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Abstract
Faraday complexity describes whether a spectropolarimetric observation has simple or complex magnetic structure. Quickly determining
the Faraday complexity of a spectropolarimetric observation is important for processing large, polarised radio surveys. Finding simple
sources lets us build rotation measure grids, and finding complex sources lets us follow these sources up with slower analysis techniques or
further observations. We introduce five features that can be used to train simple, interpretable machine learning classifiers for estimating
Faraday complexity. We train logistic regression and extreme gradient boosted tree classifiers on simulated polarised spectra using our
features, analyse their behaviour, and demonstrate our features are effective for both simulated and real data. This is the first application of
machine learning methods to real spectropolarimetry data. With 95% accuracy on simulated ASKAP data and 90% accuracy on simulated
ATCA data, our method performs comparably to state-of-the-art convolutional neural networks while being simpler and easier to interpret.
Logistic regression trained with our features behaves sensibly on real data and its outputs are useful for sorting polarised sources by apparent
Faraday complexity.
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1. Introduction

As polarised radiation from distant galaxies makes its way to
us, magnetised plasma along the way can cause the polarisation
angle to change due to the Faraday effect. The amount of rota-
tion depends on the squared wavelength of the radiation, and
the rotation per squared wavelength is called the Faraday depth.
Multiple Faraday depths may exist along one line-of-sight, and if
a polarised source is observed at multiple wavelengths then these
multiple depths can be disentangled. This can provide insight into
the polarised structure of the source or the intervening medium.

Faraday rotation measure synthesis (RM synthesis) is a tech-
nique for decomposing a spectropolarimetric observation into flux
at its Faraday depths φ, the resulting distribution of depths being
called a ‘Faraday dispersion function’ (FDF) or a ‘Faraday spec-
trum’. It was introduced by Brentjens & de Bruyn (2005) as a
way to rapidly and reliably analyse the polarisation structure of
complex and high-Faraday depth polarised observations.

A ‘Faraday simple’ observation is one for which there is only
one Faraday depth, and in this simple case, the Faraday depth
is also known as a ‘rotation measure’ (RM). All Faraday simple
observations can be modelled as a polarised source with a ther-
mal plasma of constant electron density and magnetic field (a
‘Faraday screen’; Brentjens & de Bruyn 2005; Anderson et al. 2015)
between the observer and the source. A ‘Faraday complex’ obser-
vation is one which is not Faraday simple, and may differ from
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Figure 1. A simple FDF and its corresponding polarised spectra: (a) groundtruth FDF
F, (b) noise-free polarised spectrum P, (c) noisy observed FDF F̂, (d) noisy polarised
spectrum P̂. Blue and orangemark real and imaginary components, respectively.

a Faraday simple source due to plasma emission or composition
of multiple screens (Brentjens & de Bruyn 2005). The complexity
of a source tells us important details about the polarised struc-
ture of the source and along the line-of-sight, such as whether the
intervening medium emits polarised radiation, or whether there
are turbulent magnetic fields or different electron densities in the
neighbourhood. The complexity of nearby sources taken together
can tell us about the magneto-ionic structure of the galactic and
intergalactic medium between the sources and us as observers.
O’Sullivan et al. (2017) show examples of simple and complex
sources, and Figures 1 and 2 show an example of a simulated
simple and complex FDF, respectively.
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Figure 2. A complex FDF and its corresponding polarised spectra: (a) groundtruth FDF
F, (b) noise-free polarised spectrum P, (c) noisy observed FDF F̂, (d) noisy polarised
spectrum P̂. Blue and orange mark real and imaginary components, respectively.

Identifying when an observation is Faraday complex is an
important problem in polarised surveys (Sun et al. 2015), and
with current surveys such as the Polarised Sky Survey of the
Universe’s Magnetism (POSSUM) larger than ever before, meth-
ods that can quickly characterise Faraday complexity en masse
are increasingly useful. Being able to identify which sources are
simple lets us produce a reliable rotation measure grid from
background sources, and being able to identify which sources
might be complex allows us to find sources to follow-up with
slower polarisation analysis methods that may require manual
oversight, such as QU-fitting (as seen in, e.g. Miyashita et al. 2019;
O’Sullivan et al. 2017). In this paper, we introduce five simple,
interpretable features representing polarised spectra, use these
features to train machine learning classifiers to identify Faraday
complexity, and demonstrate their effectiveness on real and
simulated data. We construct our features by comparing observed
polarised sources to idealised polarised sources. The features are
intuitive and can be estimated from real FDFs.

Section 2 provides a background to our work, including
a summary of prior work and our assumptions on FDFs.
Section 3 describes our approach to the Faraday complexity prob-
lem. Section 4 explains how we trained and evaluated our method.
Finally, Section 5 discusses these results.

2. Faraday complexity

Faraday complexity is an observational property of a source: if
multiple Faraday depths are observed within the same apparent
source (e.g. due to multiple lines-of-sight being combined within
a beam), then the source is complex. A source composed of mul-
tiple Faraday screens may produce observations consistent with
many models (Sun et al. 2015), including simple sources, so there
is some overlap between simple and complex sources. Faraday
thickness is also a source of Faraday complexity: when the inter-
vening medium between a polarised source and the observer also
emits polarised light, the FDF cannot be characterised by a sim-
ple Faraday screen. As discussed in section 2.2, we defer Faraday
thick sources to future work. In this section, we summarise exist-
ing methods of Faraday complexity estimation and explain our
assumptions and model of simple and complex polarised FDFs.

2.1. Prior work

There are multiple ways to estimate Faraday complexity, including
detecting non-linearity in χ(λ2) (Goldstein & Reed 1984), change

in fractional polarisation as a function of frequency (Farnes,
Gaensler, & Carretti 2014), non-sinusoidal variation in fractional
polarisation in Stokes Q and U (O’Sullivan et al. 2012), counting
components in the FDF (Law et al. 2011), minimising the Bayesian
information criterion (BIC) over a range of simple and complex
models (called ‘QU-fitting’; O’Sullivan et al. 2017), the method
of Faraday moments (Anderson et al. 2015; Brown 2011), and
deep convolutional neural network classifiers (CNNs; Brown et al.
2018). See Sun et al. (2015) for a comparison of these methods.

The most common approaches to estimating complexity are
QU-fitting (e.g. O’Sullivan et al. 2017) and Faraday moments
(e.g. Anderson et al. 2015). To our knowledge, there is currently
no literature examining the accuracy of QU-fitting when applied
to complexity classification specifically, though Miyashita et al.
(2019) analyse its effectiveness on identifying the structure of two-
component sources. Brown (2011) suggested Faraday moments as
a method to identify complexity, a method later used by Farnes
et al. (2014) and Anderson et al. (2015), but again no literature
examines the accuracy. CNNs are the current state-of-the-art with
an accuracy of 94.9% (Brown et al. 2018) on simulated ASKAP
Band 1 and 3 data, and we will compare our results to this method.

2.2. Assumptions on Faraday dispersion functions

Before we can classify FDFs as Faraday complex or Faraday sim-
ple, we need to define FDFs and any assumptions we make about
them. An FDF is a function that maps Faraday depth φ to complex
polarisation. It is the distribution of Faraday depths in an observed
polarisation spectrum. For a given observation, we assume there is
a true, noise-free FDF F composed of at most two Faraday screens.
This accounts for most actual sources (Anderson et al. 2015) and
extension to three screens would cover most of the remainder—
O’Sullivan et al. (2017) found that 89% of their sources were best
explained by two or less screens, while the remainder were best
explained by three screens. We model the screens by Dirac delta
distributions:

F(φ)=A0δ(φ − φ0)+A1δ(φ − φ1). (1)

A0 and A1 are the polarised flux of each Faraday screen, and φ0
and φ1 are the Faraday depths of the respective screens. With this
model, a Faraday simple source is one which has A0 = 0, A1 = 0,
or φ0 = φ1. By using delta distributions to model each screen,
we are assuming that there is no internal Faraday dispersion
(which is typically associated with diffuse emission rather than the
mostly compact sources we expect to find in wide-area polarised
surveys). F generates a polarised spectrum of the form shown in
Equation (2):

P(λ2)=A0e2iφ0λ
2 +A1e2iφ1λ

2 . (2)

Such a spectrum would be observed as noisy samples from a
number of squared wavelengths λ2

j , j ∈ [1, . . . ,D]. We model this
noise as a complex Gaussian with standard deviation σ and call
the noisy observed spectrum P̂:

P̂(λ2
j )∼N (P(λ2

j ), σ
2). (3)

The constant variance of the noise is a simplifying assumption
which may not hold for real data, and exploring this is a topic for
future work. By performing RM synthesis (Brentjens & de Bruyn
2005) on P̂with uniformweighting we arrive at an observed FDF:

F̂(φ)= 1
D

D∑
j=1

P̂(λ2
j )e

−2iφλ2
j . (4)
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Examples of F, F̂, P, and P̂ for simple and complex observations
are shown in Figures 1 and 2, respectively. Note that there are two
reasons that the observed FDF F̂ does not match the groundtruth
FDF F. The first is the noise in P̂. The second arises from the
incomplete sampling of P̂.

We do not consider external or internal Faraday dispersion in
this work. External Faraday dispersion would broaden the delta
functions of Equation (1) into peaks, and internal Faraday disper-
sion would broaden them into top-hat functions. All sources have
at least a small amount of dispersion as the Faraday depth is a bulk
property of the intervening medium and is subject to noise, but
the assumption we make is that this dispersion is sufficiently small
that the groundtruth FDFs are well-modelled with delta functions.
Faraday thick sources would also invalidate our assumptions, and
we assume that there are none in our data as Faraday thickness
can be consistent with a two-component model depending on the
wavelength sampling (e.g. Ma et al. 2019; Brentjens & de Bruyn
2005). Nevertheless some external Faraday dispersion would be
covered by our model, as depending on observing parameters
Faraday thick sources may appear as two screens (Van Eck et al.
2017).

To simulate observed FDFs we follow the method of Brown
et al. (2018), which we describe in Appendix E.

3. Classification approach

The Faraday complexity classification problem is as follows: Given
an FDF F̂, is it Faraday complex or Faraday simple? In this sec-
tion we describe the features that we have developed to address
this problem, which can be used in any standard machine learning
classifier. We trained two classifiers on these features, which we
describe here also.

3.1. Features

Our features are based on a simple idea: all simple FDFs look
essentially the same, up to scaling and translation, while com-
plex FDFs may deviate. A noise-free peak-normalised simple FDF
F̂simple has the form

F̂simple(φ; φs)= R(φ − φs), (5)
where R is the rotation measure spread function (RMSF), the
Fourier transform of the wavelength sampling function which is 1
at all observed wavelengths and 0 otherwise. φs traces out a curve
in the space of all possible FDFs. In other words, F̂simple is a mani-
fold parametrised by φs. Our features are derived from relating an
observed FDF to the manifold of simple FDFs (the ‘simple mani-
fold’). We measure the distance of an observed FDF to the simple
manifold using distancemeasureDf , that take all values of the FDF
into account:

ςf (F̂)=min
φs∈R

Df (F̂(φ) ‖ F̂simple(φ; φs)). (6)

We propose two distances that have nice properties:

• invariant over changes in complex phase,
• translationally invariant in Faraday depth,
• zero for Faraday simple sources (i.e. when A0 = 0, A1 = 0, or

φ0 = φ1) when there is no noise,
• symmetric in components (i.e. swapping A0 ↔A1 and φ0 ↔ φ1
should not change the distance),

• increasing as A0 and A1 become closer to each other, and
• increasing as screen separation |φ0 − φ1| increases over a large
range.

Our features are constructed from this distance and its minimiser.
In other words we look for the simple FDF F̂simple that is ‘closest’
to the observed FDF F̂. The minimiser φs is the Faraday depth of
the simple FDF.

While we could choose any distance that operates on functions,
we used the 2-Wasserstein (W2) distance and the Euclidean dis-
tance. The W2 distance operates on probability distributions and
can be thought of as the minimum cost to ‘move’ one probability
distribution to the other, where the cost of moving one unit of
probability mass is the squared distance it is moved. Under W2
distance, the minimiser φs in Equation (6) can be interpreted
as the Faraday depth that the FDF F̂ would be observed to
have if its complexity was unresolved (i.e. the weighted mean
of its components). The Euclidean distance is the square root
of the least squares loss which is often used for fitting F̂simple

to the FDF F̂. Under Euclidean distance, the minimiser φs is
equivalent to the depth of the best-fitting single component
under assumption of Gaussian noise in F̂. We calculated the
W2 distance using Python Optimal Transport (Flamary
& Courty 2017), and we calculated the Euclidean distance
using scipy.spatial.distance.euclidean (Virtanen et al.
2020). Further intuition about the two distances is provided in
section 3.2.

We denote by φw and φe, the Faraday depth of the simple
FDF that minimises the respective distances (2-Wasserstein and
Euclidean).

φw = argmin
φw

DW2 (F̂(φ) ‖ F̂simple(φ; φw)),

φe = argmin
φe

DE(F̂(φ) ‖ F̂simple(φ; φe)).

These features are depicted on an example FDF in Figure 3. For
simple observed FDFs, the fitted Faraday depths φw and φe both
tend to be close to the peak of the observed FDF. However, for
complex observed FDFs, φw tends to be at the average depth
between the two major peaks of the observed FDF, being closer to
the higher peak. For notation convenience, we denote the Faraday
depth of the observed FDF that has largest magnitude as φa, i.e.

φa = argmax
φa

|F̂(φa)|.

Note that in practice φa ≈ φe. For complex observed FDFs, the
values of Faraday depths φw and φa tend to differ (essentially by
a proportion of the location of the second screen). The differ-
ence between φw and φa therefore provides useful information to
identify complex FDFs. When the observed FDF is simple, the
2-Wasserstein fit will overlap significantly, hence the observed
magnitudes F̂(φw) and F̂(φa) will be similar. However, for complex
FDFs φw and φa are at different depths, leading to different val-
ues of F̂(φw) and F̂(φa). Therefore, the magnitudes of the observed
FDFs at the depths φw and φa indicate how different the observed
FDF is from a simple FDF.

In summary, we provide the following features to the classifier:

• log |φw − φa|,
• log F̂(φw),

https://doi.org/10.1017/pasa.2021.10 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2021.10


4 MJ Alger et al.

φw φa ≈ φe

F̂
(φ

w
)

F̂
(φ

a )

|φw − φa|

F̂ observed

F̂simple minimising W2

Figure 3. An example of how an observed FDF F̂ relates to our features. φw is the W2-
minimising Faraday depth, and φa is the F̂-maximising Faraday depth (approximately
equal to the Euclidean-minimising Faraday depth). The remaining two features are the
W2 and Euclidean distances between the depicted FDFs.

• log F̂(φa),
• logDW2 (F̂(φ) ‖ F̂simple(φ; φw)),
• logDE(F̂(φ) ‖ F̂simple(φ; φe)),

where DE is the Euclidean distance, DW2 is the W2 distance, φa is
the Faraday depth of the FDF peak, φw is the minimiser for W2
distance, and φe is the minimiser for Euclidean distance.

3.2. Interpreting distances

Interestingly, in the case where there is no RMSF, Equation (6)
with W2 distance reduces to the Faraday moment already in
common use:

ζW2 (F)= min
φw∈R

DW2 (F(φ) ‖ Fsimple(φ; φw)) (7)

=
(

A0A1

(A0 +A1)2
(φ0 − φ1)2

)1/2

. (8)

See Appendix A for the corresponding calculation. In this sense,
the W2 distance can be thought of as a generalised Faraday
moment, and conversely an interpretation of Faraday moments
as a distance from the simple manifold in the case where there
is no RMSF. Euclidean distance behaves quite differently in this
case, and the resulting distance measure is totally independent of
Faraday depth:

ζE(F)=min
φe∈R

DE(F(φ) ‖ Fsimple(φ; φe)) (9)

= √
2
min (A0,A1)
A0 +A1

. (10)

See Appendix B for the corresponding calculation.

3.3. Classifiers

We trained two classifiers on simulated observations using these
features: logistic regression (LR) and extreme gradient boosted
trees (XGB). These classifiers are useful together for understand-
ing Faraday complexity classification. LR is a linear classifier that
is readily interpretable by examining the weights it applies to each
feature, and is one of the simplest possible classifiers. XGB is a
powerful off-the-shelf non-linear ensemble classifier, and is an
example of a decision tree ensemble which are widely used in

astronomy (e.g. Machado Poletti Valle et al. 2020; Hložek et al.
2020). We used the scikit-learn implementation of LR and
we use the XGBoost library for XGB. We optimised hyperpa-
rameters for XGB using a fork of xgboost-tunera as utilised
by Zhu, Ong, & Huttley (2020). We used 1 000 iterations of ran-
domised parameter tuning and the hyperparameters we found
are tabulated in Table C.1. We optimised hyperparameters for
LR using a fivefold cross-validation grid search implemented
in sklearn.model_selection.GridSearchCV. The resulting
hyperparameters are tabulated in Table D.1 in Appendix C.

4. Experimental method and results

We applied our classifiers to classify simulated (Sections 4.2 and
4.3) and real (Section 4.4) FDFs. We replicated the experimental
setup of Brown et al. (2018) for comparison with the state-of-the-
art CNN classification method, and we also applied our method
to 142 real FDFs observed with the Australia Telescope Compact
Array (ATCA) from Livingston et al. (2021) and O’Sullivan
et al. (2017).

4.1. Data

4.1.1. Simulated training and validation data

Our classifiers were trained and validated on simulated FDFs. We
produced two sets of simulated FDFs, one for comparison with
the state-of-the-art method in the literature and one for applica-
tion to our observed FDFs (described in Section 4.1.2). We refer to
the former as the ‘ASKAP’ dataset as it uses frequencies from the
Australian Square Kilometre Array Pathfinder 12-antenna early
science configuration. These frequencies included 900 channels
from 700 to 1 300 and 1 500 to 1 800 MHz and were used to gener-
ate simulated training and validation data by Brown et al. (2018).
We refer to the latter as the ‘ATCA’ dataset as it uses frequencies
from the 1 to 3 GHz configuration of the ATCA. These frequencies
included 394 channels from 1.29 to 3.02 GHz and match our real
data. We simulated Faraday depths from −50 to 50 rad m–2 for
the ‘ASKAP’ dataset (matching Brown) and −500 to 500 for the
‘ATCA’ dataset.

For each dataset, we simulated 100 000 FDFs, approximately
half simple and half complex. We randomly allocated half of
these FDFs to a training set and reserved the remaining half for
validation. Each FDF had complex Gaussian noise added to the
corresponding polarisation spectrum. For the ‘ASKAP’ dataset,
we sampled the standard deviation of the noise uniformly between
0 and σmax = 0.333, matching the dataset of Brown et al. (2018).
For the ‘ATCA’ dataset, we fit a log-normal distribution to the
standard deviations of O’Sullivan’s data (O’Sullivan et al. 2017)
from which we sampled our values of σ :

σ ∼ 1
0.63

√
2πσ

exp
(

− log (50σ − 0.5)2

2× 0.632

)
. (11)

4.1.2. Observational data

We used two real datasets containing a total of 142 sources: 42
polarised spectra from Livingston et al. (2021) and 100 polarised
spectra fromO’Sullivan et al. (2017). These datasets were observed
in similar frequency ranges on the same telescope (with different

ahttps://github.com/chengsoonong/xgboost-tuner.
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binning), but are in different parts of the sky. The Livingston
data were taken near the Galactic Centre, and the O’Sullivan data
were taken away from the plane of the Galaxy. There are more
Faraday complex sources near the Galactic Centre compared to
more Faraday simple sources away from the plane of the Galaxy
(Livingston et al. 2021). The similar frequency channels used in
the two datasets result in almost identical RMSFs over the Faraday
depth range we considered (−500 to 500 rad m–2), so we expected
that the classifiers would work equally well on both datasets with
no need to retrain. We discarded the 26 Livingston sources with
modelled Faraday depths outside of this Faraday depth range,
which we do not expect to affect the applicability of our methods
to wide-area surveys because these fairly high depths are not
common.

Livingston et al. (2021) used RM-CLEAN (Heald 2008) to
identify significant components in their FDFs. Some of these com-
ponents had very high Faraday depths up to 2 000 rad m–2, but
we chose to ignore these components in this paper as they are
much larger than might be expected in a wide-area survey like
POSSUM. They used the second Faraday moment (Brown 2011)
to estimate Faraday complexity, with Faraday depths determined
using scipy.signal.findpeaks on the cleaned FDFs, with a
cut-off of seven times the noise of the polarised spectrum. Using
this method, they estimated that 89% of their sources were Faraday
complex, i.e. had a Faraday moment greater than 0.

O’Sullivan et al. (2017) used the QU-fitting andmodel selection
technique as described in O’Sullivan et al. (2012). The QU-fitting
models contained up to three Faraday screen components as well
as a term for internal and external Faraday dispersion. We ignore
the Faraday thickness and dispersion for the purposes of this
paper, as most sources were not found to have Faraday thickness
and dispersion is beyond the scope of our current work. Thirty-
seven sources had just 1 component, 52 had 2, and the remaining
11 had 3.

4.2. Results on ‘ASKAP’ dataset

The accuracy of the LR and XGB classifiers on the ‘ASKAP’ test-
ing set was 94.4 and 95.1%, respectively. The rates of true and
false identifications are summarised in Table 1. These results are
very close to the CNN presented by Brown et al. (2018), with a
slightly higher true negative rate and a slightly lower true posi-
tive rate (recalling that positive sources are complex, and negative
sources are simple). The accuracy of the CNN was 94.9, slightly
lower than our XGB classifier and slightly higher than our LR
classifier. Both of our classifiers therefore produce similar classi-
fication performance to the CNN, with faster training time and
easier interpretation.

4.3. Results on ‘ATCA’ dataset

The accuracy of the LR and XGB classifiers on the ‘ATCA’ dataset
was 89.2 and 90.5%, respectively. The major differences between
the ‘ATCA’ and the ‘ASKAP’ experiments are the range of the
simulated Faraday depths and the distribution of noise levels.
The ‘ASKAP’ dataset, to match past CNN work, only included
depths from −50 to 50 rad m–2, while the ‘ATCA’ dataset includes
depths from −500 to 500 rad m–2. The rates of true and false
identifications are again shown in Table 1.

As we know the true Faraday depths of the components in
our simulation, we can investigate the behaviour of these classi-
fiers as a function of physical properties. Figure 4 shows the mean
classifier prediction as a function of component depth separation

Table 1. Confusion matrix entries for LR and XGB on ‘ASKAP’ and ‘ATCA’
simulated datasets, and the CNN confusion matrix entries are adapted
from Brown et al. (2018)

‘ASKAP’ ‘ATCA’

LR XGB CNN LR XGB

True negative rate 0.99 0.99 0.97 0.92 0.91

False positive rate 0.01 0.01 0.03 0.08 0.09

False negative rate 0.10 0.09 0.07 0.16 0.10

True positive rate 0.90 0.91 0.93 0.84 0.90
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Figure 4. Mean prediction as a function of component depth separation andminimum
component amplitude for (a) XGB and (b) LR.

and minimum component amplitude. This is tightly related to the
mean accuracy, as the entire plot domain contains complex spec-
tra besides the left and bottom edge: by thresholding the classifier
prediction to a certain value, the accuracy will be 100% on the
non-edge for all sources with higher prediction values.

4.4. Results on observed FDFs

We used the LR and XGB classifiers, which were trained on the
‘ATCA’ dataset to estimate the probability that our 142 observed
FDFs (Section 4.1.2) were Faraday complex. As these classifiers
were trained on simulated data, they face the issue of the ‘domain
gap’: the distribution of samples from a simulation differs from the
distribution of real sources, and this affects performance on real
data. Solving this issue is called ‘domain adaptation’ and how to do
this is an open research question inmachine learning (Zhang 2019;
Pan & Yang 2010). Nevertheless, the features of our observations
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Figure 5. Principal component analysis for simulated data (coloured dots) with observations overlaid (black-edged circles). Observations are coloured by their XGB- or
LR-estimated probability of being complex, with blue indicating ‘most simple’ and pink indicating ‘most complex’.

mostly fall in the same region of feature space as the simulations
(Figure 5) and so we expect reasonably good domain transfer.

Two apparently complex sources in the Livingston sample are
classified as simple with high probability by XGB. These outliers
are on the very edge of the training sample (Figure 5) and the
underdensity of training data here is likely the cause of this issue.
LR does not suffer the same issue, producing plausible predictions
for the entire dataset, and these sources are instead classified as
complex with high probability.

With a threshold of 0.5, LR predicted that 96 and 83% of
the Livingston and O’Sullivan sources were complex, respectively.
This is in line with expectations that the Livingston data should
have more Faraday complex sources than the O’Sullivan data due
to their location near the Galactic Centre. XGB predicted that 93
and 100% of the Livingston and O’Sullivan sources were com-
plex, respectively. Livingston et al. (2021) found that 90% of their
sources were complex, and O’Sullivan et al. (2017) found that
64% of their sources were complex. This suggests that our clas-
sifiers are overestimating complexity, though it could also be the
case that the methods used by Livingston and O’Sullivan under-
estimate complexity. Modifying the prediction threshold from 0.5
changes the estimated rate of Faraday complexity, and we show the
estimated rates against threshold for both classifiers in Figure 6.
We suggest that this result is indicative of our probabilities being
uncalibrated, and a higher threshold should be chosen in practice.
We chose to keep the threshold at 0.5 as this had the highest accu-
racy on the simulated validation data. The very high complexity
rates of XGB and two outlying classifications indicate that the XGB
classifier may be overfitting to the simulation and that it is unable
to generalise across the domain gap.

Figures D.1 and D.2 show every observed FDF ordered by
estimated Faraday complexity, alongside the models predicted by
Livingston and O’Sullivan et al. (2017), for LR and XGB, respec-
tively. There is a clear visual trend of increasingly complex sources
with increasing predicted probability of being complex.

5. Discussion

On simulated data (Section 4.3), we achieve state-of-the-art accu-
racy. Our results on observed FDFs show that our classifiers
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Figure 6. Estimated rates of Faraday complexity for the Livingston and O’Sullivan
datasets as functions of threshold. The horizontal lines indicate the rates of Faraday
complexity estimated by Livingston and O’Sullivan respectively.

produce plausible results, with Figures D.1 andD.2 showing a clear
trend of apparent complexity. Some issues remain: we discuss the
intrinsic overlap between simple and complex FDFs in Section 5.1
and the limitations of our method in Section 5.2.

5.1. Complexity and seeming ‘not simple’

Through this work, we found our methods limited by the signif-
icant overlap between complex and simple FDFs. Complex FDFs
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can be consistent with simple FDFs due to close Faraday compo-
nents or very small amplitudes on the secondary component, and
vice versa due to noise.

The main failure mode of our classifiers is misclassifying a
complex source as simple (Table 1). Whether sources with close
components or small amplitudes should be considered complex
is not clear, since for practical purposes, they can be treated as
simple: assuming the source is simple yields a very similar RM
to the RM of the primary component, and thus would not neg-
atively impact further data products such as an RM grid. The
scenarios where we would want a Faraday complexity classifier
rather than a polarisation structure model—large-scale analysis
and wide-area surveys—do not seem to be disadvantaged by con-
sidering such sources simple. Additional sources similar to these
are likely hidden in presumably ‘simple’ FDFs by the frequency
range and spacing of the observations, just as how these complex
sources would be hidden in lower resolution observations. Note
also that misidentification of complex sources as simple is intrin-
sically a problem with complexity estimation even for models not
well-represented by a simple FDF, as complex sources may con-
spire to appear as a wide range of viable models including simple
(Sun et al. 2015).

Conversely, high-noise simple FDFs may be consistent with
complex FDFs. One key question is how Faraday complexity esti-
mators should behave as the noise increases: should high noise
result in a complex prediction or a simple prediction, given that
a complex or simple FDF would both be consistent with a noisy
FDF? Occam’s razor suggests that we should choose the simplest
suitable model, and so increasing noise should lead to predictions
of less complexity. This is not how our classifiers operate, however:
high-noise FDFs are different to the model simple FDFs and so are
predicted to be ‘not simple’. In some sense our classifiers are not
looking for complex sources, but are rather looking for ‘not simple’
sources.

5.2. Limitations

Our main limitations are our simplifying assumptions on FDFs
and the domain gap between simulated and real observations.
However, our proposed features (Section 3.1) can be applied to
future improved simulations.

It is unclear what the effect of our simplifying assumptions are
on the effectiveness of our simulation. The three main simplifica-
tions that may negatively affect our simulations are (1) limiting
to two components, (2) assuming no external Faraday disper-
sion, and (3) assuming no internal Faraday dispersion (Faraday
thickness). Future work will explore removing these simplifying
assumptions, but will need to account for the increased difficulty
in characterising the simulation with more components and no
longer having Faraday screens as components. Additionally, more
work will be required to make sure that the rates of internal
and external Faraday dispersion match what might be expected
from real sources, or risk making a simulation that has too large
a range of consistent models for a given source: for example, a
two-component source could also be explained as a sufficiently
wide or resolved-out Faraday thick source or a three-component
source with a small third component. This greatly complicates the
classification task.

Previous machine learning work (e.g. Brown et al. 2018)
has not been run before on real FDF data, so this paper is the

first example of the domain gap arising in Faraday complexity
classification. This is a problem that requires further research
to solve. We have no good way to ensure that our simulation
matches reality, so some amount of domain adaptation will always
be necessary to train classifiers on simulated data and then apply
these classifiers to real data. But with the low source counts in
polarisation science (high-resolution spectropolarimetric data
currently numbers in the few hundreds) any machine learning
method will need to be trained on simulations. This is not
just a problem in Faraday complexity estimation, and domain
adaptation is also an issue faced in the wider astroinformatics
community: large quantities of labelled data are hard to come by,
and some sources are very rare (e.g. gravitational wave detections
or fast radio bursts; Zevin et al. 2017; Gebhard et al. 2019; Agarwal
et al. 2020). LR seems to handle the domain adaptation better
than XGB, with only a slightly lower accuracy on simulated data.
Our results are plausible and the distribution of our simulation
well overlaps the distribution of our real data (Figure 5).

6. Conclusion

We developed a simple, interpretable machine learning method
for estimating Faraday complexity. Our interpretable features
were derived by comparing observed FDFs to idealised simple
FDFs, which we could determine both for simulated and real
observations. We demonstrated the effectiveness of our method
on both simulated and real data. Using simulated data, we found
that our classifiers were 95% accurate, with near perfect recall
(specificity) of Faraday simple sources. On simulated data that
matched existing observations, our classifiers obtained an accu-
racy of 90%. Evaluating our classifiers on real data gave the
plausible results shown in Figure D.1, and marks the first applica-
tion of machine learning to observed FDFs. Future work will need
to narrow the domain gap to improve transfer of classifiers trained
on simulations to real, observed data.
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A. 2-Wasserstein begets Faradaymoments

Minimising the 2-Wasserstein distance between a model FDF and
the simple manifold gives the second Faraday moment of that
FDF. Let F̃ be the sum-normalised model FDF and let S̃ be the
sum-normalised simple model FDF:

F̃(φ)= A0δ(φ − φ0)+A1δ(φ − φ1)
A0 +A1

, (A1)

S̃(φ; φw)= δ(φ − φw). (A2)

TheW2 distance, usually defined on probability distributions, can
be extended to one-dimensional complex functions A and B by
normalising them:

DW2 (A ‖ B)2 = inf
γ∈�(A,B)

∫∫ φmax

φmin

|x− y|2 dγ (x, y), (A3)

Ã(φ)= |A(φ)|∫ φmax
φmin

|A(θ)| dθ , (A4)

B̃(φ)= |B(φ)|∫ φmax
φmin

|B(θ)| dθ , (A5)

where �(A, B) is the set of couplings of A and B, i.e. the set of
joint probability distributions that marginalise to A and B; and
infγ∈�(A,B) is the infimum over �(A, B). This can be interpreted as
the minimum cost to ‘move’ one probability distribution to the
other, where the cost of moving one unit of probability mass is the
squared distance it is moved.

The set of couplings �(F̃, S̃) is the set of all joint probability
distributions γ such that

∫ φmax

φmin

γ (φ, ϕ) dφ = S̃(ϕ; φw), (A6)
∫ φmax

φmin

γ (φ, ϕ) dϕ = F̃(φ). (A7)

The coupling that minimises the integral in Equation (A3) will be
the optimal transport plan between F̃ and S̃. Since F̃ and S̃ are
defined in terms of delta functions, the optimal transport problem

reduces to a discrete optimal transport problem and the optimal
transport plan is

γ (φ, ϕ)= A0δ(φ − φ0)+A1δ(φ − φ1)
A0 +A1

δ(ϕ − φw). (A8)

In other words, to move the probability mass of S̃ to F̃, a frac-
tionA0/(A0 +A1) is moved from φw to φ0 and the complementary
fraction A1/(A0 +A1) is moved from φw to φ1. Then:

DW2 (F̃ ‖ S̃)2 =
∫∫ φmax

φmin

|φ − ϕ|2 dγ (φ, ϕ) (A9)

= A0(φ0 − φw)2 +A1(φ1 − φw)2

A0 +A1
. (A10)

To obtain theW2 distance to the simple manifold, we need tomin-
imise this over φw. Differentiate with respect to φw and set equal
to zero to find

φw = A0φ0 +A1φ1

A0 +A1
. (A11)

Substituting this back in, we find

ςW2 (F)2 = A0A1

A0 +A1
(φ0 − φ1)2 (A12)

which is the Faraday moment.

B. Euclidean distance in the no-RMSF case

In this section, we calculate the minimumised Euclidean distance
evaluated on a model FDF (Equation (1)). Let F̃ be the sum-
normalised model FDF and let S̃ be the normalised simple model
FDF:

F̃(φ)= A0δ(φ − φ0)+A1δ(φ − φ1)
A0 +A1

, (B1)

S̃(φ; φe)= δ(φ − φe). (B2)
The Euclidean distance between F̃ and S̃ is then

DE(F̃(φ) ‖ S̃(φ; φe))2 (B3)

=
∫ φmax

φmin

∣∣F̃(φ)− δ(φ − φe)
∣∣2 dφ. (B4)

Assume φ0 	= φ1 (otherwise,DE will always be either 0 or 2). If φe =
φ0, then

DE(F̃(φ) ‖ S̃(φ; φe))2 (B5)

= 1
(A0 +A1)2

∫ φmax

φmin

A2
1 |δ(φ − φ1)− δ(φ − φ0)|2 dφ (B6)

= 2A2
1

(A0 +A1)2
(B7)

and similarly for φe = φ1. If φe 	= φ0 and φe 	= φ1, then

DE(F̃(φ) ‖ S̃(φ; φe))2 = A2
0 +A2

1 + 1
(A0 +A1)2

. (B8)

The minimised Euclidean distance when φ0 	= φ1 is therefore

ζE(F)=min
φe∈R

DE(F(φ) ‖ Fsimple(φ; φe)) (B9)

= √
2
min (A0,A1)
A0 +A1

. (B10)

If φ0 = φ1, then the minimised Euclidean distance is 0.
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Table C.1. XGB hyperparameters for the ‘ATCA’ dataset.

Parameter Value

colsample_bytree 0.912

gamma 0.532

learning_rate 0.1

max_depth 7

min_child_weight 2

scale_pos_weight 1

subsample 0.557

n_estimators 135

reg_alpha 0.968

reg_lambda 1.420

C. Hyperparameters for LR and XGB

This section contains tables of the hyperparameters that we used
for our classifiers. Tables C.1 and D.1 tabulate the hyperparame-
ters for XGB and LR, respectively, for the ‘ATCA’ dataset. Tables
D.2 and D.3 tabulate the hyperparameters for XGB and LR,
respectively, for the ‘ASKAP’ dataset.

D. Predictions on real data

This section contains Figures D.1 and D.2, which shows the pre-
dicted probability of being Faraday complex for all real data used
in this paper, drawn from Livingston et al. (2021) and O’Sullivan
et al. (2017).

E. Simulating observed FDFs

We simulated FDFs by approximating them by arrays of complex
numbers. An FDF F is approximated on the domain [− φmax, φmax]
by a vector F ∈R

d:

Fj =
1∑

k=0

Akδ(− φmax + jδφ − φk), (E1)

where δφ = (φmax − φmin)/d and d is the number of Faraday depth
samples in the FDF. F is sampled by uniformly sampling its
parameters:

φk ∈ [φmin, φmin + δφ, . . . , φmax], (E2)
Ak ∼ U(0, 1). (E3)

We then generate a vector polarisation spectrum P ∈R
m from F

using Equation (E4):

P� =
j∑

j=0

Fje2i(φmin+jδφ )λ2
� dφ. (E4)

Table C.2. LR hyperparameters for the
‘ATCA’ dataset.

Parameter Value

penalty L1

C 1.668

Table C.3. XGB hyperparameters for
the ‘ASKAP’ dataset.

Parameter Value

colsample_bytree 0.865

gamma 0.256

learning_rate 0.1

max_depth 6

min_child_weight 1

scale_pos_weight 1

subsample 0.819

n_estimators 108

reg_alpha 0.049

reg_lambda 0.454

Table C.4. LR hyperparameters for the
‘ASKAP’ dataset.

Parameter Value

penalty L2

C 0.464

λ2
� is the discretised value of λ2 at the �th index of P. This requires

a set of λ2 values, which depends on the dataset being simulated.
These values can be treated as the channel wavelengths at which
the polarisation spectrum was observed. We then add Gaussian
noise with variance σ 2 to each element of P to obtain a discretised
noisy observation P̂. Finally, we perform RM synthesis using the
Canadian Initiative for Radio Astronomy Data Analysis RM pack-
ageb, which is a Pythonmodule that implements a discrete version
of RM synthesis:

F̂j =m−1
m∑

�=1

P̂�e−2i(φmin+jδφ )λ2
� . (E5)

bhttps://github.com/CIRADA-Tools/RM.
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Figure D.1. The 142 observed FDFs ordered by LR-estimated probability of being Faraday complex. Livingston-identified components are shown in orange while O’Sullivan-
identified components are shown in magenta. Simpler FDFs (as deemed by the classifier) are shown in purple while more complex FDFs are shown in green, and the numbers
overlaid indicate the LR estimate. A lower number indicates a lower probability that the corresponding source is complex, i.e. lower numbers correspond to simpler spectra.
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Figure D.2. The 142 observed FDFs ordered by XGB-estimated probability of being Faraday complex. Livingston-identified components are shown in orange while O’Sullivan-
identified components are shown in magenta. Simpler FDFs (as deemed by the classifier) are shown in purple while more complex FDFs are shown in green, and the numbers
overlaid indicate the XGB estimate. A lower number indicates a lower probability that the corresponding source is complex, i.e. lower numbers correspond to simpler spectra.
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