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On the Bessel function Jν(x) in the transition region

Ilia Krasikov

Abstract

We give an approximation for the value of the Bessel function Jν(x) in the transition region
with an explicit sharp error term.

1. Introduction

In this paper we will obtain an approximation with an explicit asymptotically sharp error term
for the Bessel function Jν(x) in the transition region, starting from appropriate upper bounds
on |Jν(x)| and |J ′ν(x)|. All basic formulas and asymptotic expressions for special functions we
use without references can be found in [4]. To write down error terms in a compact form we
will use θ, θ1, θ2, . . . , to denote quantities with the absolute value not exceeding one.

The standard asymptotic expansion for the Bessel function Jν(x) in the transition region is

Jν(ν + ν1/3z) ∼ 21/3

ν1/3
Ai(−21/3z)

∞∑
k=0

Vk(z)

ν2k/3
+

22/3

ν
Ai′(−21/3z)

∞∑
k=0

Uk(z)

ν2k/3
,

where it is assumed that ν →∞, z ∈ C. Here Ai(x) is the Airy function and Vk(z), Uk(z) are
some polynomials in z of degree growing with k (see [4, 10.19.8]). One of the shortcomings of
this formula is that it makes little sense for z depending on ν. It also gives no insight into how
large the transition region is. Our main result is the following theorem.

Theorem 1. Let ν > 1/2, then for 0 6 z 6 ν4/15,

Jν(ν + ν1/3z) =
21/3

ν1/3
Ai(−21/3z) + θ

4z9/4 + 21

7ν
. (1)

The value of z here is restricted to ν4/15 since then the error and the main term become of
the same order. For sufficiently large ν the error term in (1) can be about twice as large as
the actual value. More precisely, we prove the following.

Theorem 2. For z > 0, z = o(ν4/15),

lim sup
ν→∞

lim sup
z→∞

∣∣∣∣Jν(ν + ν1/3z)− 21/3

ν1/3
Ai(−21/3z)

∣∣∣∣z−9/4ν =
3

5 · 21/3
√
π
. (2)

To prove Theorems 1 and 2 we first shall establish the following results which may be of
independent interest.

Theorem 3. Let ν > 1/2 and x > ν + ν1/3(
√

7− 1)/22/3, then

x(4(x2 − ν2)3 − 3x4 − 10x2ν2 + ν4)1/4

x2 − ν2
|J ′ν(x)| < 2√

π
. (3)
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Theorem 4. For x1, x2 > 0 and |ν| 6 1/2,

√
x1x2|J−ν(x1)Jν(x2)− J−ν(x2)Jν(x1)| 6 2

π
sinπν. (4)

Theorem 5. Let γ = 2−1/3a1 = 1.855757 . . . , where a1 is the least-positive zero of Ai(−x),
then for ν > 1/2,

Jν(ν + γν1/3) <
7

6ν
. (5)

In the last theorem the point ν + γν1/3 is just an approximation to the least-positive zero
jν1 of Jν . More precisely, it is known that the sth-positive zero jνs is given by [5]

jνs = ν + 2−1/3asν
1/3 + θ2

3 · 2−2/3a2s
10

ν−1/3, ν > 0, (6)

where as is the sth-positive zero of the Airy function Ai(−x). It is also worth comparing (5)
with the following result [1]

Jν(ν) =
21/3

32/3Γ(2/3)(ν + θ2α)1/3
, ν > 0, (7)

where α = 0.09434980 . . . .
The idea behind the proof of Theorem 1 is rather simple and can be applied to other special

functions satisfying a second-order ordinary differential equation (ODE). Suppose that f(x) is
a solution of

f ′′ + b2(x)f = 0,

then an asymptotics of f with an explicit error term in the transition region, that is around a
zero of b(x), can be obtained as follows. Let

b(α) = 0, d =
d

dx
b2(x)

∣∣∣∣
x=α

6= 0,

then in a vicinity of α we can write

b2(α+ d−1/3t) = d2/3t+ δ(t),

where δ(t) is small. The function y(t) = f(α + d−1/3t) satisfies the inhomogeneous Airy-type
ODE

y′′(t) + ty(t) = −δ(t)d−2/3y(t).

Suppose now that we know an a priori upper bound on |y(x)|. Then solving it as an
inhomogeneous equation one obtains an explicit error term (see Lemma 6 below). However,
one still has to use some initial or boundary conditions to fix the integration constants. Even
if they are known or can be derived, as in the case of Jν , this step may require some quite
involved calculations.

2. Upper bounds

In this section, using so-called Sonin’s function S(x), we prove Theorems 3 and 4, thus
establishing the upper bounds we need in the following.

Let y(x) be a solution of

y′′(x) + a(x)y′(x) + b(x)y(x) = 0.
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Then S(x) = y2 + y′2/b is just an envelope of y2 coinciding with it in all maxima. The sign of
S′ = −(2ab+ b′)y′2/b2, depends only on a and b, what in many cases enables one to find the
global maximum of y2.

In what follows it will be convenient to use the following parameters:

µ =

∣∣∣∣ν2 − 1

4

∣∣∣∣, ων =
(2ν + 1)π

4
.

Let f(x) be Jν(x) or Yν(x), the Bessel functions of the first or the second kind, respectively.
Then f(x) is a solution of

x2f ′′ + xf ′ + (x2 − ν2)f = 0. (8)

We need the following classical bound [6, Theorem 7.31.2]:

|f(x)| 6
√

2

πx
, |ν| 6 1/2, x > 0. (9)

Note that in [6, Theorem 7.31.2] the result is stated for Jν only, however the proof is still valid
for Yν as well (see [3]). For ν > 1/2 we have the following result [3],

|x2 − µ|1/4|Jν(x)| <
√

2/π, x > 0. (10)

The constant
√

2/π in (9) and (10) is the best possible.
We start with proving Theorem 3. It requires some rather involved calculations which seems

difficult to perform without a symbolic package, we used Mathematica.

Proof of Theorem 3. Set ψ(x) = 4(x2− ν2)3− 3x4− 10x2ν2 + ν4, under the assumptions of
the theorem we have to prove that |z(x)| < 2/

√
π, where

z(x) =
xψ1/4(x)

x2 − ν2
J ′ν(x).

First note that ψ(x) > 0 for ν > 1/2 and x > ν + ν1/3(
√

7− 1)/22/3. Indeed, one can check
that the substitutions

x = y + ν +

√
7− 1

22/3
ν1/3, ν = (2−1/3 + n)3, (11)

transform ψ into a polynomial in n and y with non-negative coefficients. The function z satisfies
the differential equation

z′′ − 4u3ν2 + 3u3 + 32u2ν2 + 52uν4 + 24ν6

ux(4u3 − 3u2 − 16uν2 − 12ν4)
z′ +

Q(x)

x2(x2 − ν2)2ψ2(x)
z = 0,

where u = x2 − ν2, and

Q(x) = u6(16u3 − 36u2 + 45u− 9)− 4u5ν2(42u2 − 155u+ 45)

−u4ν4(124u2 − 2064u+ 963) + 24u3ν6(102u− 107)

+ 48u2ν8(20u− 73)− 576v10(4u− v2).

Consider the corresponding Sonin function

S(x) = z2(x) +
x2(x2 − ν2)2ψ2(x)

Q(x)
z′2(x),
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and its derivative

S′(x) =
6x3(x2 − ν2)4ψ(x)P (x)

Q2(x)
z′2(x),

where

P (x) = 48u7 + 9u6 + 4u4ν2(16u3 + 338u2 + 9) + 2u3ν4(40u3 + 3136u2 + 1348u− 105)

+ 8u2ν6(1204u2 + 1432u− 129) + 16uν8(294u2 + 1172u− 87)

+ 608ν10(24u− 1) + 4608ν12.

Substitution (11) transforms P and Q into polynomials in y and n with non-negative
coefficients. Hence, S(x) is increasing and z2(x) 6 S(x) < S(∞). Finally, using the asymptotics

Jν(x) ∼
√

2

πx
cos(x− ων), J ′ν(x) ∼ −

√
2

πx
sin(x− ων),

we obtain z2(x) < limx→∞ S(x) = 4/π, and the result follows.

Proof of Theorem 4. The function

F = F (x1, x2) =
√
x1x2(J−ν(x1)Jν(x2)− J−ν(x2)Jν(x1))

satisfies the differential equations

∂2F

∂x2i
+ b(xi)F = 0, i = 1, 2, (12)

where b(x) = 1 + µ/x2 > 0. We consider the majorant of F 2 given by Sonin’s function

F 2(x1, x2) 6 S(x1, x2) = F 2 +
(∂F/∂x2)2

b(x2)
.

By (12) we have

∂S

∂x2
= −

(
(∂/∂x2) b(x2)

b2(x2)

)(
∂F

∂x2

)2
.

Since
∂

∂x2
b(x2) = −µ/x32 < 0

for |ν| < 1/2, the Sonin function increases in x2. By using the asymptotics

Jν(x) =

√
2

πx
cos

(
x− (2ν + 1)π

4

)
+ o(x−1/2),

J ′ν(x) =−
√

2

πx
sin

(
x− (2ν + 1)π

4

)
+ o(x−1/2),

taking the limit and applying (9) we obtain

F 2(x1, x2) 6 S(x1, x2) 6 lim
x2→∞

S(x1, x2) =
2x1
π

(J2
ν (x1)− 2Jν(x1)J−ν(x1) cosπν + J2

−ν(x1))

=
2x1 sin2 πν

π
(J2
ν (x1) + Y 2

ν (x1)) 6
4 sin2 πν

π2
.

This completes the proof.

3. Approximation in the transition region

Our estimates in the transition region are based on the following observation.
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Lemma 6. Let
y′′(x) + q2xy(x) = u(x), q ∈ R, (13)

then for x > 0, provided that the integral exists,

y(x) =
√
x(c1J−1/3(ξx) + c2J1/3(ξx)) + θq−1x−1/4

∫x
0

|u(t)|t−1/4 dt, (14)

where ξx = 2qx3/2/3.

Proof. Let y1 and y2 be two linearly independent solutions of the corresponding homogeneous
equation y′′(x) + q2xy(x) = 0, and let

U(x, t) =
y1(t)y2(x)− y1(x)y2(t)

y1(t)y′2(t)− y′1(t)y2(t)
.

Then the general solution of (13) is

y(x) = c1y1(x) + c2y2(x) +

∫x
U(x, t)u(t) dt,

and choosing y1(x) =
√
xJ−1/3(ξx), y2(x) =

√
xJ1/3(ξx), we find

y1(t)y′2(t)− y′1(t)y2(t) =
3
√

3

2π
.

Applying (4) we obtain

U(x, t) = 2π

√
tx

27
(J−1/3(ξt)J1/3(ξx)− J−1/3(ξx)J1/3(ξt)) = θq−1t−1/4x−1/4.

Hence, ∣∣∣∣∫x
0

U(x, t)u(t) dt

∣∣∣∣ 6 q−1x−1/4
∫x
0

|u(t)|t−1/4 dt,

and the result follows.

To prove Theorem 1 we have to find the constants of integration c1, c2 in (14). To that end we
shall prove first Theorem 5. Then we will know the value of Jν(x) at two points: x = ν+γν1/3

and x = ν, where the last is given by (7).

Proof of Theorem 5. By (6) we have

jν1 = ν + γν1/3 + θ2
3γ2

10
ν−1/3, (15)

yielding the following Tailor expansion

Jν(ν + γν1/3) = −θ2 3γ2

10
ν−1/3J ′ν

(
ν + γν1/3 + θ21

3γ2

10
ν−1/3

)
.

Setting

δ = γ + θ21
3γ2

10
ν−2/3, ε = δν−2/3,

by (3) and γ > (
√

7− 1)/22/3 we can write

|J ′ν(ν + δν1/3)| < 2ε√
π
φ(ε, δ),
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where

φ(ε, δ) =
2 + ε

1 + ε
(4(8δ3 − 3) + 16(3δ3 − 2)ε+ 4(6δ3 − 7)ε2 + 4(δ3 − 3)ε3 − 3ε4)−1/4.

Note that φ(ε, δ) < φ(ε, γ) since δ > γ and

∂

∂δ
φ(ε, δ) = −3δ2(1 + ε)4

2 + ε
φ5(ε, δ) < 0.

Moreover,

ε = γν−2/3 +
3γ2

10
ν−4/3 < 6,

whereas, as one can check, (∂/∂ε)φ(ε, γ) < 0 in the interval 0 6 ε 6 7. Thus, φ(ε, δ) < φ(0, γ),
yielding

|J ′ν(ν + δν1/3| < 2ε√
π
φ(0, γ) =

23/2γ√
π(8γ − 3)1/4

ν−2/3,

and the result follows.

Now we are in a position to prove Theorem 1. We will need the following constants

amax = max
z>0
|Ai(−z)| = 0.53565 . . . < 15/28, (16)

bmax = max
z>0

√
z|J1/3(

√
2ζ)| = 0.768507 . . . < 10/13, ζ =

2

3
z3/2. (17)

In both cases the maximum is attained at the first local extremum since the functions
Ai(−21/3z) and

√
zJ1/3(

√
2ζ) are solutions of the same differential equation f ′′(z)+2zf(z) = 0,

with the decreasing Sonin function S = f2 + f ′2/2z, S′ = −f ′2/2z2.

Proof of Theorem 1. Consider the function

y(z) =
√
ν + ν1/3zJν(ν + ν1/3z),

satisfying the differential equation

y′′(z) + 2zy(z) =
8z3 + 12ν2/3z2 − 1

4(ν2/3 + z)2
y(z) := u(z). (18)

For z > 0 by (10) we have

y(z) 6
2ν1/6

√
ν2/3 + z√

π(4ν2/3z2 + 8ν4/3z + 1)1/4
6

21/4
√
ν2/3 + z√

πν1/6z1/4
,

and

|u(z)| 6 |8z3 + 12ν2/3z2 − 1|
27/4
√
πν1/6z1/4(ν2/3 + z)3/2

6
12ν2/3z2 + 1

27/4
√
πν7/6z1/4

.

Now Lemma 6 yields

y(z) =
√
z(c1J−1/3(

√
2ζ) + c2J1/3(

√
2ζ)) + θR(z)

= c3Ai(−21/3z) + c4
√
zJ1/3(

√
2ζ) + θR(z), (19)

|R(z)| 6 (12ν2/3z2 + 5)z1/4

10 · 21/4
√
πν7/6

. (20)
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It is left to find the constants c3, c4. We have by (7)

y(0) = c3Ai(0) =
c3

32/3Γ(2/3)
=
√
νJν(ν) =

21/3
√
ν

32/3Γ(2/3)(ν + θ2α)1/3
,

hence,

c3 =
21/3
√
ν

(ν + θ2α)1/3
= 21/3ν1/6

(
1− θ2 α

3ν

)
,

and

c3Ai(−21/3z) = (4ν)1/6Ai(−21/3z) + θ
21/3α

3ν5/6
amax = (4ν)1/6Ai(−21/3z) +

θ

47ν5/6
.

Now Ai(−21/3γ) = 0 and c4 can be found from

y(γ) = c4
√
γ J1/3

(
(2γ)3/2

3

)
+ θ1R(γ) =

√
ν + γν1/3 Jν(ν + γν1/3).

Combining the above estimate on R with (5) and (17) one obtains

c4
√
z

∣∣∣∣J1/3( (2γ)3/2

3

)∣∣∣∣ < 11.1/
√
ν.

This yields

|y(z)− (4ν)1/6Ai(−21/3 z)| 6 3 · 23/4z9/4

5
√
πν

+
z1/4

25/4
√
πν7/6

+
1

47ν5/6
+

11.1√
ν

:= φ(ν, z),

giving

Jν(ν + ν1/3z) =
(4ν)1/6Ai(−21/3z)√

ν + ν1/3z
+ θ

φ(ν, z)√
ν + ν1/3z

=
21/3

ν1/3
Ai(−21/3 z) + θ1

z

22/3ν
Ai(−21/3z) + θ

φ(ν, z)√
ν

.

By |Ai(−x)| < π−1/2x−1/4 (see [3]) the error term here does not exceed∣∣∣∣ z3/4

23/4
√
πν

+
φ(ν, z)√

ν

∣∣∣∣.
Elementary calculations show that the maximum of this function in the region ν > 1/2, 0 6
z 6 ν4/15 is less than (4z9/4 + 21)/7. This completes the proof.

To prove Theorem 2 we repeat the arguments of Lemma 6 with the approximation to Jν(ν+
ν1/3z) given by (1) instead of inequality (4). We need the following standard asymptotics:

Jν(x) =

√
2

πx
cos(x− ων) +O(x−3/2), (21)

Ai(−x) =
cos(ζ − π/4)√

πx1/4
+O(x−7/4), ζ =

2x3/2

3
. (22)
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Proof of Theorem 2. By Theorem 1 we have

y(z) =
√
ν + ν1/3zJν(ν + ν1/3z) = (4ν)1/6Ai(−21/3z) +Rν(z),

where Rν(z) = O(z9/4ν−1/2). Writing the error term Rν as in the proof of Lemma 6 and
splitting the range of integration into two intervals, we have

Rν(z) =

∫1
0

U(z, t)u(t) dt+

∫z
1

U(z, t)u(t) dt = I1 + I2,

where u is defined by (18) and

U(z, t) = 2π

√
tz

27
(J−1/3(ζt)J1/3(ζz)− J−1/3(ζz)J1/3(ζt)), ζx =

(2x)3/2

3
.

First, we estimate I1. Using the classical inequality [4, equation (10.14.4)],

|Jν(x)| 6 |x|ν

2νΓ(ν + 1)
, x ∈ R, ν > −1

2
,

we obtain that U(z, t) = O(1) for 0 6 t 6 z 6 1. As well, |y(t)| = O(ν1/6) by Theorem 1, and
for the factor at y(z) in the right-hand side of (18) we have

8t3 + 12ν2/3t2 − 1

4(ν2/3 + t)2
= 3t2ν−2/3 +O(t3ν−4/3), (23)

hence I1 = O(ν−1/2).
Now we estimate I2. By (21) for 1 6 t 6 z, we have

U(z, t) =
sin(ζz − ζt)√

2t1/4z1/4
+O(t−7/4z−1/4);

y(t) = (4ν)1/6Ai(−21/3t) +O(t9/4ν−1/2)

=
21/4ν1/6 cos(ζt − π/4)√

πt1/4
+O(t9/4ν−1/2 + t−7/4ν1/6);

Together with the assumption z = o(ν4/15) and (23) this yields

I2 = A

∫z
1

t3/2 cos

(
ζt −

π

4

)
sin(ζz − ζt) dt+O(zν−1/2 + z9/2ν−5/3), (24)

where A = 3/(2z)1/4
√
πν. It is left to estimate the last integral. With a little trigonometry

and integrating by parts we have∫z
1

t3/2 cos

(
ζt −

π

4

)
sin(ζz − ζt) dt

=
1− z5/2

5
cos

(
ζz +

π

4

)
+

1

2

∫z
1

t3/2 sin

(
ζz − 2ζt +

π

4

)
dt

=
1− z5/2

5
cos

(
ζz +

π

4

)
− 1

4
√

2

∫z
1

t cos

(
ζz − 2ζt +

π

4

)
dt+

1

4
√

2

∫z
1

cos

(
ζz − 2ζt +

π

4

)
dt

= −z
5/2

5
cos

(
ζz +

π

4

)
+O(z2).
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Finally, we obtain

I2 = −z
5/2

5
A cos

(
ζz +

π

4

)
+O(z7/4ν−1/2 + z9/2ν−5/3),

and

z−9/4
√
νRν(z) = z−9/4

√
ν(I1 + I2) = −3 cos(ζz + π/4)

5 · 21/3
√
π

+O(z−1/2 + z9/4ν−7/6).

By the assumption z < ν4/15 the error term here is of order O(z−1/2). Thus we conclude that

lim sup
ν→∞

lim sup
z→∞

z−9/4
√
ν|Rν(z)| = 3

5 · 21/3
√
π
.

This completes the proof.
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