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Gravity-driven flow of liquid bridges between
vertical fibres
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Liquid bridges are formed when a flowing liquid interacts with multiple parallel fibres,
as relevant to heat and mass transfer applications that utilize flow down fibre arrays.
We perform a comprehensive experimental study of flowing liquid bridges between two
vertical fibres whose spacing is controlled dynamically in our experimental apparatus.
The bridge patterns exhibit a regular periodic spacing typical of absolute instability for
low flow rates, but become spatially inhomogeneous above a critical flow rate where
the base flow is convectively unstable. The shapes of individual bridges and their
associated dynamics are measured, as they depend upon the liquid properties, and fibre
geometry/spacing. The bridge length scales similarly to static bridges between parallel
fibres. The bridge dynamics exhibits a dependence on viscosity and scale with the
impedance. A simple energy balance is used to derive a scaling relationship for the bridge
velocity that captures the general trend of our experimental data. Finally, we demonstrate
that these scalings similarly apply when the fibres are dynamically separated or brought
together.

Key words: liquid bridges, thin films, pattern formation

1. Introduction

Bead-on-fibre patterns form in liquids flowing down a fibre due to hydrodynamic
instabilities, such as the Kapitza (Ter Haar 2016) and Plateau–Rayleigh (Plateau 1873;
Rayleigh 1878) instabilities. Such flows have received increased attention over the past
decade, in part due to nature’s nifty use of bead-on-fibre structures for water harvesting
and transport (Zheng et al. 2010; Ju et al. 2012; Xue et al. 2014; Guo & Tang 2015), and our
attempts to imitate it may help to curb the anticipated global water crisis (Shi et al. 2018;
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Figure 1. Liquids between fibres. (a) Schematic of flow down a fibre array showing bead-on-fibre patterns
when the fibre spacing is large, and interactions between adjacent fibres when the fibre spacing is small,
resulting in a mix of traditional bead-on-fibre patterns and bridge patterns. Inset images show associated
bead-on-fibre and bridge patterns with a 3 mm scale bar. (b) A small liquid volume suspended between two
parallel fibres of radius r can take on a rounded drop-like shape that transitions to a thin column shape as the
fibre gap approaches w ≈ 2

√
2 r (Protiere, Duprat & Stone 2013). The dimensions of the fibre radius r and gap

w determine the length of the liquid profile � for a given volume V .

Sadeghpour et al. 2019; Zeng, Sadeghpour & Ju 2019; Moncuquet et al. 2022; Jin et al.
2023). These high surface area flows are suitable for numerous heat and mass transfer
applications, including heat exchange (Zeng et al. 2017), particle capture (Sadeghpour
et al. 2021), aerosol capture (Labbé & Duprat 2019) and gas absorption (Chinju, Uchiyama
& Mori 2000; Migita, Soga & Mori 2005). In practice, optimizing mass and heat transfer
requires parallelization through large vertical fibre arrays whose size is often constrained
by the system geometry (cf. figure 1a). Recent investigations have explored the role of fibre
spacing in determining the critical fibre density where isolated bead-on-fibre patterns are
formed (Wagstaff et al. 2023) and how this compares to a structured packing with the
same dimensions (Zeng et al. 2017), in the context of wet scrubbers. When the fibres are
closely spaced, the beads can interact with adjacent fibres forming flowing liquid bridges,
as shown in figure 1(a). In this study, we present an experimental investigation of liquid
bridges flowing between vertical fibres, aiming to contribute to the existing literature by
elucidating the role of a base flow on bridge shape and dynamics.

Early studies on liquid–fibre interactions were motivated by textile applications (Minor
et al. 1959; Kissa 1981; Kawase et al. 1986; Chen et al. 2001; Patnaik et al. 2006). In this
context, Princen (1970) provided a detailed mathematical treatment for the equilibrium
configuration of liquid confined between parallel fibres. Princen observed the existence of
two states: (1) a rounded drop profile; and (2) a column profile that is convex outwards,
extends further along the fibres, and is well predicted by his theoretical formulation. These
two states are shown in figure 1(b). A number of recent investigations have focused on
the transition between these two equilibrium states. For example, the wettability of the
two parallel fibres was considered by Lukáš et al. (2006), who determined the transition
criteria for complete wetting, partial wetting and super-hydrophobic surfaces, and reported
hysteretic behaviour, which was later explored in detail by Wang & Schiller (2021) using
lattice Boltzmann simulations.
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Gravity-driven liquid bridges between vertical fibres

Protiere et al. (2013) determined empirically the transition point between the drop and
column profile, and showed that it depends critically upon the volume V , fibre gap w,
and fibre radius r. They showed that when the volume of liquid is small (V/r3 < 700),
the transition point is w = 2

√
2 r. However, both states can exist for large volumes.

Additionally, they derived a scaling law for the bridge length by considering the relevant
variables � = f (w, V, r) and obtaining three dimensionless groups �/r = f (w/r, V/r3)
governing the problem. They recognized the intuitive dependence of � on V , and defined a
composite parameter (�/r)/(V/r3) = �r2/V , similar to that defined previously by Duprat
et al. (2012), which explained their experimental data. Their experimental results showed
�r2/V ∼ w/r. Additional works have addressed more realistic scenarios observable in
nature, namely elastic and non-parallel fibres. Duprat et al. (2012) explored the shape
transition and elastocapillary adhesion of drops between flexible fibres, showing that the
drop could spread completely, partially or not at all, and that this distinction depends
upon the drop volume and fibre geometry and wetting properties. Furthermore, varying
the tension of flexible parallel fibres can ‘zip’ them together or cause the breakup of the
liquid drop (Duprat & Protiere 2015). Fibres with dissimilar radii (Sauret et al. 2015a) and
random orientation (Sauret et al. 2015b) have also been considered and compared with
the theoretical and experimental results for equivalent and parallel fibres (Princen 1970;
Protiere et al. 2013).

The results above provide physical insight into the static equilibrium shape of a liquid
between parallel fibres. The literature on the dynamics of liquids between parallel fibres is
comparatively sparse and mostly limited to the extensional dynamics of liquid bridges,
which are useful for characterizing viscoelastic fluid properties through thinning and
breakup (Sridhar et al. 1991; Entov & Hinch 1997), and have wide-ranging industrial and
biological applications, as reviewed by Montanero & Ponce-Torres (2020). Furthermore,
the capillary and viscous forces associated with bridges in extension have been explored
(Pitois, Moucheront & Chateau 2000), and viscosity has been shown to play a critical role
in bridge rupture (Mazzone, Tardos & Pfeffer 1987). To our knowledge, the addition of a
base flow to the drop between fibres system has yet to be explored. The shear dynamics
of bridges is relevant to numerous heat and mass transfer applications mentioned earlier,
as well as more traditional processes such as fibre coating (Quéré 1999), where liquid
bridging fibres leads to partially coated and uneven surfaces. For example, Kurtyigit et al.
(2023) showed the potential for static bridges in a cross-flow to capture particles. However,
a base flow, which is essential for transporting the particle-laden bridges, has not been
considered. The dynamics of beads on fibres is affected by base flow stability, resulting
in bead patterns and interactions (Kliakhandler, Davis & Bankoff 2001; Duprat et al.
2007), as well as film-mediated and aerodynamic interactions that can spatially orient
beads along a fibre (Duprat et al. 2009) and across multiple parallel fibres (Wilson et al.
2023), respectively. Here, we present an experimental study of flowing bridge patterns
driven by gravity that introduce inertial and viscous forces that were unimportant in the
previous work on the equilibrium shape between fibres (Protiere et al. 2013).

We begin this paper by describing the experimental apparatus and protocol that we used
to create flowing liquid bridges between parallel fibres, as well as the image processing
techniques that define the dynamic liquid bridge properties, as discussed in § 2. In § 3, we
describe the formation of bridge-between-fibre patterns, and identify the conditions under
which steady patterns emerge. Our experimental results are presented in § 4 and highlight
how different experimental parameters impact the bridge pattern, as well as the shape and
speed of individual bridges. We also show how the bridge geometry can be controlled
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Figure 2. Experimental set-up and image analysis. (a) A syringe pump delivers a controlled flow to two
vertical fibres, spaced at distance w apart, and adjusted using a custom linear actuator. The inset illustrates
a typical bridge pattern with associated experimental variables. (b) A bridge pattern with midline shown as the
black dashed line is used to create (c) a spatiotemporal diagram that demonstrates both uniform spacing and
steady dynamics. (d) A binarized section (with liquid white) of the spatiotemporal diagram (black box in c)
shows the variable measurements (�, λ, f , vb).

using dynamic fibres. We offer concluding remarks in § 5, and provide recommendations
for future research directions and potential applications of thin film flow between fibres.

2. Experiment

Flowing liquid bridges were created using the experimental set-up in figure 2. A linear
actuator driven by an Arduino-controlled stepper motor was used to dynamically control
the spacing w between two vertical fibres. A microstep driver and vibration dampeners
were used so the fibres could be displaced smoothly for speeds between 0.01 mm s−1

and 4 mm s−1. The fibres were nylon monofilament with radius 0.15 mm ≤ r ≤ 0.95 mm,
tightened with inline tensioners to eliminate deformation-induced spreading (Duprat &
Protiere 2015) and fibre entanglement (Shi et al. 2020). An NE-1000 syringe pump was
used to apply a flow rate Q through a stainless steel nozzle of diameter rn onto the side
of a fibre that could interact with the neighbouring fibre while destabilizing. The resulting
bridge patterns were captured using a Phantom VEO-410L high-speed camera at a position
400 mm below the nozzle – a sufficient distance for capturing steady-state dynamics. An
LED panel was used as a backlight for all experiments.

Glycerol–water mixtures and silicone oil were used as the working fluids,
which provided a viscosity range μ = 9.5–699 mPa · s, surface tension range σ =
21.1–62.7 mN m−1, and density range ρ = 969–1250 kg m−3. The viscosity was measured
using a cone–plate shear rheometer (Anton Paar MCR 302), and the surface tension and
density were measured using an Attension Sigma 702 force tensiometer with a Wilhelmy
plate and density probe, respectively. Glycerol–water mixtures were used as our primary
working fluids because of their tunable viscosity and high surface tension, which was
critical to produce large asymmetric beads that could interact with a neighbouring fibre
at large w (Gabbard & Bostwick 2021a). The contact angle between the glycerol–water
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Gravity-driven liquid bridges between vertical fibres

mixtures and nylon fibres was φ = 65◦ ± 9.3◦, measured optically using the largest fibre
r = 0.95 mm. To capture wettability effects, we also tested silicone oils with symmetric
bead profiles for all r, limiting the range of interfibre spacing to w ≤ 1.5 mm (Wagstaff
et al. 2023). The relevant dimensionless parameters include the Reynolds number
Re ≡ ρvbw/μ ∼ 10−3–10−1 and Weber number We ≡ ρv2

bw/σ ∼ 10−4–101, indicating
that viscous and capillary forces both dominate inertial forces for the majority of tests. The
role of inertia may also be compared to gravity by comparing Fg/w2 = ρgV/w2 with the
dynamic pressure pd ∼ ρv2

b , which shows a negligible role of inertia when vbw/
√

gV ≤ 1.
This holds true for all experiments. The dominant role of viscosity and capillarity over
inertia leads us to also define the capillary number Ca ≡ vbμ/σ ∼ 10−2–10−1. Finally,
we define the Bond number Bo ≡ ρgw2/σ ∼ 10−1–100. Herein, the Bond number plays
a critical role in this gravity-driven capillary phenomena where the maximum w that we
could test for each liquid corresponds to Bo ≈ 1, or �c ≈ w, where �c = √

σ/ρg is the
capillary length.

Each experiment began by attaching and tensioning two dry fibres to the linear actuator.
The fibres were slowly brought together until they touched and then separated by a
user-defined distance w. The nozzle was oriented perpendicular to the fibres and positioned
carefully to touch a portion of one of the fibres but not the other. A flow rate Q was then
applied by the syringe pump for several minutes to achieve a steady pattern, which was
then imaged at 1000 f.p.s. The constant flow resulted in periodic bridge formation, which
ensured that each bridge flowed at a constant velocity on the thin film deposited by the
previous bridge. These steps were repeated for increasing Q until the flowing bridges began
to interact at a critical flow rate Q = Qc. All bridge patterns were qualitatively similar and
exhibited a periodic structure and uniform motion within a flow rate range Qb ≤ Q ≤ Qc,
which will be discussed in § 3.

We used MATLAB and ImageJ for image processing to extract the bridge properties
defined in figure 2(a). A frame from a typical experiment is shown in figure 2(b). The
dashed vertical line corresponds to the midpoint between the fibres. We construct the
spatiotemporal diagram shown in figure 2(c) by tracking the pixel column associated with
the midpoint with time. The orange diagonal lines correspond to the liquid bridge, where
the lines’ negative slope indicates downward motion. Additionally, the constant slope and
the even spacing between diagonal lines indicate that the bridges move at a constant
velocity and spacing – permitting easy data acquisition from the spatiotemporal diagram.
A small region of the spatiotemporal diagram is binarized and displayed in figure 2(d) with
the measurements extracted during image processing overlaid. These values are taken for
the full spatiotemporal diagram, and their mean and standard deviation are used for the
final value and error of each experiment. The average bridge volume is V = Q/f .

3. Phenomenology: forming the bridge pattern

Depositing a drop of non-volatile liquid with known volume between two fibres is
straightforward using a pipette. However, creating dynamic liquid bridges of known
volume is more challenging: a dynamic bridge sliding down two fibres will lose mass as it
coats the fibres, resulting in a non-constant size and speed. We circumvent this complexity
by forming a series of flowing bridges that (i) have nearly identical volumes due to their
periodic genesis, and (ii) do not change volume since they flow on the film deposited by
the previous bridge. These periodic bridges result from capillary instability of the flow
along a single fibre. The initial bead-on-fibre patterns grow in the transient region near
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the nozzle, and interact with the neighbouring nozzle periodically, thereby restructuring
the bead-on-fibre pattern into a bridge-between-fibres pattern, as shown in movie 1 of the
supplementary material, available at https://doi.org/10.1017/jfm.2024.794. We note that
this method faithfully reproduces the patterns that may arise in fibre arrays with high fibre
density – a scenario especially relevant for patterns that are not symmetric about the fibre
(Gabbard & Bostwick 2021a, 2023a; Eghbali et al. 2022; Cazaubiel & Carlson 2023).

Figure 3(a) plots bridge frequency f (red, left-hand axis) and bridge volume V (blue,
right-hand axis) against flow rate Q. As flow rate Q increases, bridge frequency f increases
monotonically until a critical flow rate Qc, beyond which the bridges interact, resulting in
a stark increase in frequency variability. These interactions result from mass differences in
the bridges that originate from a convectively unstable base flow in the initial coating
on a single fibre, which causes growing beads to interact before forming bridges of
different mass. Consequently, all data points associated with flow rates exceeding Qc have
been excluded from this study. Movie 2 of the supplementary material shows a typical
coalescence event. For low flow rates Q < Qb, the film deposited by a bridge destabilizes
into a bead-on-fibre pattern before the subsequent bridge arrives. The destabilization is
due to the Plateau–Rayleigh instability and has a typical time scale τPR = 3μr4/σh3

0,
where h0 is the uniform coating of the base flow (Gallaire & Brun 2017). Thus film
breakup occurs when τbridge > τPR or f < σh3

0/3μR4. The overlaid experimental images
show increased bridge density with Q and interacting bridges above Qc. Despite the
monotonic relationship between f and Q, the estimated bridge volume V = Q/f exhibits
non-monotonic behaviour as V achieves a local maximum before Qc. This implies that
a decrease in bridge size can be a precursor to the transition to convectively unstable
flow, and is a sign of nonlinearity. This non-intuitive behaviour aligns with previous
observations of thin film flow down a fibre (Gabbard & Bostwick 2021b). We note that
while the bridge volume V depends upon the flow rate Q, its effect is minor. To achieve a
larger range of V , the nozzle radius rn is varied between 0.6 and 1.45 mm, resulting in a
large range of bridge volumes, V = 6.4–53 mm3.

Figure 3(b) shows the structure of a bridge pattern with film breakup Q < Qb. The beads
seen below the downward flowing bridge cause two undesired oscillations in the bridge
properties: (i) the bridge length increases as it passes over beads, then decreases over the
dry region; and (ii) since the beads on neighbouring fibres can be at different heights, the
bridge can oscillate in the image plane. For Qb ≤ Q ≤ Qc, the bridges flow smoothly on
a uniform film coating the fibres. Figure 3(c) shows the structure of the bridges that we
explored. The two highlighted areas show close-up images of the meniscus connecting
the front and back of the bridge with the thin film for glycerol–water mixtures, showing
that no contact line is present – a feature that we will leverage to develop a simple model
of the bridge dynamics. A comparison of each flow type and a close-up of the menisci
connecting the bridge to the thin film coating the fibre are included in movies 3 and 4 of
the supplementary material.

4. Results

We performed 1112 experiments over an extensive range of system geometry, including
fibre radius r and interfibre spacing w, and liquid properties, including surface tension
σ and viscosity μ. We quantify the bridge patterns through the bridge geometry �, and
bridge dynamics vb, λ. We begin by showing the experimental bridge patterns and how
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Figure 3. (a) Bridge frequency f (red, left-hand axis) and bridge volume V (blue, right-hand axis) plotted
against flow rate Q, with inset images showing the bridge patterns. The shaded areas represent the data
collection range: to the left, thin films between bridges destabilize due to the Plateau–Rayleigh instability; to
the right, the shaded area and the inset’s rightmost bridge pattern denote convectively unstable base flows.
(b) At low flow rates, the bridge frequency is low, and the film between subsequent beads can break up.
(c) When the frequency is sufficiently large to avoid film breakup, a steady bridge pattern forms and flows
down the fibres on a uniform film. The highlighted areas indicate the meniscus linking the bulk fluid to the thin
film on the fibres. For reference, the fibre radius is r = 0.25 mm.

the bridge length � depends on the system parameters, comparing our findings with those
for static bridges. We then show how the bridge velocity vb depends upon the experimental
parameters, including the viscosity over an order of magnitude. Finally, we set the fibres
in motion and examine � and vb as they converge or diverge.

To begin, we show some typical qualitative trends observed in our data. Figure 4(a)
shows how the liquid bridge shape changes with increasing fibre spacing w. Here, the
bridge length � decreases nonlinearly with increasing w, which is consistent with the
behaviour expected for a static drop formed between two fibres (Protiere et al. 2013).
A significant reduction in � is particularly evident between the first two images, as this
corresponds to the transition from a column-like shape to a drop-like shape for small w.
As w increases further, the changes in � become less pronounced until the bridges detach
from one of the fibres, causing them to flow asymmetrically down a single fibre thereafter.
Figure 4(b) shows how the liquid bridge shape changes with viscosity μ. Here, we note
that viscosity has a negligible effect on �, but does play a significant role in the dynamics,
as we will discuss. For reference, we include the average bridge volume V in figures 4(a,b),
as this implicitly affects the length �.

Figure 4(c) plots bridge length � against fibre spacing w for all experiments with
r = 0.25 mm and μ = 90 mPa · s. The colour bar correlates the marker colour with the
estimated volume V of the bridge. Two key trends are observed: (i) � decreases nonlinearly
as w increases; and (ii) � increases with volume, as shown by the transition from blue
to red data markers as � increases for constant w. The velocity vb from the same set of
experiments is shown in figure 4(d) against fibre spacing w. The velocity increases with w
and shows a slight positive trend with V . These trends are typical of all experiments.
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Figure 4. Bridge geometry. (a,b) Typical bridge profile for (a) increasing fibre gap w with fixed viscosity
μ, and (b) increasing viscosity μ with fixed fibre gap w, both with rf = 0.25 mm. (c) Bridge length � and
(d) velocity vb against fibre gap w for bridge volume 11.5 ≤ V ≤ 22 mm3, where the marker colour corresponds
to the volume given in the colour bar. The fibre radius is r = 0.25 mm, and liquid viscosity is μ = 90 mPa · s.
Bridge length decreases nonlinearly as w increases, while bridge velocity increases with w and increases with V .

4.1. Bridge shape
The shape of the bridge between parallel fibres can take on a range of complex profiles
with associated length �, width w, and thickness h. The primary shape descriptor is �,
which is readily measurable and unbounded. We note that the bridge width is essentially
determined by the user-defined fibre gap w and radius r, and any variations in thickness
h are relatively small compared with changes in �. As mentioned previously for the static
case (Protiere et al. 2013), the bridge length varies significantly between the rounded drop
state (small �) and thin column state (large �), with a sensitive transition region.

Since the bridge length � depends on volume V , we express � as a function of fibre gap
w and volume V , and apply dimensional analysis with V1/3 the characteristic length. We
find that when r and σ are constant, �/V1/3 ∼ w/V1/3. Figure 5(a) plots �/V1/3 against
w/V1/3 for a range of viscosities μ and fixed fibre radius rf = 0.25 mm, showing a rapid
decrease in � with increasing w that approaches a horizontal asymptote as w/V1/3 → 1.
Note the vertical asymptote for small w, below which � is too large to form bridge patterns
and instead results in infinite or interacting columns. The data suggest � = f (w). If we
consider a bridge with constant volume V = w�h and assume that changes in w alter �

such that V/h = �w is constant, then an inverse relationship is expected. The dashed line
in figure 5(a) shows the data fit to a curve of the form � ∼ 1/w. The data fit the trend
except at low w, where the transition from a column to drop occurs, and a swift change
in bridge thickness is expected. Additionally, these results verify that μ plays a negligible
role in the shape geometry.

997 A74-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

79
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.794


Gravity-driven liquid bridges between vertical fibres

0
0

0.2

0.4

0.6

0.8

1.0

1.2

5

n ≈ 7/4
(R2  = 0.9)

10 15 20

6

5

4

3

2

1
0.2 0.4 0.6 0.8 1.0 1.2

�
r2 /

V

�
r2 /

V

w/V1/3 w/r

w/r�
/
V1/

3

In
te

ra
ct

in
g 

co
lu

m
ns

r = 0.95 mm
r = 0.6 mm
r = 0.35 mm
r = 0.25 mm
r = 0.15 mm

μ = 405 mPa · s 
μ = 195 mPa · s 
μ = 90 mPa · s 
μ = 25 mPa · s 

10–3

10–2

10–1

100

100 101

(a) (b)

Figure 5. (a) Dimensionless bridge length �/V1/3 plotted against dimensionless fibre gap w/V1/3 as it depends
upon the viscosity μ, for r = 0.25 mm. The dashed line fits the data to the scaling � ∼ 1/w, expected for bridges
with equal thickness. (b) Dimensionless bridge length �r2/V plotted against aspect ratio w/r for all data. The
data collapse along a single trend that closely follows the Princen (1970) prediction for low aspect ratio (dashed
line), and approaches a small, nearly constant value as aspect ratio increases. The inset shows the data plotted
on a logarithmic scale and overlaid with a power-law fit (solid line) with power-law index n ≈ 7/4 (R2 = 0.9).

If we expand our analysis to include r, such that � = f (w, V, r), then we arrive at the
scaling law for static bridges between fibres given by Protiere et al. (2013) and discussed in
§ 1. We test this scaling in figure 5(b), which plots �r2/V against w/r for all experiments.
The data markers indicate the fibre radius r. Our data follow a single trend and realize
many of the same conclusions shown in figure 5(a). The data closely mirror those for static
bridges, and show that this geometric scaling accurately captures the shape of flowing
liquid bridges between fibres. The dashed line for small aspect ratio w/r corresponds to the
analytical expression for a static liquid column between parallel fibres derived by Princen
(1970) and compared favourably with static bridges by Protiere et al. (2013) for contact
angle φ = 0◦ (see (A1)–(A3)). The derivation can be found in Appendix A for reference.
This predicted line is calculated for a contact angle φ = 0◦, a convenient assumption
validated by the thin film of the same fluid that the bridge flows along (cf. figure 3c).
The inset re-plots the data on a logarithmic scale and fits the data to a power-law trend
across several decades of dimensionless bridge length. The power-law index is n ≈ 7/4,
with R2 = 0.9.

4.2. Bridge dynamics
The dynamics of flowing bridges is quantified by their velocity vb, which is constant for
patterns with Qb < Q < Qc. We begin with glycerol–water mixtures with fixed fibre size
r = 0.25 mm, which suggests that vb = f (w, V, g), resulting in two dimensionless groups:
vb/V1/6g1/2 with vg = V1/6g1/2 being the gravitational velocity scale, and w/V1/3, where
V1/3 is the characteristic length. Figure 6(a) plots the dimensionless velocity vb/V1/3g
against the dimensionless fibre spacing w/V1/3, as it depends upon viscosity μ, which
reveals a power-law trend for each data set that shifts upwards with decreasing μ. This
result suggests that vb/vg = A(μ) f (w/V1/3). We assume that A(μ) takes the form 1/μ,
and re-plot the data in the inset. The collapse validates our assumption and provides a
useful scaling when r is neglected.
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Figure 6. Bridge dynamics. (a) Dimensionless bridge velocity vb/V1/6g1/2 against dimensionless fibre gap
w/V1/3 as it depends upon viscosity μ for all data with fibre radius r = 0.25 mm. The inset shows a power-law
scaling (solid line) collapse of the data, with coefficient A as a function of μ, proportional to 1/μ, where A
is the coefficient multiplying the independent variable. (b) Dimensional bridge velocity vb against impedance
Z = μ�/Vw as it depends upon the fibre radius r. (c) Bridge velocity against predicted velocity vp = ρgw2/8μ

for all experiments. The data trend linearly with the predicted velocity (R2 = 0.96), and reveal a dissipation
factor ζ = 1/0.89 ≈ 1.12.

Figure 4(d) revealed that vb has a positive linear trend with w, and figure 6 shows that it
is inversely proportional to μ. These observations form a basis for determining the viscous
resistance or impedance Z as the viscous pressure per fluid volume velocity. Thus we need
to estimate the cross-sectional area of the bridge, Ab. Letting Ab = V/�, we determine
Z = μ�/Vw. In figure 6(b), we plot vb against Z, and note that our data collapse to a
single trend, suggesting that the impedance is defined correctly for this system, and is the
primary determinant of the bridge velocity. Although this is true across all fibre sizes and
glycerol–water mixtures, this expression is not generalized, as it involves the comparison
of dissimilar dimensional quantities. Despite this, it provides insight into how viscous
dissipation influences the bridge velocity, and gives credence to our assumption that Ab =
V/�.

Viscosity μ and bridge volume V play a critical role in determining the bridge velocity
vb, as shown in figure 6(b). This observation suggests that the velocity can be determined
by balancing the viscous dissipation and gravity, particularly in situations where � is small
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and vb is large. Neglecting capillary effects, the energy rates associated with potential
gravitational energy and viscous dissipation in the bulk are

Φg ≈ ρgVvb, (4.1a)

Φμ ≈ ζ2μ

(
∂v

∂r

)2

V. (4.1b)

Here, ζ is an empirical coefficient associated with the dissipation, and ∂v/∂r is the shear
rate, ∂v/∂r ≈ 2vb/w. The rate balance becomes

ρgVvb = ζ
8μVv2

b

w2 , (4.2)

which gives a predictive scaling for the bridge velocity:

vb ∼ 1
ζ

ρgw2

8μ
. (4.3)

Figure 6(c) plots the bridge velocity vb against the scaling defined in (4.3), showing
a collapse of all experimental data onto the curve vb = 0.89(ρgw2/8μ), with a high
coefficient of determination (R2 = 0.96), and suggesting an empirical dissipation factor
ζ ≈ 1.12. We note that this model is accurate across practical ranges of w and r, as well
as a large range of fluid properties (σ, μ, ρ).

4.3. Bridges flowing between dynamic fibres
We can actively control the bridge length and velocity by adjusting the separation distance
w = w(t). We explore this by forming a steady pattern of liquid bridges and then actuating
one fibre, moving it towards or away from the other fibre at a velocity vf . Figure 7(a)
illustrates the two cases, where the fibres were brought together (vf < 0) or separated
(vf > 0) at constant speed. The midline between the fibres was tracked over time and then
converted to binary spatiotemporal diagrams for data extraction, as shown in figure 7(b).
Here, the upper diagram shows the fibres converging, resulting in elongating bridges
(white), and the lower diagram shows the fibres diverging until the bridges detach from
one of the fibres. In order to determine the volume V inside the bridges, a steady pattern
was first formed at a fixed w and used to determine the frequency, thereby yielding an
estimate for V . At time t = 0 s, the fibre was set in motion, and the changes in bridge
shape and speed were tracked.

In § 4.1, we found that the appropriate dimensionless form of the bridge length is �r2/V .
In figure 7(c), we plot the dimensionless bridge length against time t for fibre separation
rates vf ranging from 0.1 mm s−1 to 2 mm s−1. Since each test began with w = 1 mm,
their initial lengths are similar; however, they evolve differently based on the vf values.
For higher vf , the bridge length decreases faster and reaches its minimum value before
detaching from a fibre more quickly, as indicated by the farthest right point along each
data set. We note that a qualitative similarity exists between the trends and collapse upon
re-plotting the data against aspect ratio w/r, as shown in the inset. Thus for the range of
vf tested, the velocity plays a minor role on the length of the bridge at a given w, and
we can expect our previous scaling to hold. Figure 7(d) plots the dimensionless bridge
length against aspect ratio w/r for all experiments with dynamic fibres. The blue and red
data show the dimensionless length during fibre actuation for decreasing and increasing
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Figure 7. Geometry of a liquid bridge between dynamic fibres. (a) Schematic illustrating the two scenarios,
with the fibres (1) being brought together at a constant velocity vf < 0 (left to right), or (2) being separated at
a constant velocity vf > 0 (right to left). (b) Spatiotemporal diagram of the bridge pattern midline as the fibres
are brought together (top) and separated (bottom) at 0.5 mm s−1. The bridge pattern is established while the
fibres are static, resulting in uniform white lines, and then evolves with time once the fibres begin actuating
at t = 0 s, as marked by the vertical red line. (c) Dimensionless bridge length �r2/V against time t for fibres
of size r = 0.25 mm separating at velocities 0.1 ≤ vf ≤ 2 mm s−1. The inset shows the dimensionless bridge
length against aspect ratio w/r. (d) Dimensionless bridge length �r2/V against aspect ratio w/r as the fibres
were brought together (blue lines) or separated (red lines). Data from experiments with increasing fibre radius
r are differentiated by progressively darker shades. Grey markers represent static-fibre test results, while the
dashed line indicates the theoretical length (Princen 1970). Data from dynamic-fibre tests are consistent with
static-fibre observations and theoretical predictions at low aspect ratios.

spacing, respectively. Three fibre radii were tested, and the coloured data are darkened to
show increasing r. Additionally, three viscosities μ were used, ranging from 9.5 mPa · s to
699 mPa · s. The static-fibre data (grey markers) and theoretical curve from Princen (1970)
from figure 5(b) are included, and show that the dynamic-fibre results directly overlay the
static-fibre results. Thus we conclude that this scaling is appropriate even when the fibre
spacing evolves, and holds for separation rates up to vf = 2 mm s−1.

Figure 8 plots the bridge velocity vb against time t for the eight different separation rates
vf ranging from 0.1 mm s−1 to 2 mm s−1 for fibre radius r = 0.25 mm. As vf increases, the
velocity increases at a higher rate, leading to bridge detachment at smaller t. We again note
the similarity among tests, and re-plot our data in terms of the fibre spacing w. Figure 8(b)
shows vb against the aspect ratio w/r for the tests shown in figure 8(a). Again, we see that
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Figure 8. Bridge velocity between dynamic fibres. (a) Bridge velocity vb against time t for fibres of size
r = 0.25 mm separating at 0.1 mm s−1 ≤ vf ≤ 2 mm s−1. (b) Bridge velocity vb against aspect ratio w/r for
the eight separation speeds detailed in (a). The trend of vb with respect to w/r is invariant with respect to
separation rate.

the data collapse along a single trend, irrespective of vf . The trend is approximately linear,
matching the empirically determined dependence of vb on w. We therefore conclude that vf
plays a minor role in setting � and vb, rendering our conclusions from the static-fibre tests
applicable for fibres converging or diverging at rate 2 mm s−1 or below. This demonstration
of active control over shape and speed represents a novelty among liquid–fibre systems,
and can be realized using actuators on individual fibres or using non-contact light-actuated
materials (Bao et al. 2023).

5. Concluding remarks

In this study, we conducted an extensive experimental investigation of the shape and
dynamics of flowing liquid bridges. We described a method for producing flowing bridge
patterns, and elucidated the flow rate range associated with homogeneous bridge patterns.
We discussed some of the general trends observed, namely that the bridge length �

is independent of viscosity but sensitive to changes in volume V and fibre spacing w.
A dimensionless bridge length is defined following the work of Protiere et al. (2013), and
scales with the aspect ratio w/r for all our experiments. We derived a simple model for
the bridge velocity by balancing the driving gravitational force with viscous dissipation,
which showed good agreement with our experimental data. Finally, we showed that our
results are robust even when the fibres are mobile, such that scalings for the bridge length
and bridge velocity are unaffected whenever the separation rate is v < 2 mm s−1.

Our results provide valuable practical insights into recent advances in heat and mass
transfer applications that utilize bead-on-fibre flows in fibre arrays. In these systems,
unintentional flowing bridges can emerge due to optimizing fibre density in a constrained
geometry. However, flowing bridges can also be desirable to optimize liquid–fibre systems.
For instance, they can exhibit diverse shapes and speeds compared to conventional
bead-on-fibre patterns, and mobile fibres can provide active control over bridge properties,
as shown in figures 7 and 8. Furthermore, the use of liquid between actuated fibres
has already shown the potential to transport and mix drops (Khattak et al. 2024). Our
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Slinky

Bridge

τdelay τdelay

Top
Bottom

Figure 9. Image sequence of a liquid column between two dry fibres that are being separated at a constant rate
shows that the bridge contracts towards its centre of mass and then descends along the fibres due to gravity.
For short time τ < τdelay, the bridge’s motion predominantly transitions its shape between column-like and
drop-like, after which gravity causes net drop motion. This delay in the onset of descending drop motion is
analogous to the dynamic behaviour observed in the ‘falling slinky’ phenomenon, where a stretched slinky
appears to hover momentarily before collapsing.

findings can further advance liquid control and transport between fibres in innovative and
bio-inspired systems (Meng et al. 2014; Wang et al. 2017). Furthermore, flowing liquid
between fibres is common in fog collectors, as observed in the laboratory (Shi et al. 2018)
and in the field (Moncuquet et al. 2022). Thus novel geometries for water harvesting
(Bintein et al. 2023) and materials capable of simultaneously harvesting and cleaning
water (Ghosh 2023) offer impactful opportunities for further research. Our findings offer
valuable physical insights into flowing liquid bridges, with the potential to advance the
current state of the art in these areas.

The study of flow down a fibre has revealed rich physics over the past two decades.
Likewise, we expect the study of flow between fibres to provide both practical and physical
intrigue. Here, we studied flowing bridges, but the transition from static to dynamic bridges
exhibits interesting behaviour yet to be explored. For example, figure 9 shows a liquid
bridge held statically between two closely spaced vertical fibres that is put into motion
as the fibres are separated at a constant rate. Interestingly, the drop ‘floats’: its primary
motion is inwards, pulling the bottom of the bridge up the fibre, until a critical time τdelay
when the bridge succumbs to gravity and falls. This phenomenon shares several qualitative
similarities with the classic ‘falling slinky’ problem, where a stretched spring also appears
to float for some short time t < τdelay before falling (Cross & Wheatland 2012). Thus
the intriguing behaviour of falling liquid bridges between fibres offers a fluidic twist on
this popular physics demonstration, as shown in movie 5 of the supplementary material.
Alternatively, at the high end of possible w values, many aspects of bridge detachment
remain unexplored. For example, the role of viscous and capillary forces on the detachment
of flowing bridges is worth pursuing, especially since previous works have shown that
viscosity plays a critical role in bridge rupture (Mazzone et al. 1987). These forces may
also be considered for determining the physics underpinning the coating of fibres using
bridge patterns via the capillary number Ca, which has long been known to control the
coating of many thin structures and flat plates according to the Landau–Levich–Derjaguin
law (Levich & Landau 1942; Deriagin & Levi 1964). A better understanding of the
film deposited by flowing bridges may also allow them to be functionalized to deposit
suspended particulate via capillary deposition, a concept already explored in the laboratory
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(Jeong et al. 2020) and used to deliver drugs in a circular geometry (Kim et al. 2017), but
unexplored for fibrous systems. Furthermore, the coating of dry fibres with flowing bridges
remains unexplored but is expected to yield valuable physical insight akin to that found for
beads coating vertical fibres and fibre bundles (Leonard et al. 2023)

Finally, it is worth emphasizing the exceptional degree of control and the myriad of
patterns that extend well beyond the scope of what has been highlighted in this paper.
For instance, liquid bridges can flow between curved fibres or along a winding trajectory
(Gabbard & Bostwick 2023b). In these scenarios, liquid bridges can be purposely
engineered to glide, twist and traverse intricate paths, necessitating the incorporation of
additional physics, such as the interplay between adhesion and liquid weight (Aziz &
Tafreshi 2019), which will determine if bridges flow or detach. Furthermore, bridges can
flow between arrays of more than two fibres (Gabbard & Bostwick 2023b), a scenario that
approaches plug flow in a tube as the number of fibres increases. The wealth of potential
flow structures and their adaptability presents an ideal canvas for innovative system design,
and equips creative practitioners with effective means to craft novel and sophisticated
solutions to fluid transport problems.

Supplementary material. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.794.
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Appendix A. Equilibrium length of a column between parallel fibres

Here, we restate the results for the scaling of static liquid bridges between fibres from
Princen (1970) and Protiere et al. (2013) for completeness, which we use to compare with
our experimental data shown in figures 5(b) and 7(d).

We begin by considering the force balance on a small volume of fluid in equilibrium
between two long, parallel fibres, dV = A dL:

4σ rα dL − 4σR
(π

2

)
dL − σ

A dL
R

= 0, (A1)

which includes forces at the free surface and fibre–liquid interface, and the force associated
with the Laplace pressure in the column σ/R. We define a geometric factor f (α) = 2α −
sin 2α, where α is the angle between the line connecting the centre of the fibres and the
line from the centre of a fibre to the liquid–solid–vapour contact line. Letting Ã = A/r2

and R̃ = R/r, we can relate Ã to R̃ and α through

Ã = R̃2 (4α − π − f (α)) + 2R̃ sin 2α − f (α). (A2)

The radius of curvature is then given by

R̃ =
(√

π

f (α)
− 1

)−1

, (A3)

and we can define the fibre spacing as w̃ = w/r and express it in terms of α and R̃:

w̃ = 2(cos α(1 + R̃) − 1). (A4)
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The theoretical length of a column is given by (A2)–(A4) since each w gives a unique
cross-sectional shape such that �r2

f /V = 1/Ã as plotted in figures 5(b) and 7(d).
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