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Topological Free Entropy Dimensions in
Nuclear C∗-algebras and in Full Free
Products of Unital C∗-algebras

Don Hadwin, Qihui Li, and Junhao Shen

Abstract. In the paper, we introduce a new concept, topological orbit dimension of an n-tuple of

elements in a unital C∗-algebra. Using this concept, we conclude that Voiculescu’s topological free

entropy dimension of every finite family of self-adjoint generators of a nuclear C∗-algebra is less than

or equal to 1. We also show that the Voiculescu’s topological free entropy dimension is additive in the

full free product of some unital C∗-algebras. We show that the unital full free product of Blackadar and

Kirchberg’s unital MF algebras is also an MF algebra. As an application, we obtain that Ext(C∗

r (F2) ∗C

C∗

r (F2)) is not a group.

1 Introduction

The theory of free probability and free entropy was developed by Voiculescu starting
in the 1980’s. His theory plays a crucial role in the recent study of finite von Neumann
algebras (see [5, 7, 9, 10, 12–14, 17, 21, 22, 26–28]). The notion of topological free
entropy dimension of an n-tuple of elements in a unital C∗-algebra, as a C*-analogue
of free entropy dimension for finite von Neumann algebras, was also introduced by
Voiculescu in [29], where basic properties of free entropy dimension are discussed.

We started our investigation on topological free entropy dimension in [18], where
we computed the topological free entropy dimension of a self-adjoint element in a
unital C∗-algebra. Some estimations of topological free entropy dimensions in in-
finite dimensional, unital, simple C∗-algebras with a unique trace, which include
irrational rotation C∗-algebra, UHF algebra, and C∗

red(F2) ⊗min C∗
red(F2), were also

obtained in the same paper. In [19], we proved a formula for topological free en-
tropy dimension in the orthogonal sum (or direct sum) of unital C∗-algebras. As a
corollary, we computed the topological free entropy dimension of every finite fam-
ily of self-adjoint generators of a finite dimensional C∗-algebra. In this article, we
continue our investigation.

To study Voiculescu’s topological free entropy dimension, it is necessary to con-
sider the unital C*-algebras A having a set {x1, . . . , xn} of self-adjoint generators for
which the topological free entropy dimension δtop(x1, . . . , xm) is defined. In [19] we
used the terminology “approximation property” to describe such algebras. We show
(Lemma 2.9.1) that these algebras are precisely the finitely generated MF algebras
introduced by Blackadar and Kirchberg [1].
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We then introduce the notion K
(2)
top of topological orbit dimension of an n-tuple

of self-adjoint elements in a unital C∗-algebra, a modification of “topological free
orbit dimension” in [18] that is inspired by [17]. We prove that K

(2)
top is a C∗-algebra

invariant. More precisely, we have the following result.

Theorem 3.2.1 Suppose that A is a unital MF algebra and {x1, . . . , xn},
{y1, . . . , yp} are two families of self-adjoint generators of A. Then

K
(2)
top(x1, . . . , xn) = K

(2)
top(y1, . . . , yp).

This allows us to unambiguously use the notation K
(2)
top(A) for any finitely gener-

ated unital C*-algebra A to denote K
(2)
top(x1, . . . , xn) for any set {x1, . . . , xn} of self-

adjoint generators.
Later (Definition 4.2.1) we define the orbit dimension capacity KK

(2)
2 (x1, . . . , xn).

Here is a list of some of our main results for finitely generated unital MF algebras
A and B.

(i) (Theorem 3.1.2) δtop(x1, . . . , xm) ≤ max{K
(2)
top (A) , 1}, where x1, . . . , xm a fam-

ily of self-adjoint generators of A and δtop(x1, . . . , xm) is Voiculescu’s topologi-
cal free entropy dimension.

(ii) (Theorem 3.3.3) K
(2)
top (A ⊗ Mn(C)) ≤ K

(2)
top (A) for n = 1, 2, . . . .

(iii) (Theorem 3.4.3) K
(2)
top (A ⊕ B) ≤ K

(2)
top (A) + K

(2)
top (B).

(iv) (Theorem 4.3.1) K
(2)
top (A) ≤ KK

(2)
2 (x1, . . . , xm), where x1, . . . , xm a family of

self-adjoint generators of A and KK
(2)
2 (x1, . . . , xm) is the orbit dimension ca-

pacity in Definition 4.2.1.
(v) (Corollary 4.4.1) If A is nuclear, then

K
(2)
top(A) = 0 and δtop(x1, . . . , xm) ≤ 1,

where x1, . . . , xm a family of self-adjoint generators of A.

The lower bound of topological free entropy dimension of a family of self-adjoint
generators of a nuclear C∗-algebra depends on the choice of a nuclear algebra. For
example, δtop(x1, . . . , xn) = 0 if x1, . . . , xn is a family of self-adjoint generators of the
unitization of the C∗-algebra of compact operators (see [18, Theorem 5.4.5]). On
the other hand, δtop(x1, . . . , xn) = 1 if x1, . . . , xn is a family of self-adjoint generators
of a UHF algebra (see [18, Theorem 5.4.2]).

More applications of Theorem 4.3.1 can be found in Corollaries 4.5.1, 4.5.3, and
4.6.1.

The last part of this paper deals with free products. We show that a free product
of a countable family of MF algebras is MF, and we show that, under certain con-
ditions, the topological free entropy dimension is additive over free products (see
Theorem 5.4.1). As a consequence, we show in Theorem 5.4.6 if the self-adjoint gen-
erators x1, . . . , xn of an MF algebra are fully free (Definition 5.4.5), then

δtop(x1, . . . , xn) =

n
∑

i=1

δtop(xi) = n −
n

∑

i=1

1

ni

,
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where ni is the number of elements in the spectrum of xi in Ai (we use the notation
1/∞ = 0).

The concept of MF algebras was introduced by Blackadar and Kirchberg in [1].
This class of C∗-algebras plays an important role in the classification of C∗-algebras
and is connected to Brown, Douglas, and Fillmore’s extension theory (see the striking
result of Haagerup and Thorbjörnsen on Ext(C∗

r (F2)). We show that the unital full
free product of countable collections of separable unital MF C∗-algebras is again an
MF algebra (See Theorem 5.1.4). Based on Haagerup and Thorbjørnsen’s work on
Ext(C∗

r (F2)), we are able to conclude that Ext(C∗
r (F2) ∗C C∗

r (F2)) is not a group. This
result provides us a new example of a C∗-algebra whose extension semigroup is not
a group.

The organization of the paper is as follows. In Section 2, we give the definitions
of topological free entropy dimension and topological orbit dimension of n-tuple
of elements in a unital C∗-algebra. We observe that these dimensions on an n-
tuple are defined precisely when the generated unital C*-algebras are MF algebras
defined by Blackadar and Kirchberg. Some properties of topological orbit dimension
are discussed in Section 3. In Section 4, we introduce the concept of orbit dimen-
sional capacity and discuss its application in the computation of topological orbit di-
mension in finitely generated nuclear C∗-algebras and several other classes of unital
C∗-algebras. In Section 5 we consider free products. We prove that topological free
entropy dimension is additive in unital full free products of some unital C∗-algebras.
We also show that the unital full free product of a sequence of MF algebras is again
an MF algebra, which allows us to show that Ext(C∗

r (F2) ∗C C∗
r (F2)) is not a group.

2 Definitions and Preliminaries

In this section, we are going to recall Voiculescu’s definition of topological free en-
tropy dimension of an n-tuple of elements in a unital C∗-algebra and give the defini-
tion of topological orbit dimension of an n-tuple of elements in a unital C∗-algebra.

2.1 A Covering of a Set in a Metric Space

Suppose (X, d) is a metric space and K is a subset of X. A family of balls in X is called
a covering of K if the union of these balls contains K and the centers of these balls lie
in K.

2.2 Covering Numbers in Complex Matrix Algebra (Mk(C))n

Let Mk(C) be the k× k full matrix algebra with entries in C, and let τk be the normal-
ized trace on Mk(C), i.e., τk =

1
k

Tr, where Tr is the usual trace on Mk(C). Let U(k)
denote the group of all unitary matrices in Mk(C). Let Mk(C)n denote the direct sum
of n copies of Mk(C). Let Ms.a

k (C) be the subset of Mk(C) consisting of all self-adjoint
matrices of Mk(C). Let (Ms.a

k (C))n be the direct sum (or orthogonal sum) of n copies
of Ms.a

k (C). Let ‖ · ‖ be the operator norm on Mk(C)n defined by

‖(A1, . . . , An)‖ = max{‖A1‖, . . . , ‖An‖}
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for all (A1, . . . , An) in Mk(C)n. Let ‖ · ‖2 denote the trace norm induced by τk on
Mk(C)n, i.e.,

‖(A1, . . . , An)‖2 =
√

τk(A∗
1 A1) + · · · + τk(A∗

nAn)

for all (A1, . . . , An) in Mk(C)n.
For every ω > 0, we define the ω-‖ · ‖-ball Ball(B1, . . . , Bn; ω, ‖ · ‖) centered at

(B1, . . . , Bn) in Mk(C)n to be the subset of Mk(C)n consisting of all (A1, . . . , An) in
Mk(C)n such that

‖(A1, . . . , An) − (B1, . . . , Bn)‖ < ω.

Definition 2.2.1 Suppose that Σ is a subset of Mk(C)n. We define the covering
number ν∞(Σ, ω) to be the minimal number of ω-‖ · ‖-balls that constitute a cover-
ing of Σ in Mk(C)n.

For every ω > 0, we define the ω-‖ · ‖2-ball Ball(B1, . . . , Bn; ω, ‖ · ‖2) centered at
(B1, . . . , Bn) in Mk(C)n to be the subset of Mk(C)n consisting of all (A1, . . . , An) in
Mk(C)n such that

‖(A1, . . . , An) − (B1, . . . , Bn)‖2 < ω.

Definition 2.2.2 Suppose that Σ is a subset of Mk(C)n. We define the covering
number ν2(Σ, ω) to be the minimal number of ω-‖ · ‖2-balls that constitute a cover-
ing of Σ in Mk(C)n.

2.3 Unitary Orbits of Balls in Mk(C)n

For every ω > 0, we define the ω-orbit-‖ · ‖2-ball U(B1, . . . , Bn; ω, ‖ · ‖2) centered at
(B1, . . . , Bn) in Mk(C)n to be the subset of Mk(C)n consisting of all (A1, . . . , An) in
Mk(C)n such that there exists a unitary matrix W in U(k) satisfying

‖(A1, . . . , An) − (W B1W ∗, . . . ,W BnW ∗)‖2 < ω.

Definition 2.3.1 Suppose that Σ is a subset of Mk(C)n. We define the covering
number o2(Σ, ω) to be the minimal number of ω-orbit-‖ · ‖2-balls that constitute a
covering of Σ in Mk(C)n.

2.4 Noncommutative Polynomials

In this article, we always assume that A is a unital C∗-algebra. Let x1, . . . , xn,
y1, . . . , ym be self-adjoint elements in A. Let C〈X1, . . . , Xn,Y1, . . . ,Ym〉 be the set of
all noncommutative polynomials in the indeterminants X1, . . . , Xn,Y1, . . . ,Ym. Let
CQ = Q +iQ denote the complex-rational numbers, i.e., the numbers whose real and
imaginary parts are rational. Then the set CQ〈X1, . . . , Xn,Y1, . . . ,Ym〉 of noncom-
mutative polynomials with complex-rational coefficients is countable. Throughout
this paper we write

CQ〈X1, . . . , Xn,Y1, . . . ,Ym〉 = {Pr : r ∈ N} and CQ〈X1, . . . , Xn〉 = {Qr : r ∈ N} .

Remark 2.4.1 We always assume that 1 ∈ C〈X1, . . . , Xn,Y1, . . . ,Ym〉.
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2.5 Voiculescu’s Norm-microstates Space

For all integers r, k ≥ 1, real numbers R, ǫ > 0, r ∈ N, we define

Γ
(top)
R (x1, . . . , xn, y1, . . . , ym; k, ǫ, P1, . . . , Pr),

where P1, . . . , Pr are the first r polynomials in CQ〈X1, . . . , Xn,Y1, . . . ,Ym〉 to be the
subset of (Ms.a

k (C))n+m consisting of all these

(A1, . . . , An, B1, . . . , Bm) ∈ (Ms.a
k (C))n+m

satisfying
max{‖A1‖, . . . , ‖An‖, ‖B1‖, . . . , ‖Bm‖} ≤ R

and

|‖P j(A1, . . . , An, B1, . . . , Bm)‖−‖P j(x1, . . . , xn, y1, . . . , ym)‖| ≤ ǫ, ∀ 1 ≤ j ≤ r.

Define the norm-microstates space of x1, . . . , xn in the presence of y1, . . . , ym,
denoted by

Γ
(top)
R (x1, . . . , xn : y1, . . . , ym; k, ǫ, P1, . . . , Pr),

to be the projection of Γ
(top)
R (x1, . . . , xn, y1, . . . , ym; k, ǫ, P1, . . . , Pr) onto the space

(Ms.a
k (C))n via the mapping

(A1, . . . , An, B1, . . . , Bm) → (A1, . . . , An).

2.6 Voiculescu’s Topological Free Entropy Dimension (see [29])

Recall that if n is a positive integer, Σ ⊂ (Ms.a
k (C))n, and ω > 0, we define ν∞ (Σ, ω)

to be the covering number of the set Σ by ω-‖ · ‖-balls in the metric space (Ms.a
k (C))n

equipped with an operator norm.

Definition 2.6.1 Define

δtop(x1, . . . , xn; ω) =

sup
R>0

inf
ε>0,r∈N

lim sup
k→∞

log
(

ν∞(Γ
(top)
R (x1, . . . , xn; k, ǫ, Q1, . . . , Qr), ω)

)

−k2 log ω
.

The topological free entropy dimension of x1, . . . , xn is defined by

δtop(x1, . . . , xn) = lim sup
ω→0+

δtop(x1, . . . , xn; ω)

Similarly, define

δtop(x1, . . . , xn : y1, . . . , ym; ω) =

sup
R>0

inf
ε>0,r∈N

lim sup
k→∞

log
(

ν∞(Γ
(top)
R (x1, . . . , xn : y1, . . . , ym; k, ǫ, P1, . . . , Pr), ω)

)

−k2 log ω
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The topological free entropy dimension of x1, . . . , xn in the presence of y1, . . . , ym

is defined by

δtop(x1, . . . , xn : y1, . . . , ym) = lim sup
ω→0+

δtop(x1, . . . , xn : y1, . . . , ym; ω)

Remark 2.6.2 It is clear from the definition that the supremum over R > 0 is
unnecessary. In fact,

δtop(x1, . . . , xn) =

lim sup
ω→0+

inf
ε>0,r∈N

lim sup
k→∞

log
(

ν∞(Γ
(top)
R (x1, . . . , xn; k, ǫ, Q1, . . . , Qr), ω)

)

−k2 log ω

whenever R > max{‖x1‖, . . . , ‖xn‖}, and

δtop(x1, . . . , xn : y1, . . . , ym) =

lim sup
ω→0+

inf
ε>0,r∈N

lim sup
k→∞

log
(

ν∞(Γ
(top)
R (x1, . . . , xn : y1, . . . , ym; k, ǫ, P1, . . . , Pr), ω)

)

−k2 log ω

whenever R > max{‖x1‖, . . . , ‖xn‖, ‖y1‖, . . . , ‖ym‖}. This is because when ε is suf-
ficiently small and r is sufficiently large, the conditions involving R are automatically
satisfied.

2.7 Topological Orbit Dimension K
(2)
top

Recall that if n is a positive integer, Σ ⊂ (Ms.a
k (C))n and ω > 0, we define o2 (Σ, ω)

to be the covering number of the set Σ by ω-orbit-‖ · ‖2-balls in the metric space
(Ms.a.

k (C))n equipped with the trace norm.

Definition 2.7.1 Define

K
(2)
top(x1, . . . , xn; ω) =

sup
R>0

inf
ε>0,r∈N

lim sup
k→∞

log
(

o2(Γ
(top)
R (x1, . . . , xn; k, ǫ, Q1, . . . , Qr), ω)

)

k2

and

K
(2)
top(x1, . . . , xn : y1, . . . , ym; ω) =

sup
R>0

inf
ε>0,r∈N

lim sup
k→∞

log
(

o2(Γ
(top)
R (x1, . . . , xn : y1, . . . , ym; k, ǫ, P1, . . . , Pr), ω)

)

k2
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Remark 2.7.2 The values of

K
(2)
top(x1, . . . , xn; ω) and K

(2)
top(x1, . . . , xn : y1, . . . , ym; ω)

increase as ω decreases.
The topological orbit dimension of x1, . . . , xn in the presence of x1, . . . , xn is de-

fined by
K

(2)
top(x1, . . . , xn) = lim

ω→0+
K

(2)
top(x1, . . . , xn; ω)

The topological orbit dimension of x1, . . . , xn in the presence of y1, . . . , ym is de-
fined by

K
(2)
top(x1, . . . , xn : y1, . . . , ym) = lim

ω→0+
K

(2)
top(x1, . . . , xn : y1, . . . , ym; ω)

Remark 2.7.3 In the notation K
(2)
top, the subscript “top” stands for the norm-micro-

states space, and the superscript “(2)” stands for the using of unitary-orbit-‖ · ‖2-balls
when

counting the covering numbers of the norm-microstates spaces.

Remark 2.7.4 As with the definition of topological free entropy dimension, in the
definition of topological orbit dimension, the supremum over R > 0 is unnecessary.

2.8 C∗-algebra Ultraproducts

For an introduction to ultraproducts of C*-algebras, see [11]. Suppose {Mkm
(C)}∞m=1

is a sequence of complex matrix algebras where km goes to infinity as m goes to in-
finity. Let γ be a free ultrafilter in β(N) \ N. We can introduce a unital C∗-algebra
∏∞

m=1 Mkm
(C) as follows:

∞
∏

m=1

Mkm
(C) =

{

(Ym)∞m=1 | ∀ m ≥ 1, Ym ∈ Mkm
(C) and sup

m≥1

‖Ym‖ < ∞
}

.

We can also introduce a norm closed two-sided ideal I∞ as follows.

I∞ =

{

(Ym)∞m=1 ∈
∞
∏

m=1

Mkm
(C) : lim

m→γ
‖Ym‖ = 0

}

.

Definition 2.8.1 The C∗-algebra ultraproduct of {Mkm
(C)}∞m=1 along the ultrafilter

γ, denoted by
∏γ

Mkm
(C), is defined to be the quotient algebra,

∏∞
m=1 Mkm

(C)/I∞,
of

∏∞
m=1 Mkm

(C) by the ideal I∞. The image of (Ym)∞m=1 ∈ ∏∞
m=1 Mkm

(C) in
∏γ

Mkm
(C) is denoted by [(Ym)γ].

2.9 MF Algebras

In the definitions of δtop(x1, . . . , xn) and K
(2)
top(x1, . . . , xn), where x1, . . . , xn are self-

adjoint generators of a unital C∗-algebra A, it is necessary that a suitable number
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of the Voiculescu’s norm-microstate spaces Γtop-sets be nonempty. More precisely,
for every family {Pr}m

r=1 of noncommutative polynomials in CQ〈X1, . . . , Xn〉 with
rational coefficients and R > max{‖x1‖, . . . , ‖xn‖}, r > 0, and ǫ > 0, there is a
sequence of positive integers k1 < k2 < · · · such that

Γ
(top)
R (x1, . . . , xn; ks, ǫ, P1, . . . , Pr) 6= ∅, ∀ s ≥ 1.

In [19] we used the term approximation property to describe the preceding condition.
However, it turns out that this property is equivalent to A being an MF algebra in the
sense of Blackadar and Kirchberg [1], i.e., there is a unital embedding from A into
∏

k Mnk
(C)/

∑

Mnk
(C) for a sequence {nk}∞k=1 of positive integers. The next lemma

follows immediately from [1, Theorem 3.2.2] and [18, Lemma 5.6]. We will give a
new characterization of MF algebras (Theorem 5.1.2), and use it to show that MF
algebras are closed under free products (Theorem 5.1.4).

Lemma 2.9.1 Suppose that A is a unital C∗-algebra and x1, . . . , xn is a family of

self-adjoint generators in A. The following are equivalent:

(i) δtop(x1, . . . , xn) is defined;

(ii) A is an MF algebra;

(iii) There are a sequence of positive integers {mk}∞k=1 and self-adjoint matrices

A(k)
1 , . . . , A(k)

n in Ms.a.
mk

(C) for k = 1, 2, . . . , such that, ∀ P ∈ C〈X1, . . . , Xn〉,

lim
k→∞

‖P(A(k)
1 , . . . , A(k)

n )‖ = ‖P(x1, . . . , xn)‖,

where C〈X1, . . . , Xn〉 is the set of all noncommutative polynomials in the indeter-

minants X1, . . . , Xn.

In view of the preceding lemma we should only talk about δtop (x1, . . . , xn) or

K
(2)
top (x1, . . . , xn) when the unital C*-algebra A generated by x1, . . . , xn is an MF al-

gebra.

3 Properties of Topological Orbit Dimension K
(2)
top

In this section, we are going to discuss properties of the topological orbit dimen-
sion K

(2)
top.

3.1 Some Basic Properties

The following result explains the relationship between Voiculescu’s topological free
entropy dimension and topological orbit dimension of n-tuple of elements in a unital
C∗-algebra.

Lemma 3.1.1 Suppose that A is a unital C∗-algebra and x1, . . . , xn is a family of

self-adjoint elements in A. If K
(2)
top(x1, . . . , xn) < ∞, then δtop(x1, . . . , xn) ≤ 1.
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Proof Let CQ〈X1, . . . , Xn〉 ={Pr}∞r=1 be the collection of all noncommutative poly-
nomials X1, . . . , Xn with rational coefficients. For any

0 < ω < 1/10, R > max{‖x1‖, . . . , ‖xn‖},

we know from Remark 2.7.2 that

inf
r∈N, ǫ>0

lim sup
k→∞

log(o2(Γ
(top)
R (x1, . . . , xn, k, ǫ, P1, . . . , Pr), ω))

−k2 log ω
≤

K
(2)
top(x1, . . . , xn) · 1

− log ω
.

By a result of S. Szarek’s in [23], there is a family of unitary matrices {Uλ}λ∈Λ in U(k)
such that

(i) {Ball(Uλ; ω
R
, ‖ · ‖)}λ∈Λ is a covering of U(k) and

(ii) the cardinality of Λ, |Λ| ≤ (CR/ω)k2

, where C is a constant independent of k, ω.

Thus from the relationship between covering number (see Definition 2.2.2) and the
unitary orbit covering number (see Definition 2.3.1), we have

inf
r∈N, ǫ>0

lim sup
k→∞

log(ν2(Γ
(top)
R (x1, . . . , xn, k, ǫ, P1, . . . , Pr), 3ω))

−k2 log ω

≤ inf
r∈N, ǫ>0

lim sup
k→∞

log(o2(Γ
(top)
R (x1, . . . , xn, k, ǫ, P1, . . . , Pr), ω) ·

(

CR
ω

)k2

)

−k2 log ω

≤ 1 +
log C + log R

− log ω
+ K

(2)
top(x1, . . . , xn) · 1

− log ω
.

Now the result of the theorem follows directly from the definitions of the topolog-
ical free entropy dimension and the topological orbit dimension, together with Re-
marks 2.6.2 and 2.7.4 and the remark in [29, Section 6] (or [18, Proposition 5.1]).

A direct consequence of the preceding lemma is the following theorem.

Theorem 3.1.2 Suppose that A is a unital C∗-algebra and x1, . . . , xn is a family of

self-adjoint elements in A. Then

δtop(x1, . . . , xn) ≤ max{K
(2)
top(x1, . . . , xn), 1}.

In particular, if K
(2)
top(x1, . . . , xn) = 0, then δtop(x1, . . . , xn) ≤ 1.

The following lemma will be needed in the proof of Theorem 3.2.1.

Lemma 3.1.3 Let x1, . . . , xn, y1, . . . , yp be self-adjoint elements in a unital C∗-alge-

bra A. If y1, . . . , yp are in the C∗-subalgebra generated by x1, . . . , xn in A, then, for

every ω > 0,

K
(2)
top(x1, . . . , xn; 4ω) ≤ K

(2)
top(x1, . . . , xn : y1, . . . , yp; 2ω) ≤ K

(2)
top(x1, . . . , xn; ω).
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Proof It is a straightforward adaptation of the proof of [27, Prop. 1.6]. Suppose
that {Pr}∞r=1 = CQ〈X1, . . . , Xn,Y1, . . . ,Ym〉, and {Qs}∞s=1 = CQ〈X1, . . . , Xn〉 respec-
tively, are families of noncommutative polynomials in C〈X1, . . . , Xn,Y1, . . . ,Ym〉,
and C〈X1, . . . , Xn〉 respectively, with rational coefficients.

Given R > max1≤ j≤n ‖x j‖ + max1≤ j≤p ‖y j‖, r, s ∈ N and ǫ > 0, we can find
r1, s1 ∈ N and ǫ1 > 0, ǫ2 > 0 such that, for all k ∈ N,

Γ
(top)
R (x1, . . . , xn; k, ǫ1, Q1, . . . , Qs1

) ⊆ Γ
(top)
R (x1, . . . , xn : y1, . . . , yp; k, ǫ, P1, . . . , Pr),

Γ
(top)
R (x1, . . . , xn : y1, . . . , yp; k, ǫ2, P1, . . . , Pr1

) ⊆ Γ
(top)
R (x1, . . . , xn; k, ǫ, Q1, . . . , Qs).

Hence,

o2(Γ
(top)
R (x1, . . . , xn; k, ǫ1, Q1, . . . , Qs1

), 4ω)

≤ o2(Γ
(top)
R (x1, . . . , xn : y1, . . . , yp; k, ǫ, P1, . . . , Pr), 2ω)

o2(Γ
(top)
R (x1, . . . , xn : y1, . . . , yp; k, ǫ2, P1, . . . , Pr1

), 2ω)

≤ o2(Γ
(top)
R (x1, . . . , xn; k, ǫ, Q1, . . . , Qs), ω),

for all ω > 0. Therefore, for all ω > 0,

inf
ǫ1>0,s1∈N

lim sup
k→∞

log(o2(Γ
(top)
R (x1, . . . , xn; k, ǫ1, Q1, . . . , Qs1

), 4ω))

k2
≤

lim sup
k→∞

log(o2(Γ
(top)
R (x1, . . . , xn : y1, . . . , yp; k, ǫ, P1, . . . , Pr), 2ω))

k2
;

and

inf
ǫ2>0,r1∈N

lim sup
k→∞

log(o2(Γ
(top)
R (x1, . . . , xn : y1, . . . , yp; k, ǫ2, P1, . . . , Pr1

), 2ω))

k2
≤

lim sup
k→∞

log(o2(Γ
(top)
R (x1, . . . , xn; k, ǫ, Q1, . . . , Qs), ω))

k2
.

It follows that, for all ω > 0,

inf
ǫ1>0,s1∈N

lim sup
k→∞

log(o2(Γ
(top)
R (x1, . . . , xn; k, ǫ1, Q1, . . . , Qs1

), 4ω))

k2
≤

inf
ǫ>0,r∈N

lim sup
k→∞

log(o2(Γ
(top)
R (x1, . . . , xn : y1, . . . , yp; k, ǫ, P1, . . . , Pr), 2ω))

k2
;
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and

inf
ǫ2>0,r1∈N

lim sup
k→∞

log(o2(Γ
(top)
R (x1, . . . , xn : y1, . . . , yp; k, ǫ2, P1, . . . , Pr1

), 2ω))

k2
≤

inf
ǫ>0,s∈N

lim sup
k→∞

log(o2(Γ
(top)
R (x1, . . . , xn; k, ǫ, Q1, . . . , Qs), ω))

k2
.

The rest follows from the definitions.

3.2 A C∗-algebra Invariant

Our next result shows that the topological orbit dimension K
(2)
top is in fact a C∗-algebra

invariant. In view of this result, we use K
(2)
top(A) to denote K

(2)
top(x1, . . . , xn) for an

arbitrary generating set {x1, . . . , xn} for A.

Theorem 3.2.1 Suppose that A is a unital C∗-algebra and {x1, . . . , xn}, {y1, . . . , yp}
are two families of self-adjoint generators of A. Then

K
(2)
top(x1, . . . , xn) = K

(2)
top(y1, . . . , yp).

Proof Note that x1, . . . , xn are elements in A that generate A as a C∗-algebra. For ev-
ery 0 < ω < 1, there exists a family of noncommutative polynomials ψi(x1, . . . , xn),
1 ≤ i ≤ p, such that

( p
∑

i=1

‖yi − ψi(x1, . . . , xn)‖2

) 1/2

<
ω

4
.

For such a family of polynomials ψ1, . . . , ψp and every

R > max{‖x1‖, . . . , ‖xn‖, ‖y1‖, . . . , ‖yp‖}

there always exists a constant D ≥ 1, depending only on R, ψ1, . . . , ψn, such that

( p
∑

i=1

‖ψi(A1, . . . , An) − ψi(B1, . . . , Bn)‖2
2

) 1/2

≤ D‖(A1, . . . , An) − (B1, . . . , Bn)‖2,

for all (A1, . . . , An), (B1, . . . , Bn) in Mk(C)n, all k ∈ N, satisfying ‖A j‖, ‖B j‖ ≤ R, for
1 ≤ j ≤ n.

Suppose that {Pr}∞r=1 and {Qs}∞s=1 are the families of noncommutative polynomi-
als in C〈Y1, . . . ,Y p, X1, . . . , Xn〉, and C〈X1, . . . , Xn〉 respectively, with rational coef-
ficients.

For any s ≥ 1, ǫ > 0, when r is sufficiently large and ǫ′ is sufficiently small, every

(H1, . . . , Hp, A1, . . . , An)
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in

Γ
(top)
R (y1, . . . , yp, x1, . . . , xn; k, ǫ′, P1, . . . , Pr)

satisfies
( p

∑

i=1

‖Hi − ψi(A1, . . . , An)‖2

) 1/2

≤ ω

4
;

and

(A1, . . . , An) ∈ Γ
(top)
R (x1, . . . , xn; k, ǫ, Q1, . . . , Qs).

On the other hand, by the definition of the orbit covering number, we know there
exists a set {U(Bλ

1 , . . . , Bλ
n ; ω

4D
, ‖ · ‖2)}λ∈Λk

of ω
4D

-orbit-‖ · ‖2-balls that cover

ΓR(top)(x1, . . . , xn; k, ǫ, Q1, . . . , Qs)

with the cardinality of Λk satisfying

|Λk| = o2

(

Γ
(top)
R (x1, . . . , xn; k, ǫ, Q1, . . . , Qs),

ω

4D

)

.

Thus for such (A1, . . . , An) in Γ
(top)
R (x1, . . . , xn; k, ǫ, Q1, . . . , Qs), there exists some

λ ∈ Λk and W ∈ U(k) such that

‖(A1, . . . , An) − (W Bλ
1W ∗, . . . ,W Bλ

nW ∗)‖2 ≤
ω

4D
.

It follows that

( p
∑

i=1

‖Hi −Wψi(Bλ
1 , . . . , Bλ

n)W ∗‖2
2

) 1/2

=

( p
∑

i=1

‖Hi − ψi(W Bλ
1W ∗, . . . ,W Bλ

nW ∗)‖2
2

) 1/2

≤
( p

∑

i=1

‖Hi − ψi(A1, . . . , An)‖2
2

) 1/2

+

( p
∑

i=1

‖ψi(A1, . . . , An) − ψi(W Bλ
1W ∗, . . . ,W Bλ

nW ∗)‖2
2

) 1/2

≤
( p

∑

i=1

‖Hi − ψi(A1, . . . , An)‖2

) 1/2

+
ω

4
≤ ω

2
,

for some λ ∈ Λk and W ∈ U(k), i.e.,

(H1, . . . , Hp) ∈ U(ψ1(Bλ
1 , . . . , Bλ

n), . . . , ψp(Bλ
1 , . . . , Bλ

n);
ω

2
).
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Hence, for given s ∈ N and ǫ > 0, when ǫ′ is small enough and r is large enough,

o2

(

Γ
(top)
R (y1, . . . , yp : x1, . . . , xn; k, ǫ′, P1, . . . , Pr), ω

)

≤

|Λk| = o2(Γ
(top)
R

(

x1, . . . , xn; k, ǫ, Q1, . . . , Qs

)

,
ω

4D
).

It follows that

inf
r∈N, ǫ ′>0

lim
k→∞

log(o2(Γ
(top)
R (y1, . . . , yp : x1, . . . , xn; k, ǫ′, P1, . . . , Pr), ω))

k2
≤

lim
k→∞

log(o2(Γ
(top)
R (x1, . . . , xn; k, ǫ, Q1, . . . , Qs),

ω
4D

))

k2
.

Therefore, by the definition of the topological orbit dimension and Remark 2.7.4, we
get

K
(2)
top(y1, . . . , yp : x1, . . . , xn; ω) = K

(2)
top(y1, . . . , yp : x1, . . . , xn; ω, R)

= inf
ǫ ′>0,r∈N

lim
k→∞

log(o2(Γ
(top)
R (y1, . . . , yp : x1, . . . , xn; k, ǫ′, P1, . . . , Pr), ω))

k2

≤ inf
ǫ>0,s∈N

lim sup
k→∞

log(o2(Γ
(top)
R (x1, . . . , xn; k, ǫ, Q1, . . . , Qs),

ω
4D

))

k2

≤ K
(2)
top(x1, . . . , xn),

where the last inequality follows from the fact that K
(2)
top(x1, . . . , xn; ω) increases as ω

decreases. Thus, by Lemma 3.1.3, we get

K
(2)
top(y1, . . . , yp) ≤ K

(2)
top(x1, . . . , xn).

Similarly, we have

K
(2)
top(x1, . . . , xn) ≤ K

(2)
top(y1, . . . , yp),

which completes the proof.

A slight modification of the proof of Theorem 3.2.1 will prove the semicontinuity
of K

(2)
top with respect to direct limits.

Theorem 3.2.2 Suppose that A is a unital finitely generated MF C∗-algebra. Suppose

Ai , j = 1, 2, . . . is an increasing sequence of unital finitely generated C∗-subalgebras of

A such that
⋃∞

j=1 A j is norm dense in A. Then

K
(2)
top(A) ≤ lim inf

j→∞
K

(2)
top(A j).
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Proof Suppose x1, . . . , xn is a family of self-adjoint generators of A, and, for each

j ≥ 1, x
( j)
1 , . . . , x

( j)
n j is a family of self-adjoint generators of A j . For every 0 <

ω < 1, there exist a positive integer j and a family of noncommutative polynomials

ψi(x
( j)
1 , . . . , x

( j)
n j ), 1 ≤ i ≤ p, such that

( p
∑

i=1

‖yi − ψi(x
( j)
1 , . . . , x( j)

n j
)‖2

) 1/2

<
ω

4
.

The rest of the proof is identical to the proof of Theorem 3.2.1.

3.3 Tensor Products with Mn(C)

Suppose A is a finitely generated unital C∗-algebra and n is a positive integer. In this
subsection, we are going to compute the topological orbit dimension in the unital
C∗-algebra A ⊗ Mn(C).

Assume that {est}n
s,t=1 is a canonical system of matrix units in Mn(C) and In is the

identity matrix of Mn(C).

The following statement is an easy adaptation of [2, Lemma 2.3].

Lemma 3.3.1 ([2, Lemma 2.3]) For any ǫ > 0, there is a constant δ > 0 so that the

following holds. For any k ∈ N, if {Est}n
s,t=1 is a family of elements in Mk(C) satisfying

‖Es1t1
Es2t2

− δt1s2
Es1t2

‖ ≤ δ, ‖Es1t1
− E∗

t1s1
‖

≤ δ,
∥

∥

∥

n
∑

i=1

Eii − Ik

∥

∥

∥
≤ δ, ∀1 ≤ s1, s2, t1, t2 ≤ n

(where δt1s2
is 1 if t1 = s2 and is 0 if t1 6= s2), then n|k and there is some unitary matrix

W in Mk(C) such that

n
∑

s,t=1

‖W ∗EstW − Ik/n ⊗ est‖ ≤ ǫ.

Lemma 3.3.2 Suppose A is a unital C∗-algebra generated by a family of self-adjoint

elements x1, . . . , xm. Suppose that {Pr}∞r=1, and {Qs}∞s=1 respectively, is the family of

noncommutative polynomials in C〈X1, . . . , Xm, {Yst}n
s,t=1〉, and C〈X1, . . . , Xm〉 respec-

tively, with rational coefficients.

Let R > max{‖x1‖, . . . , ‖xm‖, 1}. For any ω > 0, r0 > 0 and ǫ0 > 0, there are

some r > 0 and ǫ > 0 such that the following holds. If

(A1, . . . , Am, {Est}n
s,t=1) ∈

Γ
(top)
R (x1 ⊗ In, . . . , xm ⊗ In, {IA ⊗ est}n

s,t=1, k, ǫ, P1, . . . , Pr) 6= ∅,
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then n|k; there are a unitary matrix W in Mk(C) and

(B1, . . . , Bm) ∈ Γ
(top)
R (x1, . . . , xm,

k

n
, ǫ0, Q1, . . . , Qr0

)

such that

n
∑

s,t=1

‖W ∗EstW − Ik/n ⊗ est‖ +

m
∑

i=1

‖W ∗AiW − Bi ⊗ In‖ ≤ ω.

Proof We will prove the result by using contradiction. Suppose, to the contrary, that
the result of the lemma does not hold. There are ω > 0, r0 ∈ N, and ǫ0 > 0 such
that, for any r ∈ N, there are kr ∈ N and

(A(r)
1 , . . . , A(r)

m , {E(r)
st }n

s,t=1) ∈

Γ
(top)
R (x1 ⊗ In, . . . , xm ⊗ In, {IA ⊗ est}n

s,t=1, kr, 1/r, P1, . . . , Pr) 6= ∅,

satisfying either n ∤ kr, or if W is a unitary matrix in Mkr
(C) and

(B1, . . . , Bm) ∈ Γ
(top)
R (x1, . . . , xm,

k

n
, ǫ0, Q1, . . . , Qr0

),(3.1)

then
n

∑

s,t=1

‖W ∗E(r)
st W − Ik/n ⊗ est‖ +

m
∑

i=1

‖W ∗A(r)
i W − Bi ⊗ In‖ > ω.(3.2)

Let γ be a free ultra-filter in β(N) \ N. Let
∏γ

r=1 Mkr
(C) be the C∗ algebra ultra-

product of matrices algebras (Mkr
(C))∞r=1 along the ultra-filter γ, i.e.,

∏γ
r=1 Mkr

(C) is
the quotient algebra of the C∗-algebra

∏

r Mkr
(C) by I∞, where

I∞ = {(Yr)
∞
r=1 ∈

∏

r

Mkr
(C) | lim

r→γ
‖Yr‖ = 0}.

Let ψ be the ∗-isomorphism from the C∗-algebra A⊗Mn(C) into the C∗-algebra
∏γ

r=1 Mkr
(C) induced by the mapping

xi ⊗ In → [(A(r)
i )r] ∈

γ
∏

r=1

Mkr
(C), IA ⊗ est → [(E(r)

st )r] ∈
γ
∏

r=1

Mkr
(C)

∀ 1 ≤ i ≤ m, 1 ≤ s, t ≤ n.

Thus {ψ(IA⊗est )}n
s,t=1 is also a system of matrix units of a C∗-subalgebra (∗-isomor-

phic to Mn(C)) in
∏γ

r=1 Mkr
(C). By the preceding lemma, without loss of generality,

we can assume that n|kr and there is a sequence of unitary matrices {Wr}∞r=1, where
Wr is in Mkr

(C), such that

(3.3) [(E(r)
st )r] = [(Wr(Ikr/n ⊗ est )W

∗
r )r], ∀ 1 ≤ s, t ≤ n.
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Note that

[(A(r)
i )r][(E(r)

st )r] = [(E(r)
st )r][(A(r)

i )r], ∀ 1 ≤ i ≤ m, 1 ≤ s, t ≤ n.

Thus by (3.3), there are B(r)
1 , . . . , B(r)

m in Mkr/n(C) for each r ≥ 1 such that

[(A(r)
i )r] = [(Wr(B(r)

i ⊗ In)W ∗
r )r], ∀ 1 ≤ i ≤ m,

which contradicts our assumptions (3.1), (3.2), and (3.3). This completes the proof
of the lemma.

Now we are ready to prove the main result in this subsection.

Theorem 3.3.3 Suppose that A is a unital C∗-algebra and n is a positive integer.

Suppose that B = A ⊗ Mn(C). Then

K
(2)
top(A ⊗ Mn(C)) ≤ K

(2)
top(A).

Proof Suppose x1, . . . , xm is a family of self-adjoint generators of A and y1, . . . , yp

is a family of self-adjoint generators of A ⊗ Mn(C). Suppose that {Pr}∞r=1 and
{Qs}∞s=1 are families of noncommutative polynomials in C〈X1, . . . , Xm, {Yst}n

s,t=1〉,
and C〈X1, . . . , Xm〉 respectively, with rational coefficients.

Let R > max{‖x1‖, . . . , ‖xm‖, 1}. For any ω > 0, r0 > 0, and ǫ0 > 0, by the
preceding lemma, there is a r > 0 such that, ∀ k ∈ N,

o2(Γ
(top)
R (x1 ⊗ In, . . . , xm ⊗ In, {IA ⊗ est}n

s,t=1; k, 1/r, P1, . . . , Pr, 2ω)

≤ o2(Γ
(top)
R (x1, . . . , xn; k, 1/r0, Q1, . . . , Qr0

, ω).

Thus,

inf
r∈N

lim sup
k→∞

log(o2(Γ
(top)
R (x1 ⊗ In, . . . , xm ⊗ In, {IA ⊗ est}n

s,t=1; k, 1
r
, P1, . . . , Pr, 2ω))

k2

≤ lim sup
k→∞

log(o2(Γ
(top)
R (x1, . . . , xn; k, 1

r0
, Q1, . . . , Qr0

, ω))

k2
.

So

inf
r∈N

lim sup
k→∞

log(o2(Γ
(top)
R (x1 ⊗ In, . . . , xm ⊗ In, {IA ⊗ est}n

s,t=1; k, 1
r
, P1, . . . , Pr, 2ω))

k2

≤ inf
r0∈N

lim sup
k→∞

log(o2(Γ
(top)
R (x1, . . . , xn; k, 1

r0
, Q1, . . . , Qr0

, ω))

k2
.

It follows easily that

K
(2)
top(x1 ⊗ In, . . . , xm ⊗ In, {IA ⊗ est}n

s,t=1) ≤ K
(2)
top(x1, . . . , xm).

By Theorem 3.2.1, we have

K
(2)
top(A ⊗ Mn(C) = K

(2)
top(y1, . . . , yp) ≤ K

(2)
top(x1, . . . , xm) = K

(2)
top(A),

where y1, . . . , yp is any family of self-adjoint generators of B.
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The following corollary follows directly from the preceding theorem.

Corollary 3.3.4 Suppose that A is a finitely generated unital C∗-algebra with

K
(2)
top(A) = 0. Then, for every positive integer n,

K
(2)
top(A ⊗ Mn(C)) = 0 and δtop(A ⊗ Mn(C)) ≤ 1.

Example 3.3.5 Suppose that x1, . . . , xm is a family of self-adjoint generators of a
full matrix algebra Mn(C). Then K

(2)
top(x1, . . . , xm) = 0.

3.4 Direct Products of C∗-algebras

In this subsection, we assume that A and B are two unital C∗-algebras and A ⊕
B is the orthogonal sum of A and B. We assume x1, . . . , xn, or y1, . . . , ym, is a
family of self-adjoint generators of A, or B respectively. Suppose that {Pr}∞r=1, and
{Qs}∞s=1 respectively, is the family of noncommutative polynomials in C〈X1, . . . , Xn〉,
and C〈Y1, . . . ,Ym〉 respectively, with rational coefficients. Suppose that {Sr}∞r=1 is the
family of noncommutative polynomials in C〈X1, . . . , Xn,Y1, . . . , Xm〉 with rational
coefficients.

Let R > max{‖x1‖, . . . , ‖xn‖, ‖y1‖, . . . , ‖ym‖} be a positive number. By the defi-
nition of topological orbit dimension, we have the following.

Lemma 3.4.1 Let

α > K
(2)
top(x1, . . . , xn) and β > K

(2)
top(y1, . . . , ym).

(i) For each ω > 0, there is r(ω) satisfying

lim sup
k1→∞

log(o2(Γ
(top)
R (x1, . . . , xn; k1,

1
r(ω)

, P1, . . . , Pr(ω)), ω))

k2
1

< α,

lim sup
k2→∞

log(o2(Γ
(top)
R (y1, . . . , ym; k2,

1
r(ω)

, Q1, . . . , Qr(ω)), ω))

k2
2

< β.

(ii) Therefore, for each ω > 0 and r(ω) ∈ N, there is some K(r(ω)) ∈ N satisfying

log
(

o2

(

Γ
(top)
R (x1, . . . , xn; k1,

1
r(ω)

, P1, . . . , Pr(ω)), ω
)

)

< αk2
1, ∀ k1 ≥ K(r(ω));

log
(

o2

(

Γ
(top)
R (y1, . . . , ym; k2,

1
r(ω)

, Q1, . . . , Qr(ω)), ω
)

)

< βk2
2, ∀ k2 ≥ K(r(ω)).

Lemma 3.4.2 Suppose that A and B are two unital C∗ algebras and x1, . . . , xn, or

y1, . . . , ym is a family of self-adjoint elements that generates A, or B respectively.

Let R > max{‖x1‖, . . . , ‖xn‖, ‖y1‖, . . . , ‖ym‖} be a positive number. For any ω >
0, r0 ∈ N, there is some t > 0 so that the following holds: ∀ r > t, ∀ k ≥ 1, if

(X1, . . . , Xn,Y1, . . . ,Ym) ∈

Γ
(top)
R (x1 ⊕ 0, . . . , xn ⊕ 0, 0 ⊕ y1, . . . , 0 ⊕ ym; k, 1

r
, S1, . . . , Sr),

https://doi.org/10.4153/CJM-2011-014-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-014-8


568 D. Hadwin, Q. Li, and J. Shen

then there are

(A1, . . . , An) ∈ Γ
(top)
R (x1, . . . , xn; k1,

1
r0
, P1, . . . , Pr0

),

(B1, . . . , Bm) ∈ Γ
(top)
R (y1, . . . , ym; k2,

1
r0
, Q1, . . . , Qr0

),

and U ∈ U(k) so that k1 + k2 = k, and

‖(X1, . . . , Xn,Y1, . . . ,Ym) −U ∗(A1 ⊕ 0, . . . , An ⊕ 0, 0 ⊕ B1, . . . , 0 ⊕ Bm)U‖ < ω.

Proof The proof of this lemma is a slight modification of the one of [18, Lemma 4.2].

Theorem 3.4.3 Suppose that A and B are finitely generated unital MF C∗-algebras.

Then,

K
(2)
top(A ⊕ B) ≤ K

(2)
top(A) + K

(2)
top(B).

Proof Suppose {x1, . . . , xn}, {y1, . . . , ym} , and
{

z1, . . . , zp

}

are self-adjoint gener-
ating sets for A,B, and A⊕B, respectively. Recall that {Sr}∞r=1, {Pr}∞r=1, and {Qs}∞s=1

respectively, are the families of noncommutative polynomials in

C〈X1, . . . , Xn,Y1, . . . , Xm〉, C〈X1, . . . , Xn〉, and C〈Y1, . . . ,Ym〉

respectively, with rational coefficients.
Let

α > K
(2)
top(x1, . . . , xn) and β > K

(2)
top(y1, . . . , ym),

and R > max{‖x1‖, . . . , ‖xn‖y1‖, . . . , ‖ym‖} be a positive number. By definition,

the values of topological orbit dimension K
(2)
top can only be −∞ or ≥ 0. Without loss

of generality, we can assume that α > 0 and β > 0. By Lemma 3.4.1, for any ω > 0,
there are r(ω) ∈ N and K(r(ω)) ∈ N satisfying

o2(Γ
(top)
R (x1, . . . , xn; k1,

1
r(ω)

, P1, . . . , Pr(ω)), ω) < eαk2
1 , ∀ k1 ≥ K(r(ω)),(3.4)

o2(Γ
(top)
R (y1, . . . , ym; k2,

1
r(ω)

, Q1, . . . , Qr(ω)), ω) < eβk2
2 , ∀ k2 ≥ K(r(ω)).(3.5)

On the other hand, for each ω > 0 and r(ω) ∈ N, it follows from Lemma 3.4.2 that
there is some t ∈ N so that ∀ r > t , ∀ k ≥ 1, if

(X1, . . . , Xn,Y1, . . . ,Ym)

∈ Γ
(top)
R (x1 ⊕ 0, . . . , xn ⊕ 0, 0 ⊕ y1, . . . , 0 ⊕ ym; k, 1

r
, S1, . . . , Sr),

then there are

(A1, . . . , An) ∈ Γ
(top)
R (x1, . . . , xn; k1,

1
rω

, P1, . . . , Prω ),

(B1, . . . , Bm) ∈ Γ
(top)
R (y1, . . . , ym; k2,

1
rω

, Q1, . . . , Qrω ),
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and U ∈ U(k) so that k1 + k2 = k, and

‖(X1, . . . , Xn,Y1, . . . ,Ym) −U ∗(A1 ⊕ 0, . . . , An ⊕ 0, 0 ⊕ B1, . . . , 0 ⊕ Bm)U‖ < ω.

It follows that

o2(Γ
(top)
R (x1 ⊕ 0, . . . , xn ⊕ 0, 0 ⊕ y1, . . . , 0 ⊕ ym; k, 1

r
, S1, . . . , Sr), 3ω)

≤
∑

k1+k2=k

(

o2(Γ
(top)
R (x1, . . . , xn; k1,

1
rω

, P1, . . . , Prω ), ω)

· o2(Γ
(top)
R (y1, . . . , ym; k2,

1
rω

, Q1, . . . , Qrω ), ω)
)

=

(

K(r(ω))
∑

k1=1

+

k−K(r(ω))−1
∑

k1=K(r(ω))+1

+

k
∑

k1=k−K(r(ω))

)

(

o2(Γ
(top)
R (x1, . . . , xn; k1,

1
rω

, P1, . . . , Prω ), ω)

· o2(Γ
(top)
R (y1, . . . , ym; k2,

1
rω

, Q1, . . . , Qrω ), ω)
)

(3.6)

Let

Mω = max
1≤k1≤K(r(ω))

o2(Γ
(top)
R (x1, . . . , xn; k1,

1
rω

, P1, . . . , Prω ), ω) + 1,

Nω = max
1≤k2≤K(r(ω))

o2(Γ
(top)
R (y1, . . . , ym; k2,

1
rω

, Q1, . . . , Qrω ), ω) + 1.

By (3.4) and (3.5), we know that

(3.6) ≤ K(r(ω))Mωeβk2
2 + K(r(ω))Nωeαk2

1 + (k − 2K(r(ω))) · (eαk2
1+βk2

2 + 1)

≤ K(r(ω))Mωeβk2

+ K(r(ω))Nωeαk2

+ 2k · e(α+β)k2 ≤ 3k · e(α+β)k2

,

when k is large enough. Now it is not hard to show that

K
(2)
top(x1 ⊕ 0, . . . , xn ⊕ 0, 0 ⊕ y1, . . . , 0 ⊕ ym) ≤ α + β.

Thus, by Theorem 3.2.1, we have

K
(2)
top(z1, . . . , zp) ≤ K

(2)
top(x1, . . . , xm) + K

(2)
top(y1, . . . , ym),

where z1, . . . , zp is any family of self-adjoint generators of A⊕B. Hence, by Theorem
3.2.1,

K
(2)
top

(

A ⊕ B
)

≤ K
(2)
top(A) + K

(2)
top(B).

The following corollary follows directly from the preceding theorem.
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Corollary 3.4.4 Suppose that A and B are finitely-generated unital MF C∗-algebras.

If

K
(2)
top(A) = K

(2)
top(B) = 0,

then

K
(2)
top

(

A ⊕ B
)

= 0 and δtop

(

A ⊕ B
)

≤ 1.

By Example 3.3.5, Corollary 3.4.4, and Theorem 3.2.2, we have the following re-
sult. This result will be extended to nuclear C*-algebras in Corollary 4.4.1.

Corollary 3.4.5 If A is an AF C*-algebra with self-adjoint generators x1, . . . , xn, then

K
(2)
top(A) = 0 and δtop(x1, . . . , xn) ≤ 1.

4 Orbit Dimension Capacity

In this section, we are going to define the concept of “orbit dimension capacity” of
n-tuple of elements in a unital C∗-algebra, which is an analogue of “free dimension
capacity” in [29].

4.1 Modified Free Orbit Dimension in Finite von Neumann Algebras

Let M be a von Neumann algebra with a tracial state τ , and let x1, . . . , xn be
self-adjoint elements in M. For any positive R and ǫ, and any m, k in N, let
ΓR(x1, . . . , xn; m, k, ǫ; τ ) be the subset of Ms.a

k (C)n consisting of all (A1, . . . , An) in
Ms.a

k (C)n such that

max
1≤ j≤n

‖A j‖ ≤ R and |τk(Ai1
· · ·Aiq

) − τ (xi1
· · · xiq

)| < ǫ,

for all 1 ≤ i1, . . . , iq ≤ n and 1 ≤ q ≤ m.

For any ω > 0, let o2(ΓR(x1, . . . , xn; m, k, ǫ; τ ), ω) be the minimal number of
ω-orbit-‖ · ‖2-balls in Mk(C)n that constitute a covering of ΓR(x1, . . . , xn; m, k, ǫ; τ ).

Now we define, successively,

K
(2)
2 (x1, , . . . , xn; ω; τ ) = sup

R>0

inf
m∈N,ǫ>0

lim sup
k→∞

log(o2(ΓR(x1, . . . , xn; m, k, ǫ; τ ), ω))

k2

K
(2)
2 (x1, , . . . , xn; τ ) = lim sup

ω→0+

K
(2)
2 (x1, . . . , xn; ω; τ ),

where K
(2)
2 (x1, . . . , xn; τ ) is called the modified free orbit-dimension of x1, . . . , xn with

respect to the tracial state τ .

Remark 4.1.1 If the von Neumann algebra M with a tracial state τ is replaced by a
unital C∗-algebra A with a tracial state τ , then K

(2)
2 (x1, . . . , xn; τ ) is still well defined.

Our next result follows directly from the previous definition.
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Lemma 4.1.2 Suppose x1, . . . , xn is a family of self-adjoint elements in a von Neu-

mann algebra with a tracial state τ . Let K2(x1, . . . , xn; τ ) be the upper orbit dimension

of x1, . . . , xn defined in [17, Definition 1]. We have, if K2(x1, . . . , xn; τ ) = 0, then

K
(2)
2 (x1, . . . , xn; τ ) = 0.

4.2 Definition of Orbit Dimension Capacity

We are ready to give the definition of “orbit dimension capacity”.

Definition 4.2.1 Suppose that A is a unital C∗-algebra and TS(A) is the set of all
tracial states of A. Suppose that x1, . . . , xn is a family of self-adjoint elements in A.
Define

KK
(2)
2 (x1, . . . , xn) = sup

τ∈TS(A)

K
(2)
2 (x1, . . . , xn; τ )

to be the orbit dimension capacity of x1, . . . , xn.

4.3 Topological Orbit Dimension is Majorized by Orbit Dimension Capacity

We have the following relationship between topological orbit dimension and orbit
dimension capacity.

Theorem 4.3.1 Suppose that A is a unital C∗-algebra and x1, . . . , xn is a family of

self-adjoint elements in A. Then

K
(2)
top(x1, . . . , xn) ≤ KK

(2)
2 (x1, . . . , xn).

Proof The proof is a slight modification of the one in section 3 of [29]. For the sake
of completeness, we also include Voiculescu’s arguments here.

If K
(2)
top(x1, . . . , xn) = −∞, there is nothing to prove. We might assume that

K
(2)
top(x1, . . . , xn) > α > −∞.

We will show that

KK
(2)
2 (x1, . . . , xn) = sup

τ∈TS(A)

K
(2)
2 (x1, . . . , xn; τ ) > α.

Let {Pr}∞r=1be a family of noncommutative polynomials in C〈X1, . . . , Xn〉 with
rational coefficients. Let R > max{‖x1‖, . . . , ‖xn‖}. From the assumption that

K
(2)
top(x1, . . . , xn) > α, it follows that there exist a positive number ω0 > 0 and a

sequence of positive integers {kq}∞q=1 with k1 < k2 < · · · , so that for some α ′ > α,

lim
q→∞

log(o2(Γ
(top)
R (x1, . . . , xn; kq,

1
q
, P1, . . . , Pq), ω0))

k2
q

> α ′.
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Let A(n) be the universal unital C∗-algebra generated by self-adjoint elements
a1, . . . , an of norm R, that is the unital full free product of n copies of C[−R, R]. A
microstate

η = (A1, . . . , An) ∈ Γ
(top)
R (x1, . . . , xn; kq,

1
q
, P1, . . . , Pq) = Γ(q)

defines a unital ∗-homomorphism ψη : A(n) → Mkq
(C) so that ψη(ai) = Ai (1 ≤

i ≤ n) and a tracial state τη ∈ TS(A(n)) with

τη =
Trkq

◦ψη

kq

.

Similarly, there is a ∗-homomorphism ψ : A(n) → A such that ψ(ai) = xi for
1 ≤ i ≤ n.

It is not hard to see that the weak topology on Ω = TS(A(n)) is induced by the
metric

d(τ1, τ2) =

∞
∑

s=1

∑

(i1,...,is)∈({1,...,n})s

(2Rn)−s|(τ1 − τ2)(ai1
· · · ais

)|.

Therefore, Ω is a compact metric space and

Kq = {τη ∈ Ω | η ∈ Γ(q)}

is a compact subset of Ω because η → τη is continuous and Γ(q) is compact. Further,
let K ⊆ Ω denote the compact subset (TS(A)) ◦ ψ.

Given ǫ > 0, from the fact that Ω is compact it follows that there is some L(ǫ) > 0
so that for each q ≥ 1,

Kq = K1
q ∪ K2

q ∪ · · · ∪ KL(ǫ)
q

where each compact set K
j

q has diameter < ǫ. Let

Γ(q, j) = {η ∈ Γ(q) | τη ∈ K j
q}.

We have

Γ(q) = Γ(q, 1) ∪ · · · ∪ Γ(q, L(ǫ)).

Further, let Γ
′(q) denote some Γ(q, j) such that

o2(Γ ′(q), ω0) ≥ o2(Γ(q), ω0)

L(ǫ)
.

Thus we have

lim
q→∞

log o2(Γ ′(q), ω0)

k2
q

> α ′.
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Giving ǫ the values 1, 1/2, 1/3, . . . , 1/s, . . . , successively we can find a subse-

quence {qs}∞s=1 such that the chosen set K
js

qs ⊆ Kqs
has diameter < 1

s
and the cor-

responding set Γ
′(qs) satisfies

lim
s→∞

log o2(Γ ′(qs), ω0)

k2
qs

> α ′.

Without loss of generality, we can assume that τ is the weak limit of some sequence
(τη(qs))

∞
s=1. Then τ ∈ K. In fact,

|τ (Q(a1, . . . , an))| = lim
s→∞

|τη(qs)(Q(a1, . . . , an))|

≤ lim sup
s→∞

||ψη(qs)(Q(a1, . . . , an))||

≤ lim
s→∞

( 1
s

+ ‖Q(x1, . . . , xn)‖)

= ‖Q(x1, . . . , xn)‖ = ‖ψ(Q(a1, . . . , an))‖.

Now it follows from the density of the polynomials Q in A(n) that τ ∈ K.

We can further assume that there is a subsequence {qs(t)}∞t=1 of {qs}∞s=1 so that the

chosen set K
js(t)

qs(t) ⊆ Kqs(t)
is ⊆ B(τ , 1/t), the ball of radius 1/t and center τ . Therefore,

for any m ∈ N and ǫ > 0, we have

Γ
′(qs(t)) ⊆ ΓR(x1, . . . , xn; kqs(t)

, m, ǫ; τ )

when t is large enough. Thus

K
(2)
2 (x1, . . . , xn; τ ) ≥ K

(2)
2 (x1, . . . , xn; ω0; τ ) ≥ lim

t→∞

log o2(Γ ′(qs(t)), ω0)

k2
qs(t)

> α ′,

and hence

KK
(2)
2 (x1, . . . , xn) = sup

τ∈TS(A)

K
(2)
2 (x1, . . . , xn; τ ) ≥ K

(2)
top(x1, . . . , xn).

4.4 Nuclear C∗-algebras

Now we can compute the topological free entropy dimension of a family of self-
adjoint generators in a unital nuclear C∗-algebra.

Corollary 4.4.1 Suppose A is an MF unital nuclear C∗-algebra with a family of self-

adjoint generators x1, . . . , xn. We have that

K
(2)
top(A) = 0 and δtop(x1, . . . , xn) ≤ 1.
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Proof It is known that every representation of a nuclear C∗-algebra yields an injec-
tive von Neumann algebra. From Lemma 4.1.2 and [17, Theorem 2], it follows that

K
(2)
2 (x1, . . . , xn; τ ) = 0, ∀ τ ∈ TS(A),

where TS(A) is the set of all tracial states of A. Then, by Theorem 4.3.1 we know that

K
(2)
top(x1, . . . , xn) = 0.

By Theorem 3.1.2, δtop(x1, . . . , xn) ≤ 1.

Remark 4.4.2 By [1] , we know that a nuclear C∗-algebra A is an MF algebra if
and only if A is an NF algebra with a finite family of generators. Thus Corollary 4.4.1
can be restated as follows: If A is an NF algebra with a family of self-adjoint generators

x1, . . . , xn, then

K
(2)
top(A) = 0 and δtop(x1, . . . , xn) ≤ 1.

4.5 Tensor Products

In this subsection, we are going to prove the following result.

Corollary 4.5.1 Suppose that B1 and B2 are two unital C∗-algebras, and A1, A2 with

1 ∈ A1 ⊆ B1, 1 ∈ A2 ⊆ B2 are infinite dimensional, unital, simple C∗-subalgebras

with a unique tracial state. Suppose that B = B1 ⊗ν B2 is the C∗-tensor product of B1

and B2 with respect to a cross norm ‖ · ‖ν . If B is an MF algebra, then

K
(2)
top(x1, . . . , xn) = 0 and δtop(x1, . . . , xn) = 1,

where x1, . . . , xn is any family of self-adjoint generators of B.

Proof Assume that τ is a tracial state of B and H is the Hilbert L2(B, τ ). Let ψ be
the GNS representation of B on H. Note that A1,A2 are infinite dimensional, unital
simple C∗-algebras with a unique tracial state. It is not hard to see that both ψ(A1)
and ψ(A2) generate diffuse finite von Neumann algebras on H. Thus both ψ(B1)
and ψ(B2) generate diffuse finite von Neumann algebras on H. Moreover, ψ(B1)
and ψ(B2) commute with each other. Thus, by [17, Corollary 4], we have that

K2(ψ(x1), . . . , ψ(xn); τ ) = 0,

where K2(ψ(x1), . . . , ψ(xn); τ ) is the upper free orbit dimension of ψ(x1), . . . , ψ(xn)
(with respect to τ ) defined in [17]. By Lemma 3.1.1, we have

K
(2)
2 (ψ(x1), . . . , ψ(xn); τ ) = 0.

Since τ is an arbitrary tracial state of B, we have KK
(2)
2 (x1, . . . , xn) = 0. By Theorem

3.1.2, we have K
(2)
top(x1, . . . , xn) = 0. Therefore, δtop(x1, . . . , xn) ≤ 1. On the other

hand, a consequence of [18, Theorem 5.2] says that

δtop(x1, . . . , xn) ≥ 1,
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if B is an MF algebra. Hence,

K
(2)
top(x1, . . . , xn) = 0 and δtop(x1, . . . , xn) = 1,

where x1, . . . , xn is any family of self-adjoint generators of B.

Example 4.5.2 Assume that A is a finite generated unital MF algebra. By Theo-
rem 5.1.4, and [20, Proposition 3.1], we know that (C∗

r (F2) ∗C A) ⊗min C∗
r (F2) is

an MF algebra, where C∗
r (F2) is the reduced C∗-algebra of free group F2 . Thus, by

Corollary 4.5.1, we know that, for any family of self-adjoint generators x1, . . . , xn of
(C∗

r (F2) ∗C A) ⊗min C∗
r (F2),

δtop(x1, . . . , xn) = 1.

An argument similar to the one used in the proof of the preceding corollary shows
the following result.

Corollary 4.5.3 Suppose that B1 is a unital C∗-algebra and B2 is an infinite di-

mensional, unital simple C∗-algebra with a unique tracial state τ . Suppose that B =

B1 ⊗ν B2 is the C∗-tensor product of B1 and B2 with respect to a cross norm ‖ · ‖ν .

Suppose that z1, . . . , zp is a family of self-adjoint generators of B2 and x1, . . . , xn is a

family of self-adjoint generators of B. If B is an MF algebra and K
(2)
2 (z1, . . . , zp; τ ) = 0,

then

K
(2)
top(x1, . . . , xn) = 0 and δtop(x1, . . . , xn) = 1.

Example 4.5.4 Assume that A is a UHF algebra, or an irrational rotation algebra,
or C∗

r (F2) ⊗min C∗
r (F2) and B is a finitely generated unital MF algebra. Then, by [1]

or [20], A⊗min B is an MF algebra. Suppose that x1, . . . , xn is a family of self-adjoint
generators of A ⊗min B. Then δtop(x1, . . . , xn) = 1.

Example 4.5.5 By [20, Theorem 3.1], C∗(F2) ⊗max (C∗
r (F2) ⊗min C∗

r (F2)) is an
MF algebra, where C∗(F2) is the full C∗-algebra of the free group F2. Suppose that
x1, . . . , xn is a family of self-adjoint generators of C∗(F2)⊗max (C∗

r (F2)⊗min C∗
r (F2)).

Then δtop(x1, . . . , xn) = 1.

4.6 Crossed Products

In this subsection, we are going to prove the following result.

Corollary 4.6.1 Suppose that A is an infinite dimensional unital simple C∗-algebra

with a unique tracial state τ . Suppose G is a countable group of actions {αg}g∈G on A.

Suppose that D = A ⋊ G is either a full or reduced crossed product of A by the actions

of G. Suppose that z1, . . . , zp is a family of self-adjoint generators of A, and x1, . . . , xn is

a family of self-adjoint generators of D. If D is an MF algebra and K
(2)
2 (z1, . . . , zp; τ ) =

0, then

K
(2)
top(x1, . . . , xn) = 0 and δtop(x1, . . . , xn) = 1.
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Proof Assume that τ1 is a tracial state of D and H is the Hilbert L2(D, τ1). Let ψ
be the GNS representation of D on H. Note that A is an infinite dimensional unital
simple C∗-algebra with a unique tracial state τ . Thus τ1|A = τ . It is not hard to see
that ψ(A) generates a diffuse finite von Neumann algebra on H. Moreover, for any
g ∈ G, ψ(g−1)ψ(A)ψ(g) ⊆ ψ(A). It follows from the fact that K

(2)
2 (z1, . . . , zp; τ ) = 0

and Theorem 4 in [17], that

K
(2)
2 (ψ(x1), . . . , ψ(xn); τ1) = 0.

Since τ1 is an arbitrary tracial state of D, we have KK
(2)
2 (x1, . . . , xn) = 0. By Theorem

3.1.2, we have K
(2)
top(x1, . . . , xn) = 0. Therefore, δtop(x1, . . . , xn) ≤ 1. On the other

hand, a consequence of [18, Theorem 5.2] says that

δtop(x1, . . . , xn) ≥ 1,

if D is an MF algebra. Hence,

K
(2)
top(x1, . . . , xn) = 0 and δtop(x1, . . . , xn) = 1,

where x1, . . . , xn is any family of self-adjoint generators of D.

Example 4.6.2 Let C∗
r (F2) ⊗min C∗

r (F2) be the reduced C∗-algebra of the group
F2 × F2. Let u1, u2, or v1, v2 respectively, be the canonical unitary generators of the
left copy, or the right copy respectively, of C∗

r (F2), and let 0 < θ < 1 be a positive
number. Let α be a homomorphism from Z into Aut(C∗

r (F2) ⊗min C∗
r (F2)) induced

by the following mapping: ∀ n ∈ Z, j = 1, 2

α(n)(u j) = e2nπθ·iu j and α(n)(v j) = e2nπθ·iv j .

Then, by [20, Theorem 4.2], (C∗
r (F2)⊗min C∗

r (F2)) ⋊α Z is an MF algebra. Therefore,
by Corollary 4.6.1, we have δtop(x1, . . . , xn) = 1, where x1, . . . , xn is any family of
self-adjoint generators of (C∗

r (F2) ⊗min C∗
r (F2)) ⋊α Z.

5 Full Free Products of Unital C∗-algebras

Assume that {Ai : i ∈ I} is a family of unital C∗-algebras. Recall the definition of
unital full free product of the Ai ’s as follows.

Definition 5.0.3 The unital full free product of a family {Ai : i ∈ I} of unital
C∗-algebras is a unital C∗-algebra D equipped with unital embeddings σi : Ai →
D for each i ∈ I, such that: (i) D = C∗(

⋃

i∈I σi(Ai)), and (ii) if φi is a unital
∗-homomorphism from Ai into a unital C∗-algebra B for each i ∈ I, then there is a
unital ∗-homomorphisms ψ from D to B satisfying φi = ψ ◦σi , for each i ∈ I. Since
we can identify each Ai with ρ(Ai), we usually assume that Ai ⊂ D for each i ∈ I.
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5.1 Full Free Products of MF Algebras

The concept of MF algebras was introduced by Blackadar and Kirchberg in [1]. This
class of C∗-algebras is of interest for many reasons. For example, it plays an important
role in the classification of C∗-algebras and is connected to the question of whether
or not the extension semigroup (in the sense of Brown, Douglas, and Fillmore) of a
unital C∗-algebra is a group (see the striking result of Haagerup and Thorbørnsen on
Ext(C∗

r (F2)). Thanks to Voiculescu’s result in [25], we know that every quasidiagonal
C∗-algebra is an MF algebra. Many properties of MF algebras have been discussed
in [1]. For example, it was shown there that the inductive limit of MF algebras is
an MF algebra, and every subalgebra of an MF algebra is an MF algebra. In this
subsection, we will prove that unital full free product of a countable family of unital
separable MF algebras is, again, an MF algebra.

Let us fix notation first. We always assume that H is a separable complex Hilbert
space and B(H) is the set of all bounded operators on H. Suppose {x, xk}∞k=1 is a
family of elements in B(H). We say xk → x in ∗-SOT (∗-strong operator topol-
ogy) if and only if xk → x in SOT and x∗k → x∗ in SOT. Suppose {x1, . . . , xn} and

{x(k)
1 , . . . , x(k)

n }∞k=1 are families of elements in B(H). We say

〈x(k)
1 , . . . , x(k)

n 〉 → 〈x1, . . . , xn〉, in∗-SOT, as k → ∞

if and only if

x(k)
i → xi in ∗-SOT, as k → ∞, ∀ 1 ≤ i ≤ n.

Suppose {Ak}∞k=1 is a family of unital C∗-algebras. Let
∏

Ak be C∗-direct product
of the Ak, i.e., the set of bounded sequences (xk)∞k=1, with xk ∈ Ak, with pointwise op-
erations and sup norm; and let

∑

Ak be the C∗-direct sum, the set of sequences con-
verging to zero in norm. Then

∏

Ak is a C∗-algebra and
∑

Ak is a closed two-sided
ideal. Let π be the quotient map from

∏

Ak to
∏

Ak/
∑

Ak. Then
∏

Ak/
∑

Ak is a
unital C∗-algebra. If we denote π((xk)∞k=1) by [(xk)k] for any (xk)∞k=1 in

∏

Ak, then

‖[(xk)k]‖ = lim sup
k→∞

‖xk‖.

Suppose A is a separable unital C∗-algebra on a Hilbert space H. Let H∞
=

⊕

N
H, and for any x ∈ A, let x∞ be the element

⊕

N
x = (x, x, x, . . . ) in

∏

A(k) ⊂
B(H∞), where A(k) is the k-th copy of A.

In [24], Voiculescu shows the following result:

Let A be a separable unital C*-algebra and πi : A → B(Hi) be unital faithful
∗-representations for i = 1, 2 satisfying πi(A)∩K(Hi) = 0 for i = 1, 2, where
K(Hi) is the set of compact operators on Hi . Then π1 is approximately unitary
equivalent to π2.

The following statement is a variation of Voiculescu’s result and can be found in
[16, Theorem 5.1].
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Proposition 5.1.1 Suppose A is a separable unital C*-algebra, and H1,H2 are sep-

arable infinite dimensional Hilbert spaces. Let πi : A → B(Hi) be unital ∗-represen-

tations for i = 1, 2. If, for every x ∈ A,

rank (π1 (x)) ≤ rank (π2 (x)) ,

then there is a sequence {Un}∞n=1 of unitary operators, with Un : H1 → H2, such that,

for every x ∈ A,

U ∗
n π2 (x) Un → π1 (x) ∗-SOT as n → ∞.

In particular, if A ⊂ B(H2), A ∩ K(H2) = 0, and π : A → B(H1) is any unital ∗-

homomorphism, then there is a sequence {Un}∞n=1 of unitary operators, with Un : H1 →
H2,, such that, for every x ∈ A,

U ∗
n xUn → π (x) ∗-SOT as n → ∞.

Theorem 5.1.2 Suppose that A is a unital C∗-algebra generated by a sequence of self-

adjoint elements x1, x2, . . . , in A. Then the following are equivalent:

(i) A is an MF algebra

(ii) If π : A → B(H) is a faithful ∗-representation of A on an infinite dimensional

separable complex Hilbert space H, then there are a sequence of positive integers

{mk}∞k=1, families of self-adjoint matrices {A(k)
1 , A(k)

2 , . . . } in Ms.a.
mk

(C) for k =

1, 2, . . . , and unitary operators Uk : H → (Cmk )∞ for k = 1, 2, . . . , such that

(a)

lim
k→∞

‖P(A(k)
1 , A(k)

2 , . . . )‖ = ‖P(x1, x2, . . . )‖, ∀ P ∈ C〈X1, X2 . . . 〉,

where C〈X1, X2 . . . 〉 =
⋃∞

m=1 C〈X1, X2 . . . , Xm〉
(b)

U ∗
k (A(k)

n )∞ Uk → π(xn) in ∗-SOT as k → ∞, f or 1 ≤ i ≤ n,

where (A(k)
n )∞ = A(k)

n ⊕ A(k)
n ⊕ A(k)

n · · · ∈ B((Cmk )∞).

Proof (ii) ⇒ (i) Suppose (ii) is true. It follows from part (a) of statement (ii) that
the map

xn 7→
[(

A(k)
n

)

k

]

extends to a faithful unital ∗-homomorphism from A into
∏

B(Cmk )/
∑

B(Cmk ).
Thus A is an MF algebra.

(i) ⇒ (ii) Suppose A is an MF algebra, and suppose π : A → B (H) is a faithful
unital ∗-homomorphism on an infinite dimensional separable Hilbert space H. Let
CQ〈X1, X2, . . . 〉 = {Pr}∞r=1. We can assume that each PN only involves the variables
X1, . . . , XN . We also assume that maxn≥1 ‖xn‖ < R < ∞.

Since A is an MF algebra, so is every subalgebra. Hence, by Lemma 2.9.1, for every
N ∈ N there is

(

AN,1, . . . , AN,N

)

∈ Γ
top
R (x1, . . . , xN , P1, . . . , PN ,

1

N
, kN )
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for some kN ∈ N, and we can assume that k1 ≤ k2 ≤ · · · .
We define AN,n = 0 ∈ MkN (C) when n > N. We then have, for every P ∈

CQ 〈X1, X2, . . . 〉 ,

∣

∣‖P (x1, x2, . . . )‖ −
∥

∥P
(

AN,1, AN,2, . . .
)
∥

∥

∣

∣ → 0

as N → ∞.
If m < s are positive integers, we define

Tm,n =
(

Am,n

)(∞) ⊕
(

Am+1,n

)(∞) ⊕· · · and Tm,s,n =
(

Am,n

)(∞) ⊕· · ·⊕
(

As,n

)(∞)

for n ∈ N.
Suppose B ∈ Mkm (C). Note that, for every n ≥ 1, we have

Tm,s,n ⊕ B(∞) ⊕ B(∞) ⊕ · · · → Tm,n in the ∗-SOT as s → ∞,

since the first s − m summands of each operator are the same. If we let B = Am,n,
then Tm,s,n ⊕B(∞) ⊕B(∞) ⊕· · · is unitarily equivalent to Tm,s,n. Thus, for each s ∈ N,
there is a unitary operator Um,s (not depending on n) such that

U ∗
m,sTm,s,nUm,s → Tm,n ∗-SOT as s → ∞

for every n ∈ N.
Next suppose m ∈ N and P ∈ C 〈X1, X2, . . . 〉. We then have

∥

∥P
(

Tm,1, Tm,2, . . .
)∥

∥ ≥ lim
N→∞

∥

∥P
(

AN,1, AN,2, . . .
)∥

∥ = ‖P (x1, x2, . . . )‖ .

Hence there is a unital ∗-homomorphism πm from C∗
(

Tm,1, Tm,2, . . .
)

to π (A) such
that

πm(Tm,n) = π (xn) for n ∈ N.

If T ∈ C∗
(

Tm,1, Tm,2, . . .
)

and T 6= 0, then clearly rank (T) = ∞. Thus,

rank (T) ≥ rank (πm (T)) for every T ∈ C∗
(

Tm,1, Tm,2, . . .
)

.

It follows from Proposition 5.1.1 that there is a sequence {Vm,t} of unitary operators
such that, for every T ∈ C∗

(

Tm,1, Tm,2, . . .
)

,

Vm,t TV ∗
m,t → πm (T) ∗-SOT as t → ∞.

Suppose {e1, e2, . . . } is an orthonormal basis for H. For each N ∈ N, let m
N
≥ N

be a positive integer. Then there are s
N
, t

N
∈ N such that

∥

∥

∥

[

Vm
N

,t
N

U ∗
m

N
,s

N
Tm

N
,s

N
,nUm

N
,s

N
V ∗

m
N

,t
N
− π (xn)

]

e j

∥

∥

∥
< 1

N

and
∥

∥

∥

[

Vm
N

,t
N

U ∗
m

N
,s

N
Tm

N
,s

N
,nUm

N
,s

N
V ∗

m
N

,t
N
− π (xn)

]∗

e j

∥

∥

∥
< 1

N
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for 1 ≤ n, j ≤ N. It follows that

Vm
N

,t
N

U ∗
m

N
,s

N
Tm

N
,s

N
,nUm

N
,s

N
V ∗

m
N

,t
N
→ π (xn) ∗-SOT as N → ∞,

for n ≥ 1.
Let

A(N)
n = Am

N
,n ⊕ · · · ⊕ As

N
,n f or n ∈ N.

Then there is a sequence {W N}∞N=1 of unitary operators such that

W N (A(N)
n )∞W N

∗
= Tm

N
,s

N
,n f or n ∈ N.

Putting everything together, we now have

lim
N→∞

‖P(A(N)
1 , A(N)

2 , . . . )‖ = ‖P(x1, x2, . . . )‖, ∀ P ∈ CQ〈X1, X2 . . . 〉,

and
Vm

N
,t

N
U ∗

m
N

,s
N

W N (A(N)
n )∞W N

∗Um
N

,s
N

V ∗
m

N
,t

N
→ π(xn) ∗-SOT

as N → ∞, for n ≥ 1. Hence statement (ii) is true.

For the proof of the main theorem of this subsection we need the following well-
known lemma. For completeness we outline a proof.

Lemma 5.1.3 Suppose Q is a finite rank projection in B(H), and suppose {Qn} is a

sequence of projections converging to 1 in SOT. Then there is a sequence {Wn} of unitary

operators and an N ∈ N, such that

(i) ‖1 −Wn‖ → 0, and

(ii) Q ≤ W ∗
n QnWn for all n ≥ N.

Proof Define g : R → R by g (t) = 0 if t ≤ 1/3, g (t) = 3t − 1 if 1/3 ≤ t ≤ 2/3
and g (t) = 1 if 2/3 < t . Let An = Q + (1 − Q) Qn (1 − Q) . Then ‖An − Qn‖ → 0,
so

∥

∥A2
n − An

∥

∥ → 0, which implies that σ (An) ⊂
{

t : max
(

|t| , |1 − t|
)

≤ 1/
√

n
}

.
Thus Pn = g (An) is eventually a projection and ‖Pn − Qn‖ → 0 and Q ≤ Pn for

every n. Also Sn = PnQn + (1 − Pn) (1 − Qn) → 1, and Wn =
(

SnS∗n
)−1/2

Sn → 1

and Wn is unitary. Also PnSn = SnQn implies that Pn

(

SnS∗n
)

=
(

SnS∗n
)

Pn, which
implies PnWn = WnQn, or Pn = W ∗

n QnWn.

In [8], Exel and Loring showed that the unital full free product of two residually
finite dimensional C∗-algebra is residually finite dimensional, which extends an ear-
lier result by Choi in [6]. In [3], Boca showed that the unital full free product of two
quasidiagonal C∗-algebras is also quasidiagonal. Our next result provides the ana-
logue of the preceding results from Choi, Exel, and Loring, and Boca in the context
of MF algebras.

Theorem 5.1.4 Suppose {Ai : i ∈ I} is a countable family of separable MF

C∗-algebras. Then the free product A = ∗C
i∈I

Ai is an MF algebra.
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Proof We can assume that I ⊂ N. In fact we can assume that I = N, because if I is
finite, we can let Ai = C when i ∈ N\I, and the free product stays the same.

Assume that Ai is generated by {xi,n : n ∈ N}. We can assume that Ai ⊂ A for
each i ∈ I by identifying Ai with σi(Ai). Thus A is generated by {xi,n : i ∈ I, n ∈ N}.
Write CQ〈X1, X2, . . . 〉 = {P1, P2, . . . } in such a way that each PN only involves the
variables X1, . . . , XN .

Suppose π : A → B(H) is a faithful ∗-homomorphism with H separable and
infinite dimensional. Then the restriction of π to each Ai is also faithful.

Suppose {e1, e2, . . . } is an orthonormal basis for H. Suppose N ∈ N. Note that
each Ai is an MF algebra for i ∈ N. It follows from Lemma 5.1.3 that for 1 ≤
i ≤ N, there are a positive integer mN,i and a unitary operator UN,i and operators
AN,i,1, . . . , AN,i,N ∈ Ms.a.

mN,i
(C) such that

∣

∣‖P j(AN,i,1, . . . , AN,i,N , 0, 0, . . . )‖ − ‖P j(xi,1, xi,2, . . . )‖
∣

∣ < 1
N

and

(5.1)
∥

∥

∥

[

π
(

xi,n

)

−U ∗
N,iA

(∞)
N,i,nUN,i

]

ek

∥

∥

∥
+

∥

∥

∥

[

π
(

xi,n

)

−U ∗
N,iA

(∞)
N,i,nUN,i

]∗

ek

∥

∥

∥
< 1

N

for 1 ≤ i, j, k ≤ N. If i > N or n > N, we define AN,i,n = 0 ∈ Ms.a.
mN,i

(C).

With respect to the decomposition A(∞)
N,i,n = AN,i,n⊕AN,i,n⊕· · · , define projections

EN,i,1 = 1 ⊕ 0 ⊕ 0 · · · , EN,i,2 = 1 ⊕ 1 ⊕ 0 ⊕ · · · , . . . . Clearly U∗
N,iEN,i,sUN,i → 1

in SOT as s → ∞, so it follows from Lemma 5.1.3 that we can re-choose UN,1 so
that (5.1) still holds and there is a positive integers s1 such that e1, . . . , eN are in the
range of U ∗

N,1EN,1,s1
UN,1. Similarly, we can re-choose UN,2 and find an s2 > s1 so that

(5.1) still holds and U ∗
N,1EN,1,s1

UN,1 ≤ U ∗
N,2EN,2,s2

UN,2. We can proceed inductively
to redefine the rest of the UN,i ’s so that (5.1) still holds and such that

U ∗
N,iEN,i,si

UN,i ≤ U ∗
N,i+1EN,i+1,si+1

UN,i+1

for 1 ≤ i < N.

For each 1 ≤ i ≤ N, let HN,i be the range of the projection U ∗
N,iEN,i,si

UN,i . It is
clear that HN,i reduces each of the operators U ∗

N,iA
(∞)
N,i,nUN,i for n ∈ N, and that the

restriction of U ∗
N,iA

(∞)
N,i,nUN,i to HN,i is unitarily equivalent to a direct sum of si copies

of AN,i,n. Since e1, . . . , eN ∈ HN,i , we can change the restriction of U ∗
N,iA

(∞)
N,i,nUN,i to

H⊥
N,i without affecting (5.1).

Next we choose a finite-dimensional subspace HN of H containing HN,N such that
dN = dim HN is the product of the dimensions of the HN,i ’s for 1 ≤ i ≤ N. For each
1 ≤ i ≤ N, we can write HN ⊖ HN,i as a direct sum of finitely many copies of HN,i .

Thus, for each 1 ≤ i ≤ N, we can find a unitary operator VN,i : HN → (CmN,i )dN/mN,i

such that, for n ≥ 1, and every ξ ∈ HN,i ,

V ∗
N,iA

(dN/mN,i)
N,i,n VN,iξ = U ∗

N,iA
(∞)
N,i,nUN,iξ.
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We can identify HN with CdN , and let BN,i,n = V ∗
N,iA

(dN/mN,i)
N,i,n VN,i ∈ MdN (C). Since

H is infinite-dimensional, we can view H⊖HN as an infinite direct sum of copies of
HN . Thus there is a unitary operator WN : H → H∞

N such that

W ∗
N B(∞)

N,i,nWN |HN
= BN,i,n

for all 1 ≤ i, n ≤ N.
It follows that, for 1 ≤ i, j, k ≤ N,

∣

∣‖P j(BN,i,1, BN,i,2, . . . )‖ − ‖P j(xi,1, xi,2, . . . )‖
∣

∣ =

∣

∣‖P j(AN,i,1, AN,i,2, . . . )‖ − ‖P j(xi,1, xi,2, . . . )‖
∣

∣ < 1
N

and

∥

∥

∥

[

π
(

xi,n

)

−W ∗
N B(∞)

N,i,nWN

]

ek

∥

∥

∥
+

∥

∥

∥

[

π
(

xi,n

)

−W ∗
N B(∞)

N,i,nWN

]∗

ek

∥

∥

∥
< 1

N

Therefore,
W ∗

N B(∞)
N,i,nWN → π

(

xi,n

)

in ∗-SOT as N → ∞,

for all n, i ∈ N. If P ∈ CQ〈Xi,n : i, n ∈ N〉, we have

P((W ∗
N B(∞)

N,i,nWN )i,n∈N) → P((π(xi,n))i,n∈N) in ∗-SOT, as N → ∞.

Thus we have

‖P((xi,n)i,n∈N)‖ = ‖P((π(xi,n))i,n∈N)‖ ≤ lim inf
N→∞

‖P((W ∗
N B(∞)

N,i,nWN )i,n∈N)‖.

On the other hand, for each i, n ∈ N, the map

xi,n 7→ [(W ∗
N B(∞)

N,i,nWN )N ]

extends to a unital ∗-homomorphism ρi : Ai → ∏

B(HN )/
∑

B(HN ). From the
definition of full free product, there must be a unital ∗-homomorphism ρ : A →
∏

B(HN )/
∑

B(HN ) such that ρ|Ai
= ρi for each i. Hence

‖P((xi,n)i,n∈N)‖ ≥ ‖ρ(P((xi,n)i,n∈N))‖ = lim sup
N→∞

‖P((W ∗
N B(∞)

N,i,nWN )i,n∈N)‖

≥ lim inf
N→∞

‖P((W ∗
N B(∞)

N,i,nWN )i,n∈N)‖ ≥ ‖P((xi,n)i,n∈N)‖.

Hence ρ is an isometry, which shows that A is MF.

Recall that A ⊂ B(H) is a separable quasidiagonal C∗-algebra if there is an in-
creasing sequence of finite-rank projections {Ei}∞i=1 on H tending strongly to the
identity such that ‖xEi − Eix‖ → 0 as i → ∞ for any x ∈ A. The examples of
quasidiagonal C∗-algebras include all abelian C∗-algebras and all finite dimensional

https://doi.org/10.4153/CJM-2011-014-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-014-8


Topological Free Entropy Dimensions 583

C∗-algebras. An abstract separable C∗-algebra A is quasidiagonal if there is a faithful
∗-representation π : A → B(H) such that π(A) ⊂ B(H) is quasidiagonal.

In [15], Haagerup and Thorbjørnsen showed C∗
r (F2) is an MF algebra. Combining

this with Voiculescu’s discussion in [25], they were able to conclude a striking result
that Ext(C∗

r (F2)) is not a group. Also based on [25], Brown showed in [4] that if A

is an MF algebra and Ext(A) is a group, then A is a quasidiagonal C∗-algebra. It is
a well-known fact that C∗

r (F2) is not a quasidiagonal C∗-algebra and any subalgebra
of a quasidiagonal C∗-algebra is again quasidiagonal. The next corollary now follows
from Haagerup and Thorbjørnsen’s result on C∗

r (F2) and our Theorem 5.4.6.

Corollary 5.1.5 Suppose that B is a unital separable MF algebra. Then C∗
r (F2) ∗C B

is an MF algebra. Moreover, Ext(C∗
r (F2) ∗C B) is not a group.

5.2 Topological Free Entropy Dimension in Full Free Products of Unital
C∗-algebras

In this subsection, given a family of positive integers n1, . . . , nm, we will let
{X(i)

j }1≤i≤m;1≤ j≤ni
be a family of indeterminants and let {Pr}∞r=1 be a family of non-

commutative polynomials in C〈X(i)
j : 1 ≤ i ≤ m; 1 ≤ j ≤ ni〉 with rational coef-

ficients. For each 1 ≤ i ≤ m and j ≥ 1, let P(i)
j be a polynomial in X(i)

1 , . . . , X(i)
ni

defined by

P(i)
j (X(i)

1 , . . . , X(i)
ni

) = P j(0, . . . , 0, X(i)
1 , . . . , X(i)

ni
, 0, . . . , 0).

Lemma 5.2.1 Suppose {Ai}m
i=1 (m ≥ 2) is a family of unital C∗-subalgebras of a

C∗-algebra D. Suppose {x(i)
j }ni

j=1 is a family of self-adjoint generators of Ai for 1 ≤ i ≤
m. Then

δtop(x(1)
1 , . . . , x(1)

n1
, . . . , x(m)

1 , . . . , x(m)
nm

) ≤
m

∑

i=1

δtop(x(i)
1 , . . . , x(i)

ni
).

Proof Let R > max1≤i≤n,1≤ j≤ni
‖x(i)

j ‖ be a positive number. For any r ∈ N and
ǫ > 0, there is a positive integer r1 such that

Γ
(top)
R (σ1(x(1)

1 ), . . . , σ1(x(1)
n1

), . . . , σm(x(m)
1 ), . . . , σm(x(m)

nm
); k, ǫ, P1, . . . , Pr1

)

⊆ Γ
(top)
R (σ1(x(1)

1 ), . . . , σ1(x(1)
n1

); k, ǫ, P(1)
1 , . . . , P(1)

r ) ⊕ · · ·

· · · ⊕ Γ
(top)
R (σm(x(m)

1 ), . . . , σm(x(m)
nm

); k, ǫ, P(m)
1 , . . . , P(m)

r )

= Γ
(top)
R (x(1)

1 , . . . , x(1)
n1

; k, ǫ, P(1)
1 , . . . , P(1)

r ) ⊕ · · ·

· · · ⊕ Γ
(top)
R (x(m)

1 , . . . , x(m)
nm

; k, ǫ, P(m)
1 , . . . , P(m)

r ),

where

P(i)
j (σi(x(i)

1 ), . . . , σi(x(i)
ni

)) = P j(0, . . . , 0, σi(x(i)
1 ), . . . , σi(x(i)

ni
), 0, . . . , 0),
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1 ≤ j ≤ r, 1 ≤ i ≤ m. By the definition of topological free entropy dimension, we
get that

δtop(σ1(x(1)
1 ), . . . , σ1(x(1)

n1
), . . . , σm(x(m)

1 ), . . . , σm(x(m)
nm

)) ≤
m
∑

i=1

δtop(x(i)
1 , . . . , x(i)

ni
).

5.3 Voiculescu’s Semi-microstates

Suppose that A is a unital C∗-algebra and x1, . . . , xn is a family of self-adjoint ele-
ments in A. Recall Voiculescu’s semi-microstates as follows. Suppose that

CQ〈X1, . . . , Xn〉 = {Qr : 1 ≤ r < ∞}

is the family of noncommutative polynomials in C〈X1, . . . , Xn〉 with rational coeffi-
cients. Let R, ǫ > 0, r, k ∈ N. Define

Γ
(top 1/2)
R (x1, . . . , xn; k, ǫ, Q1, . . . , Qr)

to be the subset of (Ms.a
k (C))n consisting of all (A1, . . . , An) ∈ (Ms.a

k (C))n satisfying
max{‖A1‖, . . . , ‖An‖} ≤ R and

‖Q j(A1, . . . , An)‖ ≤ ‖Q j(x1, . . . , xn)‖ + ǫ, ∀ 1 ≤ j ≤ r.

It is easy to see that

Γ
(top)
R (x1, . . . , xn; k, ǫ, Q1, . . . , Qr) ⊆ Γ

(top 1/2)
R (x1, . . . , xn; k, ǫ, Q1, . . . , Qr).

It was shown by Voiculescu [29] that

δtop(x1, . . . , xn; ω) =

lim sup
ω→0

inf
ε>0,r∈N

lim sup
k→∞

log
(

ν∞(Γ
(top 1/2)
R (x1, . . . , xn; k, ǫ, Q1, . . . , Qr), ω)

)

−k2 log ω
.

Lemma 5.3.1 Suppose {Ai}m
i=1 (m ≥ 2) is a family of unital C∗-algebras and D is the

full free product of the unital C∗-algebras {Ai}m
i=1 equipped with the unital embedding

{σi : Ai → D}m
i=1. Suppose {x(i)

j }ni

j=1 is a family of self-adjoint generators of Ai for

1 ≤ i ≤ m. Let R > max{‖x(i)
j ‖, 1 ≤ i ≤ m, 1 ≤ j ≤ ni} be a positive number. For

any r0 ∈ N and ǫ0 > 0, there are r1 ∈ N and ǫ1 > 0 such that, for any k ∈ N, if

(A(i)
1 , . . . , A(i)

ni
) ∈ Γ

(top 1/2)
R (x(i)

1 , . . . , x(i)
ni

; k, ǫ1, P(i)
1 , . . . , P(i)

r1
), for 1 ≤ i ≤ m,

where P(i)
1 , . . . , P(i)

r are defined as in Lemma 5.2.1, then

(A(1)
1 , . . . , A(1)

n1
, . . . , A(m)

1 , . . . , A(m)
nm

)

∈ Γ
(top 1/2)
R (σ1(x(1)

1 ), . . . , σ1(x(1)
n1

), · · · , σm(x(m)
1 ), . . . , σm(x(m)

nm
); k, ǫ0, P1, . . . , Pr0

).
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Proof We will prove the result by contradiction. Suppose, to the contrary, the result
does not hold. Then there are some r0 ∈ N and ǫ0 > 0 so that the following holds:

(i) for any r ∈ N, there are kr ∈ N and

(A
(i,r)
1 , . . . , A(i,r)

ni
) ∈ Γ

(top 1/2)
R (x(i)

1 , . . . , x(i)
ni

; kr, 1/r, P(i)
1 , . . . , P(i)

r ), for 1 ≤ i ≤ m,

satisfying

(A
(1,r)
1 , . . . , A(1,r)

n1
, . . . , A

(m,r)
1 , . . . , A(m,r)

nm
) /∈

Γ
(top 1/2)
R (σ1(x(1)

1 ), . . . , σ1(x(1)
n1

), · · · , σm(x(m)
1 ), . . . , σm(x(m)

nm
); kr, ǫ0, P1, . . . , Pr0

).

(5.2)

Let γ be a free ultra-filter in β(N) \ N. Let
∏γ

r=1 Mkr
(C) be the C∗ algebra ultra-

product of matrices algebras (Mkr
(C))∞r=1 along the ultra-filter γ, i.e.,

∏γ
r=1 Mkr

(C)
is the quotient algebra of the unital C∗-algebra

∏∞
r Mkr

(C) by I∞, where I∞ =

{(Yr)
∞
r=1 ∈

∏

r Mkr
(C) | limr→γ ‖Yr‖ = 0}.

Let φi be the unital ∗-homomorphism from the C∗-algebra Ai into the C∗-algebra
∏γ

r=1 Mkr
(C), induced by the mapping

x(i)
j → [(A

(i,r)
j )r] ∈

γ
∏

r=1

Mkr
(C), ∀ 1 ≤ j ≤ ni ,

where [(A
(i,r)
j )r] is the image of (A

(i,r)
j )∞r=1 in the quotient algebra

∏γ
r=1 Mkr

(C).
By the definition of full free product, we know that there is a unital ∗-homo-

morphism ψ from D into
∏γ

r=1 Mkr
(C) so that φi = ψ ◦ σi . Hence,

lim
r→γ

‖Pt (A
(1,r)
1 , . . . , A(1,r)

n1
, . . . , A

(m,r)
1 , . . . , A(m,r)

nm
)‖

≤ ‖Pt (σ1(x(1)
1 ), . . . , σ1(x(1)

n1
), . . . , σm(x(m)

1 ), . . . , σm(x(m)
nm

))‖, ∀ 1 ≤ t ≤ r0.

This contradicts equation (5.2). This completes the proof of the lemma.

Recall the definition of a stable family of elements in a unital C∗-algebra in [19] as
follows.

Definition 5.3.2 Suppose that A is a unital C∗-algebra and x1, . . . , xn is a fam-
ily of self-adjoint elements in A. Let {Qi}∞i=1 be the collection of all noncommu-
tative polynomials in C〈X1, . . . , Xn〉 with rational complex coefficients. The fam-
ily of elements x1, . . . , xn is called stable if for any α < δtop(x1, . . . , xn) and R >
max{‖x1‖, . . . , ‖xn‖} there is a positive number C > 0 satisfying: for any r ∈ N, ω >
0 there is a k0 ∈ N such that

ν∞
(

Γ
(top)
R (x1, . . . , xn; q · k0,

1
r
, Q1, . . . , Qr), ω

)

≥ C(q·k0)2( 1
ω

)α·(q·k0)2

,∀ q ∈ N.

Example 5.3.3 Any family of self-adjoint generators x1, . . . , xn of a finite dimen-
sional C∗-algebra is stable. A self-adjoint element x in a unital C∗-algebra is stable
(see [19]).
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We now define a slight generalization of stability.

Definition 5.3.4 Suppose that A is a unital C∗-algebra and x1, . . . , xn is a fam-
ily of self-adjoint elements in A. Suppose that CQ〈X1, . . . , Xn〉 ={Qr}∞r=1. Suppose
{km}∞k=1 is a strictly increasing sequence of positive integers. The family of elements
x1, . . . , xn is supported on {ks}∞s=1 if

δtop(x1, . . . , xn) =

lim inf
ω→0+

sup
R>0

inf
ε>0,r∈N

lim inf
s→∞

log
(

ν∞(Γ
(top)
R (x1, . . . , xn; km, ǫ, Q1, . . . , Qr), ω)

)

−k2
s log ω

.

5.4 Main Result in this Section

Now we are ready to show the additivity of topological free entropy dimension in the
full free products of some unital C∗-algebras.

Theorem 5.4.1 Suppose that {Ai}m
i=1 (m ≥ 2) is a family of unital MF C∗-algebras

whose free product is D. We assume Ai ⊂ D for 1 ≤ i ≤ m. Suppose {km}∞m=1 is

a strictly increasing sequence of positive integers, and suppose, for 1 ≤ i ≤ m, that

{x(i)
j }ni

j=1 is a family of self-adjoint generators of Ai that is supported on {ks}∞s=1. Then

δtop(x(1)
1 , . . . , x(1)

n1
, . . . , x(m)

1 , . . . , x(m)
nm

) =

m
∑

i=1

δtop(x(i)
1 , . . . , x(i)

ni
).

Proof Suppose that {Pr}∞r=1 = CQ〈X(1)
1 , . . . , X(1)

n1
, . . . , X(m)

1 , . . . , X(m)
nm

〉, and, let P(i)
j

be a polynomial in X(i)
1 , . . . , X(i)

ni
defined as in Lemma 5.2.1 for 1 ≤ i ≤ m, and

j ∈ N. Choose
R > max{‖x(i)

j ‖ : 1 ≤ j ≤ ni , 1 ≤ i ≤ m}.
Suppose r0 ∈ N, ε0 > 0, ω0 > 0. It follows from Lemma 5.3.1 that there is an r1 ∈ N

and an ε1 > 0 such that, for all 0 < ε < ε1, r ≥ r1, m ∈ N, we have

Γ
(top 1/2)
R (x(1)

1 , . . . , x(1)
n1

, . . . , x(m)
1 , . . . , x(m)

nm
; ks, ǫ0, P1, . . . , Pr0

) ⊇
m
∏

j=1

Γ
(top)
R (x

( j)
1 , . . . , x( j)

n j
; ks, ǫ, P(i)

1 , . . . , P(i)
r ).

It follows that, for all ω > 0, we have

log
(

ν∞
(

Γ
(top 1/2)
R (x(1)

1 , . . . , x(1)
n1

, . . . , x(m)
1 , . . . , x(m)

nm
; ks, ǫ0, P1, . . . , Pr0

, ω
)

)

≥ log
( m

∏

j=1

ν∞
(

Γ
(top)
R (x

( j)
1 , . . . , x( j)

n j
; ks, ǫ, P(i)

1 , . . . , P(i)
r ), ω

)

)

=

m
∑

j=1

log
(

ν∞
(

Γ
(top)
R (x

( j)
1 , . . . , x( j)

n j
; ks, ǫ, P(i)

1 , . . . , P(i)
r ), ω

)

)

.

https://doi.org/10.4153/CJM-2011-014-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-014-8


Topological Free Entropy Dimensions 587

Therefore we conclude that, for 0 < ε < ε1 and r ≥ r1, we have

lim sup
k→∞

log
(

ν∞
(

Γ
(top 1/2)
R (x(1)

1 , . . . , x(1)
n1

, . . . , x(m)
1 , . . . , x(m)

nm
; k, ǫ0, P1, . . . , Pr0

), ω
))

−k2 log ω

≥ lim inf
s→∞

log
(

ν∞
(

Γ
(top 1/2)
R (x(1)

1 , . . . , x(1)
n1

, . . . , x(m)
1 , . . . , x(m)

nm
; ks, ǫ0, P1, . . . , Pr0

), ω
))

−k2
s log ω

≥
m

∑

j=1

lim inf
s→∞

log
(

ν∞
(

Γ
(top)
R (x

( j)
1 , . . . , x

( j)
n j ; ks, ǫ, P(i)

1 , . . . , P(i)
r ), ω

))

−k2
s log ω

,

since, for all sequence {αm}, {βm}, we have

lim inf
m→∞

(αm + βm) ≥ lim inf
m→∞

αm + lim inf
s→∞

βm.

It follows that

≥ inf
r∈N,ε>0

m
∑

j=1

lim inf
s→∞

log
(

ν∞
(

Γ
(top)
R (x

( j)
1 , . . . , x

( j)
n j ; ks, ǫ, P(i)

1 , . . . , P(i)
r ), ω

)

)

−k2
s log ω

≥
m

∑

j=1

inf
r∈N,ε>0

lim inf
s→∞

log
(

ν∞
(

Γ
(top)
R (x

( j)
1 , . . . , x

( j)
n j ; ks, ǫ, P(i)

1 , . . . , P(i)
r ), ω

)

)

−k2
s log ω

.

Thus,

δtop(x(1)
1 , . . . , x(1)

n1
, . . . , x(m)

1 , . . . , x(m)
nm

)

≥ lim sup
ω→0+

m
∑

j=1

inf
r∈N,ε>0

lim inf
s→∞

log
(

ν∞
(

Γ
(top)
R (x

( j)
1 , . . . , x

( j)
n j ; ks, ǫ, P(i)

1 , . . . , P(i)
r ), ω

)

)

−k2
s log ω

≥
m

∑

j=1

lim inf
ω→0+

inf
r∈N,ε>0

lim inf
s→∞

log
(

ν∞
(

Γ
(top)
R (x

( j)
1 , . . . , x

( j)
n j ; ks, ǫ, P(i)

1 , . . . , P(i)
r ), ω

)

)

−k2
s log ω

=

m
∑

i=1

δtop(x(i)
1 , . . . , x(i)

ni
),

since each {x(i)
1 , . . . , x(i)

ni
} is supported on {ks}∞s=0. The inequality

δtop(x(1)
1 , . . . , x(1)

n1
, . . . , x(m)

1 , . . . , x(m)
nm

) ≤
m

∑

i=1

δtop(x(i)
1 , . . . , x(i)

ni
)

follows from Lemma 5.2.1.
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Corollary 5.4.2 Suppose that {Ai}m
i=1 (m ≥ 2) is a family of unital C∗-algebras.

Suppose that {x(i)
j }ni

j=1 is a family of self-adjoint generators of Ai for i = 1, 2, . . . , m.

Suppose {x(i)
j }ni

j=1 is a stable family in the sense of Definition 5.3.2 for 1 ≤ i ≤ m. Let

the unital C∗-algebra D be the full free product of {Ai}m
i=1 equipped with the unital

embedding {σi : Ai → D}m
i=1. Then

δtop(σ1(x(1)
1 ), . . . , σ1(x(1)

n1
), . . . , σm(x(m)

1 ), . . . , σm(x(m)
nm

)) =

m
∑

i=1

δtop(x(i)
1 , . . . , x(i)

ni
).

If we identify each x(i)
j in Ai with its image σi(x(i)

j ) in D when no confusion arises, then

δtop(x(1)
1 , . . . , x(1)

n1
, . . . , x(m)

1 , . . . , x(m)
nm

) =

m
∑

i=1

δtop(x(i)
1 , . . . , x(i)

ni
).

As a corollary, we have the following result.

Corollary 5.4.3 Suppose that Ai (i = 1, 2, . . . , m) is a unital C∗ algebra generated

by a self-adjoint element xi in Ai . Let D be the full free product of A1, . . . ,An equipped

with unital embedding from each Ai into D. Identify the element xi in Ai with its image

in D. Then

δtop(x1, . . . , xn) =

n
∑

i=1

δtop(xi) = n −
n

∑

i=1

1
ni

,

where ni is the number of elements in the spectrum of xi in Ai . (We use the notation

1/∞ = 0.)

Proof It follows from Example 5.3.3, Theorem 5.4.1, and the results in [18].

Corollary 5.4.4 Suppose that Ai is a finite dimensional C∗-algebra generated by a

family of self-adjoint element {x(i)
j }1≤ j≤ni

for 1 ≤ i ≤ m. Let D be the full free prod-

uct of A1, . . .Am equipped with unital embedding from each Ai into D. Identify the

element {x(i)
j } in Ai with its image in D. Then

δtop({x(i)
j }1≤ j≤ni ,1≤i≤m) =

m
∑

i=1

δtop({x(i)
j }1≤ j≤ni

) = m −
m

∑

i=1

1

dimCAi

,

where dimCAi is the complex dimension of Ai .

Proof It follows from Example 5.3.3, Theorem 5.4.1, and the results in [19].

It is worth noting that we can define the notation of “full freeness” so as to state
Theorem 5.4.1 in a form similar to Voiculescu’s free additivity theorem for free en-
tropy dimension [26].

Definition 5.4.5 Suppose A is a unital C*-algebra and {x(i)
j }ni

j=1 is a collection
of self-adjoint elements of A for 1 ≤ i ≤ m. We say these collections are fully

free if the inclusion maps from each C∗({x(i)
j }ni

j=1) extend to an isometric unital
∗-homomorphism from the full free product of the C∗({x(i)

j }ni

j=1)’s into A.
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We can restate the theorem using the new terminology.

Theorem 5.4.6 Suppose A is a unital MF algebra and {x(i)
j }ni

j=1 (1 ≤ i ≤ m) are

fully free collections of self-adjoint elements of A all supported on a common sequence

{ks}∞s=1. Then

δtop(x(1)
1 , . . . , x(1)

n1
, . . . , x(m)

1 , . . . , x(m)
nm

) =

m
∑

i=1

δtop(x(i)
1 , . . . , x(i)

ni
).
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