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FUNCTORIAL RADICALS AND NON-ABELIAN TORSION, II

by SHALOM FEIGELSTOCK and AARON KLEIN
(Received 15th January 1981)

The object of this paper is to complete and continue some matters in [1].

In [1], Section 2, the torsion and torsion-free functors, whose operation on the
category of abelian groups are well known, were extended to the category of all groups
as follows. For a group A, put to(4)=0 and t,(A)=the subgroup of A generated by the
torsion elements of A. Inductively define t,, ,(A)/t(A)=t,(4/t(A)), for every positive
integer n. Then T(A)=|J,t,(A4) is the smallest subgroup H of A such that A/H is
torsion-free, [1], Th. 2.2. A group A satisfying T(4)=A was called a pre-torsion group.
In [1], 2.12 an example was constructed of a group A4 satisfying ¢,(A)#t,(4)=A4. The
question was posed whether for every positive integer n there exist groups A, satisfying
t,_(A)Ft(A)=A. Here we give an affirmative answer. In fact, such groups will be
constructed, as wéll as pre-torsion groups A with ¢,(4)# A for every positive integer k,
see Section 1.

In [1], Section 4, results concerning radicals and pre-radicals on the category (A, X)-
mod of modules over a near-ring A distributively generated by a monoid X, were briefly
presented. In Section 2 of this paper, proofs are supplied, as promised in [1], and some
more results are given.

We denote by A # B the free product of groups A, B. For groups A <B we denote by
[A] the normal closure of A4 in B. '

Lemma 1.1. For groups A, B and for ne N, t, (A * B)=[t,(A) * t,(B)].

Proof. The only periodic elements in A * B are conjugates of periodic elements in A
or in B. Hence t;(A*B) is indeed the normal closure of t(A)*t,(B) in A*B. In
proceeding from n to n+ 1, it suffices to show that

t1(A * B/[t,(A) * t(B)]) ={t,+,(A) * t,+ 1(B))/[t,(A) * t,(B)].
Now

A= B/[t,(A) % 1,(B)] = Aft,(A) * B/t,(B)
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(see [3], p. 194), hence
11(A * B/[1,(A) * t,(B)]) = [t,(A/t,(A)) * t,(B/t(B)] =1, + 1(A)/t,(A) * 1, 1(B)/t,(B)];

here the normal closure is taken in A/t,(A)+* B/t,(B). But

tn+ I(A)/tn(A) * tn+ X(B)/tn(B)E tn + 1(A) * tn+ I(B)/[tn(A) * tn(B)]’
hence the normal closure of this group is isomorphic to

[tn+1(A) * 2,4 1(B))/[1,(4) * 1,(B)]
and our claim is established for n+1.
Definition 1.2. A group A will be called n-torsion-generated (n a positive integer) if
t{A)=AFt,_1(A) (1
In [1] a 1-torsion-generated group was said to be torsion-generated.

1.3. We construct inductively groups 4, which are n-torsion-generated. Clearly, any
non-trivial torsion-generated group (for instance any non-trivial periodic group) may
serve as A,. Suppose A4, has been constructed which is n-torsion-generated. Take two
copies of A,, say B!, B and put H,= B} * B2. It follows (by 1.1 and by [1], 2.16) that H,
is n-torsion-generated. By assumption there exist b;eBi\t,_,(BY), i=1,2. Then
(b:b;)"¢t,_,(H,) for every positive integer m. Add a free generator to H,, namely
consider H,*<{v,,,> and define A4,,, to be the quotient group of H, modulo
vis1=byb,. Clearly t,4 (4,4 1)=Ansy but t,(A,41)F Ay i Since v, 41 E1,(Ays 1)

Observe that the construction may begin with any non-trivial group which is
generated by its periodic elements. For example take 4,={x;x*>=1) a group of order
2. Then, by the construction H,={x,y;x’=y?*=1> and A,={x,y,v;x*=y?*=1,
v?2=xy). This is precisely the group A of [1], 2.12, namely {x,, x,; x2=1,(x,x3)*=1),
via the mapping x, — X, X, v (50 x; X3+ y).

Observation. A, is 2-solvable since A,/[v] is clearly a group of order 2. Hence the
fact T(A4)=t,(A), which is true for nilpotent groups ([1], 2.11), is not true for solvable
groups.

1.4. The construction in 1.3 exhibits a multitude of n-torsion-generated groups
(which may be constructed to be finitely presented). It may be generalised in the
following sense. Consider a set of groups &, |<9”|g2, with t,(H)=H for all He ¥ and

with t,_,(Hy)# H, for at least one Hy in &. Take a free product G=< * H>*F with

He¥
F free and consider any 1#feF, 1#h;eH;e¥ (for j=1,...,1), hoe Ho\t,_1(Ho), k22.
Then G modulo f*=hgh, ... h, is (n+ 1)-torsion-generated.

https://doi.org/10.1017/50013091500028017 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500028017

FUNCTORIAL RADICALS AND NON-ABELIAN TORSION, II 3

1.5. Every n-torsion-generated group is evidently pre-torsion, T(4)= A. We construct
a group A, with

T(A,)=A,#1.(A4) for all neN. 2

In 1.3 consider A4,=B, > H,—> A,,,. This is clearly an embedding, so we take the
limit A,=|J,cn 4, Then, by [1] 2.16, A, satisfies (2). (Clearly, 4, may be constructed
to be countably presented.) The following is established.

Theorem 1.6. Every n-torsion-generated group may be embedded into a (n+ 1)-torsion-
generated group. Every n-torsion-generated group may be embedded into a pre-torsion
group which is not k-torsion-generated for every ke N,

2,

We consider the collection Rad of radicals on (A, £)-mod, namely functors on (A, X)-
mod which are normal subfunctors of the identity and satisfy R(X/R(X))=0 for all X.
We assume the condition (a) of [1], hence the word “normal” may be omitted. Each
radical R determines the class £ of radical objects, which are the (A, X)-modules X
satisfying R(X)= X, and the class € of semisimple objects, i.e., X such that R(X)=0,
see [1].

For radicals R,S the composed functor RS is a radical, as shown in the next
proposition. Is there any relationship between the classes of semisimple objects @, €s
and %xs? Employing a common construction in varieties [3], we define €z %s=the
collection of (A, X)-modules X such that there is a normal submodule X’ in X with
X'e¥y and X/X'e¥s. It turns out that @ is precisely € o%s. Moreover, the class
C={%x|ReRad} with the operation just defined turns into a monoid which is an
epimorphic image of Rad, as shown by

Proposition 2.1. (i) Rad is a monoid with respect to composition of functors
(i)) C is a monoid with respect to the operation o defined above,

(i) The map R— %y is an epimorphism of Rad onto C.

Proof. For R,SeRad, RS is clearly a normal subfunctor of the identity. Under the
natural epimorphism ¢:A/RS(A)—A/S(A), ¢(S(A/RS(A)))<=S(A4/S(4))=0, and so
S(A/RS(A))=ker ¢ =S(A)/RS(4). Therefore  RS(A/RS(A)) = R(S(A)/RS(A))=0. Now
Ae%bgs if and only if RS(4)=0, ie., iff S(A)e¥g. Since A/S(A)e¥s, S(A)e€y iff
Ae€ro¥s. Conversely, if 0-K—-A4 A/K—-0, with Ke¥; and A/Ke¥s, then
n(S(A))= S(4/K)=0, ie., S(A)= K, and so RS(4)< R(K)=0. Hence A e Ggs.

The operation o in C generalises the composition of varieties in groups. Therefore the
collection of varieties is a submonoid of {(C, o).

Given a set £ of radicals we define the intersection S={")zcz R by S(X)={\rea R(X).

Proposition 2.2 The intersection S=(\g.4 R is a radical; (Rad, n) is a monoid.
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Proof. For f: XY, f(S(X))= n f(R(X)= nR(Y)=S8(Y). Now R(X/S(X))= R(X)/S(X)
for all Re# since X/S(X)—X/R(X) (epimorphism with kernel R(X)/S(X)) takes
R(X/S(X)) into 0. So S(X/S(X)) = n(R(X)/S(X))=0.

The intersection was employed in [1] to construct an idempotent radical R from a
given radical R, such that Zg=4%;. For ordinals v, denote R**'=Ro-R" and R’
={),<, R for limit ordinals v. Then put R=R", v the first ordinal such that R*=R"*".

We denote by pRad the collection of pre-radicals on (A, X)-mod, namely normal
subfunctors of the identity on (A, X)-mod. Evidently {(pRad,o) is a monoid. With
B= {@R|R € pRad} we have an obvious isomorphism of monoids {p Rad, o) and {B, n).

The following additional operation was defined on pRad, in [1]. For R, SepRad and
Ae(A, Z)-mod, (R x S)(4)/S(A)= R(A/S(A4)). This operation was employed to construct a
radical R from a pre-radical R as follows. For every ordinal v, R,,, =R xR, and R,
—U,<vR for limit ordinals. Then put R=R,, v the first ordinal for which R,=R, .
Then R is a radical, and R is idempotent if R is. (The classes %Bg, €5 are defined
identically for pre-radicals, as they were for radicals.)

Proposition 2.3. Let R be an idempotent pre-radical. Then By o Br =By . for all
positive integers n, m.

Proof. let B< A, Be#Br, A/BeBy. Now B=R,(B)c=R,(A4), so R,(A/R,(A)
=A/R,(A). Therefore, for m=1 we obtain R,,,(4)/R,(A)=R(A/R,(A)=A/R,(A), ie.,
R,;1(A)=A. For m>1, put R,_,(A/R(A)=K/R,(A). Then clearly R,,_,(K/R,(A4))
= K/R,(A), and R,(R,(4))=R,(A). Therefore we may inductively assume that R, , _,(K)
=K. Now

A/K = (A/R,(AY(K/R,(A)) = R(A/R(A))/Rn_ (A/R,(A))
=R((A/R,(A))/R,, - {(A/R,(A))) = R((A/R,(A)/(K/R,(A)))
=~ R(A4/K).

Hence R(A/K)=A/K, and R, ,,—(K)=K. Therefore R, .(A)=A.

Proposition 2.4. Let RepRad. Then € .o b gm <% ra+m for all positive integers, n, m.

Proof. Let K<1 A, with R"(K)=R™(4/K)=0. Then (R™(A) + K)/K =« R™"(A/K)=0, and
s0 R™(A) < K. Therefore R"*™(4)= R*(R™(A))= R"(K)=0.

A well-known example in group theory: Let K<t A, K a group nilpotent of class <n,
A/K nilpotent of class <m. Then A is nilpotent of class <n+m.

The previous example suggests the importance of extending beyond the classes €., R
a pre-radical, or radical, in order to obtain a theory which would include the class of
nilpotent groups, and the class of solvable groups. This may be done as follows:

Lemma 25. Let #, %, be subsets of Rad. Put

g%-: U %R’ y%= U %S, _g'g= U %T'

Rea Se¥ Ted
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Then

(&€ 0 46) 0 56 = 3% °(,C © 5F).

Proof. Let Ae(46°,%)o5%. Then there exists B<a A such that Beg%o,% and
A/Be ;7%. Also there exists C < Bsuch that C € 54 and B/C € ,%. Therefore there exist Re £,
Se¥ and TeZ such that Ce¥y, B/Ce¥bs, and A/Be¥;. Hence Ac(6ro€s)-Cr
=% po(€so% ), Proposition 2.1. Clearly €go(Gso€r)=4%€ o (% ° +%). The proof of the
opposite inclusion is similar.

Consequence 2.6. Let # be a subset of Rad, and put 4% =|Jz.a €& Then for every
positive integer n, (%) =4 4% o...0 4% is independent of parenthesisation.

For example, let A" denote the class of nilpotent groups. Then A is well defined for
every positive integer n.

Consequence 2.7. Let ,% be as in 2.6 and let 0+ G e(A, X)-mod. If all the factors of
the finite subnormal series 0=Go<1 G, <1...<1 G,=G belong to 4%, then G possesses a
non-trivial normal submodule belong to 4z%.

In view of 2.6, Consequence 2.7 in effect states that if Ge(;%)", then G possesses a
non-trivial, normal submodule belonging to ,%.

For a (A,X)-module 4 and a pre-radical R we call a series of (A,X)-modules
0<A;<...<wA,=A an ascending R-series if Az, /Age By for every ordinal § and
Ag=\J,<pA, for every limit ordinal fB. A descending R-series is a series
0=A,<0...<a A; <0 A which satisfies A,/Az,, €@y for every ordinal § and A;={),<; 4,
for every limit ordinal §.

Proposition 2.8. Let R be an idempotent pre-radical. Then Ae@ﬁ iff there exists an
ascending R-series for A. In this case the sequence 0<1 R(A)<d ...<1 R{(A)=A is the unique
upper R-series for A.

Proof. If Ae%; then clearly 0< R(4)<1...< R,(A)=R(4)=A4 is an ascending R-
sequence for A. Conversely, let 0<1 A, <1...<a1 4,=A be such a sequence. We claim:
Ay Ry(A) for every index ordinal . Assume A, R (A) for all v<p. First take f not a
limit ordinal, say f=v+1. Since A; and R (A4) are normal submodules it follows (since
A is distributively generated) that Y= A4;+ R (A4) is a normal submodule and

Y/RAA)Z Ayl Ay RA)Z (A5 A)(Ag A RAAYA),
and since Ay/A, € By it follows that Y/R (A)e By, [1] 4.2. Therefore
Y/R(A)=R(Y/R(A)) = R(A/R(A))=Ry(A)/R(A).
Thus Y c Ry(A) and so Ag< Ry(A). Finally if f is a limit ordinal then

Ag= v(()ﬂ A,c vuﬂ R(A)=Ry(A).
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Proposition 2.9. Let R be a radical. Then A€ %y iff there exists a descending R-series
for A. In this case the series 0= R(A)<a ...<a R(4)=A is the unique lower R-series for A.

Proof. If B=v+1 and Y is the submodule generated by R*(4)+ A, then Y/A,e%by
and under the natural map Y—Y/A4, the submodule R#(4) goes to 0. So R#(A)c A4,. The
rest is similar to the proof of the preceding proposition. -
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