,
U;m (x) U, — m (x) %-SOT as n — 0.
In particular, if A C B(H), ANK(H,) =0, and 7: A — B(H,) is any unital -

homomorphism, then there is a sequence {U, } 52, of unitary operators, withU,,: H{; —
H,,, such that, for every x € A,

U xU, — 7 (x) *-SOT as n — oo.

Theorem 5.1.2 Suppose that A is a unital C*-algebra generated by a sequence of self-

adjoint elements x1,x,, . . ., in A. Then the following are equivalent:

(i) A isan MF algebra

(ii) Ifm: A — B(H) is a faithful x-representation of A on an infinite dimensional
separable complex Hilbert space 3, then there are a sequence of positive integers
{my}e2,, families of self-adjoint matrices {AP, A% ...} in M;;8(C) for k =
1,2,..., and unitary operators Uy : H — (C™)*> fork = 1,2, ..., such that

(a)
Jlim [PAY, AP )| = P, %2, .. )|, VP € CX, X, .. ),
where C(X1,X;...) = U, C(X1, X0 ..., Xon)
(b)
Uy (AW)® Uy — 7(x,) in %-SOT ask — oo, forl <i < m,
where (AR)>® = AW @ AW ¢ AW ... € B((C"™)>).

Proof (ii) = (i) Suppose (ii) is true. It follows from part (a) of statement (ii) that

th
€ map X, — [(Aglk))k]

extends to a faithful unital *-homomorphism from A into [] B(C™)/ > B(C™).
Thus A is an MF algebra.

(i) = (ii) Suppose A is an MF algebra, and suppose 7: A — B (H) is a faithful
unital x-homomorphism on an infinite dimensional separable Hilbert space J{. Let
Co(X1,X2,...) = {P,},°,. We can assume that each Py only involves the variables
X1, ..., Xn. We also assume that max,>; ||x,|| < R < oo.

Since A is an MF algebra, so is every subalgebra. Hence, by Lemma[2.9.1] for every
N € N there is

1
(AN, .- Ann) € TR (21, .. %N, Py, . .., Py, ﬁ,kN)
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for some ky € N, and we can assume that k; <k, <---.
We define Ay, = 0 € My, (C) when n > N. We then have, for every P €
Co (X1,X2,...),

|HP(X1,)€2,...)H — ||P (ANJ,AN’Z,...)H’ —0

as N — oo.
If m < s are positive integers, we define

Tm.n = (Am,n)(OO) @ (Aerl,n)(OO) @--- and Tm,s.n = (Am,n)(OO) DD (As,n)(OO)

forn e N.
Suppose B € M, (C). Note that, for every n > 1, we have

Tsn ® B> pB® g... m,n 0 the *-SOT as s — oo,

since the first s — m summands of each operator are the same. If we let B = A, ,,
then T}, 5, B B> @ B> @ ... is unitarily equivalent to Ty 5.0 Thus, for eachs € N,
there is a unitary operator Uy, ; (not depending on #) such that

U,’;,STm,S,nUm,S — Ty #-SOT as s — oo

for everyn € N.
Next suppose m € Nand P € C(X;, X;, .. .). We then have

|P (T, Tinzs---)|| = lim ||P(An1, AN, --2) || = 1P (yxe, )]

N—oo

Hence there is a unital x-homomorphism 7, from C* (Tyn1, Tz, - - . ) to 7 (A) such
that
Tm(Tmn) = 7 (x,) forn e N.

IfT eC* (T,m, Timp,--- ) and T # 0, then clearly rank (T) = co. Thus,
rank (T) > rank (m,,, (T)) forevery T € C* (TmJ, Tz, - )

It follows from Proposition 5. Tlthat there is a sequence {V,; } of unitary operators
such that, for every T € C* (val, Timpy - ),

Vit TV 5y — T (T) %-SOT as t — oo.

Suppose {e, €3, . .. } is an orthonormal basis for H. For each N € N, let m, > N
be a positive integer. Then there are s, t, € N such that

H |:VmN,tNU* TmN,sN,nUmN,sN V:;INJN -7 (xn):| e]H < %

mN,sN

and *
* * 1
H |:VmN oty U'”N SN TmN SN *"UmN SN V’"N N 0 (x”):| €j H < N
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for 1 < n, j < N. It follows that

VmN N U, TmN Sn .nU

My Sy

mN>5NV:1N~tN — 7 (x,) *-SOT as N — oo,

forn > 1.
Let
AV =Ay n@® @A, forneN.

Then there is a sequence {Wy }32_, of unitary operators such that

Wy(ANMy>o W * =T,

My Sy 51

forn e N.
Putting everything together, we now have

Jim_ [PAN AN ) = PG, %2, .. )], VP e Co(X, X, ),

and
Vingiy Un s, WNAT) W U Vi — () #-SOT

SN My sty
as N — oo, for n > 1. Hence statement (ii) is true. [ ]

For the proof of the main theorem of this subsection we need the following well-
known lemma. For completeness we outline a proof.

Lemma 5.1.3 Suppose Q is a finite rank projection in B(H), and suppose {Q,} is a
sequence of projections converging to 1 in SOT. Then there is a sequence {W,,} of unitary
operators and an N € N, such that

(i) |11 —W,|| — 0, and

(i) Q< W;Q,W, foralln > N.

Proof Defineg: R — Rbyg(¥) = 0ifr < 1/3,g(t) =3r—1if1/3 <t <2/3
andg(f) = 1if2/3 < . Let A, = Q+ (1 — Q) Qu (1 — Q). Then ||A, — Q|| — 0,
so |[A2 — A,|| — 0, which implies that o (A,) C {¢: max (J¢t|,|1 —¢t]) <1/y/n}.
Thus P, = g(A,) is eventually a projection and ||P, — Q|| — 0 and Q < P, for
every n. Also S, = P,Q, + (1—P,)(1—Q,) — 1,and W, = (S,55)"*s, — 1
and W, is unitary. Also P,S, = S,Q, implies that P, (S,,S:) = (S,,S:) P,, which
implies P,W,, = W,Q,, or P, = W Q,W,. [ |

In [8], Exel and Loring showed that the unital full free product of two residually
finite dimensional C*-algebra is residually finite dimensional, which extends an ear-
lier result by Choi in [6]. In [3], Boca showed that the unital full free product of two
quasidiagonal C*-algebras is also quasidiagonal. Our next result provides the ana-
logue of the preceding results from Choi, Exel, and Loring, and Boca in the context
of MF algebras.

Theorem 5.1.4 Suppose {A; : i € I} is a countable family of separable MF

C*-algebras. Then the free product A = ¢ A; is an MF algebra.
i€l
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Proof We can assume that I C N. In fact we can assume that I = N, because if I is
finite, we can let A; = C when i € N\, and the free product stays the same.

Assume that A, is generated by {x;, : n € N}. We can assume that A; C A for
each i € I byidentifying A; with 0;(A;). Thus A is generated by {x; , : i € I, n € N}.
Write Cq (X1, X3, ...) = {P1,P,,...} in such a way that each Py only involves the
variables X1, ..., Xy.

Suppose m: A — B(J) is a faithful *-homomorphism with J{ separable and
infinite dimensional. Then the restriction of 7 to each A, is also faithful.

Suppose {ej, e, ... } is an orthonormal basis for H. Suppose N € N. Note that
each A; is an MF algebra for i € N. It follows from Lemma 5.1.3] that for 1 <
i < N, there are a positive integer my ; and a unitary operator Uy ; and operators
ANJ‘J, .. ANIN € M ((C) such that

|HPj(AN,i,17"' 7AN,Z',N7O707'~')H - ||Pj(xi,lvxi,27"')H’ < %

and
*
(5.1) H [77 (xim) — U;JAE\]OE’)HUNJ} ekH + H [77 (xi’n) — UK]JAE\]O’?’)HUNJ} ekH < ﬁ

for1 <i,j,k <N.Ifi >Norn>N, wedeﬁneANln—OGM - (O).

With respect to the decomposmon AN in = ANinDAN D, deﬁne projections
ENA,l.l =100 5 ENAVI’Z =110 --- P Clearly UKI’;‘EN,I‘A,SUNJ — 1
in SOT as s — 00, so it follows from Lemma [5.1.3] that we can re-choose Uy ; so
that (5.I)) still holds and there is a positive integers s; such that e, . .., ey are in the
range of Uy 1 En 1 5,Un,1. Similarly, we can re-choose Uy ; and find an s, > s, so that
(G.1) still holds and UNaEN15Ung < UR,EN25Un . We can proceed inductively
to redefine the rest of the Uy ;’s so that (5.J)) still holds and such that

U]T]#iENe,i.s,» UN,i S U;],1'+1EN4'+1,5,»H UN,i+1
for1 <i<N.

For each 1 < i < N, let Hy; be the range of the prOJectlon UN ENisUnji Itis
clear that Hy ; reduces each of the operators UN.i A Uy, for n € N, and that the

N,i,n
restriction of UY ;A N ; ,,UN i to Hy ; is unitarily equwalent to a direct sum of s, copies
of Ay in. Sinceey, ..., ey € Hy,i, we can change the restriction of UNI N nUN, to

Hy;; without affectlng GID.

Next we choose a finite-dimensional subspace Hy of H{ containing Hy y such that
dy = dim JHy is the product of the dimensions of the Hy ;’s for 1 < i < N. For each
1 <i < N, we can write Hy © Hy ; as a direct sum of finitely many copies of Hy ;.
Thus, for each 1 <i < N, we can find a unitary operator Vi ; : Hy — ((C’"N"’)d‘”/m"""
such that, for n > 1, and every £ € Hy,

d, i
Vi ATy e = Ug AGD Uyt

https://doi.org/10.4153/CJM-2011-014-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2011-014-8

582 D. Hadwin, Q. Li, and J. Shen

We can identify Hy with C*, and let By ; , = Vi,}iAI(j’?’_ﬁmN"‘)VN,,- € My, (€). Since

H is infinite-dimensional, we can view H & Hy as an infinite direct sum of copies of
Hn. Thus there is a unitary operator Wy : H — FH3® such that

WiBGS, Wilac, = By

forall1 <i,n <N.
It follows that, for 1 < i, j, k <N,

|[IPj(Bn.i1, Bnsizs - - DIl — [Py (i, X, - )|H =
’”Pj(AN,i,lyAN,i,Za S - ||Pj(xi,l>xi,27-~-)w <%

and
*
| [ (i) = WiBG Wi el |+ | [ (o) = WiBG W] e < &

Therefore,
W;,Bg\,oj,)nWN -7 (x,»,n) in #-SOT as N — oo,

foralln,i e N.If P € Cq(X;, : i,n € N), we have
P((WBGS, Wi )inen) = P(m(xin))inen)  in#-SOT,as N — oc.
Thus we have
P )inem)l| = [P ()i | < liminf [ PAWRBS, Wi inen) |l
On the other hand, for each i, n € N, the map
Xin [(WﬁB&ﬁ,)nWN)N]
extends to a unital x-homomorphism p;: A; — [[B(Hn)/ > B(Hy). From the

definition of full free product, there must be a unital *-homomorphism p : A —
[1B(Hn)/ > B(Hy) such that p|4, = p; for each i. Hence

[P(Gin)inen) | = llp(P(Gin)inen)) | = lim sup [P((W3BS, W imen) |
— 00
> lim inf || W B, W ier) | > I1P(in)inen) |-

Hence p is an isometry, which shows that A is ME. [ ]

Recall that A C B(H) is a separable quasidiagonal C*-algebra if there is an in-
creasing sequence of finite-rank projections {E;}$°, on H tending strongly to the
identity such that ||xE; — E;x|| — 0asi — oo for any x € A. The examples of
quasidiagonal C*-algebras include all abelian C*-algebras and all finite dimensional
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C*-algebras. An abstract separable C*-algebra A is quasidiagonal if there is a faithful
x-representation 7 : A — B(JH) such that m(A) C B(H) is quasidiagonal.

In [15], Haagerup and Thorbjernsen showed C; (F,) is an MF algebra. Combining
this with Voiculescu’s discussion in [25], they were able to conclude a striking result
that Ext(C; (F,)) is not a group. Also based on [25], Brown showed in [4] that if A
is an MF algebra and Ext(A) is a group, then A is a quasidiagonal C*-algebra. It is
a well-known fact that C(F,) is not a quasidiagonal C*-algebra and any subalgebra
of a quasidiagonal C*-algebra is again quasidiagonal. The next corollary now follows
from Haagerup and Thorbjernsen’s result on C; (F,) and our Theorem[5.4.6

Corollary 5.1.5 Suppose that B is a unital separable MF algebra. Then C;(F,) ¢ B
is an MF algebra. Moreover, Ext(C; (F;) *¢ B) is not a group.

5.2 Topological Free Entropy Dimension in Full Free Products of Unital
C*-algebras

In this subsection, given a family of positive integers ny,...,n,, we will let
{X;’)}lgis,ﬂ;lggm be a family of indeterminants and let {P,}7°, be a family of non-
commutative polynomials in (C(X;') 1 <i<ml<j< n;) with ratipnal coef-
ficients. Foreach1 < i < mand j > 1, let P;') be a polynomial in XV ... X
defined by

PUX, . XP) = Pi(0,...,0,X",... X, 0,...,0).

Lemma 5.2.1 Suppose {A;}", (m > 2) is a family of unital C*-subalgebras of a
C*-algebra D. Suppose {xﬁ-’)};";l is a family of self-adjoint generators of A; for 1 <i <
m. Then

m
. , .
6top(x(1 ),...,x,(f]),...,xim),...,xgl’:)) < E 6top(x§'),...,xfj’,)).
i=1

€ > 0, there is a positive integer r; such that

T (01 (), o D), ™), o () K, €, Py P
CTR® (o1 (), o)k e, PV, P @
TP (0 (™), T () K, € P PO

= FgOP)(xgl), ... ,xﬁlll);k,e,Pgl), ... 7Pil)) P ---

) Fgop)(x(lm)’ o 7x£tr:);kv e, Pi'”), o 7P£n1))7
where

P§f>(ai(x§i>), o ai(6dD)) = Pi(0, ..., 0,0:(x), ... ai(x), 0, ..., 0),
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1 < j <7l <i< m. By the definition of topological free entropy dimension, we
get that

m . .
Siop(1 (), o a1 (D), L (™), () < Biep (L x). m
i=1

5.3 Voiculescu’s Semi-microstates

Suppose that A is a unital C*-algebra and x;, ..., x, is a family of self-adjoint ele-
ments in A. Recall Voiculescu’s semi-microstates as follows. Suppose that

Co(X1,.. .. X)) ={Q:1<r< o0}

is the family of noncommutative polynomials in C(Xj, ..., X,) with rational coeffi-
cients. Let R, e > 0, r, k € N. Define

1/2
F;zmp / )(xl7"‘7xn;k767 Qlw"uQr)

to be the subset of (M;*(C))" consisting of all (Ay,...,A,) € (M;*(C))" satisfying
max{||A]],...,||A.]|} < Rand

||Q](A177An)|| S ||Qj(x17"'?x1’l)|| t €, V1 S ] S r.
It is easy to see that
2
FgOP)(Xl,...,xn;k,€7Q1,...,Q,) grgopl/)(xlv'"7xn;k7€7Qla-~-aQr)~

It was shown by Voiculescu [29] that

6t0p(x17 e Xpw) =

log (Voo (TP (31, sk Q1 Q),0))
limsup_fnf i sup ~klogw
Lemma 5.3.1 Suppose {A;}!" | (m > 2)isa family of unital C*-algebras and D is the

full free product of the unital C*-algebras {A; }I", equipped with the unital embedding
oj + Ai — D} . Suppose {x:’}"_| is a family of self-adjoint generators of A; for
Ai — Dy, Dy 1 If-adjoi A

L
1 <i<m LetR > max{Hx;')H, 1 <i<m,1 < j<mn} bea positive number. For
anyry € Nand ey > 0, there are ry € N and €, > 0 such that, for any k € N, if

. , 12, G , , , )
Ay, ... 7A$1?) € Fg"" / )(x(ll),...,qui);k,el,Pgl), . ,Pﬁ:)), for 1 <i<m,
where Pg”, ..., P are defined as in Lemmal5.2.1 then
1
AV, AD A A

¢ 1/2
e TR (0 (D), o o (D), o ™), o )5k €0, Py, Py).
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Proof We will prove the result by contradiction. Suppose, to the contrary, the result
does not hold. Then there are some r; € N and ¢y > 0 so that the following holds:

(i) foranyr € N, there are k, € N and

(A(Ii’r), ... 7AL’;’T)) € FSDP 1m(xii), ... ,x,(j;);k,, 1/, Pgi), ... ,Pfi)), for 1 <i<m,

satisfying
(5.2)
1, s
(A ARD AT AU ¢
1/2
TR 2 (0 (D), o D), o ™), o )5 ke €, Py Py

Let v be a free ultra-filter in S(N) \ N. Let [T'_, My, (C) be the C* algebra ultra-
product of matrices algebras (M, (C));°, along the ultra-filter v, i.e., [T, My, (C)
is the quotient algebra of the unital C*-algebra []° My, (C) by Joo, where Joy =
{(¥), € [T, 26, (©) | lim,_, ¥, = 0}.

Let ¢; be the unital *-homomorphism from the C*-algebra A; into the C*-algebra

T_, My, (C), induced by the mapping

A (A ] € [ M, (0, Y1<j<nm,
r=1

where [(A;i'r)),] is the image of (Ay’r) ©°, in the quotient algebra []'_, My, (C).

By the definition of full free product, we know that there is a unital *-homo-
morphism 1) from D into H7:1 My, (C) so that ¢; = 1 o 0;. Hence,
AP A

IR TR

lim||P,(A"", ... ALY
r—y

<|Plor (), o D), g (™), o) V1<t<r,.
This contradicts equation (5.2). This completes the proof of the lemma. ]

Recall the definition of a stable family of elements in a unital C*-algebra in [19] as
follows.

Definition 5.3.2 Suppose that A is a unital C*-algebra and x4, ...,x, is a fam-
ily of self-adjoint elements in A. Let {Q;}$°, be the collection of all noncommu-
tative polynomials in C(X,...,X,) with rational complex coefficients. The fam-
ily of elements xi, ..., x, is called stable if for any o < dop(x1,...,%,) and R >
max{||x1]|, ..., |||} there is a positive number C > 0 satisfying: for any r € N,w >
0 there is a ky € N such that

Vm(rgop)(xl, X q - Ko, %’ Q... Qr),w) > C(q-ko)2 ( %) a-(q-ko) ¥qeN.
Example 5.3.3 Any family of self-adjoint generators x;, . . ., x, of a finite dimen-
sional C*-algebra is stable. A self-adjoint element x in a unital C*-algebra is stable
(see [19]).
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We now define a slight generalization of stability.

Definition 5.3.4 Suppose that A is a unital C*-algebra and xi,...,x, is a fam-
ily of self-adjoint elements in A. Suppose that Cq(X,...,X,) ={Q,;}2°,. Suppose
{km}2, is a strictly increasing sequence of positive integers. The family of elements
X1, ..., %, is supported on {k.} >, if

6top(x17 ceey Xp) =

1 oor(top) P n;kma ) ey )y
liminfsup inf liminf o8 (V S G * & Q ) W)) .
w—0" R~ e>0,rEN s—o00 7](3 logw

5.4 Main Result in this Section

Now we are ready to show the additivity of topological free entropy dimension in the
full free products of some unital C*-algebras.

Theorem 5.4.1 Suppose that {A;}" | (m > 2) is a family of unital MF C*-algebras
whose free product is D. We assume A; C D for 1 < i < m. Suppose {kp},_, is
a strictly increasing sequence of positive integers, and suppose, for 1 < i < m, that
{x;’)};":l is a family of self-adjoint generators of A; that is supported on {k;}.°,. Then

m
. . .
6top(x§ - ,x,(fl), . 7x§m)7 ... 7xgl’:)) = Z5t0p(x(11)7 .. ,x,(j,_)).

Proof Suppose that {P,}2°, = Co/(X{",.... XV, ..., X{™, ..., X{™), and, let P;i)

be a polynomial in XY), e ,X,(j? defined as in LemmaB.21lfor 1 < i < m, and
j € N. Choose 4
R > max{[x]| : 1< j <m,1<i<m}.

Suppose rg € N, g9 > 0,wg > 0. It follows from Lemma[5.3.T] that there is an r; € N
and an £; > 0 such that, forall0 < ¢ < g1, > r, m € N, we have

(top 1/2) 1
ry® /2 (2 () ...,xfﬁ),...,xgm),...,x;’:);ks,eo,Pl,...,P,O) D
T (op) - (j) (i) (i)
| J RN S CE n Dok, e, PV ... Py,
j=1

It follows that, for all w > 0, we have

12
log(uoo(l"](k,;oP /)(xgl),... % ...,xgm),...,xi’;’);ks,eo,Ph...,Pro,w))

My 0

m . .
Zlog<H ( tOp (])a“'v n])’k EPI) '~7P£l>)aw))

m
Z ( top)( ij)u-..7 n)k57€P17"'7P£1))7w>>.
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Therefore we conclude that, for 0 < € < €; and r > r, we have
(top1/2), (1
. log (Voo (T / (xg),...,xf}l),...,xgm),...,xﬁ,’z);k,eo,Pl,...,Pm),w))
lim sup 21
k—o0 —k?logw
top 1/2

L log(uoo(FEQOP/)(xil),...,x,(ﬁ),...,xgm),...,x,(j:);ks,eo,Pl,...,P,O),w))
> liminf

5500 —k?logw

noo log(z/oo(l“gof’)(xgj),.. xm ki, €, P v, PO)w))
> thmf 21 ,

— s—00 —K; logw

j=1

since, for all sequence {c,,}, {8}, we have

hm 1nf(ozm + Bp) > hrn 1nfam + liminf 3,,,.

§— 00

It follows that

m log(vm(FSOP)(x(lj),.. x,,} ki, €, P(’ ...,Pﬁi)),w))
> inf lim inf
reN,e>0 < : s—00

—k?logw

log(l/oc(FgOP)(xgj), xn} ks eP(l ...,Pﬁi)),w))
>Z inf liminf .

reN,e>0 s—oo —kg lOg w
Thus,

Bop (s DA™ )

e Xy e .’”m

m log(vm(Fgow(x(lj), xn) ki, €, P(’ ...,Pﬁi)),w))
> lim sup Z inf liminf

w—0* p reN,e>0 s—oo

—k?logw

log(z/oc(FgOP)(xgj), xn} ke, €, P ...,Pﬁ")),w))
> liminf inf liminf
w—0" reEN,e>0 s—oo

‘= —kZlogw

m .
= Gpx”, .., xl),
i=1

since each {x\", ... ,x\V} is supported on {k}.°;. The inequality

1
5top(x(1)v~~~ax$111)v"w LR 517:))<Z(5t0p(x11)7~~'a nl,)

follows from Lemmal[5.2.11
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Corollary 5.4.2  Suppose that {A;}", (m > 2) is a family of unital C*-algebras.
Suppose that {x;i)};’;l is a family of self-adjoint generators of A; fori = 1,2,... ,m.
Suppose {xﬂ»i)};":l is a stable family in the sense of Definition 532 for 1 < i < m. Let
the unital C*-algebra D be the full free product of {A;}1", equipped with the unital
embedding {o;: A; — D} . Then

m
Sop(a1 (), - 1)), - o™, o) =Y B, 1),
i=1
If we identify each xgi) in A; with its image o; (x?)) in ‘D when no confusion arises, then

m
X A .
Srop(aef”, Ay =) G,
i=1

As a corollary, we have the following result.

Corollary 5.4.3 Suppose that A; (i = 1,2,...,m) is a unital C* algebra generated
by a self-adjoint element x; in A;. Let D be the full free product of A, . . . , A, equipped
with unital embedding from each A; into D. Identify the element x; in A; with its image
in D. Then

n

6t0P(x17"'7xn) :Z(Stop(xi):n_ ni,"

i=1 i=1
where n; is the number of elements in the spectrum of x; in A;. (We use the notation
1/00=0.)
Proof It follows from Example[5.3.3] Theorem[5.4.1] and the results in [18]. [ |

Corollary 5.4.4 Suppose that A; is a finite dimensional C*-algebra generated by a
family of self-adjoint element {Xg-l)hgjgn,- for 1 < i < m. Let D be the full free prod-
uct of Ay,. .. A, equipped with unital embedding from each A; into D. Identify the
element {x?’} in A; with its image in D. Then

m m
: - 1
0 _ 0 _
Sop({x{ h<jmazizm) = D Sop{x) Si<jzn) = m — ?:1 .

i=1
where dimcA; is the complex dimension of A,;.
Proof It follows from Example[5.3.3] Theorem [5.4.1] and the results in [19]. [ |

It is worth noting that we can define the notation of “full freeness” so as to state
Theorem 5. 4]in a form similar to Voiculescu’s free additivity theorem for free en-
tropy dimension [26].

Definition 5.4.5 Suppose A is a unital C*-algebra and {xgi)}?‘:l is a collection
of self-adjoint elements of A for 1 < i < m. We say these collections are fully
free if the inclusion maps from each C*({x(»i) }i,) extend to an isometric unital
*-homomorphism from the full free product of the C* ({x?) }’]7":1 )’s into A.
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We can restate the theorem using the new terminology.

Theorem 5.4.6 Suppose A is a unital MF algebra and {xy)};-"':l (1 <i<m)are

fully free collections of self-adjoint elements of A all supported on a common sequence
{k}=,. Then

m
1 A ,
Sop(aef”, ) =) ).
i=1
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