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UPPER MIDDLE ANNIHILATORS

PATRICK N. STEWART

Each ring contains a unique smallest ideal which when factored out yields a ring with zero
middle annihilator. Various results concerning this ideal are obtained including theorems
about how it behaves in connection with normalising extensions and smash products.

1. INTRODUCTION

Sands [12] has introduced the upper middle annihilator M(A) of a ring A, and
de la Rosa [5] the quasi-radical of A. We observe that these concepts coincide and
study properties of the ideal ~M(A). This notion itself does not seem to be useful for
rings in general, so the ideal we actually study is M(P(A)), which we denote by A(A),
whereP(A) is the prime radical of A.

The next section contains definitions and various preliminary results. In Section 3
we show that in several well-known situations where A and S are rings with A C S
and S a free A-module, A(5) = A(A)5. Section 4 concerns the question of when the
middle annihilator of P(A) is essential in P(A), and it contains a generalisation of a
theorem of Shock. In the final section we show that a result of Pascaud on T-nilpotence
and fixed rings cannot be extended to the M-nilpotent case.

Throughout this paper rings are associative but, at least at the beginning, need
not have an identity. The notation I <\ R means that / is a (two-sided) ideal of R.

2. DEFINITIONS AND PRELIMINARY RESULTS

The middle annihilator of a ring A is M(A) = {a 6 A \ AaA = 0}. In [12] Sands
defines the upper middle annihilator of a ring A inductively: M0{A) = 0, if a is an
ordinal and Ma(A) has been defined then Ma+i(A) is defined by the equation

M(A/Ma(A)) = Ma+1(A)/Ma(A),

if (3 is a limit ordinal then Mp(A) = U{Ma(A) | a < /?}; finally, the upper middle
annihilator of A is M(A) = L){Ma(A) \ a is an ordinal }.

The quasi-radical of a ring A was defined and studied by de la Rosa [5]. He calls an
ideal I of A quasi-semiprime if M(A/I) = 0. The quasi-radical q(A), is then defined
as the intersection of all the quasi-semiprime ideals of A.
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PROPOSITION 1. For any ring A, M(A) — q(A), so M{A) is the unique minimal

quasi-semiprime ideal of A .

PROOF: A straightforward transfiiiite induction shows that M(A) C Q for each
quasi-semiprime ideal Q of i , and since M(A) is quasi-semiprime the result
follows. |

In [13] Sands gave a characterisation of rings A such that M(A) = 0 (equivalently,

M(A) = 0). We include a proof of this result which is more straightforward than the

original.

PROPOSITION 2. (Sands). Let A be a ring. The following axe equivalent:

1. M(A) = 0,

2. if R < S <T and S/R £ A, then R < T.

PROOF: First assume that M(A) = 0 and let R* be the ideal of T generated by
R where R < S <3 T.

Then SR'S = S{R + RT + TR + TRT)S C SRS C R and so M(S/R) = 0 implies
that R* = R.

Conversely, if M(A) ^ 0 , then A has either a nonzero left annihilator or a nonzero
right annihilator. Without loss of generality we may assume that A has a nonzero ideal
/ such that AI = 0. Let

A IU
where A1 is the ring A with an identity adjoined in the usual way. It is straightforward
to check that R < S < T, S/R S A but R is not an ideal of T. |

The next result characterises rings A such that M(A) = 0 for all homomorphic

images A of A .

PROPOSITION 3. Let A be a ring. The following are equivalent:

1. M(3) = 0 for all homomorphic images A of A ,
2. for every a 6 A, a £ AaA,

3. if n is a positive integer and T is an ideal of the n x n matrix ring An ,

then T = Bn for some ideal B of A.

PROOF: Clearly 1 and 2 are equivalent, and Jacobson [7, p. 40, Proposition 1]
shows that 2 implies 3. Sands [11, p. 50] observes that 3 implies 2. The equivalence of
1 and 3 is also given in de la Rosa [4, Theorem 10]. |

We shall denote the prime radical of a ring A; that is, the intersection of all the

prime ideals of A, by P(A). If P(A) ^ A, the upper middle annihilator may not
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be particularly useful in studying A. In particular, M(A) = 0 if A has an identity.
Because of this we shall consider not M(A) but M(P(A)). It follows from Proposition
2 that M(P(A)) < A and we shall denote this ideal by A(A).

If A is a ring without identity and A1 is the usual unital extension of A, then
P(A) = P^A1) and so A(A) = A (A1) . In view of this we shall henceforth assume,
unless the contrary is stated explicitly, that all rings have identity.

An ideal I of a ring A is left T-nilpotent if for any sequence of elements
oi , a.2, . . . , on . . . in / there is a positive integer k such that a j , 02 . . . a t = 0. Right

T-nilpotence is defined in a similar way. In [12] Sands calls an ideal I M-nilpotent

if for any doubly infinite sequence of elements . . . , a_n , . . . , a0, . . . , a,,, . . . there is a
positive integer k such that a_fc .. . ao . . . a-k = 0- He then establishes the following
result:

THEOREM 3. (Sands). For any ring A, A(A) is M-nilpotent and A(A) = P(A)

if and only if P(A) is M-nilpotent.

PROPOSITION 4. Let A be a ring and suppose that B < A. Then:

1. M(A/A(A)) =0 and so A(A/A{A)) = 0,

2. A{B)<A,
3. A(A(A)) = A(A),
4. A(A) = M(A{A)),

5. if B C P{A), then {A(A) + B)/B C A{A/B).

PROOF: First observe that 1 is true because

M(P(A/A{A))) = M{P(A)/A{A)) = 0.

Now 2 follows from 1 and Proposition 2. Also, 3 is an immediate consequence of
Theorem 3, and 4 is merely a restatement of 3. In view of Proposition 1, 5 will follow
if we show that A D P(A) is a quasi-semiprime ideal of P(A) where A(A/B) = A/B .

Suppose that x G P(A) and P( A) C P{A) CAn P(A). Since B C P(A), P{A/B) =

P{A)/B and so P(A/B){x + B)P{A/B) C A/B. Thus x € A and the proof is
complete. |

Concerning 5 in the Proposition we note that both Sands [12, Theorem 2] and
de la Rosa [5, Lemma 4.5] observe that the class of M-nilpotent rings (quasi-radical
rings in the terminology of [5]) is homomorphicaHy closed. Also, the assumption that
B C P(A) can not be omitted as the following example shows.

Let F be a field and let R be the polynomial ring over F with commuting inde-
terminates {X\ | A G R, 0 < A < 1}. Let / be the ideal of R generated by (X.s)2

and let J be the ideal of R generated by {X\Xa — X*+a | 0 < X + a < 1} and
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{XxXa | 0 < A, a < 1, A + a > 1} . Finally, let A = R/I and B = J/I. We see
that A(A) = P{A) = the ideal generated by X.5 + I, A(A) £ B and A/B is the
Zassenhaus algebra with A(A/B) = 0.

3. FREE EXTENSIONS

A ring A is a. free normalising extension of a. subring S if 5 has the same identity

as A and A contains a subset X such that A is a free left and right 5-module with

basis X and xS — Sx for all x G X.

THEOREM 5. . If A is a free normalising extension of S and P(A) = P(S)A,
then A(A) = A(S)A.

PROOF: Each x G X determines an automorphism <p = <p(x) of 5 defined by
sx = xav for all s G 5 (here sv is the image of s under the automorphism f). Since
P(S) is invariant under automorphisms of 5 , P(S)A — AP(S). Now, to see that
A(5) C A(A) if suffices to show that A(A) D P(S) is a quasi-semiprime ideal of P(S).
Suppose that P(S)tP(S) C A(A) where t G P(S). Then AP(S)tP(S)A C AA(A)A C
A(J4) and hence P(A)tP(A) C A(A). Since A(.4) is a quasi-semiprime ideal of A,
t G A(A). Thus A(J4) fl P(S) is quasi-semiprime as required.

If ^ is an automorphism of P(S), then A(S) , the image of A(5) under #, is
clearly a quasi-semiprime ideal of P(S) and so A(5) C A(5) . Since tliis applies
equally well to the automorphism 0~*, A(S) = A(5). Now, the automorphisms
<p(x), x G X , restrict to automorphisms of P(S) and so xA(S) = A(S)x for all
x G X . Thus A(S)A < A and the proof will be complete if we can show that A(5)^4
is a quasi-semiprime ideal of P(A). Suppose that P(A)aP(A) C A(S)A where

*<: U G P(S), Xi G X, i = 1 , . . . , n} G P{A).

Then P{S)aP{S) C A{S)A. Since X is a free basis and xiP{S) = P(S)xi for aU
t = 1, . . . , n, P(S)UP(S) C A(5) for all i = 1, . . . , n. Thus ^ G A(5) for aU
i = 1, . . . , n and hence a G A(5 ) J4 as required. |

COROLLARY 6. A(.4[a;]) =

PROOF: Amitsur [1] has shown that P{A[x]) = P(A)[x]. |

A free normalising extension A of 5 is a (right) excellent extension if (i) the free
left and right basis X is finite with 1 G X and (ii) if whenever M is a right >i-module
with yl-submodule N which is a direct summand of M as an 5-module, N is also
a direct summand as an ^l-module. Examples include matrix rings A = Sn, group
rings A = SG where \G\ is finite and \G\~ G 5 and, more generally, crossed products
A = S * G where |<3| is finite and [G]'1 G 5 .
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COROLLARY 7. If A is an excellent extension of S, then A(A) = A(5)A.

PROOF: The Fisher-Montgomery theorem asserts that P(A) = P(S)A, see [8] for
details. I

If A is graded by a group G , then the smash product A#G* is the free unital left
.A-module with basis {pg \ g £ G} and multiplication denned by apgbph = abgh-iph
where a, b£ A, g, h £ G and bgh-i is the gr/i"1 component of b.

THEOREM 8. Let A he a G-graded ring such that P(A) is a graded ideal and
P(A#Gm) = P{A)#G*. Then A(A) is a graded ideal and A{A#G*) = A(A)#G* .

PROOF: If / is an ideal of A we shall denote the ideal {a £ I \ ag £ I for all g £
G} by Ia. Suppose that P(A)aP(A) C (A(A))G where a £ P{A) and the ho-
mogeneous components of a are aj, . . . , an. If x, y £ P{A) are homogeneous,
xay — ^2{xa,iy \ i = 1, . . . , n) and xaxy, . . . , xany are the homogeneous components
of xay. Thus xaiy £ A(A) for all i — 1, . . . , n and so P(A)aiP(A) C A(A) for all
i = 1, . . . , n forcing â  £ A(A) for all i. It follows that (A(A))G is quasi-semiprime
and hence A(A) = (A(A))G is a graded ideal.

Let T = {a e A: apg £ A(A#G*) for all g £ G}. It is straightforward to check
that T is a graded ideal of A. Suppose that P(A)bP(A) C T where 6 £ P{A). We
wish to show that b £ T, and since T is graded we may assume that b is homogeneous.
For each g £ G,

P{A#G*)bVgP{A#G*) = (P(A)#G*)bPg(P(A)#G*)

C (P(A)bP(A))#G*

C T # G * C

Also, bpg £ P{A)#G* = P(A#G*) and thus bpg £ A{A#G*) for all g £ G. It follows
that T is quasi-semiprime and so A(4) C T and hence A(A)#G* C A(A#Gm).

For the other containment it is enough to show that A(^4)^G* is a quasi-semiprime
ideal of P(A)#G*. Suppose that u + A{A)#G* £ M{P(A)#G*/A{A)#G*). We
wish to show that u £ A(A)#G* and it is sufficient to consider the case when u
is of the form bpg where b £ P(A) and g £ G. For each h £ G the function
$h. defined by Oh(apk) = apkh induces an automorphism of AjfG* . This automor-
phism restricts to an automorphism of P{A#G*) under which A(A#G*) is invari-
ant (as we saw in the proof of Theorem 5), and so it lifts to an automorphism of
P ( J 4 ) # G * / A ( . A ) # G * . Now since middle aunihilators are clearly invariant under au-
tomorphisms, (Vm £ G)(bPm + A(4)#G* £ M(P{A)#G*/A{A)#G*)). If x £ P(A)
and y £ P{A) is homogeneous of grade g, then xphbpeypg-i — xbhypg-i is in
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A(A)#G* and hence xbhy G A(A). It follows that P(A)bhP(A) C A(A) for all
homogeneous components b^ of b. Hence all these homogeneous components, and so
b too, are in A(A). Consequently, A(A)#G* is quasi-semipriine and the proof is
complete. |

COROLLARY 9. If A is graded by & Unite group G and A has no \G\-torsion, then

PROOF: Cohen and Montgomery [3, Theorem 5.3 and Corollary 5.5] have shown
that the hypotheses of the theorem are satisfied in this case. |

COROLLARY 10. If A is a prime radical ring (without 1 of course) graded by a

group G, then A(A#G*) = A{A)#G*.

PROOF: Let A1 = {(a, n) | a £ A, n G Z} be the usual unital extension of A. Let

[A1)e = {(a, n) \ a € Ae, n £ 1} and (A1) = {(a, 0) | a 6 Ag} if e ^ g G G. Then

A1 is G-graded and P^A1) = {(a, 0) | a G A} is a graded ideal which, as is usual, we

will identify with A .

Since (A1#G*/P(A1)#G*) S (A1/P(A1))#G* S Z#G* is just a direct sum of

\G\ copies of Z, P(AJ#(?*) C P{A1)#G*.

Let A/in be the ring of \G\ x \G\ matrices with only a finite number of nonzero

entries. Since P(A) = A, P(Afin) = Afin and since Aj^G* embeds as a subring

in Afin (see [2] and/or [10]) P{A#G*) = A#G*. It follows that P(A1#G*) =

P(Ai)#G* and so the theorem applies. |

4. ESSENTIAL MIDDLE ANNIHILATORS

PROPOSITION 11. The ideal M(P(A)) is essential as a two-sided ideal of A(A).

PROOF: Let 0 / F be a finite subset of A(A). We will show that there are
a, & € (A(.A))1 such that 0 ^ aFb C M(P(A)), thus establishing somewhat more than
is required.

Since A(A) = M(P(A)) we may choose an ordinal 7 minimal with respect to
the property that 0 ^ aFb C My(P(A)) for some a, b G (A(A))1. Since F is finite,
7 is not a limit ordinal. Let 7 = a + 1. Then P(A)aFbP(A) C Ma(P(A)) and so
P(A)aFbP(A) = 0. Thus aF& C Af(P(.A)) and the proof is complete. |

The following example, due to Sasiada [6], shows that M{A) may not be essential

as a right ideal.

Let k be a field and let / be the ideal of the polynomial ring k[Xi, X2, • • •] in

noncommuting indeterininates X\, X2, . . . which is generated by XiXj, i > j . Let

A = k[Xi, X2, • • • ] / / and denote Xi + I by Xi. Now P(A) is the ideal generated by

xi, x2, ••• and P{A) is right T-nilpotent, so A(.4) = P{A). The middle annihilator

https://doi.org/10.1017/S0004972700027829 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700027829


[7] Anniliilators 447

ideal M(P(A)) is generated by Xi and it has zero intersection with the nonzero right

ideals xkA(A), k > 2.

Also, we note that in general the ideal M(P(A)) need not be essential in P(A).

For example, if P{A) is a direct sum Ti 8T2 where M(TX) = 0 and M(T2) ^ 0, then

r, = o.

THEOREM 12. If P(A) has the ascending chain condition on left annihilators of
the form anni(P(A)xP(A)), x £ P(A), then M(P(A)) is essential as a left ideal of
P(A).

PROOF: Let 0 ^ L be a left ideal of P = P(A). Choose z such that anrn(PzP)
is maximal among annihilators of the form anni(PxP), 0 ^ x £ L.

Suppose that / < P and I2 C anm(PzP). If IPz = 0, then / C anni(PzP).
Otherwise, let 0 ^ y £ IPz. Clearly we have anni(PzP) C anni(PyP), so the
maximalityof anrn(PzP) forces annt(PzP) = anrn(PyP). Now, IPyP C PPzP = 0
and so / C anni(PyP). So in any case I C anni(PzP).

Since we have shown that anni(PzP) is semiprime, anni(PzP) = P. Thus
P{Pz)P = 0 and hence L n M(P) ^ 0. |

This generalises a result of Shock [14, Corollary 3.4] which asserts that if A satisfies
the maximum condition on left annihilators, then P(A) contains a nilpotent ideal which
is essential as a left ideal. In general, middle annihilators are smaller than nilpotent
ideals. For instance, P(A), where A is the Sasiada ring discussed before the theorem,
has the ascending chain condition on left annihilators, a rather small middle annihilator
but is the sum of its nilpotent ideals.

5. FIXED RINGS

Pascaud [9] has shown that if A is a ring (without identity) and G is a group of
automorphisms of A such that the fixed ring AG is left T-nilpotent, then A is left T-
nilpotent. An example of Sands [12, Example 2] can be used to show that the analogous
result for M-nilpotence does not hold. We will give a variation of this example below,
but first we require the following lemma.

Let A and B be algebras over a field F such that the right annihilator of A is
zero and the left annihilator of B is zero. If A has an identity, let A1 = A; otherwise
let A1 — {(a, a) | a £ A, a £ F} with the usual ring operations and identify A
and {(a, 0) | a 6 A} as is customary. Define B1 similarity and note that the right
annihilator of A in A1 is zero and so is the left annihilator of B in B1 .

LEMMA 13. With the notation established in the preceding paragraph and M =
A1 ®f B1 we have:

1. AaM = 0, a £ A, implies a = 0,
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2. MbB = 0, be B, implies 6 = 0,
3. AmB — 0, m £ M, implies m = 0.

PROOF: If AaM = 0 where a e A, then Aa(l ® 1) = 0 and so Aa = 0. Thus
a = 0 because A has zero right annihilator. This establishes 1 and 2 is similar.

I f O ^ j ; ® y € M , there is an a £ .4 and an element b £ B such that aa: ̂  0 and
j/6 ^ 0. Thus ax® yb ^ 0 and so J4(Z <g> y)5 ^ 0. Now let A: be an integer, k > 2,
and suppose that if Arai? = 0 where m is a sum of fewer than k tensors, then m = 0.
Assume that AmB = 0 where m — xx <g> y\ + . . . + Xk <S> Vk ^ 0. From our induction
hypothesis we see that {xx, ..., Xk} and {j/i, . . . , t/t} are both linearly independent
over F.

Suppose that 6 € B and j/fc6 = 0. Then AmbB = 0 and so mb = 0 by the
induction hypothesis. Since {x\, ...,Xk} is linearly dependent, yib = 0 for all i —

1, . . . , k. Similarly, if a £ A is such that axi — 0, then axi — 0 for all i — 1, . . . , n.

Let o 6 i be such that axi ^ 0. Since AamB = 0 and am ^ 0 (be-
cause {t/i, ...,2/fc} is linearly independent), the induction hypothesis implies that
{axi, ..., axk} is linearly independent. Thus, if 6 £ B is such that y^b ^ 0, then
am.6 ^ 0. This contradiction establishes the lemma. |

Let A be a left T-nilpotent algebra over a field F with zero right annihilator (for

instance, the opposite ring of the prime radical of the Sasiada example discussed earlier

or the ring of those Ho x Ho matrices in Ffin which are strictly lower triangular). Let B

be the right T-nilpotent algebra over F with zero left annihilator (for instance, Aop).

If M = A1 ®F B1 is as ln t u e lemma, then

R - \ A MR ~ [ o B

is a ring such that P(R) = R and the lemma guarantees that M(R) = 0. The group
G = {e, 0} of two elements acts on R via

•([::])•[:
—m

6

and the fixed ring is RG S A® B. The fixed ring is M-nilpotent (in fact, a direct sum
of a right T-nilpotent ring and a left T-nilpotent ring), so A(RG) = RG. This shows
that the Pascaud result does not extend to M-nilpotence; in fact, for this example RG

is M-nilpotent and R has zero middle annihilator.
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