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Abstract We obtain solvability conditions for some elliptic equations involving non-Fredholm operators
with the methods of spectral theory and scattering theory for Schrödinger-type operators. One of the
main results of the paper concerns solvability conditions for the equation −∆u + V (x)u − au = f where
a � 0. The conditions are formulated in terms of orthogonality of the function f to the solutions of the
homogeneous adjoint equation.
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1. Introduction

Linear elliptic problems in bounded domains with a sufficiently smooth boundary sat-
isfy the Fredholm property if and only if the ellipticity condition, proper ellipticity and
the Lopatinskii conditions are satisfied. The Fredholm property implies the solvability
conditions: the non-homogeneous operator equation Lu = f is solvable if and only if
the right-hand side f is orthogonal to all solutions of the homogeneous adjoint problem
L∗v = 0. Orthogonality is understood in the sense of duality in the corresponding spaces.

In the case of unbounded domains, one more condition should be imposed in order to
preserve the Fredholm property. This condition can be formulated in terms of limiting
operators and requires that all limiting operators be invertible or that the only bounded
solution of limiting problems is trivial [16]. Limiting operators are the operators with
limiting values of the coefficients at infinity, if such limiting values exist. Otherwise,
limiting coefficients are determined by means of sequences of shifted coefficients and
locally convergent subsequences.

If we consider, for example, the operator Lu = −∆u − au in R
n, where a is a positive

constant, then its only limiting operator coincides with the operator L. Since the limiting
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equation Lu = 0 has a non-zero bounded solution, then the operator L, considered
in Sobolev or Hölder spaces, does not satisfy the Fredholm property. Therefore, the
solvability conditions are not applicable. However, the particular form of the equation
−∆u − au = f in R

n allows us to apply the Fourier transform and to find its solution.
It can easily be verified that it has a solution u ∈ L2(Rn) if and only if f̂(ξ)/(ξ2 − a) ∈
L2(Rn), where the hat denotes the Fourier transform. In other words, the solvability
conditions are given by the equality∫

Rn

e−iξxf(x) dx = 0 (1.1)

for any ξ ∈ R
n such that |ξ|2 = a. This means that formally we obtain solvability

conditions similar to those for Fredholm operators: the right-hand side is orthogonal to
all solutions of the homogeneous formally adjoint problem.

It should be noted that the left-hand side of (1.1) is not a bounded functional over
L2(Rn). Therefore, these orthogonality conditions do not imply that the range of the
operator is closed. Indeed, we can construct a sequence fn ∈ L2(Rn) such that it converges
in L2(Rn) to some f0 and all functions fn satisfy the solvability conditions, while f0 does
not satisfy them. In order to construct such a sequence, we consider the Fourier transforms
f̂n(ξ) and assume that they vanish at |ξ|2 = a. These functions can converge in L2(Rn)
to a function that does not vanish on this sphere. Thus, the range of the operator is not
closed and the similarity with Fredholm solvability conditions is only formal.

In this example, we are able to obtain solvability conditions due to the fact that the
operator has constant coefficients and we can apply the Fourier transform. In general, the
question about solvability conditions for non-Fredholm operators is open and represents
one of the major challenges in the theory of elliptic problems. Some classes of reaction–
diffusion operators without the Fredholm property can be studied by the introduction
of weighted spaces [16] or by reducing them to integro-differential operators [5,6]. Solv-
ability conditions different from the usual orthogonality conditions are obtained for some
second-order operators on the real axis or in cylinders [8]. Some elliptic problems in R

2

are studied in [17], where the solvability conditions are obtained with the help of space
decomposition of the operators.

A special class of elliptic operators in R
n, A = A∞ + A0, where A∞ is a homogeneous

operator with constant coefficients and A0 is an operator with rapidly decaying coeffi-
cients, is studied in specially chosen spaces with a polynomial weight. The finiteness of
the kernel is proved in [12,18] and the Fredholm property of this class of operators was
proved in [10,11,19] in the case of weighted Sobolev spaces and in [2,3] for weighted
Hölder spaces. The Fredholm property and the index of such operators are determined
by their principal part A∞. The operator A0 does not change them due to the rapid
decay of the coefficients. The Laplace operator in exterior domains is studied in [1].

In this work we consider two classes of non-Fredholm operators and establish the
solvability conditions for the equations involving them. The methods cited above are
not applicable here and we develop some new approaches. In the first case we study the
operator Ha on L2(R3), such that

Hau = −∆u + V (x)u − au,
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where a � 0 is a parameter and the potential V (x) decays to zero as x → ∞. We
investigate the conditions on the function f ∈ L2(R3) under which the equations

Hau = f (1.2)

and

H0u = f, (1.3)

the second one being the limiting case of the first as a → 0, have the unique solution
in L2(R3). Since the potential equals zero at infinity, the operator Ha has a unique
limiting operator Lu = −∆u − au, which is the same as that discussed above. The
limiting problem Lu = 0 has non-zero bounded solutions. Therefore, the operator Ha,
a � 0, does not satisfy the Fredholm property, and the solvability of (1.2) and (1.3)
is not known. The coefficients of the operators are no longer constant and we cannot
simply apply the Fourier transform as in the example above. We will use the spectral
decomposition of self-adjoint operators.

We note that in the case where a = 0 and the potential is rapidly decaying at infinity,
the operator H0 belongs to the class of operators A∞+A0 discussed above. The results of
this work differ from the results in the cited papers. We do not work in the weighted spaces
and we obtain solvability conditions without proving the Fredholm property, which may
not hold. However, a more important difference is that we also consider the case a > 0.
This is a significant difference and the previous methods are not applicable. To the best of
our knowledge, solvability conditions for (1.2) with a > 0 and n � 2 have not previously
been obtained. The solvability conditions are formulated in terms of the orthogonality of
the right-hand side f to all solutions of the homogeneous adjoint equation Hav = 0 (the
operator is self-adjoint).

For a function ψ(x) belonging to an Lp(Rd) space with 1 � p � ∞, d ∈ N, its norm is
denoted as ‖ψ‖Lp(Rd). We will use technical tools for estimating the appropriate norms
of the functions, in particular the Young’s inequality

‖f1 ∗ f2‖L∞(R3) � ‖f1‖L4(R3)‖f2‖L4/3(R3), f1 ∈ L4(R3), f2 ∈ L4/3(R3),

where ‘∗’ stands for the convolution, and the Hardy–Littlewood–Sobolev inequality∣∣∣∣
∫

R3

∫
R3

f1(x)f1(y)
|x − y|2 dxdy

∣∣∣∣ � cHLS‖f1‖2
L3/2(R3), f1 ∈ L3/2(R3),

with the constant cHLS given on p. 98 of [9]. In our notation,

(f1(x), f2(x))L2(R3) :=
∫

R3
f1(x)f̄2(x) dx

and, for some A(x) = (A1(x), A2(x), A3(x)), the inner product (f1(x), A(x))L2(R3) is the
vector with the coordinates ∫

R3
f1(x)Āi(x) dx, i = 1, 2, 3.

https://doi.org/10.1017/S0013091509000236 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091509000236


252 V. Vougalter and V. Volpert

Note that with slight abuse the same notation can be used even if the functions above
are not square integrable, as in the case of the so-called perturbed plane waves ϕk(x),
which are normalized to a delta function (see (2.1)). We make the following technical
assumption.

Assumption 1.1. The potential function V (x) : R
3 → R satisfies the bound

|V (x)| � C

1 + |x|3.5+ε

with some ε > 0 and x ∈ R
3 a.e. such that

41/9 9
8 (4π)−2/3‖V ‖1/9

L∞(R3)‖V ‖8/9
L4/3(R3) < 1 and

√
cHLS‖V ‖L3/2(R3) < 4π.

The function f(x) ∈ L2(R3) and |x|f(x) ∈ L1(R3).

Here and throughout C stands for a finite positive constant. Since, under our assump-
tions on the potential, the essential spectrum σess(Ha) of the Schrödinger-type operator
Ha = H0 − a fills the interval [−a,∞), the Fredholm Alternative Theorem fails to work
in this case. The problem can easily be handled by the method of the Fourier transform
in the absence of the potential term V (x). We show that this method can be generalized
in the presence of a shallow, short-range V (x) by means of replacing the Fourier har-
monics by the functions ϕk(x), k ∈ R

3, of the continuous spectrum of the operator H0,
which are the solutions of the Lippmann–Schwinger Equation (see (2.1) and the explicit
formula (2.2)). Note that the condition |x|f(x) ∈ L1(R3) of Assumption 1.1 is used here
to show the regularity of the gradient of the generalized Fourier transform with respect
to ϕk(x), k ∈ R

3 (see Lemma 2.4). This is similar to the standard Fourier transform,
where this condition stipulates that its derivative belongs to L∞.

While the wave vector k attains all the possible values in R
3, the function ϕ0(x)

corresponds to k = 0 in the formulae (2.1) and (2.2). The sphere of radius r in R
d, d ∈ N,

centred at the origin is denoted Sd
r , the unit sphere is denoted Sd and |Sd| stands for its

Lebesgue measure. Our first main result is as follows.

Theorem 1.2. Let Assumption 1.1 hold. Then

(a) the problem (1.2) admits a unique solution u ∈ L2(R3) if and only if

(f(x), ϕk(x))L2(R3) = 0 for k ∈ S3√
a a.e.;

(b) the problem (1.3) has a unique solution u ∈ L2(R3) if and only if

(f(x), ϕ0(x))L2(R3) = 0.

As in the case of the example with zero potential that was considered at the start of the
introduction, solvability conditions are formulated here in the form of orthogonality to
the solutions of the homogeneous adjoint equation, which is similar to the usual Fredholm
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solvability conditions. As above, we stress that this similarity is only formal because the
operator does not satisfy the Fredholm property and its range is not closed.

In the second part of the paper we consider the operator L = −∆x − ∆y + V(y)
on L2(Rn+m) with the Laplacian operators ∆x and ∆y in x = (x1, x2, . . . , xn) ∈ R

n,
y = (y1, y2, . . . , ym) ∈ R

m and prove the necessary and sufficient conditions for the
solvability in L2(Rn+m) of the inhomogeneous problem

Lu = g(x, y), (1.4)

where g(x, y) ∈ L2(Rn+m). We assume the following.

Assumption 1.3. The function V(y) : R
m → R is continuous and limy→∞ V(y) =

V+ > 0.

Thus for the operator h := −∆y + V(y) the essential spectrum σess(h) = [V+,∞).
Let us denote the eigenvalues of the operator h located below V+ as ej , ej < ej+1,
j � 1, and the corresponding elements of the orthonormal set of eigenfunctions as ϕk

j ,
such that hϕk

j = ejϕ
k
j , 1 � k � mj , (ϕk

i , ϕl
j)L2(Rm) = δi,jδk,l, where mj stands for the

eigenvalue multiplicity, which is finite since the essential spectrum starts only at V+,
and δi,j stands for the Kronecker symbol. We make the following key assumption on the
discrete spectrum of the operator h relevant to the problem (1.4).

Assumption 1.4. The eigenvalues ej < 0 for all 1 � j � N − 1 and eN = 0.

Thus, under our assumptions the operator L is not Fredholm. Zero is the lower limit of
the essential spectrum of the operator −∆x and h has the square-integrable zero modes.
Moreover, the operator h has the negative eigenvalues ej , j = 1, . . . , N −1, and −∆x has
the Fourier harmonics eipx/(2π)n/2, such that p ∈ Sn√−ej

. However, (1.4) can be solved
on the proper subspace and the orthogonality conditions will strongly depend on the
dimensions of the problem.

Let us introduce the following subspace weighted in the first variable for the right-hand
side of (1.4):

L2
α,x = {g(x, y) : g(x, y) ∈ L2(Rn+m) and |x|α/2g(x, y) ∈ L2(Rn+m)}, α > 0. (1.5)

Our second main result is as follows.

Theorem 1.5. Let Assumptions 1.3 and 1.4 hold. Then, for (1.4), we have the fol-
lowing.

(I) When n = 1 and g(x, y) ∈ L2
α,x for some α > 5 there exists a unique solution

u ∈ L2(R1+m) if and only if

(g(x, y), ϕk
N (y))L2(R1+m) = 0,

(g(x, y), xϕk
N (y))L2(R1+m) = 0,

}
1 � k � mN ,

and (
g(x, y),

e±i
√−ejx

√
2π

ϕk
j (y)

)
L2(R1+m)

= 0, 1 � j � N − 1, 1 � k � mj .
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(II) When n = 2 such that x = (x1, x2) ∈ R
2 and g(x, y) ∈ L2

α,x for some α > 6 there
exists a unique solution u ∈ L2(R2+m) if and only if

(g(x, y), ϕk
N (y))L2(R2+m) = 0,

(g(x, y), xiϕ
k
N (y))L2(R2+m) = 0,

}
i = 1, 2, 1 � k � mN ,

and(
g(x, y),

eipx

2π
ϕk

j (y)
)
L2(R2+m)

= 0, a.e. p ∈ S2√−ej
, 1 � j � N − 1, 1 � k � mj .

(III) When n = 3, 4 and g(x, y) ∈ L2
α,x for some α > n+2 there exists a unique solution

u ∈ L2(Rn+m) if and only if

(g(x, y), ϕk
N (y))L2(Rn+m) = 0, 1 � k � mN ,

and(
g(x, y),

eipx

(2π)n/2 ϕk
j (y)

)
L2(Rn+m)

= 0,

a.e. p ∈ Sn√−ej
, 1 � j � N − 1, 1 � k � mj .

(IV) When n � 5 and g(x, y) ∈ L2
α,x for some α > n + 2 there exists a unique solution

u ∈ L2(Rn+m) if and only if(
g(x, y),

eipx

(2π)n/2 ϕk
j (y)

)
L2(Rn+m)

= 0,

a.e. p ∈ Sn√−ej
, 1 � j � N − 1, 1 � k � mj .

Proving solvability conditions for linear elliptic problems with non-Fredholm operators
plays a crucial role in various applications, including those to travelling wave solutions of
reaction–diffusion systems (see [17]). Let us first establish several important properties
for the functions of the spectrum of the Schrödinder operator in the left-hand side of (1.2)
and for the related quantities.

2. Spectral properties of the operator H0 and the proof of Theorem 1.2

The functions of the continuous spectrum satisfy the Lippmann–Schwinger Equation
(see, for example, [13, p. 98])

ϕk(x) =
eikx

(2π)3/2 − 1
4π

∫
R3

ei|k| |x−y|

|x − y| (V ϕk)(y) dy (2.1)

and the orthogonality relations (ϕk(x), ϕq(x))L2(R3) = δ(k − q), k, q ∈ R
3. We define the

integral operator

(Qϕ)(x) := − 1
4π

∫
R3

ei|k| |x−y|

|x − y| (V ϕ)(y) dy, ϕ ∈ L∞(R3).
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Let us show that the norm of the operator Q : L∞(R3) → L∞(R3), denoted by ‖Q‖∞, is
small when the potential V (x) satisfies our assumptions. We prove the following lemma.

Lemma 2.1. Let Assumption 1.1 hold. Then ‖Q‖∞ < 1.

Proof. Clearly,

‖Q‖∞ � sup
x∈R3

1
4π

∫
R3

|V (y)|
|x − y| dy.

The expression involved in the right-hand side of the inequality above can be written as

1
4π

(
χ{|x|�R}

1
|x|

)
∗ |V (x)| +

1
4π

(
χ{|x|>R}

1
|x|

)
∗ |V (x)|

with some R > 0 and χ denoting the characteristic function of the correspondent set.
This can be estimated above using the Young inequality as

1
4π

‖V ‖L∞(R3)

∫ R

0
4πr dr +

1
4π

∥∥∥∥χ{|x|>R}
1
|x|

∥∥∥∥
L4(R3)

‖V ‖L4/3(R3)

= 1
2‖V ‖L∞(R3)R

2 +
1

(4π)3/4 ‖V ‖L4/3(R3)R
−1/4.

We optimize the right-hand side of the equality above over R. The minimum occurs when

R =
{‖V ‖L∞(R3)(4π)3/44

‖V ‖L4/3(R3)

}−4/9

,

such that
‖Q‖∞ � 41/9 9

8 (4π)−2/3‖V ‖1/9
L∞(R3)‖V ‖8/9

L4/3(R3),

which is k-independent. Assumption 1.1 yields the statement of the lemma. Note that
V ∈ L4/3(R3), which is guaranteed by its rate of decay, which is given explicitly in
Assumption 1.1. �

Corollary 2.2. Let Assumption 1.1 hold. The functions of the continuous spectrum
of the operator H0 are then ϕk(x) ∈ L∞(R3) for all k ∈ R

3, such that

‖ϕk(x)‖L∞(R3) � 1
1 − ‖Q‖∞

1
(2π)3/2 , k ∈ R

3.

Proof. By means of the Lippmann–Schwinger Equation (2.1) and the fact that
‖Q‖∞ < 1, the functions can be expressed as

ϕk(x) = (I − Q)−1 eikx

(2π)3/2 , k ∈ R
3. (2.2)

Lemma 2.1 yields the bound on the operator norm

‖(I − Q)−1‖∞ � 1
1 − ‖Q‖∞

.

�
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The following elementary lemma shows that in our problem the operator H0 possesses
the spectrum analogous to the one of the minus Laplacian and therefore only the functions
ϕk(x), k ∈ R

3, need to be taken into consideration.

Lemma 2.3. Let Assumption 1.1 be true. Then the operator H0 is unitarily equivalent
to −∆ on L2(R3).

Proof. By means of the Hardy–Littlewood–Sobolev inequality (see, for example, [9,
p. 98]) and Assumption 1.1 we have∫

R3

∫
R3

|V (x)| |V (y)|
|x − y|2 dxdy � cHLS‖V ‖2

L3/2(R3) < (4π)2.

The left-hand side of the inequality above is usually referred to as the Rollnik norm (see,
for example, [15]) and the upper bound we obtained on it is the sufficient condition for
the operator H0 = −∆ + V (x) on L2(R3) to be self-adjoint and unitarily equivalent to
−∆ via the wave operators (see, for example, [7,14]) given by

Ω± := s − lim
t→∓∞

eit(−∆+V )eit∆,

where the limit is understood in the strong L2 sense (see, for example, [13, p. 34] and [4,
p. 90]). �

By means of the spectral theorem for the self-adjoint operator H0, any function ψ(x) ∈
L2(R3) can be expanded through the functions ϕk(x), k ∈ R

3, forming the complete
system in L2(R3). The generalized Fourier transform with respect to these functions is
denoted by

ψ̃(k) := (ψ(x), ϕk(x))L2(R3), k ∈ R
3. (2.3)

We prove the following technical estimate concerning the above-mentioned generalized
Fourier transform for the right-hand sides of (1.2) and (1.3).

Lemma 2.4. Let Assumption 1.1 hold. Then

∇kf̃(k) ∈ L∞(R3).

Proof. Obviously, ∇kf̃(k) = (f(x),∇kϕk(x))L2(R3). From the Lippmann–Schwinger
Equation (2.1) we easily obtain

∇kϕk =
eikx

(2π)3/2 ix + (I − Q)−1Q
eikx

(2π)3/2 ix + (I − Q)−1(∇kQ)(I − Q)−1 eikx

(2π)3/2 , (2.4)

where ∇kQ : L∞(R3) → L∞(R3; C3) stands for the operator with the integral kernel

∇kQ(x, y, k) = − i
4π

ei|k| |x−y| k

|k|V (y).

An elementary computation shows that its norm

‖∇kQ‖∞ � 1
4π

‖V ‖L1(R3) < ∞
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due to the rate of decay of the potential V (x), which is given explicitly by Assumption 1.1.
It is clear from the identity (2.4) that we need to demonstrate the boundedness of the
three terms in the k-space. The first one is

T1(k) :=
(

f(x),
eikx

(2π)3/2 ix
)
L2(R3)

,

such that
|T1(k)| � 1

(2π)3/3 ‖xf‖L1(R3) < +∞

by Assumption 1.1. The second term to be estimated is

T2(k) :=
(

f(x), (I − Q)−1Q
eikx

(2π)3/2 ix
)
L2(R3)

.

Thus
|T2(k)| � 1

(2π)3/3 ‖f‖L1(R3)
1

1 − ‖Q‖∞
‖Qeikxx‖L∞(R3).

Note that f(x) ∈ L1(R3) by means of Assumption 1.1 and Fact 1 in the appendix. Using
the definition of the operator Q along with the Young inequality we have the upper
bound

|Qeikxx| � 1
4π

∫
R3

|V (y)| |y|
|x − y| dy

=
1
4π

{(
χ{|x|�1}

1
|x|

)
∗ |V (x)| |x| +

(
χ{|x|>1}

1
|x|

)
∗ |V (x)| |x|

}

� 1
4π

{
‖V (y)y‖L∞(R3)

∫ 1

0
4πr dr + ‖χ{|x|>1}

1
|x| ‖L4(R3)‖V (x)x‖L4/3(R3)

}
< +∞

independent of k, since V (x)x ∈ L∞(R3) ∩ L4/3(R3) due to the explicit rate of decay of
the potential V (x) stated in Assumption 1.1. Therefore, T2(k) ∈ L∞(R3). We complete
the proof of the lemma with the estimate of the remaining term

T3(k) :=
(

f(x), (I − Q)−1(∇kQ)(I − Q)−1 eikx

(2π)3/2

)
L2(R3)

,

such that we easily arrive at the k-independent upper bound

|T3(k)| � 1
4π(2π)3/2 ‖f‖L1(R3)

1
(1 − ‖Q‖∞)2

‖V ‖L1(R3) < ∞.

�

Armed with the auxiliary lemmas established above, we proceed to prove the first
theorem.
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Proof of Theorem 1.2. First of all, if (1.2) admits two solutions u1(x), u2(x) ∈
L2(R3), their difference v(x) := u1(x) − u2(x) would satisfy the homogeneous problem
Hav = 0. Since the operator Ha possesses no non-trivial square-integrable zero modes,
v(x) will vanish a.e. The analogous argument holds for the solutions of (1.3).

From (1.2), by applying the transform (2.3), we obtain

ũ(k) =
f̃(k)

k2 − a
, k ∈ R

3.

We write this expression as a sum of the singular and non-singular parts:

ũ(k) =
f̃(k)

k2 − a
χAσ +

f̃(k)
k2 − a

χAc
σ
, (2.5)

where χAσ is the characteristic function of the spherical layer

Aσ := {k ∈ R
3 :

√
a − σ � |k| �

√
a + σ}, 0 < σ <

√
a,

and χAc
σ

of the layer’s complement in the three-dimensional k-space. For the second term
on the right-hand side of the identity (2.5),∣∣∣∣ f̃(k)

k2 − a
χAc

σ

∣∣∣∣ � |f̃(k)|√
aσ

∈ L2(R3).

To estimate the remaining term we will make use of the identity

f̃(k) = f̃(
√

a, ω) +
∫ |k|

√
a

∂f̃(|s|, ω)
∂|s| d|s|.

Here and below ω denotes the angle variable on the sphere. Thus we can split the first
term on the right-hand side of (2.5) as ũ1(k) + ũ2(k), where

ũ1(k) =

∫ |k|√
a
(∂f̃(|s|, ω)/∂|s|) d|s|

k2 − a
χAσ , ũ2(k) =

f̃(
√

a, ω)
k2 − a

χAσ . (2.6)

Clearly, we have the bound

|ũ1(k)| �
‖∇kf̃(k)‖L∞(R3)

|k| +
√

a
χAσ ∈ L2(R3)

by means of Lemma 2.4. We complete the proof of the part (a) of the theorem by
estimating the norm

‖ũ2(k)‖2
L2(R3) =

∫ √
a+σ

√
a−σ

d|k| |k|2
(|k| −

√
a)2(|k| +

√
a)2

∫
S3

dω |f̃(
√

a, ω)|2 < ∞

if and only if (f(x), ϕk(x))L2(R3) = 0 for k a.e. on the sphere S3√
a
. We then turn our

attention to (1.3) by applying to it the generalized Fourier transform with respect to the
eigenfunctions of the continuous spectrum of the operator H0, which yields

ũ(k) =
f̃(k)
k2 =

f̃(k)
k2 χ{|k|�1} +

f̃(k)
k2 χ{|k|>1}.
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Clearly, ∣∣∣∣ f̃(k)
k2 χ{|k|>1}

∣∣∣∣ � |f̃(k)| ∈ L2(R3).

We use the formula

f̃(k) = f̃(0) +
∫ |k|

0

∂f̃(|s|, ω)
∂|s| d|s|

with f̃(0) = (f(x), ϕ0(x))L2(R3) and ϕ0(x) is given by (2.2) with k = 0. Hence

∣∣∣∣
∫ |k|
0 (∂f̃(|s|, ω)/∂|s|) d|s|

k2 χ{|k|�1}

∣∣∣∣ � ‖∇kf̃(k)‖L∞(R3)
χ{|k|�1}

|k| ∈ L2(R3)

via Lemma 2.4. Therefore, it remains to estimate the norm

∥∥∥∥ f̃(0)
k2 χ{|k|�1}

∥∥∥∥
2

L2(R3)
= 4π

∫ 1

0
d|k| |f̃(0)|2

|k|2 < ∞

if and only if (f(x), ϕ0(x))L2(R3) = 0, which completes the proof of the theorem. �

Note that if we let the potential function V (x) in the statement of Theorem 1.2 vanish,
we obtain precisely the usual orthogonality conditions in terms of the Fourier harmonics.

In the next section we prove Theorem 1.5. In contrast to Theorem 1.2, the dimensions of
the problem are no longer fixed and we show how robust the dependence of the solvability
conditions on these dimensions can be.

3. Spectral properties of the operator L and the proof of Theorem 1.5

Let P± and P0 be the orthogonal projections onto the positive, negative and zero sub-
spaces of the operator h. Applying these operators to both sides of (1.4) via the spectral
theorem we relate the problem to the equivalent system of the following three equations:

L+u+ = g+, (3.1)

L−u− = g−, (3.2)

L0u0 = g0, (3.3)

where the operators L± = P±LP± and L0 = P0LP0 act on the functions u± = P±u and
u0 = P0u, respectively, and the right-hand sides of the equations are given by g± = P±g

and g0 = P0g. Without loss of generality we can assume that

g0(x, y) = v0(x)ϕ1
N (y), (3.4)

where v0(x) = (g0, ϕ
1
N )L2(Rm) = (g, ϕ1

N )L2(Rm). Let us first turn our attention to (3.1).
We have the following lemma.

Lemma 3.1. Equation (3.1) possesses a solution u+ ∈ L2(Rn+m), n ∈ N, m ∈ N.
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Proof. By means of the orthogonal decomposition of the right-hand side of (1.4),
g = g+ + g0 + g−, we have the estimate

‖g+‖L2(Rn+m) � ‖g‖L2(Rn+m).

The lower bound in the sense of the quadratic forms

L+ � P+hP+ � eN+1 > 0,

where eN+1, is either the bottom of the essential spectrum V+ of the operator h or its
lowest positive eigenvalue, whichever is smaller. Thus L+ is the self-adjoint operator
on the product of spaces L2(Rn) and the range Ran(P+) such that the bottom of its
spectrum is located above zero. Therefore, it is invertible and the norm of the inverse
L−1

+ : L2(Rn) ⊗ Ran(P+) → L2(Rn+m) is bounded above by 1/eN+1. Thus (3.1) has the
solution u+ = L−1

+ g+ and its norm can be estimated as follows:

‖u+‖L2(Rn+m) � 1
eN+1

‖g‖L2(Rn+m) < ∞.

�

Let us turn our attention to the analysis of the solvability conditions for (3.3). This
equation is equivalent to

(−∆x)u0 = g0. (3.5)

The solution of this Poisson equation can be expressed as

û0 =
ĝ0

p2 χ1 +
ĝ0

p2 χ1c , (3.6)

where χ1 denotes the characteristic function of the unit ball in the Fourier space centred
at the origin and χ1c denotes the characteristic function of its complement. Here and
below the hat denotes a Fourier transform in the first variable, such that

ψ̂(p) :=
1

(2π)1/2n

∫
Rn

ψ(x)e−ipx dx.

The second term on the right-hand side of (3.6) is square integrable for all dimensions
n, m ∈ N since ĝ0 ∈ L2(Rn+m) and 1/p2 is bounded away from the origin. Thus it remains
to analyse the first term. We have the following lemma when the dimension n = 1.

Lemma 3.2. Let the assumptions of Theorem 1.5 hold. Equation (3.5) then possesses
a solution u0 ∈ L2(R1+m), m ∈ N, if and only if

(g(x, y), ϕk
N (y))L2(R1+m) = 0, (g(x, y), ϕk

N (y)x)L2(R1+m) = 0, 1 � k � mN .

Proof. We will make use of the following representation:

ĝ0(p, y) = ĝ0(0, y) +
∂

∂p
ĝ0(0, y)p +

∫ p

0

( ∫ s

0

∂2

∂q2 ĝ0(q, y) dq

)
ds,
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where
∂2

∂p2 ĝ0(p, y) = − 1√
2π

∫ +∞

−∞
g0(x, y)e−ipxx2 dx.

The first term on the right-hand side of (3.6) in our case is therefore equal to

ĝ0(0, y)
p2 χ1 +

∂

∂p
ĝ0(0, y)

χ1

p
+

∫ p

0

( ∫ s

0

∂2

∂q2 ĝ0(q, y) dq

)
ds

χ1

p2 . (3.7)

Clearly, we have the upper bound∣∣∣∣ ∂2

∂q2 ĝ0(q, y)
∣∣∣∣ � 1√

2π

∫ +∞

−∞
|g0(x, y)|x2 dx.

By means of the Schwarz inequality and (3.4) we have the estimate

|g0(x, y)| �
√∫

Rm

|g(x, z)|2 dz |ϕ1
N (y)|, x ∈ R

n, y ∈ R
m, n, m � 1, (3.8)

which is valid in a space of arbitrary dimensions, and this yields

∣∣∣∣ ∂2

∂q2 ĝ0(q, y)
∣∣∣∣ � 1√

2π

∫ +∞

−∞
dx

x2√
1 + |x|α

√
1 + |x|α

√∫
Rm

|g(x, s)|2 ds |ϕ1
N (y)|

with α > 5 such that g(x, y) ∈ L2
α,x. The Schwarz inequality yields the upper bound

1√
2π

√∫ +∞

−∞
dx

x4

1 + |x|α
√

‖g‖2
L2(R1+m) + ‖|x|α/2g‖2

L2(R1+m)|ϕ
1
N (y)| = C|ϕ1

N (y)|.

Therefore, for the last term in (3.7) we obtain∣∣∣∣
∫ p

0

( ∫ s

0

∂2

∂q2 ĝ0(q, y) dq

)
ds

χ1

p2

∣∣∣∣ � 1
2C|ϕ1

N (y)|χ1 ∈ L2(R1+m).

Because of the behaviour of the first two terms in the Fourier space, (3.7) belongs to
L2(R1+m) if and only if

ĝ0(0, y) = 0,
∂

∂p
ĝ0(0, y) = 0 a.e.,

which is equivalent to

(g(x, y), ϕk
N (y))L2(R1+m) = 0, (g(x, y), ϕk

N (y)x)L2(R1+m) = 0, 1 � k � mN .

�

When the dimension n = 2 we come up with the following analogous statement.

https://doi.org/10.1017/S0013091509000236 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091509000236


262 V. Vougalter and V. Volpert

Lemma 3.3. Let the assumptions of Theorem 1.5 hold. Equation (3.5) then possesses
a solution u0 ∈ L2(R2+m), m ∈ N, if and only if

(g(x, y), ϕk
N (y))L2(R2+m) = 0, (g(x, y), ϕk

N (y)xi)L2(R2+m) = 0, i = 1, 2, 1 � k � mN .

Proof. Let us use an expansion analogous to the one we had for proving the previous
lemma:

ĝ0(p, y) = ĝ0(0, y) +
∂

∂|p| ĝ0(0, θp, y)|p| +
∫ |p|

0

( ∫ s

0

∂2

∂|q|2 ĝ0(|q|, θp, y) d|q|
)

ds,

with
ĝ0(|p|, θp, y) =

1
2π

∫
R2

g0(x, y)e−i|p| |x| cos θ dx

and where the angle between the p = (|p|, θp) and x = (|x|, θx) vectors on the plane is
θ = θp − θx. Therefore, the first term on the right-hand side of (3.6) when n = 2 is equal
to

ĝ0(0, y)
p2 χ1 +

∂

∂|p| ĝ0(0, θp, y)
χ1

|p| +
∫ |p|

0

( ∫ s

0

∂2

∂|q|2 ĝ0(|q|, θp, y) d|q|
)

ds
χ1

p2 . (3.9)

Obviously, ∣∣∣∣ ∂2

∂|q|2 ĝ0

∣∣∣∣ � 1
2π

∫
R2

|g0(x, y)| |x|2 dx.

Using the estimate (3.8) we arrive at the upper bound for the right-hand side of this
inequality:

1
2π

|ϕ1
N (y)|

∫
R2

dx
|x|2√

1 + |x|α
√

1 + |x|α
√∫

Rm

|g(x, z)|2 dz

with α > 6 such that g(x, y) ∈ L2
α,x. By means of the Schwarz inequality we estimate

this from above as

1√
2π

|ϕ1
N (y)|

√∫ ∞

0
d|x| |x|5

1 + |x|α
√

‖g‖2
L2(R2+m) + ‖|x|α/2g‖2

L2(R2+m) = C|ϕ1
N (y)|.

Therefore, for the last term in (3.9) we arrive at

χ1

p2

∣∣∣∣
∫ |p|

0

( ∫ s

0

∂2

∂|q|2 ĝ0(|q|, θp, y) d|q|
)

ds

∣∣∣∣ � 1
2Cχ1|ϕ1

N (y)| ∈ L2(R2+m).

A simple computation using the Fourier transform yields

∂

∂|p| ĝ0(0, θp, y) = − i
2π

∫
R2

g0(x, y)|x| cos θ dx = Q1(y) cos θp + Q2(y) sin θp,

where

Q1(y) := − i
2π

∫
R2

g0(x, y)x1 dx, Q2(y) := − i
2π

∫
R2

g0(x, y)x2 dx
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and x = (x1, x2) ∈ R
2. Computing the square of the L2(R2+m) norm of the first two

terms of (3.9) we arrive at

2π

∫ 1

0

d|p|
|p|3

∫
Rm

dy |ĝ0(0, y)|2 + π

∫ 1

0

d|p|
|p|

∫
Rm

(|Q1(y)|2 + |Q2(y)|2) dy,

which is finite if and only if the quantities ĝ0(0, y), Q1(y) and Q2(y) vanish a.e. This is
equivalent to the orthogonality conditions

(g(x, y), ϕk
N (y))L2(R2+m) = 0,

(g(x, y), x1ϕ
k
N (y))L2(R2+m) = 0,

(g(x, y), x2ϕ
k
N (y))L2(R2+m) = 0,

with 1 � k � mN . �

Let us investigate how the situation with solvability conditions differs in dimensions
n = 3, 4.

Lemma 3.4. Let the assumptions of Theorem 1.5 hold. Equation (3.5) then possesses
a solution u0 ∈ L2(Rn+m), n = 3, 4, m ∈ N, if and only if

(g(x, y), ϕk
N (y))L2(Rn+m) = 0, n = 3, 4, 1 � k � mN .

Proof. Let us use the following equality:

ĝ0(p, y) = ĝ0(0, y) +
∫ |p|

0

∂

∂|s| ĝ0(|s|, ω, y) d|s|.

Thus by means of (3.6) we need to estimate

χ1

p2

[
ĝ0(0, y) +

∫ |p|

0

∂

∂|s| ĝ0(|s|, ω, y) d|s|
]
. (3.10)

By means of the Fourier transform,

∂

∂|p| ĝ0(|p|, ω, y) =
−i

(2π)1/2n

∫
Rn

g0(x, y)e−i|p| |x| cos θ|x| cos θ dx,

where θ is the angle between p and x in R
n. Using (3.8) along with the Schwarz inequality

and α > n + 2 such that g(x, y) ∈ L2
α,x we easily obtain

∣∣∣∣ ∂

∂|s| ĝ0

∣∣∣∣ � 1
(2π)1/2n

∫
Rn

dx |x|
√∫

Rm

|g(x, z)|2 dz|ϕ1
N (y)|

� 1
(2π)1/2n

√∫ ∞

0
|Sn| |x|n+1

1 + |x|α d|x|
√

‖g‖2
L2(Rn+m) + ‖|x|α/2g‖2

L2(Rn+m)|ϕ
1
N (y)|

= C|ϕ1
N (y)|,
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which implies the bound

∣∣∣∣χ1

p2

∫ |p|

0

∂

∂|s| ĝ0(|s|, ω, y) d|s|
∣∣∣∣ � C

χ1

|p| |ϕ
1
N (y)| ∈ L2(Rn+m), n = 3, 4.

We finalize the proof of the lemma by estimating the square of the L2 norm of the first
term in (3.10):

|Sn|
∫

Rm

dy |ĝ0(0, y)|2
∫ 1

0
d|p| |p|n−5 < ∞, n = 3, 4,

if and only if ĝ0(0, y) = 0 a.e., which is equivalent to

(g(x, y), ϕk
N (y))L2(Rn+m) = 0, n = 3, 4, 1 � k � mN .

�

Thus it only remains to establish the orthogonality conditions in dimensions 5 and
higher in the x variable under which (3.5) admits a square-integrable solution.

Lemma 3.5. Let the assumptions of Theorem 1.5 hold. Equation (3.5) then possesses
a solution u0 ∈ L2(Rn+m), n � 5, m ∈ N.

Proof. We estimate the Fourier transform using the bound (3.8) along with the
Schwarz inequality and α > n + 2 such that g(x, y) ∈ L2

α,x:

|ĝ0(p, y)| � 1
(2π)1/2n

∫
Rn

|g0(x, y)| dx

� |ϕ1
N (y)|

(2π)1/2n

∫
Rn

dx

√∫
Rm

|g(x, z)|2 dz

� |ϕ1
N (y)|

(2π)1/2n

√∫
Rn

dx

1 + |x|α

√∫
Rn

dx(1 + |x|α)
∫

Rm

|g(x, z)|2 dz

=
|ϕ1

N (y)|
(2π)1/2n

√∫ ∞

0
d|x| |x|n−1

1 + |x|α |Sn|
√

‖g‖2
L2(Rn+m) + ‖|x|α/2g‖2

L2(Rn+m)

= C|ϕ1
N (y)|, n � 5, m ∈ N.

This enables us to obtain the bound on the square of the L2 norm of the first term on
the right-hand side of (3.6):

∫
Rn

dp

∫
Rm

dy
|ĝ0|2
|p|4 χ1 � C

∫ 1

0
d|p| |p|n−5|Sn|

∫
Rm

|ϕ1
N (y)|2 dy < ∞,

which completes the proof of the lemma. �
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We proceed with establishing the conditions under which (3.2) admits a square-
integrable solution. Let {P−

j }N−1
j=1 be the orthogonal projections onto the subspaces cor-

respondent to {ej}N−1
j=1 , the negative eigenvalues of the operator h, such that

P− =
N−1∑
j=1

P−
j , P−

j P−
k = P−

j δj,k, 1 � j, k � N − 1.

Applying these projection operators to both sides of (3.2) and using the orthogonal
decompositions

u− =
N−1∑
j=1

u−
j and g− =

N−1∑
j=1

g−
j

with P−
j u− = u−

j and P−
j g− = g−

j , we easily obtain the system of equations equivalent
to (3.2):

[−∆x − ∆y + V(y)]u−
j = g−

j , 1 � j � N − 1. (3.11)

Without loss of generality we can assume that

g−
j (x, y) = vj(x)ϕ1

j (y), 1 � j � N − 1, (3.12)

where
vj(x) := (g−

j , ϕ1
j )L2(Rm) = (g, ϕ1

j )L2(Rm).

Using the Schwarz inequality we find that

|vj(x)| �
√∫

Rm

|g(x, z)|2 dz, x ∈ R
n. (3.13)

Hence the goal is to establish the conditions under which an equation such as (3.11)
possesses a square-integrable solution. We make the Fourier transform in the x variable
and, using the fact that the operator −∆x does not have positive eigenvalues on L2(Rn),
we obtain the expression for a solution of (3.11) as

û−
j (p, y) =

v̂j(p)
p2 + ej

ϕ1
j (y), 1 � j � N − 1.

We differentiate between the two cases according to the dimension of the problem in the
first variable.

Lemma 3.6. Let the assumptions of Theorem 1.5 hold. Equation (3.11) then possesses
a solution u−

j (x, y) ∈ L2(R1+m), m ∈ N, if and only if

(
g(x, y),

e±i
√−ejx

√
2π

ϕk
j (y)

)
L2(R1+m)

= 0, 1 � k � mj , 1 � j � N − 1.
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Proof. We express a solution of (3.11) as the sum of its regular and singular compo-
nents,

û−
j (p, y) =

v̂j(p)χΩc
δ

p2 + ej
ϕ1

j (y) +
v̂j(p)χΩδ

p2 + ej
ϕ1

j (y). (3.14)

Here Ωδ is a set in the Fourier space

Ωδ := [
√

−ej − δ,
√

−ej + δ] ∪ [−
√

−ej − δ, −
√

−ej + δ] = Ω+
δ ∪ Ω−

δ

where 0 < δ <
√−ej and where Ωc

δ is its complement, χΩδ
and χΩc

δ
are their characteris-

tic functions. It is trivial to estimate the first term on the right-hand side of (3.14) since
we are away from the positive and negative singularities ±√−ej . Thus∣∣∣∣ v̂j(p)χΩc

δ

p2 + ej
ϕ1

j (y)
∣∣∣∣ � C|ϕ1

j (y)| |v̂j(p)|χΩc
δ
,

which along with (3.13) enables us to estimate the square of its L2 norm:

∫ +∞

−∞
dp

∫
Rm

dy |ϕ1
j (y)|2|v̂j(p)|2χΩc

δ
� ‖vj‖2

L2(R) � ‖g‖2
L2(R1+m) < ∞.

To obtain the conditions under which the remaining term in (3.14) is square integrable
we first study its behaviour near its negative singularity using the formula

v̂j(p) =
∫ p

−√−ej

dv̂j(s)
ds

ds + v̂j(−
√

−ej).

Thus one needs to estimate

v̂j(−
√−ej) +

∫ p

−√−ej
(dv̂j(s)/ds) ds

p2 + ej
χΩ−

δ
ϕ1

j (y). (3.15)

We derive the upper bound for the derivative using (3.13) along with the Schwarz inequal-
ity with α > 5 such that g(x, y) ∈ L2

α,x:∣∣∣∣dv̂j(p)
dp

∣∣∣∣ � 1√
2π

∫ ∞

−∞
dx|x| |vj(x)|

� 1√
2π

∫ ∞

−∞
dx

|x|√
1 + |x|α

√
1 + |x|α

√∫
Rm

|g(x, z)|2 dz

� 1√
2π

√∫ +∞

−∞
dx

x2

1 + |x|α

√∫ ∞

−∞
dx(1 + |x|α)

∫
Rm

|g(x, z)|2 dz

=
1√
2π

√∫ +∞

−∞
dx

x2

1 + |x|α
√

‖g‖2
L2(R1+m) + ‖|x|α/2g‖2

L2(R1+m)

= C < ∞.
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This enables us to prove the square integrability for the second term in (3.15):∣∣∣∣
∫ p

−√−ej
(dv̂j(s)/ds) ds

p2 + ej
χΩ−

δ
ϕ1

j (y)
∣∣∣∣ � C

|p − √−ej |
χΩ−

δ
|ϕ1

j (y)|

� C

2
√−ej − δ

χΩ−
δ

|ϕ1
j (y)| ∈ L2(R1+m).

Near the positive singularity we use the identity

v̂j(p) =
∫ p

√−ej

dv̂j(s)
ds

ds + v̂j(
√

−ej)

to study the conditions of the square integrability of the term

v̂j(
√−ej) +

∫ p√−ej
(dv̂j(s)/ds) ds

p2 + ej
χΩ+

δ
ϕ1

j (y). (3.16)

As we did for the situation at the negative singularity, we prove the square integrability
of the second term in (3.16) using the bound on the derivative involved in it. Hence∣∣∣∣

∫ p√−ej
(dv̂j(s)/ds) ds

p2 + ej
χΩ+

δ
ϕ1

j (y)
∣∣∣∣ � C

|p +
√−ej |

χΩ+
δ
|ϕ1

j (y)|

� C

2
√−ej − δ

χΩ+
δ
|ϕ1

j (y)| ∈ L2(R1+m).

Thus it remains to derive the conditions under which the first term in (3.15) and the first
term in (3.16) are square integrable. Estimating the square of the L2(R1+m) norm of

v̂j(−
√−ej)

p2 + ej
χΩ−

δ
ϕ1

j (y) +
v̂j(

√−ej)
p2 + ej

χΩ+
δ
ϕ1

j (y)

we easily arrive at∫ −√−ej+δ

−√−ej−δ

dp
|v̂j(−

√−ej)|2

(p2 + ej)
2 +

∫ √−ej+δ

√−ej−δ

dp
|v̂j(

√−ej)|2

(p2 + ej)
2 ,

which can be bounded below by

|v̂j(−
√−ej)|2

(2
√−ej + δ)2

∫ δ

−δ

ds

s2 +
|v̂j(

√−ej)|2
(2

√−ej + δ)2

∫ δ

−δ

ds

s2 .

This bound implies that the necessary and sufficient conditions for the existence of
u−

j (x, y) ∈ L2(R1+m) solving (3.11) are

v̂j(
√

−ej) = 0, v̂j(−
√

−ej) = 0,

which by means of the definition of the functions vj(x) is equivalent to(
g(x, y),

e±i
√−ejx

√
2π

ϕk
j (y)

)
L2(R1+m)

= 0, 1 � k � mj , 1 � j � N − 1.

�
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After establishing the solvability conditions for (3.11) when the situation is one dimen-
sional in the first variable we turn our attention to the cases of dimensions 2 and higher.

Lemma 3.7. Let the assumptions of Theorem 1.5 hold. Equation (3.11) then possesses
a solution u−

j (x, y) ∈ L2(Rn+m), n � 2, m ∈ N, if and only if(
g(x, y),

eipx

(2π)1/2
n

ϕk
j (y)

)
L2(Rn+m)

= 0, a.e. p ∈ Sn√−ej
, 1 � k � mj , 1 � j � N − 1.

Proof. It is convenient to represent a solution of (3.11) as the sum of the singular
and regular parts:

û−
j (p, y) =

v̂j(p)χAδ

p2 + ej
ϕ1

j (y) +
v̂j(p)χAc

δ

p2 + ej
ϕ1

j (y), (3.17)

where the spherical layer in Fourier space Aδ := {p ∈ R
n :

√−ej − δ � |p| � √−ej + δ},
its complement in R

n is Ac
δ. The characteristic functions of these sets are χAδ

and χAc
δ
,

respectively, and 0 < δ <
√−ej . Clearly, for the second term on the right-hand side of

(3.17) we have the upper bound∣∣∣∣ v̂j(p)χAc
δ
ϕ1

j (y)
p2 + ej

∣∣∣∣ �
|v̂j(p)| |ϕ1

j (y)|
δ
√−ej

,

such that, via (3.13),∫
Rn

|v̂j(p)|2 dp

∫
Rm

|ϕ1
j (y)|2 dy = ‖vj‖2

L2(Rn) � ‖g‖2
L2(Rn+m) < ∞.

Hence the first term on the right-hand side of (3.17) will play a crucial role in establishing
the solvability conditions for (3.11). We will make use of the formula

v̂j(p) =
∫ |p|

√−ej

∂v̂j

∂|s| (|s|, ω) d|s| + v̂j(
√

−ej , ω)

to get the estimate for∫ |p|√−ej
(∂v̂j/∂|s|)(|s|, ω) d|s| + v̂j(

√−ej , ω)

p2 + ej
χAδ

ϕ1
j (y).

Let us derive the upper bound for the derivative of the Fourier transform involved in it
using (3.13) along with the Schwarz inequality, α > 6 for n = 2 and α > n + 2 for n � 3
such that g(x, y) ∈ L2

α,x:∣∣∣∣ ∂v̂j

∂|p|

∣∣∣∣ � 1
(2π)1/2n

∫
Rn

|vj(x)| |x| dx

� 1
(2π)1/2n

∫
Rn

dx |x|
√∫

Rm

|g(x, z)|2 dz

=
1

(2π)1/2n

∫
Rn

dx
|x|√

1 + |x|α
√

1 + |x|α
√∫

Rm

|g(x, z)|2 dz
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� 1
(2π)1/2n

√∫
Rn

dx
|x|2

1 + |x|α

√∫
Rn

dx (1 + |x|α)
∫

Rm

|g(x, z)|2 dz

=
1

(2π)1/2n

√∫ ∞

0
d|x| |Sn| |x|n+1

1 + |x|α
√

‖g‖2
L2(Rn+m) + ‖|x|α/2g‖2

L2(Rn+m)

= C < ∞.

Therefore,

∣∣∣∣
∫ |p|√−ej

(∂v̂j/∂|s|)(|s|, ω) d|s|
p2 + ej

χAδ
ϕ1

j (y)
∣∣∣∣ � C√−ej

χAδ
|ϕ1

j (y)| ∈ L2(Rn+m)

and it remains to estimate from below the square of the L2 norm of the term

v̂j(
√−ej , ω)
p2 + ej

χAδ
ϕ1

j (y).

Thus∫
Rn

dp

∫
Rm

dy
|v̂j(

√−ej , ω)|2
(p2 + ej)2

χAδ
|ϕ1

j (y)|2

�
∫ √−ej+δ

√−ej−δ

d|p| |p|n−1

(|p| − √−ej)2(2
√−ej + δ)2

∫
Sn

dω |v̂j(
√

−ej , ω)|2

� (
√−ej − δ)n−1

(2
√−ej + δ)2

∫
Sn

dω |v̂j(
√

−ej , ω)|2
∫ δ

−δ

ds

s2 ,

which yields the necessary and sufficient conditions of solvability of (3.11) in L2(Rn+m),
n � 2: namely v̂j(

√−ej , ω) = 0 a.e. on the sphere Sn√−ej
. Using the definition of the

functions vj(x), we easily arrive at(
g(x, y),

eipx

(2π)1/2n
ϕk

j (y)
)
L2(Rn+m)

= 0, a.e. p ∈ Sn√−ej
, 1 � k � mj , 1 � j � N − 1.

�

Having established the orthogonality conditions in the lemmas above, which guarantee
the existence of square-integrable solutions for our equations, we conclude the proof of
Theorem 1.5.

Proof of Theorem 1.5. We construct the solution of (1.4) as

u := u+ + u0 +
N−1∑
j=1

u−
j ,

where the existence of u+ ∈ L2(Rn+m) is guaranteed by Lemma 3.1, the existence of u0 ∈
L2(Rn+m) is guaranteed by Lemmas 3.2–3.5, and the existence of {u−

j }N−1
j=1 ∈ L2(Rn+m)

is guaranteed by Lemmas 3.6 and 3.7.
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Suppose that (1.4) admits two solutions u1, u2 ∈ L2(Rn+m). Their difference w :=
u1 − u2 ∈ L2(Rn+m) then solves the homogeneous problem with separation of variables

Lw = 0,

which admits two types of solution: the first ones are of the form γ(x)ϕk
N (y), 1 � k � mN ,

with γ(x) harmonic; the second ones are of the form

eipx

(2π)n/2 ϕk
j (y)

with p ∈ Sn√−ej
, 1 � j � N − 1, 1 � k � mj . In both cases, they belong to the

space L2(Rn+m) only if they vanish. �

Appendix A

Fact 1. Let f(x) ∈ L2(R3) and |x|f(x) ∈ L1(R3). Then f(x) ∈ L1(R3).

Proof. The norm ‖f‖L1(R3) is estimated from above by means of the Schwarz inequal-
ity as√∫

|x|�1
|f(x)|2 dx

√∫
|x|�1

dx+
∫

|x|>1
|x| |f(x)| dx � ‖f‖L2(R3)

√
4π

3
+‖|x|f‖L1(R3) < ∞.

�
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