
The Journal of Symbolic Logic, Page 1 of 26

ON THE C.E. DEGREES REALIZABLE IN Π0
1 CLASSES

BARBARA F. CSIMA, ROD DOWNEY , AND KENG MENG NG

Abstract. We study for each computably bounded Π0
1 class P the set of degrees of c.e. paths in P. We

show, amongst other results, that for every c.e. degree a there is a perfect Π0
1 class where all c.e. members have

degree a. We also show that every Π0
1 set of c.e. indices is realized in some perfect Π0

1 class, and classify the
sets of c.e. degrees which can be realized in some Π0

1 class as exactly those with a computable representation.

§1. Introduction. This paper is concerned with computably bounded Π0
1 classes.

Of course we can consider these classes, up to Turing degree, as being a collection
of infinite paths through a computable binary tree. They have deep connections
with computability theory in general, as well as reverse mathematics, algorithmic
randomness, and many other areas. For example, see [3].

The meta-question we want to address in this paper concerns realizing c.e. degrees
as members of Π0

1 classes. One of the fundamental theorems in this area [8, Theorem
3] says that each computably bounded Π0

1 class has a member of computably
enumerable degree. That is, if α is the left- or right-most path of a Π0

1 class P,
then there is a c.e. set W such thatW ≡T α.

Definition 1.1. We will say that a c.e. degree w is realized in a Π0
1 class P iff there

exists some � ∈ P with degT (�) = w. A set of c.e. degrees S is realised in P if for
every c.e. degree w, w ∈ S if and only if w is realised in P.

Our fundamental question is “What sets of c.e. degrees can be realized in a Π0
1

class?” In this paper, we will give a characterization of the sets of c.e. degrees that
can be realized. In turn, this also leads to the related question of representing index
sets, and it turns out that these two notions coincide. In more detail, recall that
a set I ⊆ N is an index set if it is closed under Turing equivalence, that is, for
every We ≡T Wj , e ∈ I ⇔ j ∈ I . Index sets are another central area of classical
computability theory, and many early results calculated the complexity of such sets.
For example, Cof = {e |We is cofinite} is a well known Σ0

3m-complete index set.
But our concern here is the corresponding set of degrees in an index set, and how
we might represent them most simply. For example, {e |We ≡T ∅′} is a well-known
Σ0

4-complete index set, but we can represent it by a single index for ∅′, if we allow
closure under Turing degrees. With this in mind, define for S ⊆ N the index set that

Received July 20, 2022.
2020 Mathematics Subject Classification. 03D25.
Key words and phrases. effectively closed sets, Π0

1 class, computably enumerable degrees.

© The Author(s), 2023. Published by Cambridge University Press on behalf of The Association for Symbolic Logic. This is an Open
Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/),
which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

0022-4812/00/0000-0000
DOI:10.1017/jsl.2023.26

1

https://doi.org/10.1017/jsl.2023.26 Published online by Cambridge University Press

https://orcid.org/0000-0003-4381-2845
https://creativecommons.org/licenses/by/4.0/
www.doi.org/10.1017/jsl.2023.26
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jsl.2023.26&domain=pdf
https://doi.org/10.1017/jsl.2023.26

2 BARBARA F. CSIMA ET AL.

S represents, G(S) = {e : (∃j ∈ S) We ≡T Wj}. Note that if S is Σ0
4 then G(S)

is also Σ0
4, while the complexity of G(S) generally cannot be reduced even if S is

of lower arithmetical complexity. For instance G({∅′}) is Σ0
4-complete, as we have

seen, so that sometimes the complexity of S can be much simpler than that ofG(S).
Thus, our main task in this paper is also to investigate, for a given index set I, what
the minimal complexity of S such that G(S) = I can be.

In the same way that we did for degrees, we will say that a c.e. set W is realizable
in a Π0

1 class P, if degT (W) is realizable in P. Henceforth in this paper, all Π0
1 classes

are effectively closed subsets of the Cantor space.

Definition 1.2. If P is a Π0
1 class, letW [P] = {e :We is realizable in P}.

For any Π0
1 class P,W [P] is clearly an index set. We letW [P] = {a : a is c.e. and

realizable in P}. The obvious upper bound on the complexity ofW [P] can be easily
calculated.

Proposition 1.3. If P is a Π0
1 class, thenW [P] is Σ0

4.
Proof.

e ∈W [P] ⇔ (∃j∃k)(∀n)(∃m)(∃s > n)
[
ΦWej � m[s] ↓ ∧ We[s] � ϕj(m) is correct

∧ ΦWej � m[s] is extendible in P[s] ∧ Φ
ΦWej �m[s]

k � n =We � n
]
.

Note that the predicate within the square brackets is Δ0
2. �

Note that this upper bound is sharp, in the sense that W [P] is Σ0
4-complete for

some P. For instance if we let P be a class of Martin-Löf random reals, or P be the
class of all PA degrees. Recall that every c.e. Martin-Löf random or PA degree must
have degree 0′ (see, for example, [5, Sections 2.21 and 8.2]).

With these broad questions in mind, we now state some specific questions that
shall be addressed in this paper:

(1) Does Proposition 1.3 reverse, that is, is every Σ0
4 index set realizable in a Π0

1
class?

(2) If not, can we characterize the index sets S which can be realized?
(3) Is every upper and every lower cone of c.e. degrees realizable?
(4) What about the c.e. degrees realizable in Π0

1 classes of restricted rank?
We remark that our results go hand in hand with the analogous index set questions

about representability. We say that a set S of indices represents an index set I if
I = G(S). We shall also address the analogous questions about index sets:

(1) Can every Σ0
4 index set be represented by a Σ0

3 set or lower?
(2) If not, can we characterize the index sets I which can be represented by Σ0

3
sets, or even by computable sets?

(3) Is every upper and every lower cone of c.e. degrees representable by a set of
lower complexity?

The only related results we are aware of are early results about representing
index sets and particularly those corresponding to ideals in the Turing degrees. For
example, Yates [11, 12] showed that ifD <T C are c.e. and if S is ΣC3 , then there is a
computable collection of c.e. sets {Wf(k) | k ∈ N} such thatD ≤T Wf(k) ≤T C for
all k, and where e ∈ S is equivalent toWf(e) ≡T C . This was used for an alternative
proof of Sacks Density Theorem (see, e.g., [10, Chapter XII]). Yates also showed

https://doi.org/10.1017/jsl.2023.26 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.26

ON THE C.E. DEGREES REALIZABLE IN Π0
1 CLASSES 3

that a collection of c.e. sets C containing all finite sets is Σ0
3 iff there is a computable

collection {Wf(d) | d ∈ N} which equals C. He used this to show the classical result
that the index of the lower cone {e |We ≤T A} is Σ0

3 iff A is Turing complete or
low2. More recently, Barmpalias and Nies [1] proved that for an ideal I in the c.e.
degrees:

(1) If I is uniformly superlow generated1 then it has a superlow upper bound in
the c.e. degrees.

(2) If I is uniformly low generated then it has a low c.e. upper bound.
(3) If I is a Σ0

3 generated proper ideal, then it has a low2 c.e. upper bound (see
also [5, Chapter 11.11]).

(4) If I is a Σ0
4 generated proper ideal, then it has an incomplete upper bound.

Our paper sharpens some of these results. For example in Theorem 4.6 we show
that if I is generated by a Σ0

4 subset S of a Turing independent set of c.e. sets
{Ai | i ∈ N}, (i.e., for all finite sets F if i
∈ F , then Ai
≤T ⊕j∈FAj), then there is a
c.e. set B selecting these sets, in that Ai ≤T B iff i ∈ S.

Jockusch and Soare [8] showed that for any c.e. degree a, the set {b : b is c.e.
and b ≥ a} can be realised in a Π0

1 class. Our first result, Theorem 2.1, shows that
singletons can be realized in Π0

1 classes.
Using this we show in Theorem 3.1 that any set of indices which is representable

by a Σ0
3 set, is realized in a Π0

1 class. Moreover if the set contains an index for a
computable set, we can realize this in a rank 2 Π0

1 class. This allows us to show
that certain collections of high c.e. sets can be realized, under a suitable assumption
about the uniformity of highness. Moreover, in Corollary 4.3 we establish the rather
surprising result, at least to us, below:

Corollary 4.3. An index set I is realizable in a Π0
1 class iff I has a Σ0

3 representation
iff I has a computable representation.

Next we give an answer to the natural question of exactly which index sets have
Σ0

3 (or equivalently, computable) representations.

Theorem 4.1. Let S ⊆ �. The following are equivalent.
(i) S has a computable representation, that is, G(S) = G(R) for some computable

set R.
(ii) There is a Π0

1 class P such that the set of c.e. degrees represented in P has index
set G(S), that is,W [P] = G(S).

(iii) There is a perfect Π0
1 class P such thatW [P] = G(S).

(iv) There is a computable function g such that for every n,

n ∈ G(S) ⇔WWn
g(n) is cofinite.

(v) There is a truth-table functional R such that for every n,

n ∈ G(S) ⇔ ∃a∀b∃c RWn (n, a, b, c).
Clearly this result allows us to show certain index sets are not realizable, and

others such as, for example, the K-trivial c.e. sets are, as are all upper cones. Finally

1That is, there is a uniformly superlow collection of c.e. sets {We | e ∈ D} such that I = {We | ∃F ⊂
D ∧We ≤T ⊕i∈FWi}.

https://doi.org/10.1017/jsl.2023.26 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.26

4 BARBARA F. CSIMA ET AL.

we turn to the question of exactly which lower cones can be realized. Although
we don’t characterize this, as mentioned above, we show how to code Σ0

4 sets into
lower cones. In an early incarnation of the present paper, we conjectured that if
A is a incomplete c.e. set and the lower cone below A can be realized, then A is
low2. Inspired by our work, Downey and Melnikov have resolved this conjecture
affirmatively [7].

Finally, we suggest investigating the question of which sets of c.e. degrees are
realised in a restricted collection of Π0

1 classes, for instance, in the collection of
thin Π0

1 classes, or in the collection of separating classes. For instance, the class
of PA degrees is a separating Π0

1 class, and hence {0′} is realised by a separating
class. On the other hand, not every singleton can be realised in a separating class.
To see this, suppose that the separating class for the pair A,B is realised by a
single array computable c.e. degree d. Since A and B are both c.e. members of the
separating class, we have that A ∈ d and B ∈ d. Downey, Jockusch, and Stob [6]
proved that if A⊕ B has array computable degree, and if A,B are disjoint c.e.
sets, then there is a Turing complete set separating A and B, a contradiction. In
[4], Cholak, Downey, Greenberg, and Turetsky have shown that some uppercones
can be realised, and some pairs, but the classification of what is realizable remains
complex and mysterious.

§2. Every c.e. singleton is realizable in a perfect Π0
1 class. The natural direction

to begin our investigation is to look at singletons. Clearly {0′} can be realized by a
perfect Π0

1 class, for instance, the class of Martin-Löf random reals, or the class of
all PA degrees. Our first result is that {a} can be realized by a perfect Π0

1 class for
any c.e. degree a.

Theorem 2.1. For any c.e. degree a, we can find (effectively in an index of a c.e.
member of a) a perfect Π0

1 class P such thatW [P] = {a}.

Proof. Let C ∈ a be c.e., and fix a 1-1 enumeration {Cs}s∈N of C. We build a
perfect Π0

1 class P such that W [P] = {a} using a stage by stage construction and
satisfying requirements. �

Before stating the requirements, we clarify our notational conventions. Recall that
a function f is a modulus for the computable approximation Z(x, s) if for every x
and every t > f(x), Z(x, t) = Z(x,f(x)). If f is nondecreasing then this means
thatZ � x + 1 is stable atf(x). We letZe(x, s) be the eth possible Δ0

2 approximation
in some effective listing. Each Ze is total computable with range in {0, 1}, where
Ze(x) may not exist. Every Δ0

2 set is approximated by some Ze . As usual Φe is the
eth Turing functional.

We will construct P to meet the requirements

Re : If Ze(x) := lim
s
Ze(x, s) exists for every x, and Ze ∈ P and ΦZee is total and

is a modulus for the approximation Ze(x, s), then Ze ≡T C.
Since we are only interested in those Φe which are modulus functions, we may assume
that for any string � and y < x, if Φ�e(x) ↓ then Φ�e(y) ↓ and ΦXe is nondecreasing
on its domain for every X. When we refer to Re we actually mean Zi and Φj where
e = 〈i, j〉. To avoid introducing too many notations we will writeZe and Φe instead.

https://doi.org/10.1017/jsl.2023.26 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.26

ON THE C.E. DEGREES REALIZABLE IN Π0
1 CLASSES 5

If Z is in P and is of c.e. degree, then the premise of Re will hold for some e.
We will construct P to be the limit of total function trees (see [10]). Namely, we let
Ts : 2<� �→ 2<� be a uniform sequence of total computable functions, such that:

• For every s, Ts preserves incomparability and inclusion.
• For every s and �, there is a � such that Ts+1(�) = Ts (�).
• For every �, lims Ts (�) exists.
• For every � and i = 0, 1, Ts(� ∗ i) ⊇ Ts (�) ∗ i .

The fourth condition is new and says that Ts has to split at the first place possible.
This is not necessary but we adopt this to simplify notation. As before P = [lims Ts]
is a perfect Π0

1 class.

2.1. Notations. The construction is carried out on a 2-branching construction
tree. We refer to the finite strings on the construction tree as nodes, which we denote
by letters early in the Greek alphabet such as α, �, 	, etc. We refer to the finite strings
in the domain and range of T as strings, and we use letters later in the Greek alphabet
to denote them, such as �, �, �, etc. Nodes of length e are assigned requirement Re ,
and this has two outcomes, ∞ to the left of f. We write α <L � if α is strictly left of
� . We say that α is of higher priority than � if α ⊂ � or α <L � holds. We say that
α is stronger than � if α <L � , α ⊇ � ∗∞ or α ∗ f ⊆ � holds. � will not be allowed
to injure a stronger node α, even though traditionally α may be of lower priority.

To show that Zα ≡T C we will not build the reductions explicitly. Instead each α
maintains two parameters �α and rootα to help guide this reduction. The intention
is that �α is the string such that Ts(�α) is currently an initial segment ofZα which α
believes is a true initial segment. We always keep rootα ⊆ �α if both are defined, and
that rootα ↓ iff �α ↓. For each k ≤ |�α | – |rootα |, we let rootkα = �α � (|rootα | + k),
the k-bit extension of rootα along �α . C will be coded into Ze above rootα . In
particular, we code C (k) in Ts(rootk+2

α), and if k enters C we force Zα to change
below T (rootk+2

α).
For α, � ∈ 2<� we say that � is α-good if whenever �α ↓, we have �
⊆ �α . The

three possibilities are:

• rootα and � are incomparable,
• rootα ⊆ (� ∩ �α) ⊂ �α , or
• � ⊃ �α .

Note that any extension of a good string is good. By �– we mean the string � with
the last bit removed, and is defined to be the empty string if |�| = 0. We divide stage s
into substages u < s , in which a different node gets to act at each substage. If a node
α is visited at (sub)stage s, we let s– denote the (sub)stage of the previous visit toα (it
will be clear from context which α we are referring to). If α is visited at a stage s, and
� is a node such that � ∗ f ⊆ α, we let
α(�) = max{|�| : � ⊆ �� ∧ T (�) ⊂ Zα}.
This measures how much of T (��) is currently an initial segment of Zα . If �� ↑
then this is taken to be 0. We let
α = max{
α(�) : � ∗ f ⊆ α}. A (sub)stage t is
α-expansionary, if α is visited at t, and
α[t] > max{
α[t′] : t′ < t where α ∗∞ is
visited at t′}. For any α, x and numbers s < t, we say that Zα[s] � x ≡ Zα[t] � x
if Zα[s ′] � x is constant for all s ≤ s ′ ≤ t. If � ⊃ � by moving � to �, we mean to
obtain the modification T ′ of T by letting T ′ copy T at all inputs not extending �.
Then let T ′(� ∗ �) = T (� ∗ �) for every � ∈ 2<� .

https://doi.org/10.1017/jsl.2023.26 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.26

6 BARBARA F. CSIMA ET AL.

2.2. Proof idea. We assume that C = ∅, and consider the general case later. We
consider R0 with the highest priority. The basic strategy for R0 is simple, in fact
everyRe follows roughly the same basic strategy with minor modifications: We begin
by letting �0 = ∅, and search for some � ⊃ �0 ∗ i such that Z0 ⊃ T (�) and ΦT (�)

0
looks like a modulus function for Z0. That is, at the current stage approximation,
ΦT (�)

0 (|T (� ∗ i)|) ↓ and there is no contradiction observed for it to be a correct
modulus for Z0 � (|T (� ∗ i)| + 1). While searching for �, R0 will prevent the rest
of the construction from changing T on �0. If � is found we keep the split at �0

and kill off all other branches of T between T (�0 ∗ i) and T (�) by moving �0 ∗ i
to �. We then append i to �0, define X0 � |T (�0)| = Z0 � |T (�0)|. We then repeat.
If ever during this process the approximation to Z0 � |T (�0)| changes after we have
already defined X0 � |T (�0)|, then we shift ∅ to �0 and consider R0 satisfied, with
no further action required (since we have assured that the modulus is wrong). If this
never happens but still �0 is extended finitely often then R0 only restraints a finite
part of T, and R0 is satisfied vacuously. If Z0 is a path on P with modulus ΦZ0 , then
we be able to extend �0 infinitely often and so X0 is total and equal to Z0. Thus Z0

is computable since X0 is.
From the above description we see that R0 either acts finitely often (and only

restrains a finite part of T), or it acts infinitely often and it restrains other
requirements from moving strings extended by �0. Note that it is important for
R0 to restrain the rest of the construction in this way because if we allow other
requirements to delete � = T (�0) after it has been recorded by X0, then Z0 is free to
change and become different from X0. Unlike before we cannot force R0 to lose by
making every path in P extend � (since � has already been deleted).

We now consider how R1 can act consistently with R0’s demands. If R0 acts
finitely often then R1 begins a new version after R0’s final action, which will never
be interrupted. Suppose R0 acts infinitely often. Then we know that X0 = Z0 =
T (lim �0) ∈ P, and R0 will restrain more ofZ0 as the construction proceeds. In this
case R1 will only begin running its basic strategy if it is able to define �1 so that
Z1 ⊃ T (�1) and is incomparable with T (�0). Note that if R1 is unable to do this
thenZ1 = Z0 which we know is computable through the actions of R0. On the other
hand suppose R1 starts its basic strategy, and begins buildingX1 incomparable with
X0. Suppose Z1 then moves at a stage t below a length for which we have defined
X1. As in the basic strategy we need to kill R1. This time due to priority we kill off
every part of the tree except for T (�0)[t] and T (�1)[t], and all other nodes above
which R1 has been killed. Unlike the case for R0 this is not an immediate win for R1,
even though R1 will no longer be active above T (�1)[t] we may haveZ1 ⊃ T (�0)[t].
Hence we may need to restart R1 at a different part of the tree. If R1 is killed and
restarted infinitely often then Z1 = Z0 which is computable through the actions of
R0. Otherwise R1 begins building X1 incomparable with X0 without interruption,
and hence Z1 = X1 is computable.

If we now consider the third requirement R2, then the strategy for R2 will have
the obvious modifications. R2 will build X2 incomparable with X0 and X1. Each
time we kill off R2 we have to leave T (�0) and T (�1) on the tree. If R2 is killed and
restarted infinitely often then Z2 is equal to either Z0 or Z1 and hence computable.
Considering three requirements add a certain complexity to the situation: It is now

https://doi.org/10.1017/jsl.2023.26 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.26

ON THE C.E. DEGREES REALIZABLE IN Π0
1 CLASSES 7

possible for R1 to be killed and restarted infinitely often (hence R1 = R0) and this
can affect R2 in the following way. For instance, X1 ∩ X0 = X2 ∩ X0 may hold, and
when R1 is killed we need to initialize R2 since X2 is taken off the tree and hence
Z2 can now change freely. If this happens infinitely often then we also have Z2 = Z0

and hence Z2 is computable. Otherwise Z2 will extend T (�) for some � where R1 is
killed. Then Z2 will begin building X2 in this part without interference.

The construction will be implemented on a priority tree. This is not necessary,
but will make organization easier. Outcome f of a node α stands for the situation
where α is killed finitely often, while outcome ∞ means that α is killed infinitely
often. This proof has the unusual feature where a node α may initialize 	 ⊇ α ∗ f
infinitely often, even when α has stopped playing outcome ∞. Hence a node � on
the true path of the construction may be injured infinitely often by some α ∗ f ⊆ � .
We ensure that if this is the case, then the requirement assigned to � will be met
through some node which is extended by � , as in the discussion above. Each node
α will respect the nodes � extending α ∗∞, even though � is traditionally of lower
priority. However � will only get to act at those stages where α’s current attempt has
just been destroyed, and � will only be allowed to act infinitely often if α is injured
infinitely often. Hence the portion of the tree restrained by � does not grow unless
α is injured again (hence allowing � to be visited).

Now we consider the case where C is arbitrary. We have to code C into Ze . We
modify the strategy outlined above in the following way. A node α will now look for
an appropriate string rootα so that T (rootα) is incomparable with all strings which
are restrained by stronger requirements. Once found α will begin a new attempt
at demonstrating that C ≡T Zα where the coding locations are above T (rootα).
Initially we start off with rootα = �α . Each time α extends �α we set a new coding
location for C. If n enters C for a small k, then we have to force Zα � T (rootk+2

α) to
move. We do this by removing the branch T (rootk+2

α) from the tree. Hence Zα has
to move or else it stays out of P. To see that Zα is computable in C, we note that
as above, Zα cannot change unless C changes and we kill off T (rootkα) for some k.
If Zα changes without a corresponding C change, then we have not yet removed
T (�α) from the tree, so we can now force a win for α above the string rootα by
killing off every string extending T (rootα) except for T (�α). If α ∗ f ⊆ � and if
Zα
= Z� then α will only initialize � finitely often. In fact � will be able to carry
out its basic strategy with T (root�) ⊃ Zα ∩ Z� . On the other hand if α initializes �
infinitely often then Zα = Z� and α will be responsible for building the reduction
Zα ≡T C .

2.3. Formal construction. At stage s = 0 we let T0 be the identity function, and
initialize α (i.e., set �α and rootα undefined) for every α. In the construction α may
be initialized when another node of higher priority acts, or when α is visited and
we see the approximation for Zα move below �α . The former we call an external
initialization.

All searches performed in stage s are limited to numbers and strings of length
< s . At stage s > 0 suppose T = Ts–1 is given. We define
s , the approximation to
the true path of length s. At substage u < s we define
s(u). Whenever a parameter
is referenced we mean the value of the parameter at the instance (or substage)
they are mentioned. Since the construction takes place on a priority tree, to make

https://doi.org/10.1017/jsl.2023.26 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.26

8 BARBARA F. CSIMA ET AL.

housekeeping easier we will assume that when each node α is visited for the kth time
in the construction, it only looks at Zα(x, k). That is, during the construction and
verification, when we refer to Zα[t] and ΦZα [t], we mean the values when both are
evaluated at k.

Suppose we have defined
s � u for some u < s . Letα =
s � u. Ifα was initialized
externally since the last visit to α, or if �α ↑ and s is α-expansionary, we let
s(u) =
∞, initialize every node to the right of α ∗∞ and end the substage. Otherwise there
are two cases:

(1) �α ↑: Find a string � where |�| > max{|α|, s0} such that � is �-good for
every � stronger than α. Here s0 < s is the largest stage such that α was
initialized externally. We also assume that s0 is at least as large as all historical
|rootα |. We require that there is some � ⊃ � such that ΦT (�)

α (|T (�)|) ≤ s , and
Zα[s] ⊃ T (�). Furthermore we need � to be correct with respect to �: i.e., for
every x ≤ |T (�)|, we have Zα[ΦT (�)

α (x)] � x ≡ Zα[s] � x. If � is found (we
always pick � of minimal length), we move � to �. Let �α = rootα = �.

(2) �α ↓: There are three subcases. Pick the first subcase that applies, and perform
the actions described there.
(a) Killing: Suppose thatZα[s] � T (�α) � (|T (�–

α)| + 1). ThenZα has moved
below a length whichT (�α) had promised would never change. Now note
that Zα can never extend T (�α) correctly again, and we can now thin the
tree accordingly: Move rootα to �α , and initialize α.

(b) Coding C: If there is some k ≤ |�α | – |rootα | – 2 such that k ∈ Cs – Cs– ,
we move rootk+1

α to (rootk+1
α) ∗ d where d = 1 – �α(|rootk+1

α |). That is,
we move rootk+1

α to its immediate extension which is not along �α . This
ensures that the old value of T (rootk+2

α) is removed from the tree. Now
trim �α to have length |rootkα |.

(c) Extending �α : There is some i ∈ {0, 1} and some � ⊃ �α ∗ i such that
ΦT (�)
α (|T (�α ∗ i)|) ≤ s , Zα[s] ⊃ T (�) and �α ∗ i is correct with respect

to �. If i and � are found, move �α ∗ i to � and extend �α by one digit
(i.e., append i to �α).

If none of the cases above apply let
s(u) = f and go to the next substage. Otherwise
one of the above applies. Then we must have moved some node � to some � ⊃ �.
For every node � ⊇ α ∗ f such that root� is comparable with � we initialize � . We
let
s(u) = f. Go to the next substage.

2.4. Verification. For each α, we write “step α.2(a)” to refer to step 2(a) of the
construction during substage |α| of some stage, in which α is visited and given
attention. Correspondingly we use α.1, α.2(b) and α.2(c) in the obvious way. We
use s to refer to stages in the construction, and t, u to refer to substages. If t1 < t2
then t1 is a substage before t2, though they are not necessarily both substages of the
same stage. Unless otherwise specified, if P is a parameter then P[t] refers to the
value of P at the end of substage t. We begin by verifying several facts about the
construction.

Lemma 2.2. (a) At the end of every substage, for every α stronger than � , if �� ↓
then root� is α-good.

https://doi.org/10.1017/jsl.2023.26 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.26

ON THE C.E. DEGREES REALIZABLE IN Π0
1 CLASSES 9

(b) At the end of a substage t, suppose �α ↓ and � ⊆ �α . Let t′ be the largest such
that t′ ≤ t where |�α[t′ – 1]| < |�| (hence at t′ we most recently assigned the
value of �α to extend �). Then no prefix of � is moved strictly between t′ and t.

(c) For any α once T (rootα) = � is killed under step α.2(a), it is impossible for
T (rootα) ⊇ � again.

(d) Ts satisfies all the conditions we required of a sequence of total function trees.
In particular, each � is moved finitely often.

Proof. (a): Note that if � plays outcome ∞ at t or if we move left of � , then
�� [t] ↑. Let t′ < t be the substage where root� is defined. At t′root� is α-good.
Between t′ and t if α tries to make �α ⊇ root� then that same action must initialize
� .

(b): Suppose the node � moved some prefix of �. Then α cannot be stronger than
� because of (a). Since rootα is comparable with the node being moved, hence if �
is stronger than α it is easy to see that this would cause α to be initialized. Finally
suppose that α = � . Steps α.1, α.2(b), and α.2(c) are not possible since |�α | ≥ |�|
holds between t′ and t. Step α.2(a) is not possible because this will cause α to be
initialized.

(c): Suppose for a contradiction that α.2(a) is taken at t1, and T (rootα) ⊇ � at
some t2 > t1. Hence at t1 we have Zα[t1] � T (�α) � (|T (�–

α)| + 1). Let t3 < t1 be
the largest substage where α.1 or α.2(c) was taken. This means that at the end of t3,
we have ΦT (�α)

α (|T (�–
α)| + 1) ≤ t3, and Zα[t3] ⊃ T (�α) = �. By part (b) no prefix

of �α[t3] = �α[t1 – 1] is moved between t3 and t1. This means that Zα has changed
below the length |T (�–)[t3]| + 1 between substages t3 and t1. There must be some
substage between t1 and t2, call it t̂, for which rootα is defined such that (by applying
part (b) again) T (rootα)[t̂] ⊇ � under step α.1. This is however impossible given
that rootα[t̂] cannot be correctly defined at t̂ > t1.

(d): At every substage we modify the tree by moving an � to an extension � ⊃ �,
so it is clear that Ts+1(�) is on Ts . Suppose for a contradiction that � is a minimal
node moved infinitely often. Since |rootα | > |α| for every α, it follows that if � is
moved infinitely often, there is a highest priority α which moves � infinitely often.
Suppose αmoves � under α.2(a) at t. ThenT (�)[t] = �, and we may assume that no
proper prefix of � is moved after t. HenceT (�) ⊇ � holds, and by part (c) rootα
⊇ �
after t.

If α moves � under α.2(b) then it must be because k has entered C for some
k < |�|, so α.2(b) acts finitely often to move �. Suppose � is moved under α.2(c)
at t1. Then the only way to move � under α.2(c) again at some t2 > t1 is for
|�α[t2 – 1]| < |�| = |�α[t1 – 1]| to hold. If α gets initialized externally between t1
and t2 then rootα will be later picked to have length larger than t1 > |�| and so
α.2(c) cannot move � at t2. Therefore �α must get shorter due to some action of α.
If α.2(a) applies between t1 and t2 then a prefix of � has to be moved, contradicting
the minimality of �. If α.2(b) applies then it must be due to k entering ∅′ for some
k ≤ |�| which can only happen finitely often. Hence |�α[t2]| < |�| = |�α[t1]| cannot
hold and so case α.2(c) can only move � finitely often.

Finally assume that � is moved under α.1 infinitely often. This means that α has
to be initialized between each such movement of �. Again this initialization cannot

https://doi.org/10.1017/jsl.2023.26 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.26

10 BARBARA F. CSIMA ET AL.

be external, otherwise rootα will be picked to have long length. It is possible for
α.2(a) to initialize α, but by above this only happens finitely often. �

Hence P = [lims Ts] is a perfect Π0
1 class. We let TP denote the true path of the

construction, defined in the usual way to be the leftmost path visited infinitely often
during the construction.

Lemma 2.3. Suppose that α ∗ f ⊂ TP. The following hold.

(a) |rootα | is bounded.
(b) Steps α.1 and α.2(a) are taken finitely often.
(c) max{
α[t] | α is visited at t} <∞.
(d) If the Rα hypotheses fail then α acts finitely often.

Proof. (a): Assume the contrary. Since α is only initialized externally finitely
often, it is easy to see that at infinitely many substages t when we pick rootα , we
have rootα– is not �-good for some stronger � . This must be some � ∗ f ⊆ α, since
nodes to the left of α and extending α ∗∞ are never visited again. Hence we have

α ≥ |rootα–| at these t, which means that some large t has to be α-expansionary,
and �α ↑, which means that α ∗∞ has to be played at t, a contradiction.

(b): By (a) and Lemma 2.2(d) it follows that α.1 is taken finitely often.
Consequently α.2(a) is taken finitely often.

(c): Suppose the contrary that lim sup
α = ∞ and α plays outcome ∞ finitely
often. Let s0 be large. Note that after s0, α cannot be initialized externally. By (b)
we kill α under α.2(a) finitely often. Hence either rootα remains undefined forever,
or it receives a final definition. In the former case we will eventually play outcome
∞. In the latter case we have
α > |rootα | holds eventually at some visit to α. Hence
�� ⊇ rootα for some � ∗ f ⊆ α, otherwise we would kill α at that visit. Hence we
have a contradiction to Lemma 2.2(a).

(d): Suppose the Rα hypotheses fail. By (b) either rootα ↑ at almost every stage
or it receives a final value. If the former holds then we are done, so suppose rootα
is stable with value �, and let T (�) be the final position of Ts(�). Suppose for a
contradiction that α acts infinitely often. Hence α.2(c) has to be taken infinitely
often, otherwise |�α | is bounded and so α.2(b) is taken finitely often. Hence for each
k, rootkα must receive a final value, call it �k .

Suppose first of all that Zα does not exist. Then there is some least i such that
for each n, Zα(i)[t] = n for infinitely many α-stages t. Since |T (�i)| > i , then after
T (�i+1) is stable Zα has to change at position i, and we will kill α under α.2(a),
contradicting the fact that rootα is stable. Next suppose that Zα exists and is not in
P. Then at almost every visit to α,Zα[t] is not on [Tt]. Consequently α.2(c) is taken
finitely often. Now suppose thatZα exists and is in P, but ΦZαα (i) ↑. At substage t we

will set rootiα to have its final value. At the end of t we must have ΦT (rootiα)
α (i)[t] ↓ and

Zα[t] ⊃ T (rootiα). By assumption Z has to change below T (rootiα), and T (rootiα)
will retain its value until then. This means that when α is next visited it will be
killed giving a contradiction. Finally suppose ΦZαα is total but not a modulus of
convergence. Hence for some i, Zα � i has to change after ΦZαα (i). As above at
the end of substage t we note that rootiα is correct. Hence Z has to change below

T (rootiα) after t, because otherwise ΦZαα (i) = ΦT (rootiα)[t]
α (i), contradicting the fact

https://doi.org/10.1017/jsl.2023.26 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.26

ON THE C.E. DEGREES REALIZABLE IN Π0
1 CLASSES 11

that Zα � i has to change after ΦZαα (i). Hence at the next visit to α we will kill α,
another contradiction. �

Lemma 2.4. Let α be on TP.
(a) If the Rα hypotheses hold andα ∗ f ⊂ TP then for each k, rootkα will be defined

permanently and T (rootkα) ⊂ Zα .
(b) Rα is satisfied.

Proof. Fixα onTP, and assume that (a) and (b) holds for every � ⊂ α. Suppose
the Rα hypotheses hold. Consider the case when α ∗∞ ⊂ TP. Since (a) holds
trivially we show (b) holds for α. We have that α is either initialized externally
infinitely often, or there are infinitely many α-expansionary stages. Suppose the
former holds. Let � be a node such that � ∗ f ⊆ α and � initializesα infinitely often.
By Lemma 2.3(d) the R� hypotheses must hold. If Zα = Z� then Zα = Z� ≡T C ,
and we are done. Otherwise suppose Zα(i)
= Z�(i) for some i. Without loss of
generality let Zα ⊃ � ∗ 0 and Z� ⊃ � ∗ 1. Hence at almost every visit to α we have
Zα[t] ⊃ � ∗ 0 and Z� [t] ⊃ � ∗ 1. Take a sufficiently large t where � initializes α.
The actions of � at t must move some string � which is comparable with rootα .
We may assume that |�| > i + 1 and |rootα | > i + 1. By Lemma 2.3(b) we may
assume that this action is either �.2(b) or �.2(c). Since |rootα | > i + 1 we may
assume that T (rootα)[t – 1] ⊃ � ∗ 0. Since � is comparable with rootα we also have
T ((�–)–)[t – 1] ⊃ � ∗ 0. SinceZ� [t] ⊃ � ∗ 1 this means that at t, � must have chosen
to kill instead, a contradiction.

Suppose instead there are infinitely many α-expansionary stages. Let � ∗ f ⊆ α
be such that
α(�)[t] > max{
α(�)[t′] : α ∗∞ is visited at t′ < t} for infinitely many
t in which α ∗∞ is visited. Hence lim sup
α(�) = ∞, and by Lemma 2.3(d) the R�
hypotheses must hold and Zα = Z� . Since R� is satisfied we have Zα = Z� ≡T C .

Now we consider the case when α ∗ f ⊂ TP. We first show (a) for α. Clearly
α is only initialized finitely often. We first claim that rootα is defined permanently
at some stage. Pick a sufficiently large substage t, and we claim that rootα will be
defined at t (and hence retain this value permanently). The only thing preventing us
from finding a suitable � under α.1 is the requirement of being �-good. If � is to the
left of α or extends α ∗∞, then � acts finitely often and so �� varies finitely and will
not be a problem. If � ∗ f ⊆ α and the R� hypotheses fail then � also acts finitely
often. If the R� hypotheses hold and Z� = Zα then by induction hypothesis (a) on
� , we have
α → ∞ contradicting Lemma 2.3(c). On the other hand if Z�
= Zα
then ��
⊂ Zα[t′] holds at almost every t′, and will not be a problem to defining �.
Hence we will be able to define rootα permanently. It is clear that Zα ⊃ T (rootα),
because otherwise Zα ∩ T (rootα) ⊆ T (rootα–) since Zα ∈ P. Consequently we will
kill α contradicting the fact that rootα is stable. It is then easy to verify (inductively
on k) that for each k > 0, rootkα is defined permanently and T (rootkα) ⊂ Zα .

We now verify (b) for α, i.e., C ≡T Zα . To compute C (k), find t large enough
such that T (rootk+2

α)[t] ⊂ Zα[t], and Zα is correct up to |T (rootk+2
α)[t]|. If k enters

C after t, then at the next visit to α we will remove the old value T (rootk+2
α)[t] from

P, which contradicts Zα ∈ P. Hence k ∈ C iff k ∈ C [t]. Now to compute Zα � i
from C, we look for t large enough such that α is visited, T (rooti+1

α)[t] ⊂ Zα[t] and
C [t] � i + 1 is stable. Since no coding of C � i + 1 takes place after t, it follows that
rooti+1

α [t] is stable. By Lemma 2.2(b) rooti+1
α [t] is never moved after t. Consequently

https://doi.org/10.1017/jsl.2023.26 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.26

12 BARBARA F. CSIMA ET AL.

T (rooti+1
α)[t] is stable, and since |T (rootiα)| > i we conclude thatZα[t] � i = Zα � i ,

because otherwise we would kill α after t. �

This ends the proof of the theorem. We note that the construction of P from a is
effective.

§3. Realizable index sets. In this section we investigate which index sets can be
realized. The proof of Theorem 2.1 shows that any computable sequence of c.e.
degrees containing 0 can be realized in a perfect Π0

1 class; the uniformity of the
proof of Theorem 2.1 allows us to produce a class Pi realising each degree ai in
a computable set S, and we can realise S ∪ {0} by taking the class {0i ∗ Pi}i∈� .
We wish to improve on this. In Theorem 3.1, we show that generally any index set
generated by a Σ0

3 set S can be realized, even if S does not contain an index for ∅. If
S contains an index for ∅ then (Corollary 3.4) we can also realize G(S) in a rank
2 class. Note that this is the best possible rank, since a rank 1Π0

1 class only realizes
finitely many degrees. If S is not required to contain ∅ and is non-empty, then we
can always realize G(S) by a perfect Π0

1 class. We also give an example of a Π0
3 set

S where G(S) cannot be realized in any Π0
1 class (Theorem 3.5).

Theorem 3.1. For any non-empty Σ0
3 set S, there is a perfect Π0

1 class P such that
W [P] = G(S).

Proof. Let Ve,i be a uniform sequence of c.e. sets such that S = {e : ∃i |Ve,i | =
∞}. Fix an e0 ∈ S, and let Tj0 be the computable tree that givesW [Tj0] = G({e0})
in Theorem 2.1. If �0 ⊂ �1 ⊂ ··· ⊂ �n is a sequence of finite strings, and f is a total
computable function, we define the tree Tree(f, �0, ... , �n) to be the tree which
is the result of copying Tf(n) above �n ∗ 0, �n ∗ 1 and copying Tf(m) above �m ∗ 1
for each �m ∗ 0 ⊆ �n. Formally take the downwards closure of the set of strings
{�n ∗ 0 ∗ Tf(n)} ∪ {�n ∗ 1 ∗ Tf(n)} ∪ {�m ∗ 1 ∗ Tf(m) : m < n and �m ∗ 0 ⊆ �n}. We
can extend this to an infinite �-sequence Tree(f, �0, �1, ...) in a natural way,
by copying Tf(m) above �m ∗ 1 for each m such that �m ∗ 0 ⊆ �m+1. The tree
Tree(f, �1, ...) might not be computable unless the sequence of �m is computable.

In the following we fix 〈f, e, i, 〉, where e, i ∈ N and f is a total computable
function. We describe the construction of a Π0

1 class Pf,e,i (the relationship
〈e, i, f〉 �→ Pf,e,i is an effective one). For ease of notation we temporarily drop
f, e, i . We build P by defining a computable tree U, in stages. At stage s we define
U up till level s. To make U computable we only enumerate strings of length s at
stage s. We also define a sequence of finite strings �0,s ⊂ �1,s ⊂ ··· . The intention
is that if |V | = ∞ then ∪n lims �n,s will be a path in P = [U] which is of the same
Turing degree asWe , with all other paths in P having degrees of paths occurring in
the Tf(n).

If |V | <∞, we still make sure that P is perfect, now containing only paths
whose degrees are realized in the Tf(n). We do this by aiming to make P =
[Tree(f, lim �0, lim �1, ...)], by makingU = Tree(f, lim �0, lim �1, ...) except on the
dead ends introduced by the coding ofWe .

The plan: The idea is to break down the membership question e ∈ S into infinitely
many Π0

2 questions (about the cardinality ofVe,i). We approximate the truth of e ∈ S
locally by examining if |Ve,i | = ∞, and building a class Pe,i . We use Pe,i to denote

https://doi.org/10.1017/jsl.2023.26 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.26

ON THE C.E. DEGREES REALIZABLE IN Π0
1 CLASSES 13

Pf,e,i when f is simply the function f(x) = j0. At the end we combine the different
Π0

1 classes Pe,i together. Locally if |Ve,i | = ∞, then we must make some α ∈ Pe,i
such that α ≡T We . The standard way of doing this is to make α the complement of
the retraceable Π0

1 set associated withWe ; we refer the reader to Cenzer, Downey,
Jockusch, and Shore [2], where they showed that {w, 0} is realizable for anyw. The
problem is that this gives a rank 1 class in which some α ≡T We sits, and contains
computable (in fact, isolated) paths. InsidePe,i we have to be careful not to introduce
c.e. degrees which are not in G(S). The only reason why the isolated paths show up
is because we have to allow a different path to be extendible in the tree; this is to
allow for the later coding of some n ∈We . Observe that for the purpose of making
α ≡T We , it would not matter if we keep many paths (associated with n ∈We)
extendible on the tree instead of only two. Hence if αs is the current approximation
of an initial segment of α, we would copy the tree Tj0 above every node distinct
from αs which we currently want to keep extendible. If later on some m entersWe
and we need to switch αs+1 to a different string �, then we simply take the leftmost
extension of � of length s. On the other hand if � is such a string which is never
used, then we will copy the entire tree Tj0 above �. Doing so puts deg(We0) into
W [Pe,i]—no other c.e. degree is introduced. Of course we only extend αs if new
numbers enter Ve,i . If |Ve,i | <∞ then we will copy Tj0 above every terminal node.

Following the plan above gives effectively the class Pe,i for each pair e, i , which
introduces no new c.e. degree and contains deg(We) iff |Ve,i | = ∞. Finally we want
to glue the separate Pe,i ’s into a single class P. A slight technical issue arises if we
take the simple amalgamation P = {0n1 ∗ Pn : n ∈ N}; even though none of the Pn
introduces new c.e. degrees, however, the support X = ∅ will be in P. To get around
this problem we nest the construction of each Px within the outer construction of
Pe0 . This will create X in P with Turing degree X ≡T We0 , which supports the trees
associated with P0, P1,

Construction of U : At stage 1 declare �0 = 〈〉 and �1, �2, ... undefined, and
enumerate 〈〉, 0, 1 into U. For a � ∈ U , when we say we copy the next level of Tj above
� at stage s we mean the following. For each � ∗ � ∈ U such that |� ∗ �| = s – 1,
we enumerate � ∗ � ∗ 0 into U if � ∗ 0 is in Tj ; similarly for � ∗ � ∗ 1. Clearly if
� ∈ U|�| and we issue this command for � at every stage after |�|, then Tj will be
copied successfully above �; i.e.,U ∩ {� : � ⊇ �} = � ∗ Tj . A string is said to require
copying at stage s, if it is either of the form �m ∗ 1 for some convergent �m ∗ 0 ⊆ �m+1,
or it is �m ∗ 0 or �m ∗ 1 for the maximal convergent �m. When we say we copy Tf
above such a � we mean that we copy the next level of Tf(m) for the corresponding
m. The actions at stage s + 1 involve the following. Look for the largest n such that
�n ↓. See if there is some least 2m < n such that m ∈We,s+1 –We,s :

(i) m exists. Let � be the leftmost string of length s extending �2m ∗ 1, such that
� ∈ U . Move �2m+1 = � and put both � ∗ 0, � ∗ 1 in U. Declare �2m+2, �m+3, ...
undefined.

(ii) m does not exists. If s + 1 ∈ V we let � be the leftmost string of length s
extending �n ∗ r which is in U. Here r = 0 if n is odd, and r =We,s+1(1

2n) if
n is even. Define �n+1 = � and enumerate both � ∗ 0, � ∗ 1 into U, otherwise
if s + 1
∈ V do nothing.

https://doi.org/10.1017/jsl.2023.26 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.26

14 BARBARA F. CSIMA ET AL.

Copy Tf above every string which needs copying, and go to the next stage. This
ends the construction. It is easy to see that U is a computable tree.

Lemma 3.2. If |V | <∞ then [U] = [Tree(f, �̃0, ... , �̃n)] for a finite collection of
strings.

Proof. Let n be the largest such that �̃n = lims �n,s exists. It is easy to check
that [U] ⊆ [Tree(f, �̃0, ... , �̃n)], since after a large enough stage the only thing we
do in the construction is to copy Tf above a string which requires copying. To see
the reverse inclusion, fix an m < n and consider the stage s where �̃m is picked as
�m,s . Then |�̃m| = s – 1 and we may assume that (�̃m) ∗ 0 ⊆ �̃n. Since (�̃m) ∗ 1 ∈ Us
it follows that we will successfully copy Tf(m) above (�̃m) ∗ 1. A similar argument
follows for m = n. �

Lemma 3.3. If |V | = ∞ and [Tf(m)]
= ∅ for every m, then �̃m = lims �m,s exists for
every m, and ∪m�̃m ≡T We . Furthermore [U] = [Tree(f, �̃0, �̃1, ...)], and (�̃2m+1) ∗
0 ⊆ �̃2m+2 for all m.

Proof. It is straightforward to verify that the search for � in steps (i) and (ii)
of the construction is always successful, and consequently lims �m,s exists for every
m. Observe that X = ∪m�̃m can compute the sequence �̃0, �̃1, ..., and we have m ∈
We ⇔ X (|�̃2m|) = 1. To see thatX ≤T We , fix n and compute a stage s large enough
so that We,s � n + 1 =We � n + 1 and all of �0,s , ... , �n,s are defined. These must
already be at their final values, and since n < �n,s it follows that n ∈ X iff �n,s(n) = 1.
To prove the last statement, observe that [U] ⊇ [Tree(f, �̃0, �̃1, ...)] follows from a
similar argument as in Lemma 3.2. To see that [U] ⊆ [Tree(f, �̃0, �̃1, ...)], observe
that anyZ ∈ [U] satisfies eitherZ = X or else there is some m such thatZ ⊃ (�̃m) ∗ 1
and X ⊃ (�̃m) ∗ 0. Finally note that (�̃2m+1) ∗ 0 ⊆ �̃2m+2 clearly holds for all m. �

We are ready to show that there is a perfect Π0
1 class P such thatW [P] = G(S).

Let f(x) = j0 for every x; we want to combine all the classes Pf,e,i . Let g be a
computable function defined by the following: g(2x) = j0 and for the odd inputs
we select an index such that [Tg(2〈e,i〉+1)] = Pf,e,i . From Lemmas 3.2 and 3.3, and
the fact that Tj0 is perfect, we may conclude that each Tg(x) is perfect. Since e0 ∈ S
pick i0 such that |Ve0,i0 | = ∞, and let P = Pg,e0,i0 . It is not hard to verify that P itself
is also perfect, andW [P] = G(S). �

Corollary 3.4. Given a Σ0
3 set S that contains an index for ∅, there is a Π0

1 class P
of rank 2 such thatW [P] = G(S).

Proof. Suppose S contains an index for ∅. We want to produce P of rank 2.
We run the argument in the proof of Theorem 3.1, except now we let Tj0 = {0m :
m ∈ N}, and set f(x) = j0 for all x. Each of the Pf,e,i has rank at most 1—if
Ve,i is finite then so is Pf,e,i and if Ve,i is infinite then Pf,e,i has rank 1. We let
P = {0〈e,i〉1 ∗ Pf,e,i : 〈e, i〉 ∈ N}, which is of rank at most 2, andW [P] = G(S). �

We now turn to the question of whether every Σ0
4 set can be realized. An obvious

counter-example is the Π0
3 index set {e :We is not computable}. In fact no Π0

3 set
which is downwards dense in the c.e. degrees (in the sense that for any c.e.W >T ∅
there is e ∈ S such that We ≤T W), and containing no computable set can be
realized, due to an old result of Jockusch and Soare [8]. In the following theorem

https://doi.org/10.1017/jsl.2023.26 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.26

ON THE C.E. DEGREES REALIZABLE IN Π0
1 CLASSES 15

we give another example of a Π0
3 set which cannot be realized, but which contains

an index for ∅.

Theorem 3.5. There is a Π0
3 set S containing an index for ∅, such that there is no

Π0
1 class P withW [P] = G(S).

Proof. For any c.e. set L >T ∅, one can effectively obtain a c.e. set D and
reduction Ψ such that D = ΨL and D > ∅ and D
≥T L. If we iterate this process
starting with some noncomputable low2 c.e. set L, we get computable increasing
functions g and
 such that L =Wg(0) >T Wg(1) >T Wg(2) >T ··· , and Wg(n) =
ΦL

(n) for all n. LetTe be the eth primitive recursive tree. Since theWg(e) are uniformly

computable from L via
, it follows that there are L-computable relations R1 and
R2 such that

R1(e, i, x, s) ⇔ Φ
Wg(e)
i � x[s] ↓ and is on Te,

R2(e, i, j, x,m, s, �) ⇔ Φ
Wg(e)
i � m[s] ↓= � and Φ�j � x[s] ↓=Wg(e) � x.

We define n
∈ S iff whenever n = g(e), then there are some i, j for which:

(i) Φ
Wg(e)
i is total and is in [Te], and

(ii) Φj(Φ
Wg(e)
i) is total and equalsWg(e).

The quantifier for e is bounded since g is increasing. Clause (i) can be expressed as
∀x∃sR1(e, i, x, s). Since this is Π0

2(L), and L is low2 it is also Σ0
3. Similarly clause

(ii) can be expressed as ∀x∃m∃s∃�R2(e, i, j, x,m, s, �) which is also Σ0
3. Hence S is

Π0
3, and it is easy to verify that there can be no Π0

1 class P such thatW [P] = G(S).
To see that S can be made to contain ∅, note that S ∪ S̃ is also good for any Π0

3 set
S̃ where G(S̃) ∩G(Wg(n)) = ∅ for every n. �

Note that S is clearly non-empty, since empty index sets are realized by the
empty Π0

1 class. The above counterexample relies on the fact that for a low2 set L,
Π0

2(L) = Σ0
3.

So far all the examples we have of a set S that can be realised are those with a Σ0
3

definition (such as singletons). We wish to show that some S can be realized which
has no Σ0

3 definition. The next result does this.
If A is a high set then by Martin [9], there is an A-computable function ΓA which

dominates every computable function, meaning that if f is computable, then for
almost all x, ΓA(x) > f(x). Thus, if A is high then some Γ = Φj satisfying this will
exist. We will call such a j a domination index for A. As usual, the use of ΓA(x)[s] is
denoted by 	(x, s).

Theorem 3.6. Consider a computable collection C of pairs of the form 〈e, j(e)〉,
where j is a computable function such that each We has high degree, and j(e) is a
domination index forWe . Let S be any Σ0

4 subset of C, and fix an index e0 for ∅. Then
there is a rank 2 Π0

1 class P with such thatW [P] = G (S ∪ {e0}).
In particular, if S is Σ0

4-complete, then S ∪ {e0} is an example of a realizable set
which is not Σ0

3.

Proof. For simplicity of notation, we will pretend that C = � and also write
Φj(e) = Γe for the domination function for e.

https://doi.org/10.1017/jsl.2023.26 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.26

16 BARBARA F. CSIMA ET AL.

In Theorem 3.1, we realized each Σ0
3 set of e’s. Here we will be dealing with a Σ0

4 set
S. Thus, e ∈ S iff ∃p∀m∃s∀tR(e, p,m, s, t). For a fixed p, should the Π0

3 condition
∀m∃s∀tR(e, p,m, s, t) hold, we need to codeWe .

Again, the idea will be to devote a unique part of the Π0
1 class, to the pair 〈e, p〉.

These indices indicate that we are concerned with We (with domination function
gWee), and p is the Σ0

4 witness.
We will be making the class to be of rank 2. Concentrating on this fixed pair,

〈e, p〉 we are thinking of the part of the class being a rank 1 subclass extending some
fixed � ∗ 1 = �, say. The idea is again to more-or-less follow the coding of Cenzer,
Downey, Jockusch, and Shore [2], where they showed that {w, 0} is realizable for any
w. In this construction, it is convenient to allow 〈m, 0〉 to correspond to the (initial)
coding location for “m ∈We,s”. That is, initially we will think of � ∗ 0〈m,j〉 as the
coding location c(〈m, j〉, s); and in the construction, c(〈m, 0〉, s) for “m ∈We”.
Should m enter We,s , and conditions are opportune, we would code by changing
this to � ∗ 0〈m,0〉–1 ∗ 1s–〈m,0〉 ∗ 0i and re-assign the coding location for 〈m′, j′〉 to be
c(〈m′, j′〉, s) accordingly for 〈m, 0〉 < 〈m′, j′〉. (Of course all other paths in this
subclass are isolated ones of the form � ∗ 1� , as in Theorem 3.1.) Again this makes
a rank 1 subclass extending �.

As we see below, there are other reasons we might move a coding location. In the
construction, we would only allow c(n, s) to move ifWe,s � 	(n, s) changes. This is
to keep the degree below that ofWe . Without loss of generality we will assume that
for i ≤ s , 	(i, s),ΓWe,s(i) ↓ [s] < s.

We only want to codeWe if Σ0
4 is correct. We do not want to codeW – e should

the Π0
4 outcome be correct. Thus, each time Σ0

3 of the triple corresponding to e, p,m
in ¬R(e, p,m, s, t) looks correct, what we would like to do is to move the coding
location for c(〈m + i, 0〉s) for i ≥ 0 spontaneously to � ∗ 0〈m,0〉–1 ∗ 1s–〈m,0〉 ∗ 0i . We
call this action kicking. Then, if e
∈ S, so that the Π0

4 outcome is correct and has
witness m for this p, eventually all the paths in in the class extending � will be
computable, as they will be driven to infinity. If e ∈ S, and p is the correct Σ0

4
witness, then since each triple e, p,m has a Σ0

2 witness, for each m the above process
will fire only finitely often, and hence only move the coding location for m ∈We a
finite number of times.

Now, of course there is a small problem with all of this, as it upsets the computation
of the coding locations from We . In the Σ0

3 case in Theorem 3.1, locations c(m, s)
only moved when m′ ≤ m enteredWe,s′ for some s ′ ≤ s .

The solution is to use the highness ofWe . At the same time as the above, we will
be monitoring ΓWe,se (k) for k ≤ s , and building a sequence of potential computable
functions fk . The reader should note that if the Π0

4 outcome is true, it is enough the
force almost all coding markers to infinity. That is, even if 〈e, p,m〉 is the witness
of the failure of the Σ0

4 condition, it is enough that some c(n′, s) → ∞ for some
n′ ≥ 〈m, 0〉.

So suppose that the we have a fixed e, p,m, and m seems to be a witness
∀s∃t¬R(e, p,m, s, t) because this fires. At this stage we would definef〈e,p,m〉(〈m, 0〉)2

to be large and fresh, and continue to do this for f〈e,p,m〉(〈m, k〉) (i.e., for more and

2Strictly speaking, we would be defining f〈e,p,m〉(z) for z ≤ 〈m, 0〉 to make f〈e,p,m〉 total in the limit.

https://doi.org/10.1017/jsl.2023.26 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.26

ON THE C.E. DEGREES REALIZABLE IN Π0
1 CLASSES 17

more k each time it continues to fire) until we see someWe change on 	(〈m, k〉) to
make gWee (〈m, k〉) > f〈e,p,m〉(〈m, k〉), which it must as ΓWe is dominant, andf〈e,p,m〉
will be total if it fires infinitely often. Note that in the construction, for each k where
we get aWe change on 	(〈m, k〉) at some t ≥ s , we would kick the coding markers
c(z, t) for z ≥ 〈m, k〉. Additionally, we would kick all coding markers c(〈m′, q〉, s) for
m′ > m, k to also extend c(〈m, s〉t + 1). Here s is the stage where we first saw a ΓWe

change for some 〈m, k〉, and hence this is last defined value of f〈e,p,m〉. Notice that
now the original ordering of the coding markers is no longer valid. If we need to kick
for m because the Π0

4 outcome seems correct, then we will move all coding markers
form′ > m, k, and they will now be above c(〈m, s + 1〉, t + 1). If the process begins
anew, and k was the place where ΓWe is dominant above 〈m, k〉, then if it fires again,
all coding markers corresponding to m′ > m, k will again be moved as we’d get a
change ofWe on 	(〈m, s + 1〉, t + 1).

The key point is that if 〈e, p,m〉 fires infinitely often, than for almost allm′ coding
markers corresponding to m′ will be driven to infinity, as required. The remaining
details work as in the Σ0

3 case. �

§4. Characterizing the sets which can be realized in a Π0
1 class and computable

representations of index sets. Recall that for S ⊆ �, we definedG(S) = {e |We ≡T
Wi for some i ∈ S}. We say that a set S ⊆ � represents a set of c.e. degrees D if
G(S) = {e | deg(We) ∈ D}. Theorem 3.1 says that every Σ0

3 representable set of c.e.
degrees is represented in some Π0

1 class. We show that in fact the converse holds;
that every set of c.e. degrees realized by a Π0

1 class has a computable representation.
Hence the index sets which are realized by some Π0

1 class are exactly those with
a computable representation. In fact, we shall be able to classify the sets S with
a computable representation. Notice that all G(S) which are represented in some
Π0

1 class have complexity between Σ0
3 and Σ0

4. Condition (v) below describes the
exact syntactic criterion for an index set to have a computable representation; the
condition “∃a∀b∃c RWn (n, a, b, c)” is clearly between Σ0

3 and Σ0
4 (in the sense that

every Σ0
3 predicate can be written in this form, and its natural complexity upper

bound is Σ0
4). Thus, we characterise the index sets with a computable representation

as exactly those which are “Σ0
3 relative to the index being tested”.

Theorem 4.1. Let S ⊆ �. The following are equivalent.

(i) S has a computable representation, that is, G(S) = G(R) for some computable
set R.

(ii) There is a Π0
1 class P such that the set of c.e. degrees represented in P has index

set G(S), that is,W [P] = G(S).
(iii) There is a perfect Π0

1 class P such thatW [P] = G(S).
(iv) There is a computable function g such that for every n,

n ∈ G(S) ⇔WWn
g(n) is cofinite.

(v) There is a truth-table functional R such that for every n,

n ∈ G(S) ⇔ ∃a∀b∃c RWn (n, a, b, c).

https://doi.org/10.1017/jsl.2023.26 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.26

18 BARBARA F. CSIMA ET AL.

Proof. (iii) ⇒ (ii): Immediate.
(iv) ⇒ (v): It is easy to see that (iv) is equivalent to the condition “there is a

computable function ĝ such that for every n, n ∈ G(S) ⇔ ΦWn
ĝ(n,m) is total for some

m”. For any inputs X, n, a, b and c, let RX (n, a, b, c) hold iff ΦWn
ĝ(n,a)(b)[c] ↓ with use

u andWn[s] � u ⊂ X . ThenRX is clearly total and X -computable for all X, and has
the required property.

(v) ⇒ (iv): Let ΦX
ĝ(n,a)(b) ↓ iff RX (n, a, b, c) holds for some c.

(ii) ⇒ (v): The predicate within square brackets in the proof of Proposition 1.3 is
computable inWe . As above, this is obviously witnessed by a truth-table functional
by comparingWe[s] with the oracle.

(i) ⇒ (iii): This is Theorem 3.1.
(iv) ⇒ (i): Fix ĝ such that for every e, e ∈ G(S) ⇔ ΦWe

ĝ(e,q) is total for some q. If
S = ∅ then there is nothing to do, so fix a c.e. set D with an index in S.

For each pair e, q such that e, q ∈ �, we build (effectively) a c.e. set Ve,q . At the
end we will take R to be the set of all indices for the sets Ve,q (ranging over all pairs
e, q) and show that R represents G(S). R is of course computable.

Fix a pair e, q. We describe how to buildV = Ve,q . We also define markersm0[s] <
m1[s] < ··· for V. At each stage s define ni [s] = ϕWe

ĝ(e,q)(i)[s], if this converges. We
assume that ni+1[s] ↓⇒ ni [s] ↓ and is less than ni+1[s]. We shall ensure thatmk[s] ↓
if and only if nk[s] ↓ for all k < s . At stage 0 set all our parameters undefined and set
V = ∅. Now assume we are at stage s + 1. Let z ∈We[s + 1] –We[s] be the least
such, if it exists. If z < nk[s], pick the least such k with nk[s] ↓ and enumeratemk[s]
into V. Note that n0[s + 1], ... , nk–1[s + 1] are all still defined since there has been
noWe change below them, and thereforem0, ... , mk–1 are all still defined. For every
number x larger than mk–1 that has been assigned to code D(i) for some i, we set
D(i) = V (x). See if nk[s + 1] ↓, and if so set mk to be a large fresh number, and
assign a new number less than mk to code the next D(i). Otherwise set mk ↑.

If z does not exist, or if z is larger than any nk[s] seen at the previous stage s, we do
the following. For the least k such that nk[s] ↑, and for every number x larger than
mk–1 that has been assigned to code D(i) for some i, we set D(i) = V (x). Assign a
new number to code the next D(i). Check and see if nk[s + 1] ↓. If so, set mk to be
a large fresh number, otherwise do nothing else. This ends the definition of V.

Now we state some properties about V. There are two possibilities:

(I) ΦWe
ĝ(e,q) is total. Then lims nk[s] and lims mk[s] exist for every k. In this case

it is easy to check thatWe ≡T V . To computeWe ≤T V , fix x and wait for
a stage large enough such that mx [s] ↓ and V is correct up to mx [s]. Then
x ∈We iff x ∈We[s]. To computeV ≤T We we wait for a stage large enough
such that nk[s] ↓ andWe is correct up to nk[s]. This means that mk[s] ↓ and
the construction will never again change V below mk[s].

(II) ΦWe
ĝ(e,q) is not total. Then there must be some least k such that either

lims nk[s] = lims mk[s] = ∞, or nk[s], mk[s] ↑ for almost every s. Let r be
the final value ofmk–1. (If k = 0 set r = 0). In the first case there are infinitely
many stages where mk is enumerated into V, and at every such stage we will
assign for every i, some number larger than r to code D(i). We will also be
able to ensure thatV (x) = D(i) for every x > r assigned to code someD(i).

https://doi.org/10.1017/jsl.2023.26 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.26

ON THE C.E. DEGREES REALIZABLE IN Π0
1 CLASSES 19

In the second case mk[s] ↑ for almost all s, and the construction will attend
to the coding of D above r at almost every stage. In either case, we see that
every bit of V larger than r is either assigned to code some D(i), or is never
again modified after mk is lifted past it. Thus, V ≡T D.

Now we verify thatG(R) = G(S). Suppose thatVe,q is included in R. Then either
(I) or (II) holds for the construction of Ve,q . In case (II) Ve,q ≡T D and so Ve,q is
represented in G(S). In case (I) ΦWe

ĝ(e,q) is total and Ve,q ≡T We . This also means
that Ve,q is represented in G(S). Hence R ⊆ G(S).

Now let e ∈ G(S). Suppose q is such that ΦWe
ĝ(e,q) is total. But this means that case

(I) holds for Ve,q and the index of Ve,q is in R. Hence G(S) ⊆ G(R). �

Corollary 4.2. If S is Σ0
3 then there is some computable R such thatG(S) = G(R).

However not every Π0
3 set has a computable representation.

Corollary 4.3. An index set I is realisable in a Π0
1 class iff I has a Σ0

3 representation
iff I has a computable representation.

Corollary 4.4. If S and T have computable representations then so do G(S) ∩
G(T) and G(S) ∪G(T).

Corollary 4.5. The following classes of c.e. degrees have a computable represen-
tation and can be realized in some (perfect) Π0

1 class:

• The set of all superlow c.e. degrees.
• The set of all K-trivial c.e. degrees.
• Any Σ0

4 subset of a computable collection of high indices with an index for 0.
• Any uppercone of c.e. degrees, that is, the set {b | b is c.e. and b ≥ a} for any c.e.

degree a.
• Any lowercone of c.e. degrees below a low2 c.e. degree, that is, the set {b | b is c.e.

and b ≤ a} for any low2 c.e. degree a.

Proof. The first two have obvious Σ0
3 definitions. The third is just Theorem 3.6.

For the fourth, let A ∈ a be a c.e. set. Then Wn ≥T A if and only if ∃e∀x∀s∃t >
s ΦWne (x)[t] ↓= A(x)[t] and Wn[t] � ϕe(x)[t] is correct. For the fifth, note that

Wn ≤T A if and only if ∃e
(

ΦAe is total and ∀x∀s∃t > s ΦAe (x)[t] ↓=Wn(x)
)

. Since

A is low2, the statement “ΦAe is total” is Σ0
3. �

Finally, we wish to consider which lowercone of c.e. degrees has a computable
representation. From Corollary 4.5 we know that every low2 lowercone has a
computable representation. We will next show that not every lowercone of c.e.
degrees has a computable representation, and will follow from the next theorem. The
next result says that given any effective sequence of independent c.e. sets A0, A1, ...,
and any Σ0

4 set S, there is a c.e. set B that boundsAi for all i ∈ S and does not bound
anyAi for i
∈ S; roughly speaking, it says that the S-infinite join of any independent
sequence exists, and we believe that this result is of independent interest.

Theorem 4.6. Let C be a uniformly computable collection of c.e. sets {Ai | i ∈ �}
which are independent in that for any finite set F, if i
∈ F , then Ai
≤T ⊕j∈FAj . Let
S be a Σ0

4 set. Then there is a c.e. B such that for all i ∈ �, i ∈ S iff Ai ≤T B .

https://doi.org/10.1017/jsl.2023.26 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.26

20 BARBARA F. CSIMA ET AL.

Proof. The proof uses the 0′′ methodology, even though each requirement shall
be divided into infinitely many subrequirements, but there are no injuries along the
true path. We need to meet for all e the following:

Me : e ∈ S → Ae ≤T B,
Ne : e
∈ S → Ae
≤T B.

To meetMe , let R be a computable relation representing S in that

e ∈ S iff ∃x∀m∃s∀tR(e, x,m, s, t).

Me,x denotes the attempt to meet Me at witness x. We set aside infinitely many
potential columns {B〈e,x,n〉 | n ∈ �}, for the sake ofMe,x . At each stage s, n(e, x, s)
denotes the current choice. As we will later see, we will in fact be using multiple
positions to try to meet the same 〈e, x〉. We will ensure that n∗ = lim infs n(e, x, s)
exists for at least one choice and this columnB〈e,x,n∗〉 correctly codesAe iff e ∈ S. �

4.1. Description of the strategy. For a fixed choice n(e, x, s), we do the following.
For each number a, we will have a coding location c(2a, s) which is coding
whether a ∈ Ai . (The odd ones will be used for the Σ0

4-testing.) If a enters
Ai,s put 〈e, x, n(e, x, s), c(2a, s)〉 into Bs+1 – Bs. Unless restrained, each time
R(e, x,m, –, –) fires (for each m), we will kick all coding locations c(a, e, x, s) =
c(a, s) for a ≥ 2m + 1 to fresh places, dumping 〈e, x, n(e, x, s), c(2m +
1, s)〉 ... 〈e, x, n(e, x, s), c(s, s)〉 intoBs+1 – Bs , and reassigning new coding locations
for a ≥ 2m + 1 to be c(2m + i, s + 1) = c(s, s) + i, for i ≥ 1. This will obviously
be modified below, to take into account of other requirements, but the actual action
is more or less similar. Note that if x is not the Π0

3 witness that e ∈ S, then for
some m, the Π0

2 fact R(e, x,m, –, –) fires infinitely often, and hence, if this is a stable
n(e, x, s), almost all of the column �〈e,x,n(e,x,s)〉 will enter B.

To implement this strategy on a tree of strategies we will introduce Me,x at
some mother node �(e, x) = �, and at various places in the cone below �(e, x), we
will have sub-requirements �m(e, x) testing whether R(e, x,m, –, –) fires infinitely
often, i.e., whether the predicate ∀s∃tR(e, x,m, s, t) holds. This node �m(e, x)
will have outcomes ∞ <L f, corresponding to the truth value of the predicate
∀s∃tR(e, x,m, s, t). The way the mother node �(e, x) and its children nodes �m(e, x)
work is the following. The mother node �(e, x) is assigned a column, say p of
B. It wants to code Ae into column p of B if and only if the Π0

3 predicate
∀m∃s∀t¬R(e, x,m, s, t). It measures this Π0

3 predicate by distributing the task
amongst its children nodes; as usual, each child �m(e, x) measures the Σ0

2 fact
∃s∀t¬R(e, x,m, s, t). The mother node �(e, x) will assign coding location for each
z, coding Ae(z) into some position of B〈p〉. Its task whenever visited is to monitor
if some Ae(z) has changed since it last checked, and if so, put the appropriate
coding marker into B〈p〉. It also assigns a new coding location for z if the previous
one has been put into B. The task of each child node �m(e, x) is to monitor
∃s∀t¬R(e, x,m, s, t). Every time the Π0

2 instance holds it will work towards making
B〈p〉 cofinite by picking some least coding location z (above some restraint) and
enumerating everything in the column B〈p〉 between c(2z + 1) and s. Thus in the
Π0

3 case, each coding location is lifted finitely often by the children nodes and the

https://doi.org/10.1017/jsl.2023.26 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.26

ON THE C.E. DEGREES REALIZABLE IN Π0
1 CLASSES 21

mother node will successfully ensure Ae ≤T B〈p〉. In the Σ0
3 case, some child node

will force B〈p〉 to be cofinite, and obviously in this case Ae
≤T B〈p〉. Note that in
the Σ0

3 case, making Ae
≤T B〈p〉 is not enough, as we in fact need Ae
≤T B , but it
is necessary for the N-requirements to work correctly.

Below outcome �m(e, x) ∗∞ we have confirmation that x is not the witness for
e ∈ S. So we must make progress towards meeting the requirementNe (i.e., making
Ae
≤T B) as described below. Note that we may not actually meet Ne at the end,
since perhaps e ∈ S, but witnessed by some other x′ > x. We will describe how this
works in due course, but for the time being, we shall suppose that no such x′ exist
and that e is in fact not in S. Now,Ne is divided into infinitely many subrequirements
Ne,k : e
∈ S → ΦBk
= Ae.

We first discuss this for e = 0 and k = 0. We will be assuming that n(0, 0, s) = 0
for all s, so that A0 is being coded into column B〈0,0,0〉 for all stages. Now, below
some �m(0, 0) ∗∞ (where recall that �(0, 0) is the mother node devoted toM0,0) we
will work as follows. We wish to make ΦBk
= A0 for k = 0. The first case would be
that �m(0, 0) is immediately below the position where we introduced the mother node
�(0, 0) and thereforeN0,0 = �m(0, 0) ∗∞ are the first two requirements below �(0, 0).
The strategy for N0,0 is relatively simple. We would allow N0,0 to assert control of
B by freezing B � ϕk(z) at the first stage that we see a B〈0,0,0〉-correct computation
such that ΦBk [s] � z = A0[s] � z. Then, since A0 is noncomputable, this would only
have finite restraint on the overall construction, since at some stage some small a
will enter A0 and create a disagreement, which will be preserved forever.

More generally, let us suppose that we are dealing with ΦBk
= A0 and that the
requirement in charge of this, N0,k , is placed below, say, a coding column which
is coding A1. More specifically, we are now considering the situation where N0,k

is below the node �(1, 0) (assigned to requirement M1,0), which is in turn below
�m(0, 0) ∗∞.

So in this simplified set-up, ΦBk
= A0 being met at � will need to cope with, say,
the coding ofA1 into some column of B (say column p), and it is not reasonable that
this should be restrained by � as the mother node �(1, 0) in charge of the coding of
A1 is at a higher priority place on the tree.

Now there are two possibilities. Either column p actually codes A1 at the end
(Π0

3 outcome), or there is some m1 which fires infinitely often for column p and
A1 (Σ0

3-outcome). In the Π0
3 outcome there are no difficulties with arranging for

the coding of A1 and �(1, 0) to be of higher priority than �. Following the above
strategy, � will impose restraint on all requirements of lower priority as indicated,
and the only injury would to � will be caused by theA1-coding done by �(1, 0). Since
A0
≤T A1, the lim inf of the restraint would exist. Thus, on the tree of strategies, we
will represent the possible outcomes as the sequencew <L 0 <L 1 <L 2 <L 3 <L ...
with w representing the waiting outcome to see a valid length of agreement above
0, and the rest the lim inf of the length of agreement. Note that we are using the
hat convention so that if a computation with length above n occurs and the use is
injured, then the length of agreement must drop below n, for at least the next �-stage.
Naturally, we will need to prove one of these outcomes is on the true path assuming
that � is.

Our biggest problem come from the fact that the numbers entering B can either
be caused by coding of some Ai set, or some m1 trying to prove that some � is

https://doi.org/10.1017/jsl.2023.26 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.26

22 BARBARA F. CSIMA ET AL.

incorrect. If this node � trying to make ΦBk
= A0 is below some �m1(1, 0) ∗∞, then
� knows that �m1(1, 0) is going to make column p of B cofinite. As usual, � would
wait for computations which are both �m1(1, 0) ∗∞ and �m(0, 0) ∗∞ correct, and
there is no real problem. However it could be that m1 fires infinitely often, and �
is above all such �m1(1, 0) ∗∞-nodes. The decision of coding locations of A1 inside
column p of B is made at the mother node �(1, 0). However, as �(1, 0) is committed
to coding A1 into its assigned column of B if and only if some Π0

3 predicate holds,
the mother �(1, 0) will distribute this guess amongst its children nodes �k(1, 0) for
all k. Hence, in the Σ0

3 case we will have to let some child node �m1(1, 0) make column
p of B cofinite and move its corresponding coding location to ∞. If this child node
�m1(1, 0) is below �, then there is no way for � to wait for a �m1(1, 0) ∗∞-correct
computation.

In this case, the child node �m1(1, 0) has lower local priority than �, and thus
should defer to the wishes of �. We will arrange for controlled injury of the column
p in this case. When any k fires (i.e., �k(1, 0) sees the next instance of Π0

2 hold), if
it is associated with some �k(1, 0) ∗∞ � �, then we let it act as usual, since � must
be looking for �k(1, 0)-correct computations anyway. However, if k is sufficiently
large that it is handled below �, the tree machinery will handle the injury. More
specifically, �k(1, 0) will be making column p of B coinfinite above the restraint r
such that �k(1, 0) � � ∗ r. If �k(1, 0) is along the true path, then every time where it
is visited, the restraint currently imposed by � is less than r. Of course, if we move
to some outcome n < r of � later on, then the restraint imposed by � will drop
to n < r, and the corresponding sibling node �k(1, 0) � � ∗ n will make enumerate
all numbers in column p of B between n and r and lift all corresponding coding
markers. Notice that the �-restraint will only drop because something enters A1

forcing a coding into column p. The upshot is that in both cases it cannot be
that ΦBk = A0, as either A0 ≤T R, a computable set, or A0 ≤T A1, in the latter
case.

The analysis above shows how we can code a Π0
3 set S into B, but since S is Σ0

4,
we have multiple attempts to code, e.g., A0 into B, and the above dealt with attempt
(0, 0). To wit, we will have infinitely many x such that (0, x) potentially witnesses
0 ∈ S, provided that it has the Π0

3 outcome.
The remaining details are to put this together and argue that the combinatorics

works. We turn to these details.

4.2. The priority tree. We will define PT by induction on length of � on PT
according to the following rules.

The tree will consist of �-nodes, �m-nodes, and �-nodes. � and �m-nodes have
associated with them a pair (e, x), namely e(�), x(�)) and in the case of �m, this refers
to its mother, which will be a � node introduced in the tree and above it. A �-node has
a single outcome o which simply indicates a place that we are introducing an attack
on (e(�), x(�)) and hence trying to code Ae(�) into B. This is done via some column
n(�) chosen from ones set aside for e as indicated at the beginning of the proof.
We will not explicitly mention the relevant 〈e, x, p, q〉 as this seems unnecessary, but
will associated coding markers c(�,m, s) and m-markers c(�, 2m + 1, s) the latter
concerned with whether e ∈ S is not witnessed by (e, x). �m has outcomes ∞ <L f.
�-nodes will have outcomes w <L 0 <L 1 <L 2 <L 3 <L Associated with � is

https://doi.org/10.1017/jsl.2023.26 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.26

ON THE C.E. DEGREES REALIZABLE IN Π0
1 CLASSES 23

a triple (e(�), x(�), k(�)) also indicating which Ae it is attempting to diagonalize
and for which x. This information would be summarized by some pair (�m, k), with
e(�m) = e(�), and x(�m) = x(�).

We then work by length and generate PT . Along some path we will gradually
introduce the the nodes above. We will let �, the empty string, be devoted to (0, 0)
and thus �(0, 0) = �. This has a single outcome o. We would let this be �0(0, 0) and
have mother �. This has two outcomes ∞, f. Below the ∞ outcome we would have
a �(�0, 0)-node and below the f -outcome, we would introduce a new �(1, 0)-node
so that it equals of. The �-type node below the ∞-outcome will have outcomes
w <L 0 <L 1 <L 2 <L 3 <L Below each of these we would introduce a new
�(1, 0)-node, and promise according to some priority ordering to introduce a new
�(0, 1)-node. (This latter case differs from the outcome f of o since we are recognising
that we think we have killed (0, 0) and need to restart A0 with a new x = 1; whereas
below f we are thinking that x = 0 is good.)

In general as we work down the tree, gradually introducing nodes according to
some priority ordering, but remaining consistent with the information. If we hit a
node �, we will see three cases.

Case 1. � should be assigned to a new �(e, x). Outcome o.
Case 2. � should be assigned to some �m(e, x). This will have outcomes ∞, f.

Below the ∞ outcome we will need to:

• Start introducing �(e, x′, k) nodes for x′ ≤ x.
• Introduce some other �(i, j)-nodes and �m(i, j)-nodes (but not for i = e and
j ≤ x as these have been dealt with) equitably according to the list.

• And then introduce a �(e, x + 1)-node.

Below the f -outcome, we would assign the next type of node not yet deal with at
� according to some priority list, and consistent with the information on the path.
(So, for example, not a �(e, y)-node for y > x, for instance.)

Case 3. � should be assigned to some �(�, k)-node. It will have outcomes w <L
0 <L 1 <L 2 <L 3 <L Below each, we would assign the next type of node not yet
deal with at � according to some priority list, and consistent with the information
on the path. Note that nothing will be re-started.

4.3. The construction. We begin at �. For any n which has entered A0 at stage
s + 1, put the coding marker for n from column n(�) (Column n(�) equals 〈0, 0, 0〉),
into B.

Play outcome o. See if (0, 0) has fired. If so play outcome ∞, else play outcome f.
More generally, we have hit �.
If � is a �m(e, x)-node, see if (e, x) has fired since the last �-stage. Look at those

�-nodes � ≺ �. Each such � will have an outcome � ∗ n � �, and an associated use
u(�, s) of the computation ΦB

e(�) � n – 1 = Ae � n – 1, and possibly ΦB
e(�) � n
= Ae �

n, since we preserve to the first disagreement using standard Sacks’ strategy. Let
u be the maximum of such uses. Accordingly, there will be some m′ ≥ max{u,m}
which we will use to move all coding markers c(z, s) for z ≥ 2m′ + 1 which have
not moved since the last �-stage.

If � is a �-node, then if this is the first stage we have visited � since initialization,
assign a fresh acceptable column n(�) to � to code (e(�), x(�)). If � already has a

https://doi.org/10.1017/jsl.2023.26 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.26

24 BARBARA F. CSIMA ET AL.

column, then see if any numbers have entered Ae since the last �-stage and then
enumerate the relevant coding markers into column n(�).

If � is a �-node, then play outcome n for the current �-correct length of agreement
(i.e., consistent with all �m ∗∞ � �) up to the first disagreement, with w being played
if there are no computations at all.

Generate the TPs of length s in this way and initialize all nodes right of TPs at
the end of stage s.

This ends the description of the construction.

4.4. Verification. We verify the construction. We argue by induction on the length
of � that TP exists and the outcomes are true.

We begin with � a �-node. We need to prove that the overall restraint caused
by � is finite along the true path, and that � ∗ n ≺ TP for some n. Now go to a
stage s0 where we are never left of �. Let e, x, k be the relevant �-parameters. Each
time after stage s we see a �-correct computation ΦBe � n = Ae � n (up to the first
disagreement) we will play outcome n. The first time we do this, mothers of lower
priority than � below this outcome will have their coding locations set to be above
the use of the computation. Furthermore, any �m1 -node below outcome n has to
use a proxy m′

1 above the �, n-use for its firings. Therefore this computation will be
preserved unless some coding action i entering Ae′ for some mother �′ � � occurs
after stage s. This will cause the length of agreement to drop below n at the next
�-stage, and hence if we ever play n again, mothers below this outcome will again
have their coding locations reset. Since no �m ∗∞-injury can occur for �m � � as this
is incorporated into �-correctness, and �m1 extending any �m1 -node below outcome
n has to use a proxy above the n-use for its firings. We can conclude that injuries
only occur because of i entering Ae′ for some mother �′ � �, after s0. So suppose
that ΦBk = Ae at �. For each n there will be a computation ΦBk � n = Ae � n at a
�-stage s which is Ai -correct for all Ai with mothers above �. This computation
therefore must actually be correct. But then we can conclude Ae ≤T ⊕i∈FAi with F
the collection of with mothers � above �, and �m ∗∞ ≺ �. But this means that Ae
cannot be in F by the positioning of the �-type nodes such as �. This contradicts the
independence of {Aj | j ∈ N}. Therefore ΦBk = Ae at �. Hence the lim inf n must
exist.

If � is a � node, then at some stage � is never re-initialized, and its coding locations
are set. Each time we visit � we code as required.

If � is a �m node, if it stops firing at some stage after s0, then � ∗ f will be on TP.
If m fires infinitely often, we know by induction that the uses associated with �-type
nodes � ∗ n � �m will have finite use, and hence from some point onwards, the proxy
m′ for m will be fixed. Each time m fires it will move c(2m′ + 1, s) in column n(�)
from the mother � ≺ �m, and if � is below the outcome n for such �-nodes, then �
will have chosen so that m = m′.

Finally, if e ∈ S, then the way we construct the priority tree means that we will
put some � ≺ TP with (e(�), x(�)) being correct in that x is a witness for e ∈ S.
Below �, every �m will have outcome f. Thus we will correctly code Ae into B since
each coding marker for n ∈ Ae can be moved at most a finite number of times by m
below n.

https://doi.org/10.1017/jsl.2023.26 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.26

ON THE C.E. DEGREES REALIZABLE IN Π0
1 CLASSES 25

If e
∈ S, then for each pair (e, x) there will be some �m ∗∞ ≺ TP with
(e(�), x(�)) = (e, x). Below each such node we will have �(e, x, k)-nodes � and
these will be met as above. This means that Ae
≤T B .

This concludes the proof of Theorem 4.6.

Corollary 4.7. Not every lowercone of c.e. degrees has a computable representa-
tion.

Proof. Fix any effective independent sequence of low c.e. degrees A0, A1, ...

with uniform lowness indices, that is, (Ak)′ = Φ∅′
F (k) for all k and some computable

function F. This can be easily done by constructing the sequence directly, satisfying
both lowness and diagonalization requirements. Both kinds of requirements are
finitary, and the construction produces a uniform sequence of lowness indices F.
Now let S be any Σ0

4-complete set S. By Theorem 4.6 let B be a c.e. set such that
i ∈ S iff Ai ≤T B . If the lowercone below B has a computable representation, say
witnessed by the effective sequence V0, V1, ... of c.e. sets, then we see that i ∈ S iff
Ai ≤T B iff Ai ≡ Vk for some k. Since Ai is low, the predicate “Ai ≤T Vk” is Σ0

3 (in
the variable k). Since the sequence {Ai} is uniformly low, the statement “Ai ≡ Vk
for some k” is Σ0

3. This is a contradiction. �

In an early draft of this paper, from several years ago, we concluded with the
following question.

Question 4.8. Is there some Turing incomplete non-low2 c.e. set A such that the
c.e. lowercone below A has a computable representation?

However, in [7], Downey and Melnikov showed that the answer is no.

Theorem 4.9 (Downey and Melnikov [7]). Suppose that A is c.e. and Turing
incomplete, then the lowercone below A has a computable representation iff A is low2.

Funding. Csima is partially supported by an NSERC Discovery Grant. Downey
is partially supported by Marsden Fund of New Zealand. Ng is partially supported
by the grants MOE2015-T2-2-055 and RG131/17.

REFERENCES

[1] G. Barmpalias and A. Nies, Upper bounds on ideals in the computably enumerable Turing degrees.
Annals of Pure and Applied Logic, vol. 162 (2011), pp. 465–473.

[2] D. Cenzer, R. Downey, C. Joskusch, and R. Shore, Countable thin �0
1 classes. Annals of Pure

and Applied Logic, vol. 59 (1993), pp. 79–139.
[3] D. Cenzer and C. Jockusch,�0

1 -classes – Structure and applications. Contemporary Mathematics,
vol. 257 (2000), pp. 39–59.

[4] P. Cholak, R. Downey, N. Greenberg, and D. Turetsky, Realizing computably enumerable
degrees in separating classes, Higher Recursion Theory and Set Theory (J. Cummings, A. Marks, Y. Yang,
and L. Yu, editors), Lecture Notes Series Institute for Mathematical Sciences, National University of
Singapore, Singapore.

[5] R. Downey and D. Hirschfeldt, Algorithmic Randomness and Complexity, Springer, New York,
2010.

[6] R. Downey, C. Jockusch, and M. Stob, Array nonrecursive sets and multiple permitting arguments,
Recursion Theory Week (K. Ambos-Spies, G. H. Müller, and G. E. Sacks, editors), Lecture Notes in
Mathematics, vol. 1432, Springer, Berlin, 1990, pp. 141–174.

https://doi.org/10.1017/jsl.2023.26 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.26

26 BARBARA F. CSIMA ET AL.

[7] R. Downey and A. Melnikov, On realisation of index sets in�0
1 -classes. Algebra I Logika, vol. 58

(2019), pp. 659–663.
[8] C. Jockusch and R. Soare, Degrees of members of �0

1 classes. Pacific Journal of Mathematics,
vol. 40 (1972), pp. 605–616.

[9] D. Martin, Classes of recursively enumerable sets and degrees of unsolvability. Zeitschrift für
Mathematische Logik und Grundlagen der Mathematik, vol. 12 (1966), pp. 295–310.

[10] R. I. Soare, Recursively Enumerable Sets and Degrees, Springer, New York, 1987.
[11] C. E. M. Yates, On the degrees of index sets. Transactions of the American Mathematical Society,

vol. 121 (1966), pp. 308–328.
[12] ———, On the degrees of index sets. II. Transactions of the American Mathematical Society,

vol. 135 (1969), pp. 249–266.

DEPARTMENT OF PURE MATHEMATICS
UNIVERSITY OF WATERLOO

WATERLOO, ON N2L 3G1
CANADA

E-mail: csima@uwaterloo.ca
URL: www.math.uwaterloo.ca/∼csima

SCHOOL OF MATHEMATICS
STATISTICS AND COMPUTER SCIENCE

VICTORIA UNIVERSITY OF WELLINGTON
P.O. BOX 600, WELLINGTON

NEW ZEALAND
E-mail: Rod.Downey@ecs.vuw.ac.nz

DIVISION OF MATHEMATICAL SCIENCES
SCHOOL OF PHYSICAL AND MATHEMATICAL SCIENCES

NANYANG TECHNOLOGICAL UNIVERSITY
SINGAPORE

E-mail: kmng@ntu.edu.sg

https://doi.org/10.1017/jsl.2023.26 Published online by Cambridge University Press

mailto:csima@uwaterloo.ca
mailto:Rod.Downey@ecs.vuw.ac.nz
mailto:kmng@ntu.edu.sg
https://doi.org/10.1017/jsl.2023.26

	1 Introduction
	2 Every c.e. singleton is realizable in a perfect Π01 class
	2.1 Notations
	2.2 Proof idea
	2.3 Formal construction
	2.4 Verification

	3 Realizable index sets
	4 Characterizing the sets which can be realized in a Π01 class and computable representations of index sets
	4.1 Description of the strategy
	4.2 The priority tree
	4.3 The construction
	4.4 Verification

