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FUNCTORIAL RADICALS AND NON-ABELIAN TORSION, II

by SHALOM FEIGELSTOCK and AARON KLEIN
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The object of this paper is to complete and continue some matters in [1].
In [1], Section 2, the torsion and torsion-free functors, whose operation on the

category of abelian groups are well known, were extended to the category of all groups
as follows. For a group A, put to(A) = 0 and fi(y4) = the subgroup of A generated by the
torsion elements of A. Inductively define tn+1{A)/tn(A) = tl(A/tn(A)), for every positive
integer n. Then T(A)=[jntn(A) is the smallest subgroup H of A such that A/H is
torsion-free, [1], Th. 2.2. A group A satisfying T(A) = A was called a pre-torsion group.
In [1], 2.12 an example was constructed of a group A satisfying t1(A)^t2(A) = A. The
question was posed whether for every positive integer n there exist groups A, satisfying
tn-l(A)^tn(A) = A. Here we give an affirmative answer. In fact, such groups will be
constructed, as well as pre-torsion groups A with tk(A)^A for every positive integer k,
see Section 1.

In [1], Section 4, results concerning radicals and pre-radicals on the category (A, £)-
mod of modules over a near-ring A distributively generated by a monoid E, were briefly
presented. In Section 2 of this paper, proofs are supplied, as promised in [1], and some
more results are given.

1.

We denote by A * B the free product of groups A, B. For groups A < B we denote by
[/4] the normal closure of A in B.

Lemma 1.1. For groups A, B and for neN, tn(A * B)=[tn{A) * tn(B)~\.

Proof. The only periodic elements in A * B are conjugates of periodic elements in A
or in B. Hence tl(A*B) is indeed the normal closure of tl(A)*tl(B) in A*B. In
proceeding from n to n+ 1, it suffices to show that

t,(A * B/[tn(A) *

Now

A * B/[_tn{A) * tn(B)] s A/tn(A) * B/tn(B)
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(see [3], p. 194), hence

tl(A * B/[tn{A) * tn(BW^^(AMA))* hiBMB))-] = ltH+1(A)/tJLA) * tn+

here the normal closure is taken in A/tn(A) * B/tn(B). But

tn+ MVtniA)* tn+1(B)/tn(B)^tn + 1(A)* tn+1(B)/ltn(A)* tn(B)l

hence the normal closure of this group is isomorphic to

and our claim is established for n+ 1.

Definition 1.2. A group A will be called n-torsion-generated (n a positive integer) if

tn{A) = AHn-l{A) (1)

In [1] a 1-torsion-generated group was said to be torsion-generated.

1.3. We construct inductively groups An which are n-torsion-generated. Clearly, any
non-trivial torsion-generated group (for instance any non-trivial periodic group) may
serve as Av Suppose An has been constructed which is n-torsion-generated. Take two
copies of An, say Bl

n, B
2 and put Hn = Bl*B2

n. It follows (by 1.1 and by [1], 2.16) that Hn

is n-torsion-generated. By assumption there exist 6;e£j,\tn_!(£?!,), i = l,2. Then
(blb2)

m£tn_l(Hn) for every positive integer m. Add a free generator to Hn, namely
consider //n*<yn+1> and define An + 1 to be the quotient group of Hn modulo
v2

n + l=blb2. Clearly tn+y(An+r)^An + i but tn{An + )) + An +1 since vn+l <£tn{An+l).

Observe that the construction may begin with any non-trivial group which is
generated by its periodic elements. For example take Al = (x;x2 = l} a group of order
2. Then, by the construction H2 = (x,y;x2 = y2 = l) and A2 = <,x,y, v;x2=y2 = 1,
v2 = xy}. This is precisely the group A of [1], 2.12, namely (xl,x2,x\ = \,(xlx

2)2 = \'),
via the mapping xl\-*x,x2\-^v (so x^^y).

Observation. A2 is 2-solvable since A2l\v] is clearly a group of order 2. Hence the
fact T(A) = tl{A), which is true for nilpotent groups ([1], 2.11), is not true for solvable
groups.

1.4. The construction in 1.3 exhibits a multitude of n-torsion-generated groups
(which may be constructed to be finitely presented). It may be generalised in the
following sense. Consider a set of groups £f, \£f\ ^ 2, with tn(H) = H for all HeSf and

with tn_l(H0)J=H0 for at least one Ho in y . Take a free product G = \ * H )*F with

J
F free and consider any l # / e F , ijthjeHje^ (for j= 1,...,/•), n o e f f o y , , _!(#<,), fe^
Then G modulo f k = hoht ...hris(n+ l)-torsion-generated.
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1.5. Every n-torsion-generated group is evidently pre-torsion, T{A) = A. We construct
a group Aa with

T(AJ = Aa±tm(A) for all nelM. (2)

In 1.3 consider An = B}, >-> //„->-• An+1. This is clearly an embedding, so we take the
limit Aa = \JneNAa. Then, by [1] 2.16, Am satisfies (2). (Clearly, Am may be constructed
to be countably presented.) The following is established.

Theorem 1.6. Every n-torsion-generated group may be embedded into a (n+l)-torsion-
generated group. Every n-torsion-generated group may be embedded into a pre-torsion
group which is not k-torsion-generated for every keN.

2.

We consider the collection Rad of radicals on (A, E)-mod, namely functors on (A, £)-
mod which are normal subfunctors of the identity and satisfy R(X/R(X)) = 0 for all X.
We assume the condition (a) of [1], hence the word "normal" may be omitted. Each
radical R determines the class 0$R of radical objects, which are the (A, E)-modules X
satisfying R(X) = X, and the class <$R of semisimple objects, i.e., X such that R(X) = 0,
see [1].

For radicals R, S the composed functor RS is a radical, as shown in the next
proposition. Is there any relationship between the classes of semisimple objects %?R, ^s

and ^RS? Employing a common construction in varieties [3], we define (€R°C€S = \S\Q
collection of (A, £)-modules X such that there is a normal submodule X' in X with
X'e^R and X/X'e^s. It turns out that %>RS is precisely ^ 8 o ^ s . Moreover, the class
C = {^R | R e Rad} with the operation just defined turns into a monoid which is an
epimorphic image of Rad, as shown by

Proposition 2.1. (i) Rad is a monoid with respect to composition of functors

(ii) C is a monoid with respect to the operation ° defined above;

(iii) The map Rh-+<gR is an epimorphism of Rad onto C.

Proof. For R, S e Rad, RS is clearly a normal subfunctor of the identity. Under the
natural epimorphism <p:A/RS(A)->A/S(A), 4>(S(A/RS{A)))<=S(A/S(A)) = 0, and so
S(A/RS(A))cker<t> = S{AyRS{A). Therefore RS(A/RS(A))cR(S(A)/RS(A)) = O. Now
AeWRS if and only if RS(A) = 0, i.e., iff S(A)eVR. Since A/S(A)e<^s, S(A)e<tfR iff
Ae^Ro^s. Conversely, if 0->K-*A ^ A/K-*O, with Ke^R and A/Ke<#s, then
n(S(A))cS(A/K) = 0, i.e., S{A)cK, and so RS(A)c R(K) = 0. Hence Ae^RS.

The operation o in C generalises the composition of varieties in groups. Therefore the
collection of varieties is a submonoid of <C, °>.

Given a set 0t of radicals we define the intersection S=f]Re3l R by S(X) = f)Rem R{X).

Proposition 2.2 The intersection S=f)ReSIR is a radical; <Rad, n> is a monoid.
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Proof. For / : X -* Y, f(S{X)) c n f(R(X)) c n R( Y) = S( Y). Now R(X/S(X)) c
for all Ke<% since X/S(X)-+X/R(X) (epimorphism with kernel R(X)/S(X)) takes
R(X/S(X)) into 0. So S(X/S(X))<= n(R(X)/S(X)) = 0.

The intersection was employed in [1] to construct an idempotent radical R from a
given radical R, such that @R = @R. For ordinals v, denote R v + 1 = /?oR v and Rv

= [),<*R' for limit ordinals v. Then put R = R\ v the first ordinal such that Rv = Rv+l.
We denote by p Rad the collection of pre-radicals on (A, E)-mod, namely normal

subfunctors of the identity on (A, Z)-mod. Evidently <p Rad, o> is a monoid. With
& = {&R\RepRad} we have an obvious isomorphism of monoids <pRad, o> and <B, n>.

The following additional operation was defined on pRad, in [1]. For R,SepRad and
A e (A, E)-mod, (R x S){A)/S(A) = R(A/S(A)). This operation was employed to construct a
radical R from a pre-radical R as follows. For every ordinal v, Rv+l = Rx Rv and Rv

= \JI<VR, for limit ordinals. Then put R = RV, v the first ordinal for which Rv = Rv+l.
Then R is a radical, and R is idempotent if R is. (The classes 28R, ̂ R are defined
identically for pre-radicals, as they were for radicals.)

Proposition 2.3. Let R be an idempotent pre-radical. Then @Rn°$R <=^R for all
positive integers n, m.

Proof. Let B-a A, Be®K, A/Be@Rm. Now B = Rn{B)<=Rn(A), so Rm{A/Rn(A))
= A/Rn(A). Therefore, for m = l we obtain Rn+1(A)/Rn{A) = R(A/Rn(A)) = A/Rn{A), i.e.,
RH+1(A) = A. For m>\, put Rm_1(^//?n(A)) = K/i?n(^). Then clearly Rm^(K/Rn(A))
= K/Rn(A), and i?n(7?n(X)) = Rn(A). Therefore we may inductively assume that Rn + m^l(K)
= X. Now

A/K s (A/^MM/C/U,,^)) = RSA/RJ,A))IRm _

) = R{{AIRn{A))/{KIRn{A)))

Hence R{A/K) = A/K, and /?B+m_1(X) = *:. Therefore /?n+m(>4) = >4.

Proposition 2.4. Let RepRad . T/ien <6'Rn°^'R»c^^Rn+m/or a// positive integers, n,m.

Proof. Let K < / 1 , with R"(K) = Rm(A/K) = 0. Then (Km(4 + K)//Cci?m(J4/K) = 0, and
so Rm(A)cK. Therefore Rn+m(A) = Rn{Rm(A))c:R"(K) = 0.

A well-known example in group theory: Let K*a A, K a. group nilpotent of class ;§ n,
A/K nilpotent of class ^m. Then A is nilpotent of class ^n + m.

The previous example suggests the importance of extending beyond the classes %&, R
a pre-radical, or radical, in order to obtain a theory which would include the class of
nilpotent groups, and the class of solvable groups. This may be done as follows:

Lemma 2.5. Let &, Sf, $~ be subsets of Rad. Put

*<*= U vR, y<e= y <*s, , v = U *r-

https://doi.org/10.1017/S0013091500028017 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500028017


FUNCTIONAL RADICALS AND NON-ABELIAN TORSION, II

Then

Proof. Let Az(J€<> </£)o/g. Then there exists B<\ A such that B e ^ " / and
A/B e ?<€. Also there exists C < B such that C e 9 ^ and B/C e ^ Therefore there exist K e f ,
S e , y and Te$~ such that C e " ^ , B/CeWs, and A/BetfT. Hence Xe(#*°#s)°<€T

= <gR°(<gso<gTl Proposition 2.1. Clearly <&R°(<gs°<gT)csl<g°(s,<gof<g). The proof of the
opposite inclusion is similar.

Consequence 2.6. Let ^2 be a subset of Rad, and put m£={JReiji
(t>R. Then for every

positive integer n, (J&f = <j$°<$°•.-°g$ is independent of parenthesisation.
For example, let ./T denote the class of nilpotent groups. Then Jf" is well defined for

every positive integer n.

Consequence 2.7. Let ^ be as in 2.6 and let 0^Ge(A, Z)-mod. If all the factors of
the finite subnormal series 0 = Go<i Gj-o .. .-o Gn = G belong to gfg, then G possesses a
non-trivial normal submodule belong to gf€.

In view of 2.6, Consequence 2.7 in effect states that if Gs(J&)n, then G possesses a
non-trivial, normal submodule belonging to gftf.

For a (A, Z)-module A and a pre-radical /? we call a series of (A, E)-modules
OoA1-*a...<iA0l = A an ascending R-series if Afi+JAfs38R for every ordinal /? and
y4^ = y v < p / 4 v for every limit ordinal p. A descending R-series is a series
0 = / l a <a . . .< i / l 1 < iy l which satisfies Ap/Ap + le

<gR for every ordinal /? and Ap=P)v <^Av

for every limit ordinal /?.

Proposition 2.8. Let R be an idempotent pre-radical. Then AeSSR iff there exists an
ascending R-series for A. In this case the sequence 0 < R(A)<3 . . . o R(A) = A is the unique
upper R-series for A.

Proof. If Ae@K then clearly 0<i R(A)o . . . o Ra{A) = R(A) = A is an ascending R-
sequence for A. Conversely, let 0 < / 1 1 < . . . < X J = ^ be such a sequence. We claim:
Ap<=Rp(A) for every index ordinal /?. Assume AV<=RV(A) for all v</J. First take /? not a
limit ordinal, say /? = v + l. Since Ap and Rv(/1) are normal submodules it follows (since
A is distributively generated) that Y=AP + RV(A) is a normal submodule and

Y/RJLA) = AflA9 n Rv(^l) s (Xp/zlvJ/aA,, n /?V

and since Ae/Ave@R it follows that Y/Rv(A)e@R, [1] 4.2. Therefore

Y/RJiA) = «(^/Rv(>l)) c R(A/RV(A)) = ^/)(^ ) / « ^ ) -

Thus YcRp(A) and so /lp<=/?p(/l). Finally if fS is a limit ordinal then
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Proposition 2.9. Let R be a radical. Then Ae^R iff there exists a descending R-series
for A. In this case the series 0 = R(A)<3 ...<a R(A) = A is the unique lower R-series for A.

Proof. If j? = v + l and Y is the submodule generated by RV(A) + Afi then ^
and under the natural map Y-* Y/Ap the submodule R^(A) goes to 0. So RP(A) c Ap. The
rest is similar to the proof of the preceding proposition.
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