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Scanning transmission electron microscopy provides atomic-resolution images of crystal structures
and electron-energy-loss spectra (EELS) from which one can extract structural information and the
chemical identities of constituent elements. Density functional theory (DFT) amounts to a “theoreti-
cal microscope”, providing equilibrium positions for atoms and calculated EELS for com parison
with measured spectra. This talk will use several examples to highlight the power of the com bined
techniques to probe the properties of complex interfaces. In addition, the talk will highlight a recent
advance that holds enormous potential: diffraction theory has been combined with density functional
theory for EELS near-edge structure, producing the ultimate theoretical microscope for the extrac-
tion of information from data in complex systems.

A first example of probing interf aces is the observation of colo ssal ionic conductivity in yttria-
stabilized-zirconia/strontium-titanate (YSZ-STO) multilayers at room temperature, a significant ad-
vance for solid-oxide fuel cells. Initial microscopy [1] demonstrated that the interfaces are atomically
flat and the YSZ layer is perfectly coherent with the STO layer, despite a huge 7% lattice m ismatch.
Finite-temperature DFT simulations of strained bulk zirconia with oxygen vacancies showed that
high ionic conductivity is obtained above 1500K, mediated by a highly disordered O sublattice (Fig.
1). Simulations in a trilayer found that the sam e high degree of disorder o ccurs near room tempera-
ture, accounting for the observations [2]. Subsequent experimental and theoretical O K EELS of the
multilayer confirmed the high level of disorder of the O sublattice in YSZ [3] (Fig. 2).

A second example is the use of microscopy and theory to probe how interfaces cope with the need to
terminate ferroelectric polarizations (Fig. 3). In one case, the data show evidence for ionic screening,
which has been predicted by theory but never observed. For a ferroelectric film on an insulating sub-
strate, on the other hand, microscopy and theory make the case that compensation is mediated by an
interfacial charge generated by oxygen vacancies.

A third example is the detection of a depression in the saturation magnetization in Lag ¢7Cag33MnOs-
YBa,Cu307 interfaces on the LCMO side. Conflicting interpretations had been proposed. DFT calcu-
lations of position-dependent magnetic couplings between interlayer and intralayer Mn atoms dem-
onstrated clearly the presence of a magnetic dead layer.

Finally, a brief note on the recent development of the theory and computer codes to combine diffrac-
tion theory and solid-state effects in EELS calculations: Results dem onstrate that the spectra are in-
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deed a function of probe position, as observed (F ig. 4). We also find evidence of nonlocality: spec-
tral features are not necessarily dominated by contributions from the nearest atomic columns [6].
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FIG. 3. Top: Phase-contrast im ages of the
E eV
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and measured atomic displacements. Bot-  FIG. 4. O K-edge a s a function of probe position

tom: calculated a tomic displacements in along a line extending from a La/O column (ori-
STO/PTO/STO structures. gin) to the midpoint between La/O columns.
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