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Abstract

The Chebyshev conjecture posits that Chebyshev subsets of a real Hilbert space X are convex. Works
by Asplund, Ficken and Klee have uncovered an equivalent formulation of the Chebyshev conjecture in
terms of uniquely remotal subsets of X. In this tradition, we develop another equivalent formulation in
terms of Chebyshev subsets of the unit sphere of X × R. We characterise such sets in terms of the image
under stereographic projection. Such sets have superior structure to Chebyshev sets and uniquely remotal
sets.
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1. Introduction

The Chebyshev conjecture is a long-standing open problem, spanning fields of
functional and convex analysis, as well as optimisation. The conjecture states that
Chebyshev sets, sets with unique closest points, in a real Hilbert space must be convex.
It is well known that Chebyshev sets must be closed and nonempty, and that closed
convex sets are Chebyshev. The Chebyshev conjecture therefore aims to characterise
all Chebyshev subsets of real Hilbert spaces.

The conjecture was originally posed by Efimov and Stečkin [4] in 1958, although
the first work towards the conjecture appeared over 20 years prior [3, 9, 10] (for a good
historical account, see [7]). Despite the simplicity of the conjecture’s statement and
significant interest from the mathematical community, the conjecture remains open.

One of the more novel results came from Asplund, Ficken and Klee, who
established, with sphere inversions, a nontrivial equivalence between nonconvex
Chebyshev sets and nontrivial uniquely remotal sets. Their result leads to an equivalent
formulation of the Chebyshev conjecture in terms of uniquely remotal sets.
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This paper is intended to be part one of a two-part paper. In this part, we use a
similar idea, substituting stereographic projection for sphere inversion. Stereographic
projection, like sphere inversion, generically maps balls to balls (without necessarily
preserving the centres of such balls). This similarly leads to an equivalent formulation
of the Chebyshev conjecture in terms of Chebyshev subsets of the unit sphere of a
Hilbert space, which is the main result of this part of the paper.

While the unit sphere lacks the linear structure of Hilbert spaces, the closed and
open balls are complementary in the sphere. This fact implies that Chebyshev sets
and uniquely remotal sets coincide on the sphere. We examine, particularly in the
sequel, such sets when mapped under inverse stereographic projection. The geometric
properties of stereographic projection show that such sets are Chebyshev in the Hilbert
space, but often also uniquely remotal. As such, these sets, which we call sphere-
Chebyshev sets, will be shown to have superior structure to Chebyshev sets.

As we are dealing with Chebyshev subsets of a (nonlinear) metric space, we must
define Chebyshev and uniquely remotal sets in terms of general metric spaces.

Suppose that (M, ρ) is a metric space and let x ∈ M and r > 0. Throughout, we will
denote by

B[x; r] = {y ∈ M : ρ(x, y) ≤ r},
B(x; r) = {y ∈ M : ρ(x, y) < r},
S [x; r] = {y ∈ M : ρ(x, y) = r},

respectively, the closed ball, open ball and sphere, centred at x with radius r.
Suppose that (M, ρ) is a metric space with C ⊆ M. For x ∈ M, let

dC(x) = inf
c∈C

ρ(x, c),

PC(x) = S [x; dC(x)] ∩C,
rC(x) = sup

c∈C
ρ(x, c),

FC(x) = S [x; rC(x)] ∩C,

the distance, projection, radial and furthest point maps of C, respectively. If PC is
single-valued everywhere, we say that C is Chebyshev. Similarly, if C is bounded and
FC is single-valued everywhere, we say that C is uniquely remotal (note that assuming
C is bounded is necessary to properly define rC and FC).

Suppose that X is a normed linear space, C ⊆ X is Chebyshev and X \C is convex,
nonempty and bounded. Then C is a Klee cavern.

As such, Klee caverns are nonconvex Chebyshev sets with extra structure. The
following remarkable result connects Chebyshev sets, uniquely remotal sets and Klee
caverns.

Theorem 1.1 (Asplund, Ficken, Klee). Suppose that X is a real inner product space.
Then the following are equivalent:

(1) every Chebyshev subset of X is convex;
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(2) every uniquely remotal subset of X is a singleton;
(3) there does not exist a Klee cavern in X.

The first step in proving this theorem is to construct from a nonconvex Chebyshev
set, a nontrivial uniquely remotal set. This was published by Klee in 1961 [8], but Klee
attributed the idea to Ficken, though Ficken did not publish it. The second step is to
construct a Klee cavern from a nontrivial uniquely remotal set, which Asplund did in
1969 [1].

Ficken’s idea involved sphere inversions. Given a normed linear space X, the map

ιy;r : X \ {y} → X \ {y} : x 7→ y +
r2

‖x − y‖2
(x − y)

represents inversion in the sphere S [y; r]. Note that this map is a continuous involution
and hence a homeomorphism.

We can also naturally extend the inversion map to X ∪ {∞}, X with a point at ∞
adjoined, by setting ιy,s(y) =∞ and ιy,s(∞) = y.

Although ιy;r can be defined on any normed linear space, they are most interesting
when X is an inner product space. Such maps predictably map balls to balls, half-
spaces or complements of balls, depending on the location of y relative to the ball.
Ficken used this property to show that ιy,r(C) is uniquely remotal whenever C is
Chebyshev and y ∈ convC \C.

2. Stereographic projection

As mentioned previously, we substitute stereographic projection in the role of
sphere inversion in Ficken’s argument. In order to define stereographic projection,
we first consider the inner product space X × R with the inner product 〈(x, r), (y, s)〉 =
〈x, y〉 + rs.

In particular, in this paper, we consider SX×R, the unit sphere of X × R, as a metric
subspace of X × R.

We define stereographic projection as follows:

σ : SX×R → X ∪ {∞} :

(x, r) 7→
x

1 − r
if (x, r) , (0, 1),

∞ if (x, r) = (0, 1).

It is straightforward to verify the inverse of stereographic projection,

σ−1 : X ∪ {∞} → SX×R :


x 7→

1
‖x‖2 + 1

(2x, ‖x‖2 − 1) if x ,∞,

(0, 1) if x =∞,

either by trigonometry or by composition with σ.
We define the following term in order to avoid certain degenerate cases in the results

ahead.
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Suppose that M is a metric space and C ⊆ M is a sphere or a ball (open or closed).
We say that C is nondegenerate if C and M \C contain at least two elements.

For example, B((0,−1); 2) ⊆ SX×R and S [0; 0] ⊆ X are degenerate. Nondegenerate
spheres C ⊆ SX×R have the advantageous property that SX×R \ C has two connected
components, each a (nondegenerate) open ball.

The following geometric fact lies at the heart of the connection between Chebyshev
subsets of X and SX×R.

Proposition 2.1. Let X be a real inner product space. Fix B ⊆ SX×R. Then B is a
nondegenerate ball in SX×R if and only if σ(B) is a nondegenerate ball, a half-space or
the complement of a nondegenerate ball in X ∪ {∞}, depending on whether (0, 1) lies
in the interior, exterior or boundary of B.

In particular, B is a closed (respectively open) nondegenerate ball if and only if one
of the following is true:

• σ(B) is a closed (respectively open) nondegenerate ball and (0, 1) < cl B;
• σ(B) = X ∪ {∞} \C, where C is an open (respectively closed) nondegenerate ball

and (0, 1) ∈ int B;
• σ(B) = H ∪ {∞} (respectively H), where H is a closed (respectively open) half-

space and (0, 1) ∈ bdry B.

For an illustration of Proposition 2.1, see Figures 1, 2 and 3.
Proposition 2.1 is a piece of mathematical folklore. We omit the proof, as the

formulae for how balls map under σ are long and unenlightening enough not to state
here. If the reader wishes to fill in the gaps, it is the author’s recommendation to follow
the following steps with the aid of a computer algebra system.

(1) Show that σ is the restriction of the sphere inversion map ι(0,1);
√

2 in X × R to
SX×R.

(2) Compute the formulae for the mapping of balls under stereographic projection.
See [5, Proposition 3.19] for a good start.

(3) Show that balls and half-spaces in X ×R intersect with X in balls and half-spaces,
and with SX×R in balls.

Proposition 2.1 shows a correspondence between balls in SX×R and simple
geometric subsets of X. As metric projection problems can be expressed geometrically
in terms of maximal open balls that fail to intersect a given set, this suggests a
connection between Chebyshev subsets of SX×R and certain subsets of X ∪ {∞}.
We explore this connection in Section 3, as well as throughout the sequel.

Proposition 2.2. Suppose that X is a real inner product space. For all x, y ∈ X,

‖σ−1(x) − σ−1(y)‖ =
2‖x − y‖√

(‖x‖2 + 1)(‖y‖2 + 1)
.

In particular, σ−1 is Lipschitz on bounded subsets of X and σ is Lipschitz on subsets
of SX×R bounded away from (0, 1).
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Proof. Suppose that x, y ∈ X. Consider

(‖x‖2 + 1)2(‖y‖2 + 1)2‖σ−1(x) − σ−1(y)‖2

= ‖(‖y‖2 + 1)(2x, ‖x‖2 − 1) − (‖x‖2 + 1)(2y, ‖y‖2 − 1)‖2

= 4‖(‖y‖2 + 1)x − (‖x‖2 + 1)y‖2

+ ((‖x‖2 − 1)(‖y‖2 + 1) − (‖y‖2 − 1)(‖x‖2 + 1))2

= 4(‖y‖2 + 1)2‖x‖2 + 4(‖x‖2 + 1)2‖y‖2 − 8(‖x‖2 + 1)(‖y‖2 + 1)〈x, y〉
+ 4(‖x‖2 − ‖y‖2)2

= 4‖x‖4‖y‖2 + 4‖x‖2‖y‖4 + 4‖x‖4 + 4‖y‖4 + 8‖x‖2‖y‖2 + 4‖x‖2 + 4‖y‖2

− 8(‖x‖2 + 1)(‖y‖2 + 1)〈x, y〉.

One obtains the same expression after expanding

4(‖x‖2 + 1)(‖y‖2 + 1)(‖x‖2 + ‖y‖2 − 2〈x, y〉),

which yields the identity, as desired.
Our bounded subset of X can be assumed without loss of generality to be a ball

B[0; r], where r > 0. Then, for x, y ∈ B[0; r],

2
r2 + 1

‖x − y‖ ≤ ‖σ−1(x) − σ−1(y)‖ ≤ 2‖x − y‖.

Suppose that C ⊆ SX×R is bounded away from (0, 1), that is, there exists some
s > 0 such that C ∩ B((0, 1); s) = ∅. As in Proposition 3.1, we have B[(0, −1); r] =
SX×R \ B((0, 1); s), where r =

√
4 − s2. Thus, without loss of generality, we may

assume that C = B[(0,−1); r], where 0 < r < 2.
Suppose that (x, t) ∈ SX×R \ {(0, 1)}. Then, by the identity proven above,

‖(x, t) − (0,−1)‖2 ≤ r2

⇐⇒
4‖σ(x, t) − 0‖2

(‖σ(x, t)‖2 + 1)(‖0‖2 + 1)
≤ r2

⇐⇒
4‖σ(x, t)‖2

‖σ(x, t)‖2 + 1
≤ r2

⇐⇒ ‖σ(x, t)‖2 ≤
r2

4 − r2 .

Thus, σ(C) = B[0; r/s]. Since σ−1 is bi-Lipschitz on this set, it follows easily that σ is
bi-Lipschitz on C. �

We finish the section with an important fact about spheres in SX×R, which, while not
a property of stereographic projection, is easily proven using stereographic projection.

Proposition 2.3. Let X be an inner product space, and (M, ρ) be X or SX×R. Further
suppose that S 1 and S 2 are nondegenerate spheres in M that intersect in at most one
point. If (xn)n∈N ∈ S 1 and (yn)n∈N ∈ S 2 are such that ρ(xn, yn)→ 0, then S 1 ∩ S 2 = {z}
for some z ∈ M, and xn and yn converge to z.
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Consequently, if S 1 ∩ S 2 = ∅, then

inf{ρ(p, q) : p ∈ S 1, q ∈ S 2} > 0.

If instead S 1 ∩ S 2 = {z} and ε > 0 is small enough so that S 1, S 2 * B[z; ε], then

inf{ρ(p, q) : p ∈ S 1 \ B[z; ε], q ∈ S 2} > 0.

Proof. If dim X ≤ 1, then the result is trivial, due to the fact that the spheres are finite.
Therefore, we may assume that dim X > 1 (possibly where X is infinite dimensional).
In particular, spheres are connected, so if two spheres S [x; r], S [y; s] ⊆ M fail to
intersect, or if they intersect uniquely, then one of three cases occurs:

(1) S [x; r] ⊆ B[y; s] (S [y; s] envelops S [x; r]);
(2) S [y; s] ⊆ B[x; r] (S [x; r] envelops S [y; s]); or
(3) B[x; r] ∩ B[y; s] = S [x; r] ∩ S [y; s] (neither sphere envelops the other).

Consider first M = X with case (3). Fix S 1 = S [x; r] and S 2 = S [y; s]. Suppose that
(xn) ∈ S 1 and (yn) ∈ S 2 are such that ‖xn − yn‖ → 0. We have

0 ≤ ‖x − y‖ − (r + s)
= ‖x − y‖ − ‖xn − x‖ − ‖yn − y‖
≤ ‖yn − x‖ − ‖xn − x‖
≤ ‖xn − yn‖ → 0

and hence ‖x − y‖ = r + s and ‖yn − x‖ → r. Let

z =
r

r + s
y +

s
r + s

x ∈ S 1 ∩ S 2.

Consequently,

‖yn − z‖2 = ‖yn − y‖2 + ‖z − y‖2 − 〈yn − y, z − y〉

= 2s2 −
s

r + s
(‖x − y‖2 + ‖yn − y‖2 − ‖x − yn‖

2)

→ 2s2 −
s

r + s
((r + s)2 + s2 − r2) = 0.

Thus, yn, and hence xn, converge to z.
Next, consider M = SX×R. Suppose that S 1, S 2 ⊆ M are spheres. Note that such

spheres pertain to precisely two balls each, centred at antipodal points. Without loss
of generality, we may choose balls B1 and B2 corresponding respectively to S 1 and S 2
in such a way that case (3) occurs. By applying a surjective isometry to SX×R, without
loss of generality, we may assume that (0, 1) < B1 ∪ B2.

Consider σ(B1) and σ(B2). Using Proposition 2.1, these sets are balls, whose
spheres are σ(S 1) and σ(S 2). Therefore,

σ(B1) ∩ σ(B2) = σ(B1 ∩ B2) = σ(S 1 ∩ S 2) = σ(S 1) ∩ σ(S 2)

and hence case (3) applies to σ(S 1) and σ(S 2).
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If we take (xn, tn) ∈ S 1 and (yn, sn) ∈ S 2 such that ‖(xn, tn) − (yn, sn)‖ → 0, then
Proposition 2.2 implies that ‖σ(xn, tn) − σ(yn, sn)‖ → 0. By the argument above, σ(S 1)
and σ(S 2) intersect uniquely at the common limit z of σ(xn, tn) and σ(yn, sn). Clearly,
σ−1(z) ∈ S 1 ∩ S 2 and, by the continuity of σ−1 on X, we have (xn, tn), (yn, sn)→ σ−1(z),
as required.

Finally, we prove the more general M = X case using the previous arguments.
Suppose that S 1, S 2 ⊆ X are spheres with at most one point of intersection, and (xn) ∈
S 1 and (yn) ∈ S 2 are such that ‖xn − yn‖ → 0. Then σ−1(S 1) and σ−1(S 2) are spheres
in SX×R with at most one point of intersection. Moreover, applying Proposition 2.2,
‖σ−1(xn) − σ−1(yn)‖ → 0. Thus, σ−1(xn) and σ−1(yn) converge to the unique point
(z, r) ∈ σ−1(S 1) ∩ σ−1(S 2) and so xn, yn → σ(z, r) ∈ S 1 ∩ S 2. �

3. Sphere-Chebyshev sets

Suppose that X is a real inner product space. We call a subset C ⊆ SX×R sphere-
Chebyshev if it is Chebyshev in the metric space SX×R.

We additionally call a subset C ⊆ X ∪ {∞} sphere-Chebyshev if σ−1(C) is sphere-
Chebyshev in SX×R.

One may ask, why transfer the Chebyshev problem to SX×R? This is a question
that will be more completely answered in the sequel. For now, we present one helpful
geometric property of SX×R: nondegenerate open and closed balls are complementary
and hence the Chebyshev and uniquely remotal concepts coincide.

Proposition 3.1. Suppose that X is an inner product space and C ⊆ SX×R. Then, for all
(x, t) ∈ SX×R,

r2
C(x, t) + d2

C(−x,−t) = 4.

Therefore, C is sphere-Chebyshev if and only if C is uniquely remotal.

Proof. Note that, by simple circle geometry, given (x, t) ∈ SX×R and 0 ≤ r ≤ 2,

B[(x, t); r] = SX×R \ B
(
(−x,−t);

√
4 − r2

)
.

In particular,

S [(x, t); r] = S
[
(−x,−t);

√
4 − r2

]
.

Suppose that C ⊆ SX×R and fix (x, t) ∈ SX×R. Note that

C ⊆ B[(x, t); rC(x, t)] = SX×R \ B
(
(−x,−t);

√
4 − rC(x, t)2

)
and hence dC(−x,−t) ≥

√
4 − rC(x, t)2. On the other hand, if r < rC(x, t), then

C * B[(x, t); r] = SX×R \ B
(
(−x,−t);

√
4 − r2

)
,

which implies that dC(−x,−t) ≤
√

4 − r2. Taking the limit as r ↑ rC(x, t),

r2
C(x, t) + d2

C(−x,−t) = 4,
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as required. This yields the following equivalence:

C ⊆ SX×R is sphere-Chebyshev,
⇐⇒ ∀(x, t) ∈ SX×R, S [(x, t); dC(x, t)] ∩C is a singleton

⇐⇒ ∀(x, t) ∈ SX×R, S
[
(x, t);

√
4 − r2

C(−x,−t)
]
∩C is a singleton

⇐⇒ ∀(x, t) ∈ SX×R, S [(−x,−t); rC(−x,−t)] ∩C is a singleton
⇐⇒ ∀(x, t) ∈ SX×R, S [(x, t); rC(x, t)] ∩C is a singleton
⇐⇒ C is uniquely remotal in SX×R. �

While it is more natural to define sphere-Chebyshev sets in SX×R, we primarily
consider their stereographic projections in X ∪ {∞}, to recover the rich linear structure
of X.

The following is our main result: a categorisation theorem of sphere-Chebyshev
subsets of X ∪ {∞}.

Theorem 3.2 (Sphere-Chebyshev sets in X ∪ {∞}). Suppose that X is a real inner
product space. A subset C ⊆ X ∪ {∞} is sphere-Chebyshev if and only if C \ {∞} is
Chebyshev in X and one of the following is true:

(1) ∞ < C, C is uniquely remotal and, for every f ∈ X∗ \ {0}, f attains its supremum
uniquely on C; or

(2) ∞ ∈ C and no functional f ∈ X∗ \ {0} achieves a maximum on C \ {∞}.

Proof. We first outline the proof with details to follow.

Outline. The proof of Theorem 3.2 is essentially an application of Proposition 2.1.
A Chebyshev subset C ⊆ SX×R is characterised by how the set intersects with boundary
spheres of maximal balls B whose interiors miss the set. Depending on where (0, 1)
lies relative to B, σ−1(B) will be a ball, a complement of a ball or a half-space.

When σ−1(B) is a ball, this corresponds to a projection problem in X and hence
σ−1(C) must be Chebyshev; see Figure 1.

When σ−1(B) is a complement of a ball, that is, when (0, 1) ∈ int B, then this
corresponds to a furthest point problem around the centre of X \ σ−1(B); see Figure 2.

When σ−1(B) is a half-space, then (0, 1) ∈ bdry B, so we must consider whether or
not (0, 1) ∈ C. If so, then no other point on the corresponding boundary hyperplane
can intersect with the set. If not, then this boundary hyperplane must be uniquely
intersected; see Figure 3.

Throughout the proof, we will use Propositions 2.1, 3.1 and 2.3 multiple times
without explicit reference.

Details. Suppose that C ⊆ X ∪ {∞} is sphere-Chebyshev. We begin by acknowledging
that the result holds true whenever C = ∅, C is a singleton or C = X ∪ {∞}. We therefore
assume without loss of generality that this is not the case.
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Figure 1. A projection problem.

Figure 2. A furthest point problem.

Fix x ∈ X \C, let B = B(x; dC\{∞}(x)) and note that B is nondegenerate. Then σ−1(B)
is a nondegenerate open ball B((y, s); r), which does not intersect σ−1(C \ {∞}). Since
(0, 1) < B[(y, s); r], it follows that σ−1(B) ∩ σ−1(C) = ∅. Therefore, dσ−1(C)(y, s) ≥ r.

Suppose that this inequality were strict. Choose r′ ∈ (r, dσ−1(C)(y, s)) small enough
so that (0, 1) < B[(y, s); r′]. Let B′ = σ(B((y, s); r′)). Note that B′ ∩C = ∅. Because the
spheres S [(y, s); r] and S [(y, s); r′] are disjoint and nondegenerate, the spheres of B and
B′ have a strictly positive infimal distance. Hence, for ε > 0 smaller than this distance,
B(x; dC\{∞}(x) + ε) is contained in B′ and hence does not intersect C. This contradicts
the definition of dC\{∞}(x) and hence r = dσ−1(C)(y, s).

Since σ−1(C) is sphere-Chebyshev, we have that S [(y, s); r] ∩ σ−1(C) is a singleton
and hence so is S [x; dC\{∞}(x)] ∩ (C \ {∞}). Therefore, C \ {∞} is Chebyshev.

Suppose now that ∞ < C. Since σ−1(C) is sphere-Chebyshev and hence closed,
σ−1(C) is bounded away from (0, 1) by some nondegenerate ball centred at (0, 1). This
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Figure 3. A functional maximisation problem.

ball maps to the complement of a ball. Therefore, C is bounded by this complementary
ball.

Suppose that x ∈ X and B = B[x; rC(x)] ⊇ C. Then σ−1(B) is a nondegenerate closed
ball B[(y, s); r] ⊇ σ−1(C) with r > 0. Therefore, rσ−1(C)(y, s) ≤ r.

If this inequality were strict, then S [(y, s); r] and S [(y, s); rσ−1(C)(y, s)] would
be disjoint nondegenerate spheres. Hence, B′ := σ(B[(y, s); rσ−1(C)(y, s)]) is a
nondegenerate ball containing C, and the spheres of B and B′ have a strictly
positive infimal distance. For ε > 0 smaller than this infimum, the ball B[x; rC(x) − ε]
would still contain B′ and hence C, contradicting the definition of rC(x). Thus,
r = rσ−1(C)(y, s).

Since σ−1(C) is uniquely remotal, the sphere S [(y, s); r] intersects with σ−1(C)
uniquely. Hence, S [x; rC(x)] ∩C is also a singleton and hence C is uniquely remotal.

Suppose that f ∈ X∗ \ {0}. Let α = sup f (C) and H = f −1(α,∞). Then σ−1(H) =
B((y, s); r) for some (y, s) ∈ SX×R and r > 0. Note that σ−1(C) ∩ B((y, s); r) = ∅ and
hence r ≤ dσ−1(C)(y, s).

Suppose that this inequality were strict. Let B′ := SX×R \ B((y, s),dσ−1(C)(y, s)). Then
B′ is a closed nondegenerate ball, containing σ−1(C), but not (0, 1). Thus, σ(B′)
is a nondegenerate ball containing C, but contained in H. The spheres of B′ and
σ−1(H) are nondegenerate and disjoint and hence the sphere of σ(B′) is of positive
distance from the hyperplane f −1{α}. Consequently, sup f (C) ≤ max f (σ(B′)) < α,
against assumption. So, r = dσ−1(C)(y, s).

Similarly to previous arguments, this implies that f achieves a unique maximum
on C.

On the other hand, suppose that ∞ ∈ C and, for the sake of contradiction, that f ∈
X∗ \ {0} attains a maximum on C \ {∞} at a point c ∈ C. Let H = {x ∈ X : f (x) ≤ f (c)} ⊇
C. Then σ−1(H ∪ {∞}) is a ball B[(y, s); r] that contains σ−1(C) and whose boundary
contains (0, 1). But (0, 1) = σ−1(∞) ∈ σ−1(C) and hence r = rσ−1(C)(y, s). Further, it is

https://doi.org/10.1017/S1446788719000508 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788719000508


[11] Chebyshev subsets of a Hilbert space sphere 299

straightforward to show that σ−1(c) also lies on this boundary, contradicting σ−1(C)
being uniquely remotal.

Conversely, suppose that C ⊆ X ∪ {∞} satisfies the conditions of the theorem. If C
is a singleton or equal to X ∪ {∞}, then C is clearly sphere-Chebyshev, so we may
assume without loss of generality that this is not the case. We first show that σ−1(C) is
closed.

Suppose that (xn, tn) ∈ σ−1(C) converges to (x, t). If (x, t) , (0, 1), then, by taking
subsequences as necessary, (xn, tn) , (0, 1) for all n. Then σ(xn, tn) ∈ C \ {∞} and, by
the continuity of σ when restricted to SX×R \ {(0, 1)}, it follows that σ(xn, tn) converges
to σ(x, t). Since C \ {∞} is Chebyshev, it is closed and hence (x, t) ∈ σ−1(C).

Otherwise, (xn, tn) → (0, 1). Then σ(xn, tn) is an unbounded sequence. By the
uniform boundedness principle, there exists a functional f ∈ X∗ \ {0} such that
f (σ(xn, tn))→∞. Hence, f does not achieve a maximum on C \ {∞}, so ∞ ∈ C, that
is, (0, 1) ∈ σ−1(C). Therefore, σ−1(C) is closed.

To show that σ−1(C) is sphere-Chebyshev, fix (z, t) ∈ SX×R \ σ
−1(C) and let B =

B((z, t), dσ−1(C)(z, t)). Note that σ−1(C) ∩ B = ∅ and B is nondegenerate. We consider
three cases: (0, 1) is in the exterior, the interior or the boundary of B.

Suppose that (0, 1) is in the exterior of B. Then σ(B) is an open ball B(x; r). Since
B(x; r) ∩C = ∅, we have r ≤ dC\{∞}(x).

Suppose that this inequality is strict. Then S [x; dC\{∞}(x)] and S [x; r] are disjoint
and nondegenerate, so B′ := σ−1(B(x; dC\{∞}(x))) is open with a sphere that has strictly
positive infimal distance from the sphere of B. Therefore, for ε > 0 smaller than this
distance, we have B(x; dC(x) + ε) ⊆ B′ and hence it does not intersect C. This is a
contradiction, so r = dC\{∞}(x).

Since C \ {∞} is Chebyshev, it follows that B[x; r] ∩ C is a singleton and hence so
is B[(z, t); dσ−1(C)(z, t)] ∩ σ−1(C). That is, Pσ−1(C)(z, t) is a singleton in this case.

Suppose instead that (0, 1) is in the interior of B. Then σ(B) = X ∪ {∞} \ B[x; r] for
some x ∈ X and r > 0. Since B[x; r] contains C, C is bounded and rC(x) ≤ r.

Suppose that this inequality is strict. Then S [x; rC(x)] and S [x; r] are disjoint and
nondegenerate and hence B′ := σ−1(X ∪ {∞} \ B[x; rC(x)]) is an open ball containing B
such that the spheres of B and B′ have positive infimal distance. Taking ε > 0 smaller
than this distance, we have that B((z, t); dσ−1(C)(z, t) + ε) is contained in B′ and hence
disjoint from σ−1(C). By contradiction, r = rC(x).

Note that since C ⊆ B[x; r], we have ∞ < C. Therefore, C is uniquely remotal, so
S [x; r] ∩ C is a singleton. Therefore, B[(z, t); dσ−1(C)(z, t)] ∩ σ−1(C) is a singleton and
again Pσ−1(C)(z, t) is a singleton in this case.

Finally, suppose that (0, 1) is on the boundary of B. Then there exist some f ∈
X∗ \ {0} and α ∈ R such that σ(B) = f −1(α,∞). Note that α ≥ β := max f (C).

Suppose first that α > β. Then f −1(β,∞) does not intersect C and hence B′ :=
σ−1( f −1(β,∞)) contains B, but does not intersect σ−1(C). Let S 1 be the boundary
of B and S 2 be the boundary of B′. Note that S 1 and S 2 are nondegenerate and
S 1 ∩ S 2 = {(0, 1)}.
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If (0, 1) < σ−1(C), then there exists some ε > 0 such that B[(0, 1); ε] ⊆ SX×R \

σ−1(C). Using Proposition 2.3, we can therefore extend the radius of B slightly
while still missing σ−1(C). This contradicts the definition of B and hence (0, 1) ∈
Pσ−1(C)(z, t) ⊆ σ−1(C).

If there were another point in Pσ−1(C)(z, t), then this point would stereographically
project to a point on f −1{α} ∩C, which would contradict α > β.

Therefore, we may assume that α = β. We have two possibilities: ∞ ∈ C or
∞ < C. Supposing the former, then (0, 1) ∈ Pσ−1(C)(z, t). No other points can be in
the projection, as this would cause f to achieve its maximum on C \ {∞}, against
assumption.

If ∞ < C, then f achieves its maximum uniquely on C. When mapped under σ−1,
this point forms Pσ−1(C)(z, t). �

Considering condition (b) in Theorem 3.2, we obtain the following corollary.

Corollary 3.3. Suppose that X is a real inner product space, C ⊆ X is Chebyshev
and X \ C is bounded (in particular, if C is a Klee cavern). Then C ∪ {∞} is sphere-
Chebyshev in X ∪ {∞}.

Combining with Theorem 1.1, we obtain a condition equivalent to the Chebyshev
conjecture.

Corollary 3.4. Suppose that X is a real inner product space. Then every Chebyshev
subset of X is convex if and only if the only sphere-Chebyshev subsets of X ∪ {∞} are
the singleton subsets and X ∪ {∞} itself.

Proof. (⇐= ) Suppose that there exists a nonconvex Chebyshev subset of X. By
Theorem 1.1, a Klee cavern C exists. By Corollary 3.3, C ∪ {∞} is sphere-Chebyshev,
while being proper and nontrivial.

( =⇒ ) Suppose that every Chebyshev subset of X is convex and consider a sphere-
Chebyshev subset C ⊆ SX×R. Either C = SX×R (in which case we are done) or there
exists some (x, r) ∈ SX×R \C. Choose a surjective isometry φ : SX×R→ SX×R that maps
(x, r) to (0, 1). Then φ(C) is sphere-Chebyshev and σ(φ(C)) is uniquely remotal. By
Theorem 1.1, σ(φ(C)) is a singleton and hence so is C. �

As a consequence of Corollary 3.4, we lose no generality in studying sphere-
Chebyshev sets.

It is worth noting that, while the question of the existence of nonconvex Chebyshev
sets in a real Hilbert space is yet to be answered, there is a positive answer known
in certain incomplete inner product spaces. Johnson published a construction of a
nonconvex Chebyshev subset of an incomplete real inner product space [6]. His
construction contained significant errors, so a more geometric example in the same
vein was constructed by Balaganskiı̆and Vlasov [2] (for a more readable version of
this construction, see Section 4 of [5]).

Therefore, by Corollary 3.4, there are certain incomplete real inner product spaces
that contain proper, nontrivial sphere-Chebyshev sets.
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In the sequel, we show that, due to the additional structure imposed on sphere-
Chebyshev sets, there is a larger group of maps that preserve the sphere-Chebyshev
property. In particular, inversions in any sphere preserve the sphere-Chebyshev
property. (Contrast this to Ficken’s result, which uses inversion to map Chebyshev
sets to uniquely remotal sets, but with restrictions on the Chebyshev set and the sphere
used for inversion.)

This fact further allows us to transform freely between nearest point problems,
furthest point problems and functional maximisation problems. The latter is a well-
studied mainstay of convex analysis and Banach space geometry, and is the primary
motivation for considering sphere-Chebyshev subsets of X ∪ {∞}.

In particular, we the use the dentability of the Hilbert space ball to prove some
local structure results about sphere-Chebyshev sets. For example, we show that such
sets cannot contain isolated points and the boundary cannot resemble a sphere or
hyperplane on any neighbourhood.
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