On the Bessel function $J_{\nu}(x)$ in the transition region

Ilia Krasikov

Abstract

We give an approximation for the value of the Bessel function $J_{\nu}(x)$ in the transition region with an explicit sharp error term.

1. Introduction

In this paper we will obtain an approximation with an explicit asymptotically sharp error term for the Bessel function $J_{\nu}(x)$ in the transition region, starting from appropriate upper bounds on $\left|J_{\nu}(x)\right|$ and $\left|J_{\nu}^{\prime}(x)\right|$. All basic formulas and asymptotic expressions for special functions we use without references can be found in [4]. To write down error terms in a compact form we will use $\theta, \theta_{1}, \theta_{2}, \ldots$, to denote quantities with the absolute value not exceeding one.
The standard asymptotic expansion for the Bessel function $J_{\nu}(x)$ in the transition region is

$$
J_{\nu}\left(\nu+\nu^{1 / 3} z\right) \sim \frac{2^{1 / 3}}{\nu^{1 / 3}} \operatorname{Ai}\left(-2^{1 / 3} z\right) \sum_{k=0}^{\infty} \frac{V_{k}(z)}{\nu^{2 k / 3}}+\frac{2^{2 / 3}}{\nu} \mathrm{Ai}^{\prime}\left(-2^{1 / 3} z\right) \sum_{k=0}^{\infty} \frac{U_{k}(z)}{\nu^{2 k / 3}},
$$

where it is assumed that $\nu \rightarrow \infty, z \in \mathbb{C}$. Here $\operatorname{Ai}(x)$ is the Airy function and $V_{k}(z), U_{k}(z)$ are some polynomials in z of degree growing with k (see [4, 10.19.8]). One of the shortcomings of this formula is that it makes little sense for z depending on ν. It also gives no insight into how large the transition region is. Our main result is the following theorem.

Theorem 1. Let $\nu \geqslant 1 / 2$, then for $0 \leqslant z \leqslant \nu^{4 / 15}$,

$$
\begin{equation*}
J_{\nu}\left(\nu+\nu^{1 / 3} z\right)=\frac{2^{1 / 3}}{\nu^{1 / 3}} \operatorname{Ai}\left(-2^{1 / 3} z\right)+\theta \frac{4 z^{9 / 4}+21}{7 \nu} . \tag{1}
\end{equation*}
$$

The value of z here is restricted to $\nu^{4 / 15}$ since then the error and the main term become of the same order. For sufficiently large ν the error term in (1) can be about twice as large as the actual value. More precisely, we prove the following.

Theorem 2. For $z \geqslant 0, z=o\left(\nu^{4 / 15}\right)$,

$$
\begin{equation*}
\limsup _{\nu \rightarrow \infty} \limsup _{z \rightarrow \infty}\left|J_{\nu}\left(\nu+\nu^{1 / 3} z\right)-\frac{2^{1 / 3}}{\nu^{1 / 3}} \operatorname{Ai}\left(-2^{1 / 3} z\right)\right| z^{-9 / 4} \nu=\frac{3}{5 \cdot 2^{1 / 3} \sqrt{\pi}} . \tag{2}
\end{equation*}
$$

To prove Theorems 1 and 2 we first shall establish the following results which may be of independent interest.

Theorem 3. Let $\nu \geqslant 1 / 2$ and $x \geqslant \nu+\nu^{1 / 3}(\sqrt{7}-1) / 2^{2 / 3}$, then

$$
\begin{equation*}
\frac{x\left(4\left(x^{2}-\nu^{2}\right)^{3}-3 x^{4}-10 x^{2} \nu^{2}+\nu^{4}\right)^{1 / 4}}{x^{2}-\nu^{2}}\left|J_{\nu}^{\prime}(x)\right|<\frac{2}{\sqrt{\pi}} . \tag{3}
\end{equation*}
$$

Theorem 4. For $x_{1}, x_{2} \geqslant 0$ and $|\nu| \leqslant 1 / 2$,

$$
\begin{equation*}
\sqrt{x_{1} x_{2}}\left|J_{-\nu}\left(x_{1}\right) J_{\nu}\left(x_{2}\right)-J_{-\nu}\left(x_{2}\right) J_{\nu}\left(x_{1}\right)\right| \leqslant \frac{2}{\pi} \sin \pi \nu \tag{4}
\end{equation*}
$$

THEOREM 5. Let $\gamma=2^{-1 / 3} a_{1}=1.855757 \ldots$, where a_{1} is the least-positive zero of $\operatorname{Ai}(-x)$, then for $\nu \geqslant 1 / 2$,

$$
\begin{equation*}
J_{\nu}\left(\nu+\gamma \nu^{1 / 3}\right)<\frac{7}{6 \nu} \tag{5}
\end{equation*}
$$

In the last theorem the point $\nu+\gamma \nu^{1 / 3}$ is just an approximation to the least-positive zero $j_{\nu 1}$ of J_{ν}. More precisely, it is known that the s th-positive zero $j_{\nu s}$ is given by [5]

$$
\begin{equation*}
j_{\nu s}=\nu+2^{-1 / 3} a_{s} \nu^{1 / 3}+\theta^{2} \frac{3 \cdot 2^{-2 / 3} a_{s}^{2}}{10} \nu^{-1 / 3}, \quad \nu>0 \tag{6}
\end{equation*}
$$

where a_{s} is the s th-positive zero of the Airy function $\operatorname{Ai}(-x)$. It is also worth comparing (5) with the following result [1]

$$
\begin{equation*}
J_{\nu}(\nu)=\frac{2^{1 / 3}}{3^{2 / 3} \Gamma(2 / 3)\left(\nu+\theta^{2} \alpha\right)^{1 / 3}}, \quad \nu>0 \tag{7}
\end{equation*}
$$

where $\alpha=0.09434980 \ldots$
The idea behind the proof of Theorem 1 is rather simple and can be applied to other special functions satisfying a second-order ordinary differential equation (ODE). Suppose that $f(x)$ is a solution of

$$
f^{\prime \prime}+b^{2}(x) f=0
$$

then an asymptotics of f with an explicit error term in the transition region, that is around a zero of $b(x)$, can be obtained as follows. Let

$$
b(\alpha)=0, \quad d=\left.\frac{d}{d x} b^{2}(x)\right|_{x=\alpha} \neq 0
$$

then in a vicinity of α we can write

$$
b^{2}\left(\alpha+d^{-1 / 3} t\right)=d^{2 / 3} t+\delta(t)
$$

where $\delta(t)$ is small. The function $y(t)=f\left(\alpha+d^{-1 / 3} t\right)$ satisfies the inhomogeneous Airy-type ODE

$$
y^{\prime \prime}(t)+t y(t)=-\delta(t) d^{-2 / 3} y(t)
$$

Suppose now that we know an a priori upper bound on $|y(x)|$. Then solving it as an inhomogeneous equation one obtains an explicit error term (see Lemma 6 below). However, one still has to use some initial or boundary conditions to fix the integration constants. Even if they are known or can be derived, as in the case of J_{ν}, this step may require some quite involved calculations.

2. Upper bounds

In this section, using so-called Sonin's function $S(x)$, we prove Theorems 3 and 4, thus establishing the upper bounds we need in the following.

Let $y(x)$ be a solution of

$$
y^{\prime \prime}(x)+a(x) y^{\prime}(x)+b(x) y(x)=0
$$

Then $S(x)=y^{2}+y^{\prime 2} / b$ is just an envelope of y^{2} coinciding with it in all maxima. The sign of $S^{\prime}=-\left(2 a b+b^{\prime}\right) y^{\prime 2} / b^{2}$, depends only on a and b, what in many cases enables one to find the global maximum of y^{2}.

In what follows it will be convenient to use the following parameters:

$$
\mu=\left|\nu^{2}-\frac{1}{4}\right|, \quad \omega_{\nu}=\frac{(2 \nu+1) \pi}{4}
$$

Let $f(x)$ be $J_{\nu}(x)$ or $Y_{\nu}(x)$, the Bessel functions of the first or the second kind, respectively. Then $f(x)$ is a solution of

$$
\begin{equation*}
x^{2} f^{\prime \prime}+x f^{\prime}+\left(x^{2}-\nu^{2}\right) f=0 \tag{8}
\end{equation*}
$$

We need the following classical bound [6, Theorem 7.31.2]:

$$
\begin{equation*}
|f(x)| \leqslant \sqrt{\frac{2}{\pi x}}, \quad|\nu| \leqslant 1 / 2, x>0 \tag{9}
\end{equation*}
$$

Note that in [6, Theorem 7.31.2] the result is stated for J_{ν} only, however the proof is still valid for Y_{ν} as well (see [3]). For $\nu \geqslant 1 / 2$ we have the following result [3],

$$
\begin{equation*}
\left|x^{2}-\mu\right|^{1 / 4}\left|J_{\nu}(x)\right|<\sqrt{2 / \pi}, \quad x>0 \tag{10}
\end{equation*}
$$

The constant $\sqrt{2 / \pi}$ in (9) and (10) is the best possible.
We start with proving Theorem 3. It requires some rather involved calculations which seems difficult to perform without a symbolic package, we used Mathematica.

Proof of Theorem 3. Set $\psi(x)=4\left(x^{2}-\nu^{2}\right)^{3}-3 x^{4}-10 x^{2} \nu^{2}+\nu^{4}$, under the assumptions of the theorem we have to prove that $|z(x)|<2 / \sqrt{\pi}$, where

$$
z(x)=\frac{x \psi^{1 / 4}(x)}{x^{2}-\nu^{2}} J_{\nu}^{\prime}(x)
$$

First note that $\psi(x)>0$ for $\nu \geqslant 1 / 2$ and $x \geqslant \nu+\nu^{1 / 3}(\sqrt{7}-1) / 2^{2 / 3}$. Indeed, one can check that the substitutions

$$
\begin{equation*}
x=y+\nu+\frac{\sqrt{7}-1}{2^{2 / 3}} \nu^{1 / 3}, \quad \nu=\left(2^{-1 / 3}+n\right)^{3} \tag{11}
\end{equation*}
$$

transform ψ into a polynomial in n and y with non-negative coefficients. The function z satisfies the differential equation

$$
z^{\prime \prime}-\frac{4 u^{3} \nu^{2}+3 u^{3}+32 u^{2} \nu^{2}+52 u \nu^{4}+24 \nu^{6}}{u x\left(4 u^{3}-3 u^{2}-16 u \nu^{2}-12 \nu^{4}\right)} z^{\prime}+\frac{Q(x)}{x^{2}\left(x^{2}-\nu^{2}\right)^{2} \psi^{2}(x)} z=0
$$

where $u=x^{2}-\nu^{2}$, and

$$
\begin{aligned}
Q(x)= & u^{6}\left(16 u^{3}-36 u^{2}+45 u-9\right)-4 u^{5} \nu^{2}\left(42 u^{2}-155 u+45\right) \\
& -u^{4} \nu^{4}\left(124 u^{2}-2064 u+963\right)+24 u^{3} \nu^{6}(102 u-107) \\
& +48 u^{2} \nu^{8}(20 u-73)-576 v^{10}\left(4 u-v^{2}\right)
\end{aligned}
$$

Consider the corresponding Sonin function

$$
S(x)=z^{2}(x)+\frac{x^{2}\left(x^{2}-\nu^{2}\right)^{2} \psi^{2}(x)}{Q(x)} z^{\prime 2}(x)
$$

and its derivative

$$
S^{\prime}(x)=\frac{6 x^{3}\left(x^{2}-\nu^{2}\right)^{4} \psi(x) P(x)}{Q^{2}(x)} z^{\prime 2}(x)
$$

where

$$
\begin{aligned}
P(x)= & 48 u^{7}+9 u^{6}+4 u^{4} \nu^{2}\left(16 u^{3}+338 u^{2}+9\right)+2 u^{3} \nu^{4}\left(40 u^{3}+3136 u^{2}+1348 u-105\right) \\
& +8 u^{2} \nu^{6}\left(1204 u^{2}+1432 u-129\right)+16 u \nu^{8}\left(294 u^{2}+1172 u-87\right) \\
& +608 \nu^{10}(24 u-1)+4608 \nu^{12} .
\end{aligned}
$$

Substitution (11) transforms P and Q into polynomials in y and n with non-negative coefficients. Hence, $S(x)$ is increasing and $z^{2}(x) \leqslant S(x)<S(\infty)$. Finally, using the asymptotics

$$
J_{\nu}(x) \sim \sqrt{\frac{2}{\pi x}} \cos \left(x-\omega_{\nu}\right), \quad J_{\nu}^{\prime}(x) \sim-\sqrt{\frac{2}{\pi x}} \sin \left(x-\omega_{\nu}\right),
$$

we obtain $z^{2}(x)<\lim _{x \rightarrow \infty} S(x)=4 / \pi$, and the result follows.
Proof of Theorem 4. The function

$$
F=F\left(x_{1}, x_{2}\right)=\sqrt{x_{1} x_{2}}\left(J_{-\nu}\left(x_{1}\right) J_{\nu}\left(x_{2}\right)-J_{-\nu}\left(x_{2}\right) J_{\nu}\left(x_{1}\right)\right)
$$

satisfies the differential equations

$$
\begin{equation*}
\frac{\partial^{2} F}{\partial x_{i}^{2}}+b\left(x_{i}\right) F=0, \quad i=1,2, \tag{12}
\end{equation*}
$$

where $b(x)=1+\mu / x^{2}>0$. We consider the majorant of F^{2} given by Sonin's function

$$
F^{2}\left(x_{1}, x_{2}\right) \leqslant S\left(x_{1}, x_{2}\right)=F^{2}+\frac{\left(\partial F / \partial x_{2}\right)^{2}}{b\left(x_{2}\right)}
$$

By (12) we have

$$
\frac{\partial S}{\partial x_{2}}=-\left(\frac{\left(\partial / \partial x_{2}\right) b\left(x_{2}\right)}{b^{2}\left(x_{2}\right)}\right)\left(\frac{\partial F}{\partial x_{2}}\right)^{2} .
$$

Since

$$
\frac{\partial}{\partial x_{2}} b\left(x_{2}\right)=-\mu / x_{2}^{3}<0
$$

for $|\nu|<1 / 2$, the Sonin function increases in x_{2}. By using the asymptotics

$$
\begin{aligned}
& J_{\nu}(x)=\sqrt{\frac{2}{\pi x}} \cos \left(x-\frac{(2 \nu+1) \pi}{4}\right)+o\left(x^{-1 / 2}\right), \\
& J_{\nu}^{\prime}(x)=-\sqrt{\frac{2}{\pi x}} \sin \left(x-\frac{(2 \nu+1) \pi}{4}\right)+o\left(x^{-1 / 2}\right),
\end{aligned}
$$

taking the limit and applying (9) we obtain

$$
\begin{aligned}
F^{2}\left(x_{1}, x_{2}\right) \leqslant S\left(x_{1}, x_{2}\right) \leqslant \lim _{x_{2} \rightarrow \infty} S\left(x_{1}, x_{2}\right) & =\frac{2 x_{1}}{\pi}\left(J_{\nu}^{2}\left(x_{1}\right)-2 J_{\nu}\left(x_{1}\right) J_{-\nu}\left(x_{1}\right) \cos \pi \nu+J_{-\nu}^{2}\left(x_{1}\right)\right) \\
& =\frac{2 x_{1} \sin ^{2} \pi \nu}{\pi}\left(J_{\nu}^{2}\left(x_{1}\right)+Y_{\nu}^{2}\left(x_{1}\right)\right) \leqslant \frac{4 \sin ^{2} \pi \nu}{\pi^{2}} .
\end{aligned}
$$

This completes the proof.

3. Approximation in the transition region

Our estimates in the transition region are based on the following observation.

Lemma 6. Let

$$
\begin{equation*}
y^{\prime \prime}(x)+q^{2} x y(x)=u(x), \quad q \in \mathbb{R}, \tag{13}
\end{equation*}
$$

then for $x \geqslant 0$, provided that the integral exists,

$$
\begin{equation*}
y(x)=\sqrt{x}\left(c_{1} J_{-1 / 3}\left(\xi_{x}\right)+c_{2} J_{1 / 3}\left(\xi_{x}\right)\right)+\theta q^{-1} x^{-1 / 4} \int_{0}^{x}|u(t)| t^{-1 / 4} d t, \tag{14}
\end{equation*}
$$

where $\xi_{x}=2 q x^{3 / 2} / 3$.
Proof. Let y_{1} and y_{2} be two linearly independent solutions of the corresponding homogeneous equation $y^{\prime \prime}(x)+q^{2} x y(x)=0$, and let

$$
U(x, t)=\frac{y_{1}(t) y_{2}(x)-y_{1}(x) y_{2}(t)}{y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)} .
$$

Then the general solution of (13) is

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\int^{x} U(x, t) u(t) d t
$$

and choosing $y_{1}(x)=\sqrt{x} J_{-1 / 3}\left(\xi_{x}\right), y_{2}(x)=\sqrt{x} J_{1 / 3}\left(\xi_{x}\right)$, we find

$$
y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)=\frac{3 \sqrt{3}}{2 \pi} .
$$

Applying (4) we obtain

$$
U(x, t)=2 \pi \sqrt{\frac{t x}{27}}\left(J_{-1 / 3}\left(\xi_{t}\right) J_{1 / 3}\left(\xi_{x}\right)-J_{-1 / 3}\left(\xi_{x}\right) J_{1 / 3}\left(\xi_{t}\right)\right)=\theta q^{-1} t^{-1 / 4} x^{-1 / 4}
$$

Hence,

$$
\left|\int_{0}^{x} U(x, t) u(t) d t\right| \leqslant q^{-1} x^{-1 / 4} \int_{0}^{x}|u(t)| t^{-1 / 4} d t
$$

and the result follows.
To prove Theorem 1 we have to find the constants of integration c_{1}, c_{2} in (14). To that end we shall prove first Theorem 5 . Then we will know the value of $J_{\nu}(x)$ at two points: $x=\nu+\gamma \nu^{1 / 3}$ and $x=\nu$, where the last is given by (7).

Proof of Theorem 5. By (6) we have

$$
\begin{equation*}
j_{\nu 1}=\nu+\gamma \nu^{1 / 3}+\theta^{2} \frac{3 \gamma^{2}}{10} \nu^{-1 / 3}, \tag{15}
\end{equation*}
$$

yielding the following Tailor expansion

$$
J_{\nu}\left(\nu+\gamma \nu^{1 / 3}\right)=-\theta^{2} \frac{3 \gamma^{2}}{10} \nu^{-1 / 3} J_{\nu}^{\prime}\left(\nu+\gamma \nu^{1 / 3}+\theta_{1}^{2} \frac{3 \gamma^{2}}{10} \nu^{-1 / 3}\right) .
$$

Setting

$$
\delta=\gamma+\theta_{1}^{2} \frac{3 \gamma^{2}}{10} \nu^{-2 / 3}, \quad \epsilon=\delta \nu^{-2 / 3},
$$

by (3) and $\gamma>(\sqrt{7}-1) / 2^{2 / 3}$ we can write

$$
\left|J_{\nu}^{\prime}\left(\nu+\delta \nu^{1 / 3}\right)\right|<\frac{2 \epsilon}{\sqrt{\pi}} \phi(\epsilon, \delta),
$$

where

$$
\phi(\epsilon, \delta)=\frac{2+\epsilon}{1+\epsilon}\left(4\left(8 \delta^{3}-3\right)+16\left(3 \delta^{3}-2\right) \epsilon+4\left(6 \delta^{3}-7\right) \epsilon^{2}+4\left(\delta^{3}-3\right) \epsilon^{3}-3 \epsilon^{4}\right)^{-1 / 4}
$$

Note that $\phi(\epsilon, \delta)<\phi(\epsilon, \gamma)$ since $\delta>\gamma$ and

$$
\frac{\partial}{\partial \delta} \phi(\epsilon, \delta)=-\frac{3 \delta^{2}(1+\epsilon)^{4}}{2+\epsilon} \phi^{5}(\epsilon, \delta)<0
$$

Moreover,

$$
\epsilon=\gamma \nu^{-2 / 3}+\frac{3 \gamma^{2}}{10} \nu^{-4 / 3}<6
$$

whereas, as one can check, $(\partial / \partial \epsilon) \phi(\epsilon, \gamma)<0$ in the interval $0 \leqslant \epsilon \leqslant 7$. Thus, $\phi(\epsilon, \delta)<\phi(0, \gamma)$, yielding

$$
\left\lvert\, J_{\nu}^{\prime}\left(\nu+\delta \nu^{1 / 3} \left\lvert\,<\frac{2 \epsilon}{\sqrt{\pi}} \phi(0, \gamma)=\frac{2^{3 / 2} \gamma}{\sqrt{\pi}(8 \gamma-3)^{1 / 4}} \nu^{-2 / 3}\right.\right.\right.
$$

and the result follows.
Now we are in a position to prove Theorem 1. We will need the following constants

$$
\begin{gather*}
a_{\max }=\max _{z \geqslant 0}|\operatorname{Ai}(-z)|=0.53565 \ldots<15 / 28 \tag{16}\\
b_{\max }=\max _{z \geqslant 0} \sqrt{z}\left|J_{1 / 3}(\sqrt{2} \zeta)\right|=0.768507 \ldots<10 / 13, \quad \zeta=\frac{2}{3} z^{3 / 2} \tag{17}
\end{gather*}
$$

In both cases the maximum is attained at the first local extremum since the functions $\mathrm{Ai}\left(-2^{1 / 3} z\right)$ and $\sqrt{z} J_{1 / 3}(\sqrt{2} \zeta)$ are solutions of the same differential equation $f^{\prime \prime}(z)+2 z f(z)=0$, with the decreasing Sonin function $S=f^{2}+f^{\prime 2} / 2 z, S^{\prime}=-f^{\prime 2} / 2 z^{2}$.

Proof of Theorem 1. Consider the function

$$
y(z)=\sqrt{\nu+\nu^{1 / 3} z} J_{\nu}\left(\nu+\nu^{1 / 3} z\right)
$$

satisfying the differential equation

$$
\begin{equation*}
y^{\prime \prime}(z)+2 z y(z)=\frac{8 z^{3}+12 \nu^{2 / 3} z^{2}-1}{4\left(\nu^{2 / 3}+z\right)^{2}} y(z):=u(z) \tag{18}
\end{equation*}
$$

For $z>0$ by (10) we have

$$
y(z) \leqslant \frac{2 \nu^{1 / 6} \sqrt{\nu^{2 / 3}+z}}{\sqrt{\pi}\left(4 \nu^{2 / 3} z^{2}+8 \nu^{4 / 3} z+1\right)^{1 / 4}} \leqslant \frac{2^{1 / 4} \sqrt{\nu^{2 / 3}+z}}{\sqrt{\pi} \nu^{1 / 6} z^{1 / 4}}
$$

and

$$
|u(z)| \leqslant \frac{\left|8 z^{3}+12 \nu^{2 / 3} z^{2}-1\right|}{2^{7 / 4} \sqrt{\pi} \nu^{1 / 6} z^{1 / 4}\left(\nu^{2 / 3}+z\right)^{3 / 2}} \leqslant \frac{12 \nu^{2 / 3} z^{2}+1}{2^{7 / 4} \sqrt{\pi} \nu^{7 / 6} z^{1 / 4}}
$$

Now Lemma 6 yields

$$
\begin{gather*}
y(z)=\sqrt{z}\left(c_{1} J_{-1 / 3}(\sqrt{2} \zeta)+c_{2} J_{1 / 3}(\sqrt{2} \zeta)\right)+\theta R(z) \\
=c_{3} \operatorname{Ai}\left(-2^{1 / 3} z\right)+c_{4} \sqrt{z} J_{1 / 3}(\sqrt{2} \zeta)+\theta R(z) \tag{19}\\
|R(z)| \leqslant \frac{\left(12 \nu^{2 / 3} z^{2}+5\right) z^{1 / 4}}{10 \cdot 2^{1 / 4} \sqrt{\pi} \nu^{7 / 6}} \tag{20}
\end{gather*}
$$

It is left to find the constants c_{3}, c_{4}. We have by (7)

$$
y(0)=c_{3} \operatorname{Ai}(0)=\frac{c_{3}}{3^{2 / 3} \Gamma(2 / 3)}=\sqrt{\nu} J_{\nu}(\nu)=\frac{2^{1 / 3} \sqrt{\nu}}{3^{2 / 3} \Gamma(2 / 3)\left(\nu+\theta^{2} \alpha\right)^{1 / 3}},
$$

hence,

$$
c_{3}=\frac{2^{1 / 3} \sqrt{\nu}}{\left(\nu+\theta^{2} \alpha\right)^{1 / 3}}=2^{1 / 3} \nu^{1 / 6}\left(1-\theta^{2} \frac{\alpha}{3 \nu}\right),
$$

and

$$
c_{3} \operatorname{Ai}\left(-2^{1 / 3} z\right)=(4 \nu)^{1 / 6} \operatorname{Ai}\left(-2^{1 / 3} z\right)+\theta \frac{2^{1 / 3} \alpha}{3 \nu^{5 / 6}} a_{\max }=(4 \nu)^{1 / 6} \operatorname{Ai}\left(-2^{1 / 3} z\right)+\frac{\theta}{47 \nu^{5 / 6}} .
$$

Now $\operatorname{Ai}\left(-2^{1 / 3} \gamma\right)=0$ and c_{4} can be found from

$$
y(\gamma)=c_{4} \sqrt{\gamma} J_{1 / 3}\left(\frac{(2 \gamma)^{3 / 2}}{3}\right)+\theta_{1} R(\gamma)=\sqrt{\nu+\gamma \nu^{1 / 3}} J_{\nu}\left(\nu+\gamma \nu^{1 / 3}\right) .
$$

Combining the above estimate on R with (5) and (17) one obtains

$$
c_{4} \sqrt{z}\left|J_{1 / 3}\left(\frac{(2 \gamma)^{3 / 2}}{3}\right)\right|<11.1 / \sqrt{\nu} .
$$

This yields

$$
\left|y(z)-(4 \nu)^{1 / 6} \operatorname{Ai}\left(-2^{1 / 3} z\right)\right| \leqslant \frac{3 \cdot 2^{3 / 4} z^{9 / 4}}{5 \sqrt{\pi \nu}}+\frac{z^{1 / 4}}{2^{5 / 4} \sqrt{\pi} \nu^{7 / 6}}+\frac{1}{47 \nu^{5 / 6}}+\frac{11.1}{\sqrt{\nu}}:=\phi(\nu, z),
$$

giving

$$
\begin{aligned}
J_{\nu}\left(\nu+\nu^{1 / 3} z\right) & =\frac{(4 \nu)^{1 / 6} \operatorname{Ai}\left(-2^{1 / 3} z\right)}{\sqrt{\nu+\nu^{1 / 3} z}}+\theta \frac{\phi(\nu, z)}{\sqrt{\nu+\nu^{1 / 3} z}} \\
& =\frac{2^{1 / 3}}{\nu^{1 / 3}} \operatorname{Ai}\left(-2^{1 / 3} z\right)+\theta_{1} \frac{z}{2^{2 / 3} \nu} \operatorname{Ai}\left(-2^{1 / 3} z\right)+\theta \frac{\phi(\nu, z)}{\sqrt{\nu}} .
\end{aligned}
$$

By $|\operatorname{Ai}(-x)|<\pi^{-1 / 2} x^{-1 / 4}$ (see [3]) the error term here does not exceed

$$
\left|\frac{z^{3 / 4}}{2^{3 / 4} \sqrt{\pi} \nu}+\frac{\phi(\nu, z)}{\sqrt{\nu}}\right| .
$$

Elementary calculations show that the maximum of this function in the region $\nu \geqslant 1 / 2,0 \leqslant$ $z \leqslant \nu^{4 / 15}$ is less than $\left(4 z^{9 / 4}+21\right) / 7$. This completes the proof.

To prove Theorem 2 we repeat the arguments of Lemma 6 with the approximation to $J_{\nu}(\nu+$ $\nu^{1 / 3} z$) given by (1) instead of inequality (4). We need the following standard asymptotics:

$$
\begin{gather*}
J_{\nu}(x)=\sqrt{\frac{2}{\pi x}} \cos \left(x-\omega_{\nu}\right)+O\left(x^{-3 / 2}\right) \tag{21}\\
\operatorname{Ai}(-x)=\frac{\cos (\zeta-\pi / 4)}{\sqrt{\pi} x^{1 / 4}}+O\left(x^{-7 / 4}\right), \quad \zeta=\frac{2 x^{3 / 2}}{3} . \tag{22}
\end{gather*}
$$

Proof of Theorem 2. By Theorem 1 we have

$$
y(z)=\sqrt{\nu+\nu^{1 / 3} z} J_{\nu}\left(\nu+\nu^{1 / 3} z\right)=(4 \nu)^{1 / 6} \operatorname{Ai}\left(-2^{1 / 3} z\right)+\mathcal{R}_{\nu}(z)
$$

where $\mathcal{R}_{\nu}(z)=O\left(z^{9 / 4} \nu^{-1 / 2}\right)$. Writing the error term \mathcal{R}_{ν} as in the proof of Lemma 6 and splitting the range of integration into two intervals, we have

$$
\mathcal{R}_{\nu}(z)=\int_{0}^{1} U(z, t) u(t) d t+\int_{1}^{z} U(z, t) u(t) d t=I_{1}+I_{2}
$$

where u is defined by (18) and

$$
U(z, t)=2 \pi \sqrt{\frac{t z}{27}}\left(J_{-1 / 3}\left(\zeta_{t}\right) J_{1 / 3}\left(\zeta_{z}\right)-J_{-1 / 3}\left(\zeta_{z}\right) J_{1 / 3}\left(\zeta_{t}\right)\right), \quad \zeta_{x}=\frac{(2 x)^{3 / 2}}{3}
$$

First, we estimate I_{1}. Using the classical inequality [4, equation (10.14.4)],

$$
\left|J_{\nu}(x)\right| \leqslant \frac{|x|^{\nu}}{2^{\nu} \Gamma(\nu+1)}, \quad x \in \mathbb{R}, \nu>-\frac{1}{2}
$$

we obtain that $U(z, t)=O(1)$ for $0 \leqslant t \leqslant z \leqslant 1$. As well, $|y(t)|=O\left(\nu^{1 / 6}\right)$ by Theorem 1 , and for the factor at $y(z)$ in the right-hand side of (18) we have

$$
\begin{equation*}
\frac{8 t^{3}+12 \nu^{2 / 3} t^{2}-1}{4\left(\nu^{2 / 3}+t\right)^{2}}=3 t^{2} \nu^{-2 / 3}+O\left(t^{3} \nu^{-4 / 3}\right) \tag{23}
\end{equation*}
$$

hence $I_{1}=O\left(\nu^{-1 / 2}\right)$.
Now we estimate I_{2}. By (21) for $1 \leqslant t \leqslant z$, we have

$$
\begin{aligned}
U(z, t) & =\frac{\sin \left(\zeta_{z}-\zeta_{t}\right)}{\sqrt{2} t^{1 / 4} z^{1 / 4}}+O\left(t^{-7 / 4} z^{-1 / 4}\right) \\
y(t) & =(4 \nu)^{1 / 6} \mathrm{Ai}\left(-2^{1 / 3} t\right)+O\left(t^{9 / 4} \nu^{-1 / 2}\right) \\
& =\frac{2^{1 / 4} \nu^{1 / 6} \cos \left(\zeta_{t}-\pi / 4\right)}{\sqrt{\pi} t^{1 / 4}}+O\left(t^{9 / 4} \nu^{-1 / 2}+t^{-7 / 4} \nu^{1 / 6}\right)
\end{aligned}
$$

Together with the assumption $z=o\left(\nu^{4 / 15}\right)$ and (23) this yields

$$
\begin{equation*}
I_{2}=A \int_{1}^{z} t^{3 / 2} \cos \left(\zeta_{t}-\frac{\pi}{4}\right) \sin \left(\zeta_{z}-\zeta_{t}\right) d t+O\left(z \nu^{-1 / 2}+z^{9 / 2} \nu^{-5 / 3}\right) \tag{24}
\end{equation*}
$$

where $A=3 /(2 z)^{1 / 4} \sqrt{\pi \nu}$. It is left to estimate the last integral. With a little trigonometry and integrating by parts we have

$$
\begin{aligned}
& \int_{1}^{z} t^{3 / 2} \cos \left(\zeta_{t}-\frac{\pi}{4}\right) \sin \left(\zeta_{z}-\zeta_{t}\right) d t \\
& \quad=\frac{1-z^{5 / 2}}{5} \cos \left(\zeta_{z}+\frac{\pi}{4}\right)+\frac{1}{2} \int_{1}^{z} t^{3 / 2} \sin \left(\zeta_{z}-2 \zeta_{t}+\frac{\pi}{4}\right) d t \\
& \quad=\frac{1-z^{5 / 2}}{5} \cos \left(\zeta_{z}+\frac{\pi}{4}\right)-\frac{1}{4 \sqrt{2}} \int_{1}^{z} t \cos \left(\zeta_{z}-2 \zeta_{t}+\frac{\pi}{4}\right) d t+\frac{1}{4 \sqrt{2}} \int_{1}^{z} \cos \left(\zeta_{z}-2 \zeta_{t}+\frac{\pi}{4}\right) d t \\
& \quad=-\frac{z^{5 / 2}}{5} \cos \left(\zeta_{z}+\frac{\pi}{4}\right)+O\left(z^{2}\right)
\end{aligned}
$$

Finally, we obtain

$$
I_{2}=-\frac{z^{5 / 2}}{5} A \cos \left(\zeta_{z}+\frac{\pi}{4}\right)+O\left(z^{7 / 4} \nu^{-1 / 2}+z^{9 / 2} \nu^{-5 / 3}\right)
$$

and

$$
z^{-9 / 4} \sqrt{\nu} \mathcal{R}_{\nu}(z)=z^{-9 / 4} \sqrt{\nu}\left(I_{1}+I_{2}\right)=-\frac{3 \cos \left(\zeta_{z}+\pi / 4\right)}{5 \cdot 2^{1 / 3} \sqrt{\pi}}+O\left(z^{-1 / 2}+z^{9 / 4} \nu^{-7 / 6}\right)
$$

By the assumption $z<\nu^{4 / 15}$ the error term here is of order $O\left(z^{-1 / 2}\right)$. Thus we conclude that

$$
\limsup _{\nu \rightarrow \infty} \limsup _{z \rightarrow \infty} z^{-9 / 4} \sqrt{\nu}\left|\mathcal{R}_{\nu}(z)\right|=\frac{3}{5 \cdot 2^{1 / 3} \sqrt{\pi}}
$$

This completes the proof.

References

1. Á. Elbert and A. Laforgia, 'A lower bound for $J_{\nu}(\nu)$ ', Appl. Anal. 19 (1985) 137-145.
2. S. Finch, 'Bessel function zeroes', Mathematical constants (supplementary material) (Cambridge University Press, Cambridge, 2003).
3. I. Krasikov, 'Approximations for the Bessel and Airy functions with an explicit error term', LMS J. Comput. Math. to appear.
4. F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark (eds), NiST handbook of mathematical functions (Cambridge University Press, Cambridge, 2010).
5. C. K. Qu and R. Wong, "Best possible" upper and lower bounds for the zeros of the Bessel function $J_{\nu}(x)^{\prime}$, Trans. Amer. Math. Soc. 351 (1999) 2833-2859.
6. G. Szegö, Orthogonal polynomials, Colloquium Publications 23 (American Mathematical Society, Providence, RI, 1975).

Ilia Krasikov
Department of Mathematical Sciences
Brunel University
Uxbridge UB8 3PH
United Kingdom
mastiik@brunel.ac.uk

