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Abstract
In prognosis studies with time-to-event outcomes, the survivals of groups with high/low biomarker expression are
often estimated by the Kaplan–Meier method, and the difference between groups is measured by the hazard ratios
(HRs). Since the high/low expressions are usually determined by study-specific cutoff values, synthesizing only
HRs for summarizing the prognostic capacity of a biomarker brings heterogeneity in the meta-analysis. The time-
dependent summary receiver operating characteristics (SROC) curve was proposed as a cutoff-free summary of
the prognostic capacity, extended from the SROC curve in meta-analysis of diagnostic studies. However, estimates
of the time-dependent SROC curve may be threatened by reporting bias in that studies with significant outcomes,
such as HRs, are more likely to be published and selected in meta-analyses. Under this conjecture, this paper
proposes a sensitivity analysis method for quantifying and adjusting reporting bias on the time-dependent SROC
curve. We model the publication process determined by the significance of the HRs and introduce a sensitivity
analysis method based on the conditional likelihood constrained by some expected proportions of published
studies. Simulation studies showed that the proposed method could reduce reporting bias given the correctly-
specified marginal selection probability. The proposed method is illustrated on the real-world meta-analysis of
Ki67 for breast cancer.

Highlights
What is already known

• Heterogeneous cutoff values over studies often occur in meta-analysis examining the association of
a continuous biomarker with a binary outcome (diagnostic study) and with a time-to-event outcome
(prognostic study).
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• For diagnostic meta-analysis, the summary receiver operating characteristics (SROC) curve and its area
under the curve are widely recognized as a useful tool and used to handle the issue of heterogeneous cutoff
values.

• For prognostic meta-analysis with time-to-event outcomes, the time-dependent SROC method, which is an
extension of the SROC method in diagnostic meta-analysis, has been developed by Hattori and Zhou (2016,
Statistics in Medicine 35(26), 4746–4763) and is useful to address the issue of heterogeneous cutoff values.

• In meta-analysis, large studies or studies with significant results are more likely to be published and observed
for meta-analysis; synthesizing only these studies may result in reporting bias, also known as, publication
bias or small-study effects.

• Reporting bias is unavoidable and may also induce biased estimates of the time-dependent SROC method
by the bivariate normal model of Hattori and Zhou (2016, Statistics in Medicine 35(26), 4746–4763).

What is new

• For prognostic studies with time-to-event outcomes, the selective publication process of studies and the
selective reporting of the Kaplan–Meier estimates can be influenced by the significance of the hazard ratios,
equivalently, the significance of the log-rank tests.

• To model selective publication processes driven by the log-rank test, inference of trivariate model has been
successfully established, which is essentially beyond the sensitivity analysis method for reporting bias in
meta-analysis of diagnostic studies.

• The proposed model was constrained by the marginal selection probability as a sensitivity parameter; the
impact of reporting bias on the time-dependent SROC method can be evaluated by varying the marginal
selection probability within (0,1).

Potential impact for Research Synthesis Methods readers outside the authors’ field

• We proposed the first method dealing with reporting bias on the time-dependent SROC method for meta-
analysis of prognosis studies with time-to-event outcomes; then, users could evaluate the robustness of the
estimates when evaluating the prognostic capacity of the biomarker.

• By incorporating the ability to address reporting bias, our method enhanced the utility and applicability of
the time-dependent SROC method of Hattori and Zhou (2016, Statistics in Medicine 35(26), 4746–4763) for
meta-analysis of prognosis studies.

1. Introduction

Biomarkers have been playing critical roles in medical therapeutics and precision medicine, and
many clinical studies aim to investigate the associations between biomarkers and subjects’ outcomes.
Usually, diagnostic or prognostic capacity is measured by the associations between subjects’ biomarker
expression values and their (binary) disease outcomes or time-to-event outcomes, respectively. Corre-
spondingly, studies evaluating diagnostic or prognostic capacity of the biomarker of interest are referred
to as diagnostic or prognosis studies, respectively. In this paper, we are interested in prognosis studies
that evaluate the association between a continuous biomarker and time-to-event outcomes; although
prognosis studies can have continuous or binary outcomes, we focus on studies with time-to-event
outcomes.

In the analysis of a prognosis or diagnostic study with a continuous biomarker, subjects are often
classified into the high/low expression (or positive/negative) groups by a certain cutoff value. In a
diagnostic study, diagnostic capacity of the biomarker is usually represented by the pair of sensitivity
and specificity estimated at a specified cutoff value.1 More informative measurements include the
receiver operator characteristic (ROC) curve and the area under the curve (AUC) since they present
the diagnostic capacity over the range of cutoff value. This successful ROC methodology, developed
for diagnostic studies with binary outcomes, has been successfully extended to time-to-event outcomes.
By formulating the problem as diagnosing whether a subject survives beyond a fixed time point, such
as one year, the time-dependent sensitivity and specificity are defined. Then, the time-dependent ROC
curve and its AUC are utilized for evaluating prognostic capacity on time-to-event outcomes.2,3

https://doi.org/10.1017/rsm.2025.14 Published online by Cambridge University Press

https://doi.org/10.1017/rsm.2025.14


Research Synthesis Methods 3

Meta-analysis is a useful tool to synthesize data of multiple studies and provides a more precise
estimate of diagnostic or prognostic capacity. In meta-analysis of diagnostic studies, study-specific
cutoff values induce correlation between the empirical sensitivity and specificity pairs among the
collected studies. Additionally, they bring difficulty in interpretation of the meta-analytical results
that are aggregated by the standard meta-analysis technique, such as the random-effects model. Thus,
bivariate models are recommended to model the empirical sensitivity and specificity pairs and the
summary ROC (SROC) curve4–6 to show diagnostic capacity. The SROC curve presents the monotonic
relationship between sensitivity and 1 − specificity at all possible cutoff values, and the area under
the SROC curve, namely the summary AUC (SAUC), gives a univariate summary of diagnostic
capacity. Properties and extensions of the SROC curve have been much discussed in many statistical
literature, and the SROC curve and the SAUC are widely used as the main results in meta-analysis
of diagnostic studies.1 In contrast, in clinical journals, almost all meta-analysis of prognosis studies
aggregate the hazard ratios (HRs) using the standard meta-analysis technique without caring about
the study-specific cutoff values among studies.7–11 The major problem is that varying cutoff values
contribute to large heterogeneity in the meta-analysis results.7,8 A couple of papers proposed methods to
aggregate the HRs accounting for heterogeneous cutoff values.12,13 However, these HR-based summary
measures are hard to interpret. Motivated by the wide acceptance of the SROC curves in meta-
analysis of diagnostic studies, meta-analytic version of the time-dependent ROC curve was developed,
that is, the time-dependent SROC curve, denoted by SROC(𝑡). Comparing to the synthesis of the
HRs, SROC(𝑡) provides a visual presentation of the overall prognostic capacity without depending
on one or multiple specific cutoff values. Additionally, SROC(𝑡) synthesizes prognostic capacity at
specific time points; thus, one could view the change of prognostic capacity over time. The area
under SROC(𝑡), denoted by SAUC(𝑡), is useful to quantify prognostic capacity. By testing the null
hypothesis that 𝐻0 : SAUC(𝑡) = 0.5, one could examine whether or not the biomarker has significant
prognostic capacity. To make inference about SROC(𝑡), Combescure et al.14 employed the non-linear
mixed model to model the biomarker and time-to-event distributions. Hattori and Zhou15 proposed the
bivariate normal model and the bivariate binomial model by extending the bivariate models4,5 for meta-
analysis of diagnostic studies. All these methods utilize the Kaplan–Meier (KM) estimates extracted
from literatures. Among the models estimating SROC(𝑡), the bivariate normal model of Hattori and
Zhou15 (hereinafter, the HZ model) appears to be simplest in the inference and practical implementation.
As proposed, the pairs of empirical time-dependent sensitivity and specificity with their variances are
estimated using the retrieved number of patients and KM estimates at several time points. Then, the HZ
model bivariately models the empirical time-dependent sensitivity and specificity pairs for estimating
SROC(𝑡). The detailed inference procedure is introduced in Section 3.

Despite the usefulness of meta-analyses, validity of the synthesized results is often threatened by
publication bias, also known as small-study effects. Publication bias is induced by selective publication,
where large studies or studies with significant outcomes are more likely to be published and collected
for meta-analysis, and consequently, overlooking unpublished studies in meta-analysis can lead to
biased estimates and overoptimistic conclusions.16 In univariate meta-analysis of intervention studies
(e.g., randomized clinical trials), methods for assessing and adjusting publication bias have been
intensively studied. Despite the popular graphical methods (e.g., the funnel plot and the trim-and-fill
method), sensitivity analysis methods with selection functions, including the Heckman-type selection
functions,17,18 the t-statistic based selection function,19 and the worst-case analysis,20 provide more
careful evaluations on the impact of publication bias. In meta-analysis of diagnostic studies, several
selection function based methods have been proposed for dealing with publication bias on the estimate
of the SROC curve. Most methods modeled the selective publication process by the Heckman-type
selection functions.21–23 Recently, Zhou et al.24 introduced the cutoff-dependent selection function,
which is the probit model on the t-type statistic of the empirical sensitivity and specificity pairs.
Specifically, the t-type statistic is defined by that of the linear combination of the logit-transformed
empirical sensitivities and specificities. Thus, the cutoff-dependent selection function can model a
variety of selective publication processes determined by the significance of sensitivity, specificity, or
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both. Since the scientific arguments in each diagnostic study are mainly based on the cutoff-dependent
quantities (e.g., sensitivity, specificity, and their derivatives), such cutoff-dependent selection functions
would be more appealing to model the selective publication.

Publication bias can also affect the estimate of SROC(𝑡). Furthermore, SROC(𝑡) may suffer from
additional source of bias. As aforementioned, inference of SROC(𝑡) relies on the KM estimates
extracted from the literature, where authors might place the figures of KM estimates to highlight their
findings of substantial survival improvement. However, not all the literatures report the figures of KM
estimates. Exclusion of studies missing KM estimates may result in biased SROC(𝑡) estimations, which
is an issue of selective reporting.25 In this paper, we refer to the combined bias resulting from selective
publication and selective reporting of KM estimates as reporting bias. Consequently, we aim to propose
a sensitivity analysis method for assessing the impact of reporting bias on SROC(𝑡) estimated by
the HZ model. Due to the similarity between the HZ model and the bivariate normal model in meta-
analysis of diagnostic studies, an intuitive idea is to apply the method of Zhou et al.24 to the HZ model.
However, the publication mechanisms between diagnostic and prognosis studies are different; thus, the
selection function defined in Zhou et al.24 may not be appealing to model the publication mechanism
in prognosis studies. In prognostic studies, the KM estimates of the high/low expression groups are
often reported graphically with the P-values of the log-rank test, and the conclusions about prognostic
capacity of the biomarker are measured by the HRs. Thus, the significance of the log-rank test, or the
significance of the log-transformed HR (lnHR) between two groups, is supposed to be a determinant
of the publication of prognosis studies. On the other hand, publication mechanism modeled by the
selection function on the test statistic is more interpretable. These motivated us to propose the sensitivity
analysis method that employs the test statistic based selection function24 to address reporting bias in
meta-analysis of prognosis studies. However, it is challenging in the development. In Zhou et al.,24

the t-type statistic can be expressed by sensitivity and specificity, which are reported as outcomes in
the diagnostic studies. They successfully extended the likelihood-based sensitivity analysis method
of Copas19 into the bivariate normal model for the logit-transformed sensitivity and specificity. In
meta-analysis of prognosis studies, the data of time-dependent sensitivity and specificity pairs are not
observable outcomes, and it is difficult to re-express the log-rank statistic (equivalently, the t-statistic
of lnHR without considering covariates) as a linear function of the time-dependent sensitivity and
specificity pairs. To overcome this, we propose a trivariate model for logit-transformed time-dependent
sensitivity and specificity and the lnHR. Based on the trivariate model, the conditional likelihood taking
into account the selection function of the log-rank statistic is derived. The conditional likelihood is
further constrained by the marginal selection probability. By specifying a plausible range of marginal
selection probabilities, one could assess the possibly minimal and maximal impact of reporting bias on
SROC(𝑡) and SAUC(𝑡). This paper provides an idea for dealing with reporting bias in meta-analysis of
studies with time-to-event outcomes.

The rest of this article is organized as follows. In Section 2, we introduce the issue of reporting
bias using a motivating meta-analysis of Ki67. In Section 3, we describe the general data structure and
review the HZ model without taking into account selective publication. In Section 4, we propose the
trivariate model and the sensitivity analysis method for reporting bias in detail. In Section 5, we revisit
the meta-analysis of Ki67 and evaluate the potential impact of reporting bias by the proposed method.
In Section 6, simulation studies are conducted to evaluate the performance of the proposed method. In
Section 7, we conclude this work with a discussion.

2. Motivating example: reporting bias in meta-analysis of Ki67

De Azambuja et al.8 conducted meta-analysis to evaluate the prognostic capacity of Ki67. They
synthesized the reported HRs that assessed the association between Ki67 and the survival outcome
of patients with early breast cancer. In the overall survival outcomes, 38 studies reported the HRs
(or equivalently, the log-transformed HRs, denoted by lnHRs) with the corresponding standard errors
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Table 1. Scenarios of distributions of biomarker and cutoff
values used in simulation studies. e follows the standard
logistic distribution.

Biomaker (�̃�)

Scenario 𝑇 ≤ 2 𝑇 > 2 Cutoff value

1 0.7 + 0.1𝑒 0.3 + 0.4𝑒 𝑁 (0.5, 0.142)
2 0.7 + 0.1𝑒 0.3 + 0.3𝑒 𝑁 (0.5, 0.22)
3 0.7 + 0.7𝑒 0.3 + 0.9𝑒 𝑁 (0.5, 0.22)
4 1 + 0.7𝑒 0.2 + 0.9𝑒 𝑁 (0.5, 0.22)
5 1 + 0.7𝑒 0.2 + 0.9𝑒 𝑁 (0.5, 0.32)
6 1 + 0.9𝑒 0.2 + 0.5𝑒 𝑁 (0.5, 0.22)
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Figure 1. The funnel plot and the trim and fill method for detecting reporting bias in meta-analysis of
Ki67. The vertical black dashed lines are the integrated lnHRs without considering reporting bias. The
central axes of the funnel plots are the adjusted lnHRs. The open circle points are the filled unpublished
studies. The red and black points are the published studies categorized by the P-values of the lnHRs.
P for the open circle point in the legends indicated the estimated P-values of the imputed lnHRs of the
filled studies.

(SEs). The data are presented in Table 1 of De Azambuja et al.,8 where the SEs can be derived from the
95% confidence intervals (CIs). The HR was defined by that between the high versus low expression
of Ki67 groups, and the high/low expressions were decided by various study-specific cutoff values,
ranging from 0.035 to 0.286. The heterogeneous cutoff values contributed to some of the heterogeneity
in this meta-analysis of the lnHRs.

The major concern, which is often too overlooked, is reporting bias, the mixture of selective publica-
tion of studies and selective reporting of outcomes. In this meta-analysis, the 38 studies may have been
selectively published from the population of studies due to the significant results. Since the selective
publication process of studies cannot be verified from the observed data, to explore the existence of
potentially unpublished studies, one straightforward way is to use funnel plot of the lnHRs for visual-
ization. In this meta-analysis, the unpublished studies were imputed by the trim-and-fill method until
the funnel plot on the lnHR was symmetric. In Figure 1a, the funnel plot and the trim-and-fill method
implied that some studies with insignificant lnHRs might be unpublished (the circle points in the plot),
and studies with insignificant lnHRs (i.e., P-value greater than 0.5) seemed vulnerable to unpublication.
However, since the lnHRs were estimated dependent of the study-specific cutoff values, the funnel plot
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23 Studies reporting the KM curves

Figure 2. The funnel plot and the trim and fill method for detecting reporting bias in meta-analysis of
Ki67 based on the 23 studies reporting the KM curves. The vertical black dashed lines are the integrated
lnHRs without considering reporting bias. The central axes of the funnel plots are the adjusted lnHRs.
The open circle points are the filled unpublished studies. The red and black points are the published
studies categorized by the P-values of the lnHRs. P for the open circle point in the legends indicated
the estimated P-values of the imputed lnHRs of the filled studies.

on the lnHRs could be misleading and influenced by the heterogeneity resulted from cutoff values. To
mitigate the influence of heterogeneous cutoff values, we then apply the trim-and-fill method in the
strata of cutoff values. In the funnel plots of the subgroup of cutoff value equal to 0.1 (Figure 1b), the
asymmetry of funnel plots suggested some potential unpublished studies determined by the significance
of lnHRs, and reporting bias seemed more likely to occur in the subgroup of cutoff value equal to 0.1. In
contrast, in the subgroup of cutoff value equal to 0.2 (Figure 1c), selective publication was not detected.

To evaluate the prognostic capacity independent of cutoff values, Hattori and Zhou15 re-analyzed
this meta-analysis by their proposed HZ model. They extracted the KM estimates of the high/low
expression groups at several time points and estimated SROC(𝑡) and SAUC(𝑡) at the third (𝑡 = 3)
and the fifth (𝑡 = 5) follow-up years. The estimate of SAUC(3) was 0.649 (95% CI: 0.606-0.690), and
SAUC(5) was estimated as 0.646 (0.610, 0.680), indicating that Ki67 was still useful to discriminant
patients with breast cancer at the third and fifth follow-up years. However, among the 38 studies, not
all the studies reported the KM curves. The estimates of SAUC(3) and SAUC(5) were based on 23 and
21 studies, which reported the KM estimates at the third and fifth years, respectively.

In summary, among the studies reporting the lnHRs, the trim-and-fill method detected some
unpublished studies that were almost insignificant in the lnHRs (Figure 2). When using the HZ model
for meta-analysis, less than 38 studies reporting KM estimates were used for synthesis. These two
sources of missingness could lead to reporting bias in the results. Thus, to evaluate the robustness of
the estimates of SROC(t) and SAUC(t), reporting bias including both selective publication of studies
and selective reporting of the KM curves should be taken with caution. Although the funnel plot and the
trim-and-fill method could raise some concerns about reporting bias in this meta-analysis, they are not
useful for evaluating the potential impact of reporting bias on SROC(𝑡) and SAUC(𝑡). To overcome this
issue, we propose a sensitivity analysis method for evaluating the impact of reporting bias on SROC(𝑡)
by the HZ model in the later sections.

https://doi.org/10.1017/rsm.2025.14 Published online by Cambridge University Press

https://doi.org/10.1017/rsm.2025.14


Research Synthesis Methods 7

3. Bivariate normal model without considering reporting bias

3.1. Notations and data structure

Suppose that S prognosis studies are conducted to evaluate the association between the expressions
of biomarker and subjects’ time-to-event outcomes. Among the S studies, data of N prognosis studies
are published and used in meta-analysis to summarize the prognostic capacity, while data of 𝑆 − 𝑁
studies are missing. In this section, we do not consider the existence of reporting bias, that is, data of
N published studies consist of the population or random sample from the S studies. Since we focus
on the HZ model to synthesize data of the published studies, we follow the notations in Hattori and
Zhou15 to introduce the latent individual patient data (IPD) in each study and the observable data for
meta-analysis as follows.

Suppose that each prognosis study 𝑖 (𝑖 = 1, 2, . . . , 𝑁) includes 𝑛(𝑖) subjects, and the subjects are
assumed to be random samples from the population of interest. For each subject, let �̃� be the baseline
measurement of biomarker, 𝑇 the failure time, �̃� the right-censored time, and 𝑌 = min

(
𝑇, �̃�

)
the follow-up time. We use tilde to denote these variables for individuals, which are unextractable from
the literature for meta-analysis. We assume that the distribution of �̃� is identical across N studies as
well as �̃�⊥⊥�̃� , and 𝑇⊥⊥�̃� | �̃� , where ⊥⊥ indicates variables are independent. These assumptions lead to
𝑇⊥⊥�̃�.

For each study i, let 𝑣 (𝑖) denote the study-specific cutoff value, which is not necessarily reported.
This cutoff value separates subjects into the low expression group, denoted by 𝑍 = 0, if �̃� ≤ 𝑣 (𝑖) or
the high expression group (𝑍 = 1) if �̃� > 𝑣 (𝑖) . The survival functions of the low and high expression
groups are respectively denoted and defined by

𝑆 (𝑖)0 (𝑡) = 𝑃
(
𝑇 > 𝑡 | �̃� ≤ 𝑣 (𝑖)

)
𝑆 (𝑖)1 (𝑡) = 𝑃

(
𝑇 > 𝑡 | �̃� > 𝑣 (𝑖)

)
.

The disease status at time t is defined by the counting process 𝐷 (𝑡) = 1 if 𝑇 ≤ 𝑡 or 𝐷 (𝑡) = 0 if
𝑇 > 𝑡, indicating that subjects have an event before time t or survive after t, respectively. To facilitate
the understanding, we showed the number of subjects given different disease statuses and expression
groups in Table S1 in the Supplementary Material. Analogous to the diagnostic study, sensitivity and
specificity at time t are respectively denoted and defined by

se (𝑥, 𝑡) = 𝑃
(
�̃� > 𝑥 | 𝑇 ≤ 𝑡

)
sp (𝑥, 𝑡) = 𝑃

(
�̃� ≤ 𝑥 | 𝑇 > 𝑡

)
.

For meta-analysis, the following summarized data are required and can be extracted from published
literatures. For study 𝑖 (𝑖 = 1, 2, . . . , 𝑁), let 𝑛(𝑖)0 and 𝑛(𝑖)1 denote the number of subjects separated into
the low and high expression groups, respectively; the total number of subjects is 𝑛(𝑖) = 𝑛(𝑖)0 + 𝑛(𝑖)1 . Let
𝑆 (𝑖)0 (𝑡) and 𝑆 (𝑖)1 (𝑡) denote the KM estimates of the low and high expression groups, respectively, and
they can be extracted from the reported plots of the KM curves at the partition of time interval [0, 𝑡]:
0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝐾 = 𝑡. Let �̂� (𝑖)

lnHR denote the reported lnHR between high versus low expression
groups and 𝑠 (𝑖)lnHR the corresponding SE; both are estimated by the Cox model.26 Among N studies, the
sample medians of the follow-up time over the total subjects can also be extracted from some studies.
These medians of follow-up time are used to estimate the censoring distribution in estimating the SEs
of 𝑆 (𝑖)0 (𝑡) and 𝑆 (𝑖)1 (𝑡). (See Section 3.2 in Hattori and Zhou15 for more details.) We take the example
of meta-analysis of Ki67 to illustrate the data structure with details explained in Section S1 of the
Supplementary Material.

https://doi.org/10.1017/rsm.2025.14 Published online by Cambridge University Press

https://doi.org/10.1017/rsm.2025.14
https://doi.org/10.1017/rsm.2025.14
https://doi.org/10.1017/rsm.2025.14


8 Zhou et al.

3.2. Bivariate normal model

In this section, we review the structure of HZ model and the definitions of SROC(𝑡) and SAUC(𝑡).
The HZ model employs the bivariate normal-normal random-effects model to model the empirical
pairs of logit-transformed time-dependent sensitivities and specificities, which are estimated using KM
estimates from published literatures, allowing for heterogeneity from different sources (e.g., cutoff
values, study designs, population, etc.) in time-dependent sensitivities and specificities across studies.
It extended the model of Reitsma et al.5 which has been widely used in meta-analysis of diagnostic
studies.

According to Hattori and Zhou,15 with the Bayes rule and simple algebraic manipulations, the true
sensitivity and specificity at time t of study i can be respectively re-expressed by

se
(
𝑣 (𝑖) , 𝑡

)
=

{
1 − 𝑆 (𝑖)1 (𝑡)

}
𝑞 (𝑖)1{

1 − 𝑆 (𝑖)0 (𝑡)
}
𝑞 (𝑖)0 +

{
1 − 𝑆 (𝑖)1 (𝑡)

}
𝑞 (𝑖)1

sp
(
𝑣 (𝑖) , 𝑡

)
=

𝑆 (𝑖)0 (𝑡) · 𝑞 (𝑖)0

𝑆 (𝑖)0 (𝑡) · 𝑞 (𝑖)0 + 𝑆 (𝑖)1 (𝑡) · 𝑞 (𝑖)1

,

(1)

where 𝑞 (𝑖)0 = 𝑃
(
�̃� ≤ 𝑣 (𝑖)

)
and 𝑞 (𝑖)1 = 𝑃

(
�̃� > 𝑣 (𝑖)

)
. With the data extracted from collected studies,

𝑞 (𝑖)0 and 𝑞 (𝑖)1 are estimated by 𝑞 (𝑖)0 = 𝑛(𝑖)0 /𝑛(𝑖) and 𝑞 (𝑖)1 = 𝑛(𝑖)1 /𝑛(𝑖) , respectively; the time-dependent
sensitivity and specificity in equation (1) are consistently estimated by substituting

(
𝑞 (𝑖)0 , 𝑞 (𝑖)1 , 𝑆 (𝑖)0 , 𝑆 (𝑖)1

)
for

(
𝑞 (𝑖)0 , 𝑞 (𝑖)1 , 𝑆 (𝑖)0 , 𝑆 (𝑖)1

)
. The resulting consistent estimators are denoted by ŝe

(
𝑣 (𝑖) , 𝑡

)
and ŝp

(
𝑣 (𝑖) , 𝑡

)
,

respectively.
The HZ model, following Reitsma et al.,5 employs a logit-transformation to map the time-dependent

sensitivity and specificity to the real number line (−∞,∞). While other transformations are also
applicable,27 logit-transformation is widely accepted. Let 𝝁 (𝑖) =

(
𝜇 (𝑖)

se , 𝜇
(𝑖)
sp

)�
denote the true time-

dependent sensitivity and specificity pair of study i on the logit scale, that is,

𝜇 (𝑖)
se = logit

{
se
(
𝑣 (𝑖) , 𝑡

)}
and 𝜇 (𝑖)

sp = logit
{
sp

(
𝑣 (𝑖) , 𝑡

)}
,

where logit = log 𝑥 − log(1 − 𝑥). At the between-study level, it is assumed that

𝝁 (𝑖) ∼ 𝑁2 (𝝁,𝛀) with 𝛀 =

[
𝜏2

se 𝜏se,sp
𝜏se,sp 𝜏2

sp

]
, (2)

where 𝑁2 denotes the bivariate normal distribution, and 𝝁 =
(
𝜇se, 𝜇sp

)� is the overall mean at time t
across multiple prognosis studies; 𝛀 is the between-study variance-covariance matrix of 𝝁 (𝑖) , where
𝜏2

se and 𝜏2
sp are the variance of 𝜇 (𝑖)

se and 𝜇 (𝑖)
sp , respectively, and 𝜏se,sp the covariance between them.

Let �̂� (𝑖) =
(
logit

{
ŝe
(
𝑣 (𝑖) , 𝑡

)}
, logit

{
ŝp

(
𝑣 (𝑖) , 𝑡

)})� denote the consistent estimates of 𝝁 (𝑖) in each
study. Hattori and Zhou15 showed that �̂� (𝑖) has the following asymptotic distribution at the within-study
level:

�̂� (𝑖) | 𝝁 (𝑖) ∼ 𝑁2

(
𝝁 (𝑖) , H(𝑖)

/
𝑛(𝑖)

)
with H(𝑖) =

⎡⎢⎢⎢⎢⎢⎣
{
𝜎 (𝑖)

se

}2
𝜎 (𝑖)

se,sp

𝜎 (𝑖)
se,sp

{
𝜎 (𝑖)

sp

}2

⎤⎥⎥⎥⎥⎥⎦ , (3)

where H(𝑖) indicates the within-study asymptotic variance-covariance matrix. The detailed expression
of H(𝑖) is presented in equation (S1) of the Supplementary Material. The parameter H(𝑖) in model (3)
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can be replaced with its consistent estimator Ĥ(𝑖) estimated by the Greenwood formula with median
follow-up time, which follows the convention that the within-study variance–covariance matrix is
known in meta-analysis. (See Section 3.2 in Hattori and Zhou15 for more details.) Combining models
(2) and (3) induces the HZ model:

�̂� (𝑖) ∼ 𝑁2

(
𝝁, 𝛀 + Ĥ(𝑖)

/
𝑛(𝑖)

)
, (4)

where (𝝁,𝛀) are the unknown parameters at time t, and they can be estimated by the maximum
likelihood (ML) method; we denote their ML estimators as ( �̂�, �̂�).

Based on the HZ model, SROC(𝑡) is derived by taking the conditional expectation of 𝜇 (𝑖)
se given 𝜇 (𝑖)

sp
in model (2). Let x denote 1 − sp (𝑥, 𝑡), SROC(𝑡) is defined by the following time-dependent function:

SROC(𝑡) = SROC (𝑥, 𝑡; 𝝁,𝛀) = logit−1

[
𝜇se −

𝜏se,sp

𝜏2
sp

{
logit(𝑥) + 𝜇sp

}]
. (5)

Accordingly, SAUC(𝑡) is defined by

SAUC(𝑡) = SAUC (𝑡; 𝝁,𝛀) =
∫ 1

0
SROC (𝑥, 𝑡; 𝝁,𝛀) 𝑑𝑥. (6)

SROC(𝑡) and SAUC(𝑡) can be estimated by replacing the unknown parameters (𝝁,𝛀) in (5) and (6).

4. Sensitivity analysis for reporting bias

4.1. Trivariate model incorporating the lnHR

In intervention studies, whether or not a study is published is influenced by the significance of the
result, such as, the P-value of the t-statistic. Similarly, a prognosis study with time-to-event outcomes
is more likely to be published when its log-rank test (or equivalently, the t-statistic of the lnHR without
covariates) is significant, and vice versa. The phenomenon of selective publication causes N published
studies to be biased sample from the S studies and may induce reporting bias in the estimates of
SROC(𝑡) and SAUC(𝑡). To quantify reporting bias on the estimates, we aim to extend the methods
of Copas19 and Zhou et al.24 and introduce the selection function of the log-rank test (equivalently, the
t-statistic of the lnHR) to model the publication mechanism of prognosis studies; then, the inference of
reporting bias is made based on the conditional likelihood of the HZ model given the published studies.
However, the HZ model (4) does not involve the lnHR. Thus, before introducing the proposed method,
we need to expand the HZ model (4) to correlate the time-dependent sensitivity and specificity with the
lnHR for constructing the conditional likelihood in the later section.

To distinguish from some notations for the HZ model (4) in Section 3.2, we let ŷ(𝑖) =(
�̂� (𝑖)

se , �̂�
(𝑖)
sp , �̂�

(𝑖)
lnHR

)�
denote the consistent estimators of 𝜽 (𝑖) =

(
𝜇 (𝑖)

se , 𝜇
(𝑖)
sp , 𝜇

(𝑖)
lnHR

)�
at time t, where

𝜇 (𝑖)
lnHR denotes the lnHR and �̂� (𝑖)

lnHR the empirical lnHR estimated by the Cox model from the published
prognosis studies. At the between-study level, it is assumed that

𝜽 (𝑖) ∼ 𝑁3 (𝜽 ,𝚿) with 𝚿 =

⎡⎢⎢⎢⎢⎣
𝜓2

se 𝜓se,sp 𝜓se,lnHR
𝜓se,sp 𝜓2

sp 𝜓sp,lnHR
𝜓se,lnHR 𝜓sp,lnHR 𝜓2

lnHR

⎤⎥⎥⎥⎥⎦ , (7)

where 𝜽 =
(
𝜃se, 𝜃sp, 𝜃lnHR

)� are the common means, and 𝚿 indicates the between-study variance-
covariance matrix of 𝜽 (𝑖) ; the diagonal elements are the corresponding variances of 𝜃se, 𝜃sp, and 𝜃lnHR
and the others are the covariances between each two of them.
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At the within-study level, we can prove that

ŷ(𝑖) | 𝜽 (𝑖) ∼ 𝑁3

(
𝜽 (𝑖) ,𝚺 (𝑖)

/
𝑛(𝑖)

)
with 𝚺 (𝑖) =

⎡⎢⎢⎢⎢⎣
H(𝑖) 𝚺 (𝑖)

12

𝚺 (𝑖)
12

� {
𝜎 (𝑖)

lnHR

}2

⎤⎥⎥⎥⎥⎦ , (8)

where 𝑁3 denotes the trivariate normal distribution, 𝚺 (𝑖) the within-study asymptotic variance–
covariance matrix, H(𝑖) the variance–covariance matrix in model (3); let 𝚺 (𝑖)

12 =
(
𝜎 (𝑖)

se,lnHR, 𝜎
(𝑖)
sp,lnHR

)�
,

where 𝜎 (𝑖)
se,lnHR is the covariance between �̂� (𝑖)

se and �̂� (𝑖)
lnHR and 𝜎 (𝑖)

sp,lnHR the covariance between �̂� (𝑖)
sp

and �̂� (𝑖)
lnHR, and

{
𝜎 (𝑖)

lnHR

}2
the variance of �̂� (𝑖)

lnHR. The proof of the asymptotic distribution of ŷ(𝑖) (8)

is presented in Section S2 of the Supplementary Material. In (8), 𝚺 (𝑖) can be replaced by its consistent
estimator �̂� (𝑖) , according to the convention in meta-analysis that the within-study variance–covariance
matrix is known. Combining models (8) and (7), we derives the marginal distribution of ŷ(𝑖) :

ŷ(𝑖) ∼ 𝑁3

(
𝜽 , 𝚿 + �̂�

(𝑖)/
𝑛(𝑖)

)
. (9)

4.2. Selection functions on the significance of the lnHR

As aforementioned, we conjectured that the published N studies are subject to selective publication in
that study with significant lnHR (or small P-value of the log-rank test) is more likely to be published.
The selective publication process is modeled by the probability of a study being selected given its
t-statistic of the lnHR, denoted by 𝑡 (𝑖)HR, as shown in the following selection function:

𝑃
(
select | ŷ(𝑖) , �̂�

(𝑖) )
= 𝑎

(
ŷ(𝑖) , �̂�

(𝑖) )
= 𝑎

(
𝑡 (𝑖)HR

)
, (10)

where the function 𝑎(·) is a non-decreasing function of 𝑡 (𝑖)HR, that is, the t-statistic of the lnHR. To
simplify the inference procedure, we, following Copas,19 employ the probit model to 𝑎(·). Thus,
equation (10) is defined by:

𝑎
(
𝑡 (𝑖)HR

)
= Φ

(
𝛼 + 𝛽 · 𝑡 (𝑖)HR

)
, (11)

where 𝑡 (𝑖)HR = �̂�lnHR

/
𝑠 (𝑖)lnHR , parameters 𝛼 and 𝛽 control the probability of selective publication, and 𝑠 (𝑖)lnHR

denotes the reported SE of the lnHR with 𝑠 (𝑖)lnHR = �̂� (𝑖)
lnHR

/ √
𝑛(𝑖) . The monotonic property of the probit

model links two cases of randomly selective publication: (1) when 𝛽 = 0 and suppose 𝛼 = Φ−1 (𝑝0),
the probability of selective publication is independent of the t-statistic, and each study is randomly
published from the population with selection probability 𝑝0; (2) when 𝛽 → ∞, each study is published
with probability 1.

According to the definition of the probit model, the selection function (11) can be represented by

𝑎
(
𝑡 (𝑖)HR

)
= Φ

(
𝑧 (𝑖) < 𝛼 + 𝛽 · 𝑡 (𝑖)HR

)
= Φ

{
𝛼 + 𝛽 ·

(
�̂� (𝑖)

lnHR

/
𝑠 (𝑖)lnHR

)}
, (12)

where 𝑧 (𝑖) is the standard normal random variable independent of 𝑡 (𝑖)HR. Based on the trivariate model (9),
the marginal distribution of �̂� (𝑖)

lnHR is

�̂� (𝑖)
lnHR ∼ 𝑁

(
𝜃lnHR, 𝜓

2
lnHR +

{
𝑠 (𝑖)lnHR

}2
)
.
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Then, the distribution of 𝑡 (𝑖)HR is derived by

𝑁
��� 𝜃lnHR

𝑠 (𝑖)lnHR

, 1 +
{
𝜓lnHR

𝑠 (𝑖)lnHR

}2��� ,
and the selection function 𝑎

(
𝑡 (𝑖)HR

)
in equation (12) can be written into the following selection function:

𝑃
(
select | �̂� (𝑖) )

= 𝑏
(
�̂�

(𝑖) )
= Φ

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝛼 + 𝛽 ·

(
𝜃lnHR

/
𝑠 (𝑖)lnHR

)
√

1 + 𝛽2 ·
{
1 +

(
𝜓lnHR

/
𝑠 (𝑖)lnHR

)2
}
⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
. (13)

4.3. Likelihood based sensitivity analysis

We estimate the parameters in SROC(𝑡) and SAUC(𝑡) by maximizing the loglikelihood subject to a
certain value of marginal selection probability, denoted by 𝑃(select) and defined by

𝑃(select) = 𝐸𝑃

{
𝑎
(
𝑡 (𝑖)HR

)}
= 𝐸𝑃

{
𝑏
(
�̂�

(𝑖) )}
. (14)

We regard 𝑃(select) = 𝑝 as the sensitivity parameter, implying the the expected proportion of the
published from the population studies. With various values of p, the changes in the estimates of
SROC(𝑡) and SAUC(𝑡) imply the impact of reporting bias on them. In this section, we derive the
loglikelihood function conditional on the published studies at a fixed value of p.

We let 𝑓𝑃
(
ŷ(𝑖) | �̂� (𝑖) ) denote the marginal distribution of ŷ(𝑖) and 𝑓𝑃

(
�̂�

(𝑖) ) the distribution of �̂� (𝑖)

over the population studies. In meta-analysis without taking into account reporting bias, the empirical
data

(
ŷ(𝑖) , �̂�

(𝑖) ) are regarded as random sample from the population studies with the joint distribution

𝑓𝑃

(
ŷ(𝑖) , �̂�

(𝑖) ) . In the presence of selective publication, the published studies can be biased sample from
the population; we let 𝑓𝑂 denote the distribution of the selectively published samples. Given a fixed p,
the distribution of �̂� (𝑖) in the published studies is derived by

𝑓𝑂

(
�̂�

(𝑖) )
= 𝑓

(
�̂�

(𝑖)
*** select

)
=
𝑃
(
select | �̂� (𝑖) )

𝑓𝑃

(
�̂�

(𝑖) )
𝑃 (select) =

𝑏
(
�̂�

(𝑖) )
𝑓𝑃

(
�̂�

(𝑖) )
𝑝

,

which gives

𝑓𝑃

(
�̂�

(𝑖) )
= 𝑝 ·

{
𝑏
(
�̂�

(𝑖) )}−1
𝑓𝑂

(
�̂�

(𝑖) )
. (15)

The joint distribution of the empirical data is then derived by

𝑓𝑂

(
ŷ(𝑖) , �̂�

(𝑖) )
= 𝑓

(
ŷ(𝑖) , �̂�

(𝑖) | select
)

=
𝑃
(
select | ŷ(𝑖) , �̂�

(𝑖) )
𝑓𝑃

(
ŷ(𝑖) , �̂�

(𝑖) )
𝑝

=
𝑎
(
𝑡 (𝑖)HR

)
𝑓𝑃

(
ŷ(𝑖) | �̂� (𝑖) )

𝑓𝑂

(
�̂�

(𝑖) )
𝑏
(
�̂�

(𝑖) ) .
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This joint distribution allows us to derive the loglikelihood of published studies, that is,

ℓ𝑂 (𝜽 ,𝚿, 𝛼, 𝛽) = log
𝑁∏
𝑖=1

𝑓𝑂

(
�̂� (𝑖) , �̂�

(𝑖) )
=

𝑁∑
𝑖=1

log 𝑓𝑃

(
�̂� (𝑖)

***�̂� (𝑖) ) + 𝑁∑
𝑖=1

log 𝑎
(
𝑡 (𝑖)HR

)
−

𝑁∑
𝑖=1

log 𝑏
(
�̂�

(𝑖) ) + 𝑐, (16)

where the second and the third terms are used for correcting reporting bias, and 𝑐 =
∑𝑁
𝑖=1 log

{
𝑓𝑂

(
�̂�

(𝑖) )}
is constant. If a random selection of studies holds, then either 𝛽 = 0 or 𝛽 → ∞ holds as well.
Consequently, these two terms cancel each other, making the likelihood reduce to that without
accounting for reporting bias.

Noting that by taking the integral of both sides in equation (15), we can derive

𝑝 = 1
/
𝐸𝑂

{
𝑏
(
�̂�

(𝑖) )−1
}
	 𝑁

/
𝑁∑
𝑖=1

𝑏
(
�̂�

(𝑖) )−1
. (17)

According to the definition of 𝑏(·) (13), equation (17) is monotonic with respect to 𝛼; thus, the
parameter 𝛼 can be represented by the function of (𝜽 ,𝚿, 𝛽) given a value of p. We denote this by
𝛼𝑝 = 𝛼𝑝 (𝜽 ,𝚿, 𝛽). By replacing the 𝛼 with 𝛼𝑝 , we derive the conditional loglikelihood given the
published studies from the loglikelihood (16):

ℓ𝑂 (𝜽 ,𝚿, 𝛽; 𝑝)

∝ − 1
2

𝑁∑
𝑖=1

{(
ŷ(𝑖) − 𝜽

)� (
𝚿 + �̂�

(𝑖)/
𝑛(𝑖)

)−1 (
ŷ(𝑖) − 𝜽

)
+ log

***𝚿 + �̂�
(𝑖)/

𝑛(𝑖)
***}

+
𝑁∑
𝑖=1

logΦ
{
𝛼𝑝 + 𝛽 ·

(
�̂� (𝑖)

lnHR

/
𝑠 (𝑖)lnHR

)}

−
𝑁∑
𝑖=1

logΦ

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝛼𝑝 + 𝛽 ·

(
𝜃lnHR

/
𝑠 (𝑖)lnHR

)
√

1 + 𝛽2 ·
{
1 +

(
𝜓lnHR

/
𝑠 (𝑖)lnHR

)2
}
⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.

(18)

Differently from the loglikelihood (16), with 𝛼𝑝 , this loglikelihood is constraint by the marginal
selection probability. The parameters (𝜽 ,𝚿, 𝛽) can be estimated by maximizing the conditional
loglikelihood given a specified value of p. We denote these ML estimates as (�̂� , �̂�, 𝛽). With these
MLEs, SROC(𝑡) in equation (5) and SAUC(𝑡) in equation (6) can be estimated accordingly, denoted by
SRÔC(𝑡) = SROC(𝑥, 𝑡; �̂�, �̂�) and SAÛC(𝑡) = SAUC(𝑡; �̂� , �̂�), respectively. The asymptotic normality
of (�̂� , �̂�, 𝛽) follows the general theory of the ML estimation under the assumptions that the number
of studies and subjects are large. The asymptotic variance-covariance matrix of (�̂� , �̂�, 𝛽) can be
consistently estimated by the inverse of the empirical Fisher information following the ML theory.
The two-tailed CI for the SAUC can be constructed by the delta method, and the detailed derivation is
presented in Section S3 of the Supplementary Material.

In practice, the true value of p is unknown. As a sensitivity analysis for reporting bias, the value of
p should be taken within the range (0, 1) in general. It is recommended to specify a decreasing series
for p, such as 𝑝 = 0.9, 0.8, . . . , 0.1, to thoroughly examine the changes of SRÔC(𝑡) or SAÛC(𝑡).
Specifying a large value, such as 𝑝 = 0.9, implies that the published studies account for 90% of the
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population, and thereby small reporting bias will be corrected. In contrast, specifying a small value, such
as 𝑝 = 0.1, indicates that the published studies represent 10% of the population, resulting in possibly
substantial reporting bias to be corrected by the proposed method. If the range for the probability of
publication can be reasonably conjectured, it is preferable to specify a decreasing series for p within
that narrower range. In the following section, we illustrate the practical implementation of the proposed
method.

5. Application

We revisited the meta-analysis of Ki678 to evaluate the potential impact of reporting bias on SRÔC(𝑡)
and SAÛC(𝑡) at 𝑡 = 3 and 𝑡 = 5. As mentioned in Section 2, 38 studies reported the lnHRs for
the overall survival outcome. Some potentially unpublished studies were detected in the lnHRs and
the logit-transformed sensitivities by the funnel plots, as shown in Figure S1 in the Supplementary
Material. When 𝑡 = 3 and 𝑡 = 5, only 23 and 21 studies reported the KM estimates, respectively.
To evaluate the impact of reporting bias on SROC(𝑡) and SAUC(𝑡), we then adopted the proposed
method. Considering that the number of population studies should be at least 38, the marginal selection
probabilities 𝑝 = 𝑃(select) were estimated to be no greater than 23/38 ≈ 0.61 or 0.55, respectively.
Thus, we considered implementing the proposed sensitivity analysis on the estimates of SROC(𝑡) given
𝑝 = 0.6, 0.4, 0.2. As for SAUC(𝑡), we gave thorough sensitivity analysis given 𝑝 = 0.9, 0.8, . . . , 0.1. In
the estimations, we used the absolute value of the t-statistic, |𝑡 (𝑖)HR |, in (11), indicating that the publication
of studies was influenced by the two-tailed P-value of the lnHRs.

We regarded estimates by the HZ model without taking into account reporting bias (when 𝑝 = 1) as
the benchmark. The changes of SRÔC(𝑡) at 𝑡 = 3 and 𝑡 = 5 are shown in Figure 3a and 3d, respectively,
with the estimates of corresponding parameters presented in Tables S4 and S5 in the Supplementary
Material. Although there was a small impact of reporting bias on the SRÔC(𝑡), the estimated summary
operating points (the diamond points) were changed variously when 𝑡 = 3 and 𝑡 = 5. At 𝑡 = 3, with p
decreasing to 0.2, the integrated sensitivity increased slightly, and the integrated specificity decreased
(as 1−specificity increased). At 𝑡 = 5, the integrated sensitivities were almost unchanged, while the
integrated specificity decreased when p decreased to 0.2. The different changes on the integrated
sensitivity and specificity indicated that, in this example, the selective publication determined by the
significance of the lnHRs had more impact on the estimates of specificity than sensitivity; thus, one
should also be cautious about the inference of integrated specificity.

The HZ model estimated SAÛC(𝑡) at 𝑡 = 3 and 𝑡 = 5 to be 0.649 (95% CI: 0.606, 0.690) and 0.646
(0.610, 0.680), respectively. Corresponding to the estimate of SRÔC(𝑡), when 𝑝 = 0.6, that is, about
(1 − 0.6)/0.6 × 23 ≈ 15 unpublished studies potentially existed, the estimated SAUC(𝑡) at 𝑡 = 3 and
𝑡 = 5 decreased to 0.638 (0.591, 0.682) and 0.632 (0.592, 0.677), respectively. In the worst case when
𝑝 = 0.1, SAÛC(𝑡) at 𝑡 = 3 and 𝑡 = 5 decreased to 0.621 (0.526, 0.708) and 0.608 (0.525, 0.685),
respectively. The changes of SAÛC(𝑡) at 𝑡 = 3 and 𝑡 = 5 given 𝑝 = 0.9, . . . , 0.1 are shown in Figure
3b and 3e, respectively. Although SAUC(𝑡) decreased with decreasing p, the estimates of SAUC(𝑡)
were still significantly different from 0.5. The estimated probit selection functions (equation 11) at
𝑡 = 3 and 𝑡 = 5 were presented in Figure 3c and 3f, respectively. The t-statistics of the published
studies were shown as the vertical lines, and most studies had high probabilities of being selected. The
detailed estimates of SAUC(𝑡) in Figure 3b and 3e were presented in Table S6 in the Supplementary
Material.

Although the prognostic capacity of Ki67 was not high, SAÛC(𝑡) at 𝑡 = 3 and 𝑡 = 5 was estimated
to be statistically significant by the HZ model. The sensitivity analysis supported the robustness of
these estimates, indicating that SAÛC(𝑡) were affected by reporting bias to a small degree at the
third (𝑡 = 3) and the fifth (𝑡 = 5) years. With the sensitivity analysis, one could draw the robust
conclusion that the prognostic capacity of Ki67 antigen was not very high in patients with early breast
cancer.
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Figure 3. The SRÔC(t) and SAÛC(t), and the probit selection function at 𝑡 = 3, 5 when 𝑝 = 0.6, 0.4, 0.2 in Ki-67 example. In panels (a) and (d), the
circle points are the empirical se(𝑥, 𝑡) and 1 − sp(𝑥, 𝑡) pairs from 23 prognosis studies; the diamond points are the estimated summary operating points,(
logit−1𝜇se, 1 − logit−1𝜇sp

)
. Panel (b) and (e) show SAÛC(t) by the HZ model (𝑝 = 1) and the proposed method given 𝑝 = 0.9, . . . , 0.1. In panels (c) and

(f), the vertical lines at the top are the observed t-statistics from 23 prognosis studies.
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6. Simulation studies

Simulation studies were conducted to evaluate the performance of the proposed sensitivity analysis
method. Following the data structure introduced in Section 3.1, we generated latent IPD in each
prognosis study and used the observable data for meta-analysis. In each prognosis study i, we
considered the following scenarios to generate the IPD.15 We considered one moderate size of total
subjects with 𝑛(𝑖) generated from the uniform distribution𝑈 (50, 150) and one heterogeneous and large
size with 𝑛(𝑖) ∼ 𝑈 (40, 300). The failure time of each subject 𝑇 was generated from log𝑇 = 1 + 𝜖 ,
where 𝜖 followed the standard normal distribution. The potential censored time �̃� was generated from
the exponential distribution with hazard rate 𝜆 = 0.2, denoted by 𝐸𝑥𝑝(0.2). Since the asymptotic
variance–covariance matrices in equations (4) and (9) required the limiting variances of 𝑆0 (𝑡) and 𝑆1 (𝑡),
the distribution of �̃� were estimated. We supposed �̃� to be the exponential distribution. Following the
method of Hattori and Zhou,15 we estimated 𝜆 by using the empirical medians of the follow-up time. In
simulation studies, we were interested in estimating SAUC(𝑡) at 𝑡 = 2, denoted by SAUC(2). Different
distributions of biomarkers were considered for subjects with failure time𝑇 ≤ 2 and𝑇 > 2. Specifically,
we considered five scenarios of the biomarker �̃� with normal distributed cutoff values having large or
small variances; all the scenarios were summarized in Table 1.

With the IPD in study i, the sensitivity and specificity at 𝑡 = 2 were estimated according to
equation (1), and �̂� (𝑖)

lnHR was estimated by the Cox model on the biomarker �̃� . The asymptotic variance–
covariance matrix in the trivariate model (7) was derived according to equations (S1), (S9), and (S10)
in the Supplementary Material.

For meta-analysis, we considered 70% and 50% of studies were published from the population, that
is, the marginal selection probability 𝑝 = 𝑃(select) was set as 0.7 or 0.5, respectively. We considered
small, medium, and large sizes of published studies, that is, about 25, 50, and 140 or 150 studies
to be published. In each selective publication process, we generated S population studies and then
selected 𝑁 = 𝑆 × 𝑝 studies according to the probit selection function (11). In the true probit selection
function, 𝛽 was set to be 5, and the values of 𝛼 at 𝑝 = 0.7 or 0.5 were calculated according to the
definition of 𝑃(select) in equation (14). The corresponding values of 𝛼 were presented in Table S7 in
the Supplementary Material; the detailed data-generating process was presented in Section S5.1 of the
Supplementary Material. The publication process was repeated 1,000 times in each scenario.

In the absence of reporting bias, SAUC(2) was estimated by maximizing the likelihood of the HZ
model based on S population studies, where results were denoted by BNM𝑃; SAUC(2) with reporting
bias were estimated by the HZ model with N published studies, and results were denoted by BNM𝑂. The
impact of reporting bias on SAUC(2) was indicated by the differences between the estimates of BNM𝑃

and BNM𝑂. The proposed method was applied to the data of N published studies and its results were
denoted by Proposed. The difference between the estimates of BNM𝑃 and proposed implied the bias
of the proposed method. The estimated 𝑝 ≈ 𝑁/𝑆 was used as a constraint to optimize the parameters.
In practice, estimating p was infeasible; in simulation studies, p could be estimated and was used as the
specified value for evaluating the performance of the proposed method.

All statistical computing was conducted by R (R Development Core Team, Version 4.1.3). The ML
estimations were optimized by the Newton–Raphson method and conducted by R function nlminb().
The lnHR was estimated by the Cox model conducted by the R package survival.28 The details of
optimization were presented in Section S5.2 of the Supplementary Material.

We considered the situation when the censoring distribution was correctly fitted by the exponential
distribution and estimated the hazard rate using the medians of the simulated follow-up time. The
medians with the first and the third quartiles of the estimated SAUC(2) in all the scenarios when 𝑝 = 0.7
and 𝑝 = 0.5 were summarized in Tables 2 and 3, respectively. With the setting of a smaller 𝑝 = 0.5,
reporting bias, as shown in RB, increased in Table 3 comparing to the case of 𝑝 = 0.7 in Table 2. The
magnitude of reporting bias was observed to be greater in Biomarker Scenarios 3–6, indicating that the
bias increased with increasing variances of biomarkers. When the censoring distribution was correctly
fitted in the estimation, the proposed method reduced reporting bias in all the scenarios, especially
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Table 2. Summary of estimates of SAUC(2) by the HZ model and the proposed method when censoring distribution is correctly specified
and 𝑝 = 0.7.

Patients 𝑆(𝑁) B BNM𝑃 BNM𝑂 Proposed CR (%) RB Bias

50–150 35 (25) 1 70.82 (69.67, 72.07) 72.47 (70.77, 74.25) 72.17 (70.28, 74.17) 67.3 1.65 1.35
2 76.88 (75.76, 77.99) 78.44 (77.17, 79.98) 78.36 (76.60, 80.10) 68.7 1.57 1.48
3 57.86 (56.95, 58.66) 60.35 (59.35, 61.21) 58.95 (57.87, 59.98) 67.8 2.49 1.09
4 65.13 (63.93, 66.38) 67.54 (66.49, 68.78) 66.48 (65.37, 67.72) 68.1 2.41 1.35
5 65.06 (64.10, 66.07) 67.55 (66.46, 68.56) 66.18 (65.02, 67.45) 63.6 2.50 1.12
6 66.95 (66.03, 67.85) 69.53 (68.64, 70.44) 68.18 (67.06, 69.26) 65.2 2.58 1.23

70 (49) 1 70.84 (70.01, 71.60) 72.46 (71.34, 73.70) 72.15 (70.54, 73.67) 85 1.63 1.32
2 76.78 (76.00, 77.66) 78.44 (77.42, 79.47) 78.33 (77.06, 79.50) 80.7 1.66 1.55
3 57.79 (57.17, 58.37) 60.33 (59.77, 61.00) 58.57 (57.81, 59.40) 82.8 2.54 0.78
4 65.15 (64.27, 65.93) 67.48 (66.56, 68.31) 66.20 (65.27, 67.12) 81.1 2.33 1.05
5 65.10 (64.40, 65.79) 67.49 (66.66, 68.20) 66.13 (65.23, 66.96) 76.3 2.39 1.03
6 67.04 (66.37, 67.66) 69.65 (69.02, 70.29) 67.96 (67.02, 68.76) 78.4 2.61 0.92

200 (140) 1 70.63 (70.11, 71.17) 72.18 (71.45, 72.84) 71.57 (70.70, 72.58) 89.9 1.55 0.94
2 76.84 (76.36, 77.34) 78.38 (77.62, 79.15) 78.20 (77.38, 79.06) 81.1 1.54 1.36
3 57.80 (57.44, 58.14) 60.34 (59.98, 60.75) 58.51 (58.06, 58.96) 90.1 2.55 0.72
4 65.02 (64.45, 65.52) 67.45 (66.88, 67.96) 66.10 (65.53, 66.66) 85.6 2.43 1.08
5 65.03 (64.58, 65.46) 67.42 (66.91, 67.93) 65.97 (65.49, 66.54) 81.8 2.38 0.94
6 67.05 (66.65, 67.46) 69.62 (69.28, 70.05) 67.74 (67.26, 68.26) 86.4 2.57 0.69

(countinued)
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Table 2. Continued.

Patients 𝑆(𝑁) B BNM𝑃 BNM𝑂 Proposed CR (%) RB Bias

40–300 35 (25) 1 71.25 (70.31, 72.28) 72.07 (70.76, 73.42) 71.72 (70.14, 73.37) 66.6 0.83 0.47
2 77.12 (76.31, 77.97) 77.94 (76.75, 79.10) 77.58 (76.28, 78.95) 62.3 0.82 0.46
3 58.07 (57.34, 58.73) 59.82 (59.16, 60.57) 58.82 (57.90, 59.67) 57.4 1.75 0.76
4 65.50 (64.56, 66.38) 67.07 (66.11, 67.91) 66.41 (65.37, 67.45) 59.8 1.57 0.91
5 65.65 (64.86, 66.37) 67.27 (66.46, 68.04) 66.54 (65.45, 67.60) 55.7 1.62 0.89
6 67.30 (66.55, 68.00) 69.02 (68.24, 69.74) 68.07 (66.95, 69.01) 57.2 1.72 0.77

70 (49) 1 71.24 (70.59, 71.97) 72.02 (71.11, 73.06) 71.73 (70.65, 72.91) 84.6 0.79 0.49
2 77.13 (76.57, 77.77) 77.93 (77.09, 78.78) 77.45 (76.62, 78.52) 75.8 0.81 0.32
3 58.00 (57.55, 58.45) 59.87 (59.32, 60.33) 58.62 (57.97, 59.20) 70.9 1.87 0.62
4 65.51 (64.84, 66.19) 67.08 (66.42, 67.72) 66.53 (65.72, 67.19) 72.9 1.57 1.02
5 65.52 (65.01, 66.06) 67.10 (66.54, 67.65) 66.27 (65.54, 66.97) 69.8 1.58 0.74
6 67.37 (66.91, 67.90) 69.13 (68.58, 69.61) 68.06 (67.29, 68.71) 75.5 1.76 0.69

200 (140) 1 71.16 (70.76, 71.57) 71.84 (71.27, 72.45) 71.52 (70.92, 72.26) 89.9 0.68 0.36
2 77.18 (76.85, 77.57) 78.05 (77.53, 78.62) 77.74 (77.14, 78.32) 73.4 0.88 0.56
3 57.96 (57.71, 58.27) 59.81 (59.54, 60.11) 58.48 (58.17, 58.83) 75.1 1.85 0.52
4 65.51 (65.11, 65.89) 67.07 (66.67, 67.46) 66.32 (65.86, 66.79) 76.2 1.57 0.81
5 65.52 (65.18, 65.84) 67.08 (66.75, 67.46) 66.19 (65.76, 66.63) 69.7 1.57 0.67
6 67.38 (67.06, 67.67) 69.06 (68.77, 69.37) 67.92 (67.45, 68.30) 81.5 1.68 0.54

Note: B denotes the scenarios of biomarker coresponding to Table 2; CR shows convergence rate of the proposed method; estimates are summarized by median (first quantile, third quantile);
RB denotes reporting bias; Bias denotes bias of the proposed method.
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Table 3. Summary of estimates of SAUC(2) by the HZ model and the proposed method when censoring distribution is correctly specified
and 𝑝 = 0.5.

Patients 𝑆(𝑁) B BNM𝑃 BNM𝑂 Proposed CR (%) RB center

50–150 50 (25) 1 70.79 (69.75, 71.87) 73.18 (71.46, 74.98) 71.99 (69.94, 74.14) 69.9 2.39 1.20
2 76.86 (75.90, 77.79) 78.73 (77.18, 80.13) 78.00 (75.73, 79.67) 66.8 1.87 1.14
3 57.83 (57.09, 58.54) 61.85 (60.92, 62.71) 58.70 (57.45, 59.76) 70.4 4.02 0.87
4 65.14 (64.19, 66.12) 68.90 (67.70, 69.98) 66.26 (65.01, 67.51) 68.5 3.76 1.12
5 65.09 (64.26, 65.89) 68.88 (67.89, 69.88) 65.98 (64.73, 67.25) 66.1 3.79 0.89
6 66.96 (66.18, 67.67) 71.01 (70.10, 71.91) 67.91 (66.59, 69.04) 65.4 4.06 0.95

100 (50) 1 70.71 (70.07, 71.35) 73.12 (71.82, 74.23) 71.61 (70.07, 73.40) 86 2.40 0.89
2 76.80 (76.11, 77.52) 78.59 (77.52, 79.56) 77.74 (76.38, 78.97) 77.1 1.79 0.94
3 57.81 (57.29, 58.29) 61.84 (61.20, 62.42) 58.36 (57.61, 59.14) 85.9 4.04 0.56
4 65.12 (64.41, 65.81) 68.80 (68.01, 69.60) 66.08 (65.10, 66.94) 81.3 3.69 0.96
5 65.08 (64.54, 65.63) 68.86 (68.09, 69.57) 65.92 (64.97, 66.70) 76.9 3.78 0.85
6 67.04 (66.48, 67.60) 71.15 (70.54, 71.74) 67.69 (66.82, 68.53) 80.1 4.11 0.65

300 (150) 1 70.61 (70.19, 71.01) 72.85 (72.19, 73.58) 71.40 (70.51, 72.49) 90.4 2.24 0.79
2 76.87 (76.45, 77.26) 78.45 (77.75, 79.09) 77.61 (76.87, 78.44) 75.7 1.58 0.75
3 57.80 (57.53, 58.10) 61.88 (61.52, 62.26) 58.38 (57.92, 58.82) 88.5 4.08 0.59
4 65.02 (64.55, 65.43) 68.78 (68.16, 69.23) 65.95 (65.34, 66.48) 83.1 3.76 0.94
5 65.00 (64.68, 65.37) 68.70 (68.20, 69.17) 65.66 (65.17, 66.26) 76 3.69 0.66
6 67.04 (66.72, 67.40) 71.16 (70.79, 71.52) 67.64 (67.06, 68.10) 84.5 4.12 0.59

(continued)
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Table 3. Continued.

Patients 𝑆(𝑁) B BNM𝑃 BNM𝑂 Proposed CR (%) RB center

40–300 50 (25) 1 71.24 (70.51, 72.06) 72.39 (70.94, 73.77) 71.31 (69.62, 73.05) 70.1 1.15 0.07
2 77.11 (76.43, 77.87) 77.88 (76.74, 78.95) 77.11 (75.52, 78.51) 63.4 0.77 −0.00
3 58.04 (57.46, 58.60) 60.95 (60.32, 61.60) 58.72 (57.82, 59.56) 65.1 2.91 0.68
4 65.43 (64.75, 66.21) 67.93 (67.09, 68.75) 66.39 (65.21, 67.36) 62.9 2.49 0.96
5 65.60 (65.01, 66.21) 68.19 (67.37, 68.95) 66.49 (65.33, 67.47) 58.5 2.59 0.89
6 67.31 (66.66, 67.90) 70.06 (69.36, 70.76) 67.89 (66.63, 68.84) 61.1 2.75 0.58

100 (50) 1 71.25 (70.68, 71.83) 72.28 (71.25, 73.35) 71.37 (70.19, 72.58) 85.4 1.03 0.13
2 77.13 (76.63, 77.66) 77.76 (76.92, 78.54) 76.89 (75.91, 77.84) 72.8 0.62 −0.24
3 57.97 (57.59, 58.36) 60.98 (60.49, 61.44) 58.57 (57.86, 59.17) 75.9 3.00 0.60
4 65.51 (64.98, 66.02) 67.95 (67.39, 68.56) 66.32 (65.58, 67.05) 74.6 2.44 0.80
5 65.53 (65.11, 65.95) 68.03 (67.53, 68.54) 66.21 (65.56, 66.90) 70.3 2.50 0.68
6 67.41 (66.99, 67.87) 70.15 (69.62, 70.61) 67.87 (67.07, 68.60) 76.7 2.74 0.46

300 (151) 1 71.14 (70.81, 71.48) 72.05 (71.48, 72.58) 71.21 (70.47, 71.87) 86.1 0.90 0.07
2 77.19 (76.92, 77.47) 77.83 (77.31, 78.30) 77.14 (76.55, 77.74) 65.3 0.64 −0.05
3 57.99 (57.74, 58.19) 60.92 (60.66, 61.18) 58.45 (58.11, 58.79) 71.3 2.93 0.46
4 65.50 (65.22, 65.80) 67.99 (67.64, 68.38) 66.27 (65.79, 66.68) 73.9 2.49 0.77
5 65.51 (65.26, 65.78) 68.06 (67.73, 68.36) 66.12 (65.72, 66.59) 63.4 2.55 0.61
6 67.39 (67.12, 67.63) 70.12 (69.83, 70.42) 67.73 (67.30, 68.19) 78.3 2.73 0.34

Note: B denotes the scenarios of biomarker coresponding to Table 2; CR shows convergence rate of the proposed method; estimates are summarized by median (first quantile, third quantile);
RB denotes reporting bias; Bias denotes bias of the proposed method.
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when the number of studies (N) was large. When the number of patients was larger, the bias of the
proposed method as well as reporting bias decreased. In addition, we summarized the corresponding
estimates of time-dependent sensitivity and specificity; the results were presented in Tables S8–S11
in the Supplementary Material. We observed larger reporting bias on the estimates of sensitivity than
specificity for Biomarker Scenarios 1–5, where smaller variances were set for biomarkers given failure
time 𝑇 ≤ 2. Conversely, in scenario 6, where larger variances were set for biomarkers given failure time
𝑇 ≤ 2, larger reporting bias was found on the estimates of specificity. We observed that the magnitude
of reporting bias varied in estimates of sensitivity or specificity due to differences in data, and regardless
of the scenarios, the proposed methods successfully reduced biases on both sensitivity and specificity.

The convergence rates (CRs) of the proposed method were also presented; the CR was calculated
by the proportion of successfully obtaining the converged estimates among 1,000 repetitions. Since
the proposed method was based on the trivariate normal model and contained 11 parameter, when the
number of published studies was small, the performance of the proposed method showed comparatively
low CR. When the number of patients were large, reporting bias was observed to be decreased, and the
proposed method could still reduce reporting bias in the estimates.

We also considered the situations when censoring distribution was misspecified in the proposed
method given 𝑝 = 0.7. We generated the true censoring distribution by the uniform distribution
𝑈 [1, 4] and lognormal distribution 𝐿𝑁 (1.5 log 2, (log 2)2). In the proposed method, we still used the
exponential distribution to estimate the censoring distribution incorrectly. Under the misspecification of
the censoring distribution, we evaluated the performance of the proposed methods. The estimates were
summarized in Tables S12 and S13 in the Supplementary Material. Even with the misspecification of the
censoring distribution, the proposed method could reduce reporting bias. The results were in agreement
with those when the censoring distribution was correctly fitted; however, the misspecification of the
censoring distribution caused the CRs of the estimation reduced, especially when the number of studies
was small or the number of patients was large.

Overall, simulation studies showed that the proposed method could reduce reporting bias. However,
since the proposed methods needed to estimate ten unknown parameters, the unconverged estimates
were obtained by using nlminb(), especially when the number of published studies was small or
the underlying censoring distribution was misfitted. With enough number of published studies, the
simulation studies showed that the proposed method could obtain CR around 70% or more when
SAUC(𝑡) were better than moderate. In practice, we suggest trying different plausible initial values
such as some values that are speculated to be close to the true values of some parameters.

7. Discussion

Reporting bias is widely recognized as a major issue in various meta-analyses and may lead to over-
optimistic conclusions. Thus, addressing reporting bias is a crucial part of meta-analysis, enhancing
the reliability of meta-analytical results. In recent decades, meta-analysis of prognosis studies has been
gaining increasing interest in medical research. Riley et al.29 discussed the importance of meta-analysis
of prognosis studies and summarized several challenges specific for it. The choice of cutoff value
is one of the issues. With a continuous biomarker, different choice of cutoff values would lead to
great heterogeneity in meta-analysis and difficulty in interpreting the results.29 However, in practice,
almost all the clinical reports of meta-analysis of prognostic studies simply applied the standard meta-
analysis technique to aggregate the outcomes, such as the HRs, of individual studies, ignoring the
heterogeneous cutoff values. The underdevelopment of relevant statistical methods may account for
such phenomena. The time-dependent SROC curve has been proposed to show the summary prognostic
capacity independent of cutoff values.14,15 Considering the wide acceptance of the SROC method in
diagnostic meta-analysis, these SROC(𝑡)-based methodologies should be emphasized and applied more
in practice. Meanwhile, there is a growing need to develop corresponding methods addressing reporting
bias in these meta-analytical methodologies. In general, our proposed method is expected to enhance
the utility of SROC(𝑡) method in evaluating prognostic capacity of biomarkers and moreover reduce the
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possible reporting bias on the meta-analytical results. Our method is developed as a subordinate analysis
to the bivariate normal model by Hattori and Zhou.15 Their model is much simpler in the inference
than the method of Combesecure et al.14 and the bivariate binomial model of Hattori and Zhou.15 Our
proposal provides a mean for researchers to draw more reliable conclusions about prognostic capacity
from their meta-analysis.

While many methods have been proposed to deal with reporting bias on the aggregated HRs,
to the best of our knowledge, no methods exist for reporting bias on SROC(𝑡)-based results. Our
proposal is the first tool to evaluate the robustness of SROC(𝑡)-based results against reporting bias.
However, several limitations should be acknowledged. The proposed method relies on the trivariate
normal distribution, which involves numerous parameters. Nonconvergence issues may occur in some
small meta-analyses; however, simulation studies indicated that meta-analysis with at least 25 studies
achieved an acceptable convergence rate. Enhancing the estimation strategy remains an area for future
improvement. On the other hand, our proposal employs the parametric probit selection function, which
is theoretically sound30 for modeling selective publication process of prognostic studies and allows the
derivation of a closed-form likelihood; however, the suitability of the probit model cannot be checked
from the observed data. Recently, Zhou et al.31 proposed non-parametric worst-case bounds to deal
with reporting bias on the SROC/SAUC estimations in diagnostic meta-analysis. Their method utilized
a class of nonparametric selection functions under the assumption that larger studies with possibly
significant sensitivity or specificity are more likely to be published. The non-parametric worst-case
bounds method provides an alternative framework addressing reporting bias and could potentially be
adapted to the HZ model for prognostic meta-analysis in the future.

Our proposal put forward an idea for modeling reporting bias in prognosis studies with time-to-
event outcomes and may help the development of new statistical methods dealing with reporting bias
on various estimates in meta-analysis of prognosis studies. The bivariate binomial model of Hattori and
Zhou15 is based on the exact likelihood to model the numbers of survived and failed subjects and may
outperform the HZ model when the number of studies is small. Hattori and Zhou32 developed a meta-
analytic version of the concordance index for the time-to-event outcome. Our proposal is expected to
be extended to address reporting bias in these meta-analytical models.
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