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Finsler Warped Product Metrics of
Douglas Type

Huaifu Liu and Xiaohuan Mo

Abstract. In this paper, we study the warped structures of Finsler metrics. We obtain the differential
equation that characterizes Finsler warped product metrics with vanishing Douglas curvature. By
solving this equation, we obtain all Finsler warped product Douglas metrics. Some new Douglas
Finsler metrics of this type are produced by using known spherically symmetric Douglas metrics.

1 Introduction

A Finsler metric on a manifold M is a Douglas metric if its Douglas curvature van-
ishes. The Douglas curvature was introduced by J. Douglas in 1927 [6]. Its importance
in Finsler geometry is due to the fact that it is a projective invariant. Namely, if two
Finsler metrics F and F are projectively equivalent, then F and F have the same Dou-
glas curvature.

The warped product metric was first introduced by Bishop and O’Neil to study Rie-
mannian manifolds of negative curvature as a generalization of Riemannian product
metric [3]. They have mainly been used in the efforts to construct new examples of
Riemannian manifolds with prescribed conditions on the curvatures. The warped
product metric was later extended to the case of Finsler manifolds by the work of
Chen-Shen-Zhao and Kozma-Peter-Varga [4, 8]. These metrics are called Finsler
warped product metrics.

It is worth mentioning the recent observation by Chen, Shen, and Zhao that spher-
ically symmetric Finsler metrics have warped product structure [4]. Recall that a
Finsler metric F is said to be spherically symmetric if the orthogonal group acts as
isometries on F [9-11].

In [10], the authors obtain the differential equation that characterizes the spheri-
cally symmetric Finsler metrics with vanishing Douglas curvature. Furthermore they
obtain all the spherically symmetric Douglas metrics by solving this equation.

We know that there are a lot of Finsler warped product metrics that are not spher-
ically symmetric (see (5.3)). Therefore, it is a natural problem to study Finsler warped
product metrics with vanishing Douglas curvature.

In this paper, we first characterize such metrics in terms of a differential equation
(Theorem 1.1), which can be reduced to a quasi-linear partial differential equation.

Received by the editors September 27, 2017.

Published electronically January 24, 2018.

This work is supported by BNSF(1164009), Beijing Postdoctoral Research Foundation and the Na-
tional Natural Science Foundation of China 11371032 and 11771020. The second author (Xiaohuan Mo)
is the corresponding author.

AMS subject classification: 22E46, 53C30.

Keywords: Finsler metric, warped product, Douglas metric, spherically symmetric metric.

https://doi.org/10.4153/CMB-2017-077-0 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2017-077-0

120 H. Liu and X. Mo

Then, by solving this equation, we obtain all the warped product Douglas metrics
(Theorem 1.2). By using the characteristics of this equation and known spherically
symmetric Douglas metrics, we construct explicitly some new warped product Dou-
glas metrics (see Section 5), including the revised Funk’s metric [4].

Consider the product manifold M := I x M where I is an interval of R and M is an
(n - 1)-dimensional manifold equipped with a Riemannian metric &.

Finsler metrics on M, given in the form

F(u,v) = (i, )¢ i ).

a(u,v)

3
oul
R?, are called Finsler warped product metrics.

In Section 3, we prove the following theorem.

where u = (u',11), v = v'=% + v and ¢ is a suitable function defined on a domain of

Theorem 1.1  The warped product metric F = a&¢(r,s),r = u',s = ";1 is of Douglas
type if and only if ¢ satisfies
11 (¢ =s56)r = [f(r)s* + ()]s
where f = f(r) and g = g(r) are two differentiable functions.
One can show that under generic conditions, the differential equation (1.1) is equiv-

alent to a quasi-linear partial differential equation. By using the characteristic equa-
tion, our next result provides the general solution of (1.1).

Theorem 1.2 Let f(r) and g(r) be differential functions of r € I such that (4.1) holds.
Then for s > 0, the general solution of (1.1) is

(12) $(r,5) = sh(r) s [ (g (r,0))do,
where sg € (0, 5],
(1.3) o(r,0) = e’“f(’)‘“aﬂfzg(r)e*f 2 (nydr g,

and h and { are arbitrary differentiable real functions of r and ¢, respectively. Moreover,
any warped product Douglas metric on I x M is given by

F(u,v) = &(it, V)¢ (ul, . ) :

(#,7)

Qe

where ¢ is of the form (1.2) and ( satisfies
(14) (>0, {<o.

Theorem 1.1 tells us the following interesting fact: the disappearance of Douglas
curvature for a Finsler warped product metric is independent of the Riemannian met-
ric & on M. It follows that we can construct explicitly some new warped product Dou-
glas metrics by using known spherically symmetric Douglas metrics in Section 5.

For related results of Finsler warped product metrics, see [1,2,4, 8].
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2 Preliminaries

Let M be a manifold and let TM = U,y T M be the tangent bundle of M, where
T, M is the tangent space at x € M. We set TM, := TM \ {0} where {0} stands for
{(x,0)|x € M,0 € T,M}. A Finsler metric on M is a function F: TM — [0, co) with
the following properties:

(a) Fis C* on TM,;

(b) at each point x € M, the restriction F, := F|, y is a Minkowski norm on Ty M.

A Finsler metric F on B"(v) is said to be spherically symmetric if it satisfies
F(Ax, Ay) = F(x, )

forall x e B"(v), y € T,B"(v),and A € O(n). In [14], Zhou (see also [7]) showed the
following lemma.

Lemma 2.1 A Finsler metric F on B" (v) is spherically symmetric if and only if there
is a function ¢:[0,v) x R — R such that

Fx) = oig( 552),
where (x, y) € TB"(v)\{0}.

Lemma 2.2 A spherically symmetric metric is a Finsler warped product metric.

Proof In fact,

e () = g 520 - ),

where &, is the standard Riemannian metric on the unit sphere S"7!,

pl - rs
(2.2) ri= |x‘, s:= 5(+, (/7(1‘,5): \Y% r2+52¢(1‘,ﬁ)s

where v! = dr(y). [

There is a set of local functions B¢“ pg on TM, defined by

26t

A .

where G are the geodesic coefficients of a Finsler metric F [13]. Because this quantity
was first introduced by L. Berwald, we call it the Berwald curvature [12]. Recall that F
is said to be Berwald if Bc?pg = 0.

Throughout this paper, our index conventions are as follows:

I<A<KBZL---<n, 2<i<j<---<n.
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3 Douglas Metrics

In this section, we are going to find necessary and sufficient conditions for the Finsler
warped product metric to be of vanishing Douglas curvature. We need the following
lemma.

Lemma 3.1 LetP = P(r,s)and Q = Q(r,s) be two functions on a domain U c R?.

Then

0’ 2 0? .
31 ——  (Pa*)=0, ———(Q&*l")=0
(3.1 8VA8VBBVC( &) avAavBavC(Q‘x )
if and only if
(3.2) P=a(r)s*+b(r), Q-=c(r)s,

where [’ = V;’ and a = a(r), b = b(r), and c = c(r) are differentiable functions.

Proof By using Lemma A.2, we have

aS

33 ———(P&* Psss,
(3:3) avlavlavl( )
o ) 1
34 ——(Pa”) = Py l;,
(3.4) 81/181/181/’( &) X
(3.5) a73(13“2)— iP Ii l(p Py)h
' ovioviov *)= a it & $Ess)Mijo
2° o2 s3 vyy
(36) W(P(X ):_Epssslilj k—*(P SPss)hljlk(lﬁ_]—)kﬁl)

where [; := &, hij == &(l;),; and i — j - k — i denotes cyclic permutation. By
using Lemma A.3, we get

(37) E)73«2&27")—1(2 I
' ovioviov! T
0° 2% 1 .. S vy
38) — 0 (Q&*) = = Quhi - 2 Q.0
(8)  Sgyigy (QEH) = 5 Quhy— 2 Qul'ly
(3.9)
83 2 .. s . .

avlav]avk(Q(x l )_ 7stsl l] k— ngs(hJ

a
o° . 1 N
(310) W(Q 21 )— &[3(Q—SQS) 65 st S sts] ll l
1 ¢ v, iy
+ g(SZst - Qq +SQS)ll(lldjk +5;lk)(] >k—>1-7j)

1 i /. .
+ g(Q—st)é}akl(] —k—>1-7j),
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where h; = d(ii)vj. Using (3.5) and (3.10), we obtain

P(Pa?) & *(Qatl) 1

3.11 - =<
G.1D) wlavkavl o oviovkovt &

[(T’l - Z)SZQSS - 53 sts + 52Psss:| ik Zl

1 .
+ g[szQSS +n(Q - sQs) + Py — sPs| hyr.
First suppose that (3.1) holds. Combining (3.1) with (3.3), we get
(3.12) Py = 0.

Plugging this into (3.5), we have
1 .
g(PS - Spss)hij = 0

Note that rank(h; j) = n = 2. It follows that when n > 3,
(3.13) P —sP, = 0.
Hence, we get the first equation of (3.2). From (3.7) and (3.8), we get

(3~14) Qsss =0, Qg =0.

Plugging (3.12), (3.13), and (3.14) into (3.11) yields (Q — st)izkl = 0. It follows that
Q - sQ; = 0. Thus, we see that the solution of Q is Q = ¢(r)s.

Conversely, suppose that (3.2) holds. From (3.3)-(3.10), one immediately obtain
(3.1). [ |

By considering P = @ and Q = ¥ in Lemma 3.1, we obtain the following corollary.

Corollary 3.2  Let O(r,s) and ¥(r,s) be two functions defined by

2 (055 — W) — 20 (W, — W) v s(Wrwss — WsWys) + Ws W,y

315) &= )
(3.15) 2Qwwss — w?) 2Q2wwss — w?)

>

where
(3.16) w= (/52.

Then the Finsler warped product metric F = 5c¢( ul, ”;l) is Berwald, i.e., Bc*pg = 0, if
and only if

®=a(r)s*+b(r), ¥=c(r)s,
where a = a(r), b = b(r) and c = c(r) are differentiable functions.
Proof Combining Lemma 3.1 and Lemma A.1 proves the corollary. ]

In [6], ]. Douglas introduced the local functions Dg?cp on TM defined by

oM (GA— 1 & BGEVA)
vBoyCoyP n+1f7 ovE

(3.17) Dpcp = -
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in local coordinate u', ..., u" and v = vA-2;, where G are the geodesic coefficients

of F [13]. These functions are called the Douglas curvatures. From Lemma A.1, we
have

$000_ 06 2 oc

oogvA ol % ovi

= (¥ -s¥)a il .228;:+(D5&+Z—_
]: =

3G
a— (s + n¥ - s¥)a,

where G/ are the geodesic coeflicients of the Riemannian metric &, and ® and ¥ are
given in (3.15). It follows that

1 & 9G4 1 X oG)
1 oG" B oG’
(3.18) G o Az:laAv (D +50)d? n+1; A
j
1 & oG4 o 1 MG/
319 G* — o (v+@)& T+ G- —— Y Lk
(.19) i et (e G S
where
1
(3.20) Q:=———(D; + n¥ - s¥,).
n+1

For a Riemannian metric &, we have
Gk = ffj(ﬁ)vivj.
Hence, both
- Zn: L@vl and GF- L 5296 vk
n+1:5 ov/ n+1]28v1

are quadratic in v = v4 2,

Combining this with (3.17), (3.18), (3.19), and Lemma 3.1, we conclude that F has
vanishing Douglas curvature if and only if

(3.21) ®+50=a(r)s*+b(r), ¥+0=c(r)s.

Suppose that F is of Douglas type, that is, it has vanishing Douglas curvature. Then
(3.21) implies that

(3.22) @ —s¥ = &(r)s* + n(r),

where

§(r)=a(r)—c(r), n(r):=b(r).

Conversely, suppose that (3.22) holds. It follows from (3.22) that
(3.23) ® = s+ E(r)s* + (7).

Differentiating (3.23) with respect to s, we obtain @ = ¥ + s¥, + 2s¢. Together with
(3.20), this yields

@=-¥-
1’[+1£
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It follows that
D+50 = n—_lf(r)sz +4(r), ¥Y+0O-= —if(r)s
S n+l N Con+l ’

where we have made use of (3.23). From (3.21), we conclude that F is of Douglas type.
Thus, we obtain the following lemma.

Lemma 3.3  The Finsler warped product metric F = &¢(u', ";l) has vanishing Douglas
curvature if and only if (3.22) holds where @ and ¥ are given in (3.15), and & = &(r)
and n = y(r) are differentiable functions.

Proof of Theorem 1.1 By a straightforward computation, one obtains
2505 — 200, — SO0 _ 4¢%(sdrs — &) __(¢—s¢s).
220w — w?) 43¢, bss

where we used (3.15) and (3.16). Combining (3.24) with Lemma 3.3, we conclude the
proof. ]

(324) 2(®-s¥)=

Remark  Note that a spherically symmetric metric F = |y|¢(|x|,
warped product metric. In fact,

F=yl¢(r,5) = a.§(r.5),

{£:2)) 5 a Finsler
171

where

§= \/:Tsz = (T;/T/>, ¢(r,s) = Vr2+s24(r,5),

where &, is the standard Riemannian metric on the unit sphere §"71 and we have

made use of (2.1) and (2.2). It is easy to verify (c¢f. [10, Theorem 1.1]) that ¢ satisfies the
Douglas equations

(325)  [(P =) (2E+15%) — 1] rdss — §¢rs + ¢y + r(2E+ 157) (¢ — 5¢5) = 0
if and only if ¢ satisfies (1.1), where either

g=r(1-2r*¢) and f:= 1(1+ g_r4,1)’
r r

or
g 1 g
=1- 2 d &=—(1-2=).
1 fr+ ;o d 2r2( r)
It follows that (1.1) is equivalent to (3.25) for a spherically symmetric metric.
4 Solutions of (1.1)
Let f(r) and g(r) be functions such that the integrals

(4.1) f2f(r)dr, [zg(r)e—flf(r)drdr

are well defined forr e I c R.
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Proof of Theorem 1.2 Equation (1.1) is equivalent to

(4.2) [f(r)s* + g(r)]As +sA, = 0,
where

(4.3) A= ¢ —s¢s.

The characteristic equation of the quasi-linear PDE (4.2) is
(4.4) dr ds da

S f(r)s2+g(r) o

It follows that ¢(r,s) = ¢; and A = ¢, are independent integrals of (4.4), where ¢ is
given in (1.3). Hence, the solution of (4.2) is A = {(¢(r,s)), where ( is any continu-
ously differentiable function. Hence,

(4.5) ¢—s¢s = {(o(r.9)),
It follows that every solution of (1.1) satisfies (4.5).
Conversely, suppose that (4.5) holds. Then we obtain (4.2) and (4.3). Thus, ¢ sat-
isfies (1.1). We conclude that (4.5) and (1.1) are equivalent.
Now we consider s € [sg, 00) where s > 0. Put
(4.6) ¢ = 51//'
It follows that ¢, = y + sy;. Together with (4.5), this yields

((?’(7”5)) =¢—sds = _521/’5'
Thus, .
v="h(r)- fso o *{(¢(r,0))do.

Plugging this into (4.6) yields (1.2).

Similarly, we can obtain the general solution of (1.1) for s < 0.

Differentiating (4.5) with respect to s, we obtain 2se~/2f drr = —s¢ss. It follows
that ¢ = —2¢/ 2fdryr, Combining this with (4.5) and Proposition 5.1 (see Section
5), we get that F is a Finsler metric if and only if (1.4) holds. [ |

5 New Families of Douglas Metrics

In this section, we obtain several new families of warped product metrics as corollaries
of Theorem 1.1.

Proposition 5.1 The warped product metric F = &¢(u', v;l) is strongly convex if and
only if

(5.1) ¢—5¢;>0, ¢ >0.

Proof Using (3.16), we get

20 — sws :2¢(¢—5¢s)a 260(4)53—(4)? :4¢3¢ss-

Taking these together with [4, Proposition 4.1], we obtain that F is strongly convex if
and only if the positive function ¢ satisfies (5.1). [ |
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Now let us make an observation on the above results. Assume that
viv 1 Vl
F(u,v):oc(u,v)gb(u , < )

is a Finsler warped product metric with vanishing Douglas curvature. We replace its
& by another Riemannian metric &. Then Proposition 5.1 and Theorem 1.1 imply that

F(u,v):&(it,f/)gb(ul v )

" a(it,v)

is a strongly convex metric with vanishing Douglas curvature.

Corollary 5.2 Suppose that F(u,v) = & (i, 7)o ul, (u ) ) is a Finsler warped prod-
uct metric on I x M and F has vanishing Douglas curvature. Given any Rzemanman
metric & on M, the new warped product Finsler metric F(u,v) = &(it, #)$(u', a(u % )
has vanishing Douglas curvature.

Example 5.3 For any differentiable function % of r := |x| such that

¢(r,3) = h(r)§+Ae_é >0,

where A > 0, we have the following Douglas spherically symmetric metric [10]

_kE
E(x,y) = (x, y)h(|x[) + Alyle™
Applying Lemma 2.2, its Finsler warped product form is
RV 5 -] 24 Sy
F=a,Vrt+s [h(r)m+Ae ] oc+[rh(r)s+Ae rr+s ],

where &, is the standard Riemannian metric on $"71. Let & be a Riemannian metric

on "1, Then ,
E= &[rh(r)§ +Ae” TV + 52]

is a new warped product Finsler metric with vanishing Douglas curvature, where

Vl

(5.2) $i=

&, v)
Example 5.4 Let ¢(r,$) be a function defined by
2 2 2 2
6(r3) = sh(r) + LH P+ (2 = )]+

i+ u(@=2)(1+ ury?

where y € R, and h(r) is any function such that ¢(r,§) is positive. Then the Finsler
metric on B"(v) c R" given by

Fay) = () 20).

where v = % if y < 0, is a spherically symmetric Douglas metric [10]. By using

Lemma 2.2, its Finsler warped product form is

F= 5c+{rh(r)s + [+ @+ w)r?][r* + 8> +pr'] + rzsz}

V122 + urt(1+ pr?)?
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Let & be a Riemannian metric on $”~!. Then
L+ (L+ p)r?][r? + 8 + ur] + r2§2}

12+ 82+ purt(1+ ur?)?

is a new warped product Douglas metric, where § is given in (5.2).

F= il rh(r)i+ [

Example 5.5 Let ¢(r,$) be a function defined by

V0@ert + k5% + ¢

&(r,8) :==5h(r) + el

where , ¢, k are any constant real values such that ({e + x*) + ¢ > 0 and h(r) is any
function such that ¢(r, §) is positive. Then the spherically symmetric Finsler metric
onB"(v) c R" given by

>

() = g5 220),

where v = \/%7 if { < 0, is of Douglas type [10]. By Lemma 2.2, its Finsler warped

product form is

Ve((r2 +1)(r2 +s2) + k21252
1+r? } '

Replacing &, by any Riemannian metric &, one can get the new warped product Dou-

glas metric

F = 5c+{rh(r)s +

P &{ (S + Ve(lrr +1)(r2 +82) + K2r2§2}

1+(r?
where § is given in (5.2). In particular, when
K
h(r) = —, = ], =-1, e=1,
(r) 1+(r? ¢

we have

R V82 +r2(1-r2) £7§
(5.3) F.=a ( ) )

1-1r2

where E, is the revised Funk’s metric [4].

Example 5.6 Let ¢(r,3) be a function defined by
KVV 2 — 12 + §2
e (v*-12) )

where x and v are positive constants, c is a nonzero constant, and h(r) is any function
such that ¢ is positive. It follows that

Py = oig(1 552

is a spherically symmetric Douglas metric [10]. Its Finsler warped product form is

\/W
F:&+{rh(r)s+w v2s2 + r2(v r)}

ecvir? (V2 _ r2)

&(r,8) =5h(r) +
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Replacing &, by any Riemannian metric &, one can get the following new warped
product Douglas metric

232 4+ 72(y2 — 12
F:éc{rh(r)§+m}\/vs +r2(v r)})

ecver(VZ _ ,-2)

where § is given in (5.2).

A Appendix

We establish the Lemmas required in the proofs of Lemma 3.1 and Corollary 3.2. From
now M will always denote a product manifold I x M, and F will denote a Finsler

warped product metric. Let [! = ";,‘, Ii = &, fzij = (), h; = a(I?),;. The
following lemmas can be obtained by straightforward calculations.
Lemma A.l  For the geodesic coefficients G* of F, we have
G' = 0i’, G' =G +va’l,
oG oG*  9G* .

— s o _vu _ o7 ik s sk
ﬁ—d)s(x, 7 = 2y + (¥ - s¥)al;l" + Yad;,

where © and ¥ are given in (3.15).

Lemma A.2 Let P = P(r,s) be a function on a domain U c R?. Then
82

Pi) = Py,
avlavl( &)
0* s I .
Svigyi (P(X ) = (2P - ZSPS + S Pss)lilj + (2P —SPS)h,']'.
Lemma A.3 Let Q= Q(r,s) be a function on a domain U c R?. Then
2
ot (1) = QT
o <27 iy PofiL i

W(Qazl ) = (2Q = 25Q< + 5* Qo) i + (Q = sQq) (Rl + Lk + I ).
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