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ABSTRACT 
Combining agility and convergence in the development of physical products is a major challenge. 
Rooted in a design thinking approach, Stanford's ME310 process model attempts to resolve the 
conflicting priorities of these two design principles. To investigate how successful Stanford’s hybrid 
process model is in doing so, we have used a qualitative case study approach. Our paper begins by 
outlining this process model’s fundamental principles in terms of engineering design methodology. 
Subsequently, we present the results of our empirical analysis, which tracks the coevolution of 
problem and solution space by meticulously examining all prototype paths in ten of Stanford’s ME310 
student projects. We have discovered that convergence during solution finding does not correspond to 
the process model’s theoretical specifications. Even in the phase of the final prototype, both the 
technical concept and the underlying problem formulation changed frequently. Further research should 
focus on combining the prototype-based ME310 approach with methods from systems engineering 
which allow for a more comprehensive theoretical exploration of the solution space. This could lead to 
improved convergence during solution development. 
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1 INTRODUCTION 

Although previous studies have demonstrated that it is a suitable approach for the user-centered 

development of physical products (Brown, 2008; Luchs et al., 2016), design thinking has thus far 

received little attention in the academic discourse of engineering design methodology. The limited 

number of studies analyzing design thinking in terms of engineering design methodology, such as in 

Gericke et al. (2010) and Schüttoff et al. (2019), mostly compare different reference levels: on the 

systems engineering side, a design methodology and process model for structuring an entire product 

development process with; on the design thinking side, an iterative working process for solving partial 

design problems. The inapt approach of previous studies can partly be attributed to the lack of a 

consistent definition of design thinking, which makes it difficult to classify the concept with regard to 

engineering design methodology. But it is also due to the fact that most design thinking process 

models do not encompass an entire product development process. An exception is Stanford’s ME310 

process model. Based on an agile design thinking approach, this hybrid model also defines milestones 

to guide the convergence of solution development. 

The purpose of this paper is to investigate the practical suitability of the ME310 process model for the 

development of physical products. Since it aims to combine agility and convergence in the realm of New 

Product Development, we wanted to determine whether, in practice, convergence during solution 

development corresponds to the ME310 process model’s theoretical specifications. Therefore, using a 

qualitative case study approach, we analyzed ten of Stanford’s ME310 students’ product development 

projects. In these projects, students developed physical products in response to real-world design 

challenges coming from industry sponsors. Within the scope of our empirical analysis, we examined the 

technical concepts of 177 prototypes and their underlying problem formulations in detail. Thus, we were 

able to reconstruct the actual coevolution of problem and solution space and compare it with the 

theoretical specifications of the ME310 process model. The results of our explorative study reveal that 

the development paths observed in practice do not follow the convergence path the process model 

specifies. Deviating considerably from the ME310 process model, both underlying problem formulations 

and technical concepts changed frequently in the late stages of the product development process. 

2 THEORETICAL FRAMEWORK 

2.1 Problem and solution space in product development 

Product development processes are creative problem-solving processes in which the underlying problem 

often cannot be clearly and conclusively defined. Thus, the problem space, primarily involving cognitive 

understanding, as well as the solution space, focused on technical possibilities, are generally open. The 

development of problem space and solution space are mutually dependent since the understanding of the 

problem depends on conceivable solutions to it (Rittel and Webber, 1973). The development of an 

understanding of the problem and its representation by formulating requirements on different 

aggregation levels is therefore an initial creative act, which limits the solution space and already contains 

a preliminary vision of the solution. This process is referred to as the problem formulation.  

A product development process can be described as a transformation process. Starting from an actual 

user’s need, an understanding of the problem must first be acquired and then operationalized by 

formulating requirements before the actual solution can be developed, which, in turn, is finally intended 

to satisfy the actual user’s need. At each step of this transformation process, deviations and information 

loss can occur, which may lead to a misfit between the development result and the user’s need. Agile 

product development methods, such as design thinking, try to prevent such mismatches through a 

concomitant iterative development of problem understanding and solution. This coevolution of problem 

and solution space (Dorst and Cross, 2001) is guided by user interaction tests in which prototypes 

embody certain aspects of the evolving product to understand user needs and derive design requirements.  

2.2 Semantic levels and methodological taxonomy levels of design thinking 

This paper’s understanding of design thinking entails a model comprising three semantic levels that 

are hierarchically tiered. These semantic levels also represent different methodological taxonomy 

levels within the context of product development (Figure 1).  

The fundamental level describes the action-guiding principles that are constitutive for the mindset and 

culture of the design thinking approach. The operational level illustrates the core cycle of design 
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thinking, an iterative working process representing the operational implementation of the fundamental 

level’s action-guiding principles. From a design methodology perspective, the aforementioned core cycle 

is a process designated for solving partial problems. This level is also referred to as “Micro-logic” by 

Haberfellner et al. (2019). The process models or, respectively, the phase models, both of which 

structure a complete product development process are located on the third and final level, the project 

level, also referred to as “Macro-logic” by Haberfellner et al. (2019). In contrast to the operative core 

cycle, the phase models are only carried out once throughout the course of an entire project. Design 

thinking process models must, on the one hand, transfer the fundamental principles of design thinking to 

the higher project level, structuring the overall process and integrating the iterative core cycle for solving 

partial problems within respective phases. On the other hand, these process models must also guide 

convergence during solution development on the overall system level with suitable milestones. Said 

milestones must, in turn, synchronize participants’ cooperation in the product development process, 

providing them orientation on the project stage that enables them to derive not only the tasks to be 

performed but also the degrees of freedom remaining within their area of responsibility. 

 

Figure 1: Semantic levels and methodological taxonomy levels of design thinking 

The only process model of which we are aware that meets these criteria is the ME310 process model 

developed at the Center for Design Research at Stanford University. ME310 is a project-based 

graduate course in which a Stanford University student team collaborates with a foreign partner 

university’s team to develop innovative products (ME310 refers to the course’s catalogue number.). 

The project prompts comprise real-world design challenges from cooperating industrial companies. 

Taking place over three quarters, the course’s duration translates to a total of thirty weeks. Both teams 

are supervised by professors, lecturers and course assistants. 

2.3 The ME310 process model 

In Figure 2, the presentation of each individual phase, along with their assigned activities and intended 

results, is essentially based on the ME310 ABC Course Reader (Kenyon et al., n.d.). After extensive 

problem space exploration in the Needfinding phase (NF), resulting in an initial problem formulation, 

the analysis of existing products during the Benchmarking phase (BM) already establishes a 

connection between problem and solution space. With this connection, a product vision develops. 

Then, actual solution development begins in the CEP/CFP phase at the subsystem level. On the one 

hand, Critical Experience Prototypes (CEP) are built to make critical core elements of the user 

experience from the product vision tangible. CEPs facilitate an understanding of the problem space, 

which helps to derive and validate user requirements. This is often done by using “Wizard of Oz”-

prototypes, where the user experience of a function, without having already developed a technical 

function carrier, is simulated. On the other hand, Critical Function Prototypes (CFP) help to evaluate 

the suitability of effective principles for selected function carriers critical to the overall concept’s 

technical solution. Several CEPs and CFPs are built and further developed iteratively within this 
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phase. The CEP/CFP phase concludes with the formulation of functional and physical requirements, 

which encompass both a definitive problem formulation and a “coherent vision” (Domingo et al., 

2020) of the product to be developed, thus combining desirability with technical feasibility.  

 

Figure 2: Phases, activities and results of the ME310 process model
1
 

The subsequent phase of the Dark Horse Prototype (DHP) is intended (1) to validate the acquired 

problem formulation, which, in other words, depicts the understanding of the problem, and (2) to 

prevent the solution space from being prematurely narrowed down. For this purpose, prototypes are 

built that involve a particularly risky, radical or unconventional solution principle, perhaps initially 

regarded as infeasible within the CEP/CFP phase (Bushnell et al., 2013). The creation of Dark Horse 

prototypes forces the development team to abandon an underlying cognitive solution fixation 

(Domingo et al., 2020) and scrutinize previous understandings of the problem. This phase should 

result in a validated problem formulation, generating a firm and reliable framework for subsequent 

solution development on the overall system level. The Funky System Prototype (FKP) is the first 

system-level prototype to define the overall concept and ensure its suitability. For this purpose, the 

most promising function carriers from the CFP phase (and, if applicable, the Dark Horse phase) are to 

be combined to form an overall solution. The Funky System Prototype rarely represents the complete 

functional scope, rather concentrating on the solution-determining main functions; its only purpose is 

to technically verify the effective structure of the overall solution. Formal aesthetic design features do 

not yet play a role in the Funky System Prototype. In the subsequent Functional System Prototype 

(FCP) phase, the concept of the Funky System Prototype is detailed and optimized. The Functional 

System Prototype is intended to represent the complete functional scope and serves to consolidate 

system integration as well as optimization on an overall and subfunction level. It defines the 

embodiment design and should already have a value proposition comparable to the Final Prototype. 

Lastly, the Final Prototype, marking the completion of development, should represent the complete 

user experience of a product to be industrially realized. 

                                                      

 
1
 The additional Part-X-is-finished prototype listed in some publications (e.g. Domingo et al. (2020)) refers to 

the completion of a student’s component of choice in the Final Prototype phase. This physically realized design 

freeze, which only refers to one specific component, is intended to break the cycle of mutual geometric structural 

dependencies existing in a product architecture and marks the crystallization of the Final Prototype. One can 

therefore regard the Part-X-is-finished prototype as an intermediate milestone within the Final Prototype phase. 
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2.4 Fundamental principles of the ME310 process model 

In this section, we explain the two fundamental principles of the ME310 process model from the 

perspective of engineering design methodology. These are: (1) the coevolution of problem and 

solution space and (2) prototype-based solution development. 

2.4.1 Coevolution of problem and solution space 

While the systems engineering approach usually clearly separates problem analysis and solution 

development, the ME310 process model is characterized by a concomitant development of these two 

spheres in the early prototype stage (Figure 3). For this purpose, two parallel control loops are 

established in the CEP/CFP phase: a validation and a verification control loop (Figure 4). The user 

interaction tests based on the CEPs deepen the understanding of the problem and enable the derivation 

and validation of requirements, some of which only become apparent in practical testing (Leifer and 

Steinert, 2011). The CEPs thus establish a validation control loop that prevents a “mismatch” between 

product features and user needs. 

 

Figure 3: Coevolution of problem and solution space in the ME310 process model 

At the same time, the CFPs ensure the suitability of innovative effective principles and the fulfillment 

of requirements for the solution-determining main functions; they thus establish a verification control 

loop between the requirements and the development object. Through an iterative development process 

guided by a stringent user-centered approach, the CEPs’ and CFPs’ interaction implements the 

principle of the problem and solution space’s coevolution. Thus, the CEP/CFP phase of the process 

model shows a methodological self-similarity to the design thinking’s iterative core cycle. 

 

Figure 4: Validation and verification control loop through CEP and CFP 

In contrast to systems engineering, the problem formulation in the ME310 process model, meaning the 

formulation of requirements representing and operationalizing the understanding of the problem, does 

not occur before the start of solution development but rather after solution development completion at 

the subsystem level. 

Similar to the original design methodology of Pahl et al. (2007), this understanding of the problem is 

first critically reviewed before it is set as a fixed framework for further solution development. In 

contrast to Pahl et al. (2007), this is not accomplished through a theoretical abstraction of the problem 
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formulation, but by building and evaluating concrete solutions on the edge or outside of the 

preliminary boundaries of the solution space using Dark Horse Prototypes. Both approaches 

nonetheless pursue the same goal: avoiding a premature and overly narrow limitation of the solution 

space through an inadequate problem formulation. 

2.4.2 Prototype-based solution development  

Building prototypes is integral to the ME310 design methodology; they are the main drivers of the 

development process. Within all phases, prototypes are not only used for verification and optimization 

but also for exploring and communicating solutions. The different kinds of prototypes define the 

process model’s milestones, which structure the overall development process. 

Since the realization of a complex physical product involves considerable coordinated effort, 

development at the overall system level is rarely executed in a completely agile manner. In the ME310 

process model, development is therefore only completely agile during the subfunction prototype 

phases (CEP/CFP and DHP), in which the understanding of both the problem and, consequently, the 

boundary of the solution space remains volatile. During the system prototype phases, on the other 

hand, the aim is to achieve increasing convergence and consolidation of the development result, which 

is controlled by supplementing and detailing requirements, thus leading to an increasingly narrow 

solution space (Figure 5). From the perspective of design methodology, the ME310 process model is 

therefore an agile stage-gate hybrid process model (cf. Cooper and Sommer (2016)). 

 

Figure 5: Theoretical convergence path of the ME310 process model 

Early subfunction prototypes are usually built within the ME310 process without prior virtual 

development, whereas intensive virtual development usually starts before subsequent system 

prototypes are built. For the process of creative solution development, the early use of prototypes 

brings with it numerous advantages (Brereton and McGarry, 2000; Viswanathan and Linsey, 2012). 

However, with respect to solution space exploration, a prototype-based approach is a double-edged 

sword. Development in systems engineering is primarily virtual in the early phases, i.e. absent of 

physical prototype building. At least until the concept is selected, this allows for parallel development, 

enabling the elaboration and evaluation of competing solutions both on the subsystem and the overall 

system level. Moreover, the decomposition of the overall system being characteristic for systems 

engineering allows for a systematic variation and combination of solution components, facilitating the 

theoretical exploration of a large solution space. Only from the moment of concept selection onward 

does further development of the solution follow a “point-based” (Sobek II et al., 1999) approach. Yet, 

within the ME310 development methodology, development is based on prototyping right from the 

start. Although this generates greater gains in knowledge with regard to the specific embodied solution 

than a purely virtual development, early prototyping involves considerably more effort, especially on 

the level of overall system prototypes. Parallel development in the ME310 process model is therefore 

only intended for the level of the subfunction prototypes. Competing concepts on the overall system 

level are neither built nor evaluated because parallel system-level prototyping would involve a 

prohibitive amount of effort. In this respect, the approach of the ME310 design methodology is even 
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more point-based than the traditional systems engineering design methodology. The solution space 

explored at the time of concept decision is smaller overall, increasing uncertainty in concept selection.  

In addition, the ME310 process model does not provide any methodological support for the design of the 

overall system. What, in particular, does not occur at all is the functional modeling of the overall system, 

i.e. the establishing of function structures; and this has two major implications. First, the basis for an 

explicit functional decomposition is missing. Second, it complicates the analysis of functional 

relationships, respectively technical interactions between function carriers in the overall system. Such an 

analysis is, however, crucial to the development of a technical concept. Therefore, no methodological 

support exists for: (1) the identification of the product vision’s solution-determining elements that should 

be embodied during the CEP/CFP phase; and, (2) the identification of compatible combinations of 

different CFPs to form the first overall solution, the Funky System Prototype. Both have to be addressed 

implicitly by the development team, a substantial challenge, especially for complex products. Indeed, the 

modeling of an overall system and its decomposition into subsystems is crucial for handling complexity 

because it is an indispensable prerequisite for breaking down the development task into manageable 

subtasks (Koppenhagen, 2004). The lack of such an explicit approach to complexity reduction limits the 

application possibilities of the ME310 development methodology. 

3 METHODOLOGY AND SAMPLE 

Our empirical study investigates students’ quarterly team project reports, which document the 

development process in detail.  Since our work focuses on the development of physical products, we pre-

selected projects based on the object of development. For this purpose, 124 development projects from 

the years 2006-2019 were initially classified with regard to the development object and divided into three 

categories: physical products, software applications and service/business process models. From the 55 

projects that aimed to develop physical products, we finally selected ten. To reach this selection, we 

focused on the time period between 2014 and 2019 and took care to ensure that development 

documentation allowed for the complete traceability of all development paths. Also, in order to limit the 

company-specific influence on the analysis, we confirmed that no industry sponsor was represented more 

than once in our final selection. We have included the following development projects in our empirical 

analysis; with each labelled by the name of the industry sponsor and the year of project completion, they 

are: VolvoCE (2014), Mabe (2014), Ford (2016), ShoeInn (2016), Renault (2016), IKEA (2016), Audi 

(2017), Safran (2018), Panasonic (2019), and Volkswagen (2019). The empirical evaluation of their 

respective development processes thus comprises thirty project reports with a total of 3,578 pages.  

From these project reports, we assessed the technical concept of each prototype and its underlying 

problem formulation. Problem formulations were determined based on verbal descriptions in project 

reports. To determine the prototypes’ technical concepts, we had to analyze both the function carriers’ 

effective principles and how said function carriers are combined to fulfill the solution-determining 

main functions of the prototype. In order to do so, we evaluated the development artifacts shown in 

these reports, such as sketches, diagrams, technical drawings, screenshots of 3D CAD models, and 

photos of the prototypes built. Based on this evidence, we retraced projects’ prototype paths and 

determined when either changes in problem formulations or concept changes in the solution space 

occurred. Furthermore, we examined whether findings from the evaluation of previous prototypes 

influenced these changes, and whether said concept changes were initiated by members of the 

development team, the teaching team, or industry sponsor representatives. The entire selection process 

and analysis outlined above was conducted independently by two of our senior researchers 

specializing in industrial product development. If differences in their assessments arose, their results 

were consolidated with yet another expert’s assistance. 

4 FINDINGS AND DISCUSSIONS 

Figure 6 shows an example of a project’s prototype paths, depicting connections between prototypes, 

concept changes, and changes to the underlying problem formulation. The figure also illustrates the 

level of detail involved in our analysis of individual projects’ development paths. In the following two 

sections, we present the overall evaluation of problem and solution space development across all ten 

projects examined. 
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Figure 6: Visualization of the prototype paths of the VW 2019 project 

4.1 Development of the problem formulation 

Figure 7 shows how often and in which project phases problem formulations changed and when the 

final problem formulation was established. In the CEP/CFP phase, during which the actual 

coevolution of problem and solution space should take place according to the ME310 process model, 

an adjustment of the underlying problem formulation rarely occurred. Most changes to the problem 

formulation took place during the Dark Horse phase, a phase for which, corresponding to the process 

model, critical questioning of the previously developed problem formulation is intended. The problem 

formulation was, however, still frequently modified in the subsequent system prototype phases, in 

particular in the Funky System Prototype phase, despite the specifications of the ME310 process 

model. 63% of changes to the underlying problem formulation were triggered internally within the 

student teams. In only four of ten projects we examined, the final problem formulation was determined 

(as specified by the process model) upon completion of the Dark Horse phase. However, in three 

projects, it was determined no earlier than the Final Prototype phase. 

 

Figure 7: Changes to the problem formulation and the phase of its final definition 

A possible explanation for the frequent reframing of the problem in the system prototype phases is that 

each prototype built in the CEP/CFP phase only represents the effective principle or user experience of 

different subfunctions. Thus, these prototypes do not provide a sufficient basis for questions that can 

contribute to the development of a comprehensive understanding of the problem on the overall system 

level. This could also explain the relatively high number of problem space changes in the Funky 

System Prototype Phase, in which, for the first time, a prototype is built that roughly embodies the 

solution-determining main functions and their interaction on the overall system level.  
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4.2 Concept development 

Figure 8 shows, starting with the Funky System Prototype phase, when and how often the technical 

concept was changed and the phase in which the concept of the Final Prototype was developed. The 

concept initially defined in the Funky System Prototype phase is changed frequently during the very 

same phase. Even after completion of the Funky System Prototype phase, one can observe a high 

volatility of the technical concepts in play. Remarkably, even in the Final Prototype phase, there were 

still 16 concept changes spread over eight development projects. 74% of these concept changes were 

triggered within the team. Only in one project was the final concept, conforming to the specifications 

of the ME310 process model, determined after completion of the Funky System Prototype phase. In 

eight projects, however, the concept of the Final Prototype was only defined in the last development 

phase. Furthermore, only in one out of ten projects was a function carrier, respectively an effective 

principle, from the CFP phase part of the Funky System Prototype. In all projects investigated, CEPs 

and/or CFPs are built up again in the later system prototype phases. 

 

Figure 8: Concept development 

As expected, the changes in the problem space, which often required at least a partial restart in 

development, also entailed changes in the technical solution concept. Concept development showed an 

overall higher and prolonged level of volatility compared to the problem formulation. Thus, on 

average, the concept was changed 1.7 times after the final problem formulation was defined. 

One reason for the low number of function carriers transferred from the CFP phase to the Funky 

System Prototype may be the lack of methodological support for the design of the overall system. 

Since an analysis of the effective interrelationships between the function carriers is missing in the 

ME310 process model, evaluating whether they can be reasonably combined to an overall solution is 

considerably more difficult. The frequent concept changes at the overall system level can probably be 

attributed to the stronger point-based orientation associated with the prototype-based development 

approach. In contrast to systems engineering, there is no parallel development and evaluation of 

different concepts so that the explored solution space on the overall system level is comparably 

smaller at the time of concept decision, which is detrimental to the stability of the concept decision.  

5 CONCLUSION AND OUTLOOK 

Through in-depth examinations of their project reports, we have tracked the development paths of ten 

ME310 student projects and compared them with the specifications of the respective process model. The 

development paths observed do not follow the convergence path which the process model specifies. 

Changes to both the underlying problem formulations and technical concepts occur frequently in the late 

stages of the development process. Late convergence during solution development could be attributed to 

(1) insufficient methodological support of the conceptual design on the overall system level and (2) 

deficient theoretical exploration of a larger solution space before arrival at a concept decision. Both 

factors increase the prognostic uncertainty of concept decision, rendering it less stable.  

By analyzing additional project reports, further research should validate the findings of our study on a 

broader empirical basis. In order to address the shortcomings, we have identified, further research 

might investigate integrating specific methods from the conceptual design phase of systems 

engineering into the ME310 process model. Based on the theoretical modeling of an overall system 

with explicit functional decomposition, selected functions could, for example, be represented and 

tested using CFPs and CEPs. Subsequently, parallel virtual development of multiple concepts could 

help to explore a larger theoretical solution space. The practical testing of both effective principles and 
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the user experience associated with certain subfunctions would, at the same time, lead to a more 

comprehensive understanding of the solution space. This would greatly increase knowledge about the 

development object before concept selection. A significant challenge, however, is to apply the principle 

of prototype-based coevolution of the problem and solution space to the overall system level with limited 

effort, a process only executed at the subsystem level within the ME310 process model. One might face 

this challenge with the early definition of modular concept architectures upon which different concept 

variants could be built through the variation and combination of individual solution components. 

Ultimately, this could lead to a new hybrid process model. To establish the viability of this new process 

model, a broad empirical analysis is needed which also investigates the influence of different 

development objects and the organization responsible for the development process’s execution. 
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