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Finsler Warped Product Metrics of
Douglas Type

Huaifu Liu and Xiaohuan Mo

Abstract. In this paper, we study the warped structures of Finsler metrics. We obtain the diòerential
equation that characterizes Finsler warped product metrics with vanishing Douglas curvature. By
solving this equation, we obtain all Finsler warped product Douglas metrics. Some new Douglas
Finsler metrics of this type are produced by using known spherically symmetric Douglas metrics.

1 Introduction

A Finsler metric on a manifold M is a Douglas metric if its Douglas curvature van-
ishes. _eDouglas curvature was introduced by J. Douglas in 1927 [6]. Its importance
in Finsler geometry is due to the fact that it is a projective invariant. Namely, if two
Finsler metrics F and F are projectively equivalent, then F and F have the same Dou-
glas curvature.

_ewarped productmetric was ûrst introduced by Bishop andO’Neil to study Rie-
mannian manifolds of negative curvature as a generalization of Riemannian product
metric [3]. _ey have mainly been used in the eòorts to construct new examples of
Riemannian manifolds with prescribed conditions on the curvatures. _e warped
product metric was later extended to the case of Finsler manifolds by the work of
Chen–Shen–Zhao and Kozma–Peter–Varga [4, 8]. _ese metrics are called Finsler
warped product metrics.

It is worthmentioning the recent observation by Chen, Shen, and Zhao that spher-
ically symmetric Finsler metrics have warped product structure [4]. Recall that a
Finsler metric F is said to be spherically symmetric if the orthogonal group acts as
isometries on F [9–11].

In [10], the authors obtain the diòerential equation that characterizes the spheri-
cally symmetric Finsler metrics with vanishing Douglas curvature. Furthermore they
obtain all the spherically symmetric Douglas metrics by solving this equation.

We know that there are a lot of Finsler warped product metrics that are not spher-
ically symmetric (see (5.3)). _erefore, it is a natural problem to study Finsler warped
product metrics with vanishing Douglas curvature.

In this paper, we ûrst characterize such metrics in terms of a diòerential equation
(_eorem 1.1), which can be reduced to a quasi-linear partial diòerential equation.
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_en, by solving this equation, we obtain all the warped product Douglas metrics
(_eorem 1.2). By using the characteristics of this equation and known spherically
symmetric Douglas metrics, we construct explicitly some new warped product Dou-
glas metrics (see Section 5), including the revised Funk’s metric [4].
Consider the product manifoldM ∶= I × M̌ where I is an interval ofR and M̌ is an

(n − 1)-dimensional manifold equipped with a Riemannian metric ᾰ.
Finsler metrics on M, given in the form

F(u, v) ∶= α̌(ǔ, v̌)ϕ(u1 ,
v1

α̌(ǔ, v̌)
) ,

where u = (u1 , ǔ), v = v1 ∂
∂u1 + v̌ and ϕ is a suitable function deûned on a domain of

R2, are called Finsler warped product metrics.
In Section 3, we prove the following theorem.

_eorem 1.1 _e warped product metric F = ᾰϕ(r, s), r = u1 , s = v 1

ᾰ is of Douglas
type if and only if ϕ satisûes

(1.1) (ϕ − sϕs)r = [ f (r)s2 + g(r)]ϕss ,

where f = f (r) and g = g(r) are two diòerentiable functions.

One can show that under generic conditions, the diòerential equation (1.1) is equiv-
alent to a quasi-linear partial diòerential equation. By using the characteristic equa-
tion, our next result provides the general solution of (1.1).

_eorem 1.2 Let f (r) and g(r) be diòerential functions of r ∈ I such that (4.1) holds.
_en for s > 0, the general solution of (1.1) is

(1.2) ϕ(r, s) = sh(r) − s∫
s

s0
σ−2ζ(φ(r, σ))dσ ,

where s0 ∈ (0, s],

(1.3) φ(r, σ) = e−∫ 2 f (r)drσ 2
+ ∫ 2g(r)e−∫ 2 f (r)drdr,

and h and ζ are arbitrary diòerentiable real functions of r and φ, respectively. Moreover,
any warped product Douglas metric on I × M̆ is given by

F(u, v) = ᾰ(ŭ, v̆)ϕ (u1 ,
v1

ᾰ(ŭ, v̆)
) ,

where ϕ is of the form (1.2) and ζ satisûes

(1.4) ζ > 0, ζ′ < 0.

_eorem 1.1 tells us the following interesting fact: the disappearance of Douglas
curvature for a Finsler warped productmetric is independent of the Riemannianmet-
ric ᾰ on M̌. It follows that we can construct explicitly some newwarped product Dou-
glas metrics by using known spherically symmetric Douglas metrics in Section 5.
For related results of Finsler warped product metrics, see [1, 2, 4, 8].
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2 Preliminaries

Let M be a manifold and let TM = ⋃x∈M TxM be the tangent bundle of M, where
TxM is the tangent space at x ∈ M. We set TMo ∶= TM ∖ {0} where {0} stands for
{(x , 0)∣x ∈ M , 0 ∈ TxM}. A Finsler metric on M is a function F∶TM → [0,∞) with
the following properties:
(a) F is C∞ on TMo ;
(b) at each point x ∈ M, the restriction Fx ∶= F∣TxM is a Minkowski norm on TxM.
A Finsler metric F on Bn(ν) is said to be spherically symmetric if it satisûes

F(Ax ,Ay) = F(x , y)

for all x ∈ Bn(ν), y ∈ TxBn(ν), and A ∈ O(n). In [14], Zhou (see also [7]) showed the
following lemma.

Lemma 2.1 A Finsler metric F on Bn(ν) is spherically symmetric if and only if there
is a function ϕ∶ [0, ν) ×R→ R such that

F(x , y) = ∣y∣ϕ( ∣x∣,
⟨x , y⟩
∣y∣

) ,

where (x , y) ∈ TBn(ν)/{0}.

Lemma 2.2 A spherically symmetric metric is a Finsler warped product metric.

Proof In fact,

(2.1) F(x , y) = ∣y∣ϕ( ∣x∣,
⟨x , y⟩
∣y∣

) = ᾰ+ϕ̃(r, s),

where ᾰ+ is the standard Riemannian metric on the unit sphere Sn−1,

(2.2) r ∶= ∣x∣, s ∶=
v1

ᾰ+
, ϕ̃(r, s) =

√
r2 + s2ϕ( r,

rs
√

r2 + s2
) ,

where v1 = dr(y).

_ere is a set of local functions BCADE on TMo deûned by

BCADE ∶=
∂3GA

∂yC∂yD∂yE

whereGA are the geodesic coeõcients of a Finslermetric F [13]. Because this quantity
was ûrst introduced by L. Berwald, we call it the Berwald curvature [12]. Recall that F
is said to be Berwald if BCADE = 0.

_roughout this paper, our index conventions are as follows:

1 ≤ A ≤ B ≤ ⋅ ⋅ ⋅ ≤ n, 2 ≤ i ≤ j ≤ ⋅ ⋅ ⋅ ≤ n.
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3 Douglas Metrics

In this section, we are going to ûnd necessary and suõcient conditions for the Finsler
warped product metric to be of vanishing Douglas curvature. We need the following
lemma.

Lemma 3.1 Let P = P(r, s) and Q = Q(r, s) be two functions on a domain U ⊂ R2.
_en

(3.1)
∂3

∂vA∂vB∂vC
(Pᾰ2

) = 0,
∂3

∂vA∂vB∂vC
(Qᾰ2 l̆ j) = 0

if and only if

(3.2) P = a(r)s2 + b(r), Q = c(r)s,

where l̆ i = v i

ᾰ and a = a(r), b = b(r), and c = c(r) are diòerentiable functions.

Proof By using Lemma A.2, we have

∂3

∂v1∂v1∂v1 (Pᾰ
2
) =

1
ᾰ
Psss ,(3.3)

∂3

∂v1∂v1∂v i (Pᾰ
2
) = −

1
ᾰ
Psss l̆ i ,(3.4)

∂3

∂v1∂v i∂v j (Pᾰ
2
) =

s2

ᾰ
Psss l̆ i l̆ j +

1
ᾰ
(Ps − sPss)h̆ i j ,(3.5)

∂3

∂v i∂v j∂vk (Pᾰ
2
) = −

s3

ᾰ
Psss l̆ i l̆ j l̆k −

s
ᾰ
(Ps − sPss)h̆ i j l̆k(i → j → k → i).(3.6)

where l̆ i ∶= ᾰv i , h̆ i j ∶= ᾰ( l̆ i)v j and i → j → k → i denotes cyclic permutation. By
using Lemma A.3, we get

∂3

∂v1∂v1∂v1 (Qᾰ
2 l̆ i) =

1
ᾰ
Qsss l̆ i ,(3.7)

∂3

∂v1∂v1∂v j (Qᾰ
2 l̆ i) =

1
ᾰ
Qss h̆ i

j −
s
ᾰ
Qsss l̆ i l̆ j ,(3.8)

∂3

∂v1∂v j∂vk (Qᾰ
2 l̆ i) =

s2

ᾰ
Qsss l̆ i l̆ j l̆k −

s
ᾰ
Qss(h̆ i

j l̆k + h̆ i
k l̆ j + h̆ jk l̆ i),

(3.9)

∂3

∂v j∂vk∂v l (Qᾰ
2 l̆ i) =

1
ᾰ
[3(Q − sQs) − 6s2Qss − s2Qsss] l̆ i l̆ j l̆k l̆ l(3.10)

+
1
ᾰ
(s2Qss − Qs + sQs) l̆ l( l̆ i ă jk + δ i

j l̆k)( j → k → l → j)

+
1
ᾰ
(Q − sQs)δ i

j ăkl( j → k → l → j),
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where h̆ i
j ∶= ᾰ( l̆

i)v j . Using (3.5) and (3.10), we obtain

(3.11)
∂3(Pᾰ2)

∂v1∂vk∂v l +
n

∑
i=2

∂3(Qᾰ2 l̆ i)
∂v i∂vk∂v l =

1
ᾰ
[(n − 2)s2Qss − s3Qsss + s2Psss] l̆k l̆ l

+
1
ᾰ
[ s2Qss + n(Q − sQs) + Ps − sPss] h̆kl .

First suppose that (3.1) holds. Combining (3.1) with (3.3), we get

(3.12) Psss = 0.

Plugging this into (3.5), we have

1
ᾰ
(Ps − sPss)h̆ i j = 0.

Note that rank(h̆ i j) = n − 2. It follows that when n ≥ 3,

(3.13) Ps − sPss = 0.

Hence, we get the ûrst equation of (3.2). From (3.7) and (3.8), we get

(3.14) Qsss = 0, Qss = 0.

Plugging (3.12), (3.13), and (3.14) into (3.11) yields (Q − sQs)h̆kl = 0. It follows that
Q − sQs = 0. _us, we see that the solution of Q is Q = c(r)s.
Conversely, suppose that (3.2) holds. From (3.3)–(3.10), one immediately obtain

(3.1).

By considering P = Φ and Q = Ψ in Lemma 3.1, we obtain the following corollary.

Corollary 3.2 Let Φ(r, s) and Ψ(r, s) be two functions deûned by

(3.15) Φ =
s2(ωrωss − ωsωrs) − 2ω(ωr − sωrs)

2(2ωωss − ω2
s )

, Ψ =
s(ωrωss − ωsωrs) + ωsωr

2(2ωωss − ω2
s )

,

where

(3.16) ω = ϕ2 .

_en the Finsler warped product metric F = ᾰϕ(u1 , v
1

ᾰ ) is Berwald, i.e., BCADE = 0, if
and only if

Φ = a(r)s2 + b(r), Ψ = c(r)s,

where a = a(r), b = b(r) and c = c(r) are diòerentiable functions.

Proof Combining Lemma 3.1 and Lemma A.1 proves the corollary.

In [6], J. Douglas introduced the local functions DBACD on TM deûned by

(3.17) DBACD ∶=
∂3

∂vB∂vC∂vD
(GA

−
1

n + 1

n

∑
E=1

∂GE

∂vE
vA)

123

https://doi.org/10.4153/CMB-2017-077-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2017-077-0


H. Liu and X. Mo

in local coordinate u1 , . . . , un and v = vA ∂
∂vA , where GA are the geodesic coeõcients

of F [13]. _ese functions are called the Douglas curvatures. From Lemma A.1, we
have

n

∑
A=1

∂GA

∂vA
=

∂G1

∂v1 +
n

∑
j=2

∂G j

∂v j

= (Ψ − sΨs)ᾰ l̆ j l̆ j +Ψᾰ
n

∑
j=2
δ j

j +Φs ᾰ +
n

∑
j=2

∂Ğ j

∂v j

=
n

∑
j=2

∂Ğ j

∂v j + (Φs + nΨ − sΨs)ᾰ,

where Ğ j are the geodesic coeõcients of the Riemannian metric ᾰ, and Φ and Ψ are
given in (3.15). It follows that

G1
−

1
n + 1

n

∑
A=1

∂GA

∂vA
v1
= (Φ + sΘ)ᾰ2

−
1

n + 1

n

∑
j=2

∂Ğ j

∂v j v
1 ,(3.18)

Gk
−

1
n + 1

n

∑
A=1

∂GA

∂vA
vk

= (Ψ +Θ)ᾰ2 l̆ k + Ğk
−

1
n + 1

n

∑
j=2

∂Ğ j

∂v j v
k(3.19)

where

(3.20) Θ ∶= −
1

n + 1
(Φs + nΨ − sΨs).

For a Riemannian metric ᾰ, we have

Ğk
= Γ̆k

i j(ŭ)v
iv j .

Hence, both

−
1

n + 1

n

∑
j=2

∂Ǧ j

∂v j v
1 and Ğk

−
1

n + 1

n

∑
j=2

∂Ğ j

∂v j v
k

are quadratic in v = vA ∂
∂vA .

Combining this with (3.17), (3.18), (3.19), and Lemma 3.1, we conclude that F has
vanishing Douglas curvature if and only if

(3.21) Φ + sΘ = a(r)s2 + b(r), Ψ +Θ = c(r)s.

Suppose that F is of Douglas type, that is, it has vanishing Douglas curvature. _en
(3.21) implies that

(3.22) Φ − sΨ = ξ(r)s2 + η(r),

where
ξ(r) ∶= a(r) − c(r), η(r) ∶= b(r).

Conversely, suppose that (3.22) holds. It follows from (3.22) that

(3.23) Φ = sΨ + ξ(r)s2 + η(r).

Diòerentiating (3.23) with respect to s, we obtain Φs = Ψ + sΨs + 2sξ. Together with
(3.20), this yields

Θ = −Ψ −
2

n + 1
ξs.
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It follows that

Φ + sΘ =
n − 1
n + 1

ξ(r)s2 + η(r), Ψ +Θ = −
2

n + 1
ξ(r)s,

where we have made use of (3.23). From (3.21), we conclude that F is of Douglas type.
_us, we obtain the following lemma.

Lemma 3.3 _eFinslerwarped productmetric F = ᾰϕ(u1 , v
1

ᾰ ) has vanishingDouglas
curvature if and only if (3.22) holds where Φ and Ψ are given in (3.15), and ξ = ξ(r)
and η = η(r) are diòerentiable functions.

Proof of_eorem 1.1 By a straightforward computation, one obtains

(3.24) 2(Φ − sΨ) =
2sωωrs − 2ωωr − sωrωs

2(2ωωss − ω2
s )

=
4ϕ3(sϕrs − ϕr)

4ϕ3ϕss
= −

(ϕ − sϕs)r

ϕss
,

where we used (3.15) and (3.16). Combining (3.24) with Lemma 3.3, we conclude the
proof.

Remark Note that a spherically symmetric metric F = ∣y∣ϕ(∣x∣, ⟨x ,y⟩
∣y∣ ) is a Finsler

warped product metric. In fact,

F = ∣y∣ϕ(r, s̃) = ᾰ+ϕ̃(r, s),

where

s̃ =
rs

√
r2 + s2

=
⟨x , y⟩
∣y∣

, ϕ̃(r, s) =
√

r2 + s2ϕ(r, s̃),

where ᾰ+ is the standard Riemannian metric on the unit sphere Sn−1, and we have
made use of (2.1) and (2.2). It is easy to verify (cf. [10,_eorem 1.1]) that ϕ satisûes the
Douglas equations

(3.25) [(r2 − s̃2)(2ξ + ηs̃2) − 1] rϕ s̃ s̃ − s̃ϕrs̃ + ϕr + r(2ξ + ηs̃2)(ϕ − s̃ϕ s̃) = 0

if and only if ϕ satisûes (1.1), where either

g ∶= r(1 − 2r2ξ) and f ∶=
1
r
( 1 +

g
r
− r4η) ,

or

η ∶= 1 − f r +
g
r

and ξ ∶=
1

2r2
( 1 −

g
r
) .

It follows that (1.1) is equivalent to (3.25) for a spherically symmetric metric.

4 Solutions of (1.1)

Let f (r) and g(r) be functions such that the integrals

(4.1) ∫ 2 f (r)dr, ∫ 2g(r)e−∫ 2 f (r)drdr

are well deûned for r ∈ I ⊂ R.
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Proof of_eorem 1.2 Equation (1.1) is equivalent to

(4.2) [ f (r)s2 + g(r)]λs + sλr = 0,

where

(4.3) λ ∶= ϕ − sϕs .

_e characteristic equation of the quasi-linear PDE (4.2) is

(4.4)
dr
s
=

ds
f (r)s2 + g(r)

=
dλ
0

.

It follows that φ(r, s) = c1 and λ = c2 are independent integrals of (4.4), where φ is
given in (1.3). Hence, the solution of (4.2) is λ = ζ(φ(r, s)), where ζ is any continu-
ously diòerentiable function. Hence,

(4.5) ϕ − sϕs = ζ(φ(r, s)) ,

It follows that every solution of (1.1) satisûes (4.5).
Conversely, suppose that (4.5) holds. _en we obtain (4.2) and (4.3). _us, ϕ sat-

isûes (1.1). We conclude that (4.5) and (1.1) are equivalent.
Now we consider s ∈ [s0 ,∞) where s0 > 0. Put

(4.6) ϕ = sψ.

It follows that ϕs = ψ + sψs . Together with (4.5), this yields

ζ(φ(r, s)) = ϕ − sϕs = −s2ψs .

_us,
ψ = h(r) − ∫

s

s0
σ−2ζ(φ(r, σ))dσ .

Plugging this into (4.6) yields (1.2).
Similarly, we can obtain the general solution of (1.1) for s < 0.
Diòerentiating (4.5) with respect to s, we obtain 2se−∫ 2 f drζ′ = −sϕss . It follows

that ϕss = −2e−∫ 2 f drζ′ . Combining this with (4.5) and Proposition 5.1 (see Section
5), we get that F is a Finsler metric if and only if (1.4) holds.

5 New Families of Douglas Metrics

In this section, we obtain several new families ofwarped productmetrics as corollaries
of _eorem 1.1.

Proposition 5.1 _e warped product metric F = ᾰϕ(u1 , v
1

ᾰ ) is strongly convex if and
only if

(5.1) ϕ − sϕs > 0, ϕss > 0.

Proof Using (3.16), we get

2ω − sωs = 2ϕ(ϕ − sϕs), 2ωωss − ω2
s = 4ϕ3ϕss .

Taking these together with [4, Proposition 4.1], we obtain that F is strongly convex if
and only if the positive function ϕ satisûes (5.1).
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Now let us make an observation on the above results. Assume that

F(u, v) = ᾰ(ŭ, v̆)ϕ(u1 ,
v1

ᾰ(ŭ, v̆)
)

is a Finsler warped product metric with vanishing Douglas curvature. We replace its
ᾰ by another Riemannian metric α̂. _en Proposition 5.1 and_eorem 1.1 imply that

F̂(u, v) = α̂(ŭ, v̆)ϕ(u1 ,
v1

α̂(ŭ, v̆)
)

is a strongly convex metric with vanishing Douglas curvature.

Corollary 5.2 Suppose that F(u, v) = ᾰ(ŭ, v̆)ϕ(u1 , v 1

ᾰ(ŭ ,v̆)) is a Finsler warped prod-
uct metric on I × M̌ and F has vanishing Douglas curvature. Given any Riemannian
metric α̂ on M̆, the new warped product Finsler metric F̂(u, v) = α̂(ŭ, v̆)ϕ(u1 , v 1

α̂(ŭ ,v̆))

has vanishing Douglas curvature.

Example 5.3 For any diòerentiable function h of r ∶= ∣x∣ such that

ϕ(r, s̃) ∶= h(r)s̃ + Ae−
r4
4 > 0,

where A > 0, we have the following Douglas spherically symmetric metric [10]

F(x , y) = ⟨x , y⟩h(∣x∣) + A∣y∣e−
∣x∣4
4 .

Applying Lemma 2.2, its Finsler warped product form is

F = ᾰ+
√

r2 + s2[h(r)
rs

√
r2 + s2

+ Ae−
r4
4 ] = ᾰ+[ rh(r)s + Ae−

r4
4
√

r2 + s2] ,

where ᾰ+ is the standard Riemannian metric on Sn−1. Let α̂ be a Riemannian metric
on Sn−1. _en

F̂ = α̂[ rh(r)ŝ + Ae−
r4
4
√

r2 + ŝ2]

is a new warped product Finsler metric with vanishing Douglas curvature, where

(5.2) ŝ ∶=
v1

α̂(ŭ, v̆)
.

Example 5.4 Let ϕ(r, s̃) be a function deûned by

ϕ(r, s̃) ∶= s̃h(r) +
[1 + (1 + µ)r2][1 + µ(r2 − s̃2)] + s̃2

√
1 + µ(r2 − s̃2)(1 + µr2)2

,

where µ ∈ R, and h(r) is any function such that ϕ(r, s̃) is positive. _en the Finsler
metric on Bn(ν) ⊂ Rn given by

F(x , y) ∶= ∣y∣ϕ( ∣x∣,
⟨x , y⟩
∣y∣

) ,

where ν = 1
√
−µ if µ < 0, is a spherically symmetric Douglas metric [10]. By using

Lemma 2.2, its Finsler warped product form is

F = ᾰ+{ rh(r)s +
[1 + (1 + µ)r2][r2 + s2 + µr4] + r2s2

√
r2 + s2 + µr4(1 + µr2)2

} .
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Let α̂ be a Riemannian metric on Sn−1. _en

F̂ = α̂{ rh(r)ŝ +
[1 + (1 + µ)r2][r2 + ŝ2 + µr4] + r2 ŝ2

√
r2 + ŝ2 + µr4(1 + µr2)2

} .

is a new warped product Douglas metric, where ŝ is given in (5.2).

Example 5.5 Let ϕ(r, s̃) be a function deûned by

ϕ(r, s̃) ∶= s̃h(r) +

√
ζεr2 + κs̃2 + ε
ζr2 + 1

,

where ζ , ε, κ are any constant real values such that (ζε + κ2) + ε > 0 and h(r) is any
function such that ϕ(r, s̃) is positive. _en the spherically symmetric Finsler metric
on Bn(ν) ⊂ Rn given by

F(x , y) = ∣y∣ϕ( ∣x∣,
⟨x , y⟩
∣y∣

) ,

where ν = 1
√

−ζ
if ζ < 0, is of Douglas type [10]. By Lemma 2.2, its Finsler warped

product form is

F = ᾰ+{ rh(r)s +

√
ε(ζr2 + 1)(r2 + s2) + κ2r2s2

1 + ζr2
} .

Replacing ᾰ+ by any Riemannianmetric α̂, one can get the newwarped product Dou-
glas metric

F = α̂{ rh(r)ŝ +

√
ε(ζr2 + 1)(r2 + ŝ2) + κ2r2 ŝ2

1 + ζr2
} ,

where ŝ is given in (5.2). In particular, when

h(r) ∶=
κ

1 + ζr2
, κ = ±1, ζ = −1, ε = 1,

we have

(5.3) F̂± = α̂

√
ŝ2 + r2(1 − r2) ± rŝ

1 − r2
,

where F̂± is the revised Funk’s metric [4].

Example 5.6 Let ϕ(r, s̃) be a function deûned by

ϕ(r, s̃) ∶= s̃h(r) +
κν

√
ν2 − r2 + s̃2

e cν
2 r2
2 (ν2 − r2)

,

where κ and ν are positive constants, c is a nonzero constant, and h(r) is any function
such that ϕ is positive. It follows that

F(x , y) = ∣y∣ϕ( ∣x∣,
⟨x , y⟩
∣y∣

)

is a spherically symmetric Douglas metric [10]. Its Finsler warped product form is

F = ᾰ+{ rh(r)s +
κν

√
ν2s2 + r2(ν2 − r2)
ecν2 r2(ν2 − r2)

} .
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Replacing ᾰ+ by any Riemannian metric α̂, one can get the following new warped
product Douglas metric

F = α̂{ rh(r)ŝ +
κν

√
ν2 ŝ2 + r2(ν2 − r2)
ecν2 r2(ν2 − r2)

} ,

where ŝ is given in (5.2).

A Appendix

Weestablish the Lemmas required in the proofs of Lemma 3.1 andCorollary 3.2. From
now M will always denote a product manifold I × M̌, and F will denote a Finsler
warped product metric. Let l̆ i = v i

ᾰ , l̆ i ∶= ᾰv i , h̆ i j ∶= ᾰ( l̆ i)v j , h̆ i
j ∶= ᾰ( l̆ i)v j . _e

following lemmas can be obtained by straightforward calculations.

Lemma A.1 For the geodesic coeõcients GA of F, we have

G1
= Φᾰ2 , G i

= Ğ i
+Ψᾰ2 l̆ i ,

∂G1

∂v1 = Φs ᾰ,
∂Gk

∂v j =
∂Ğk

∂v j + (Ψ − sΨs)ᾰ l̆ j l̆ k + Ψᾰδk
j ,

where Φ and Ψ are given in (3.15).

Lemma A.2 Let P = P(r, s) be a function on a domain U ⊂ R2. _en

∂2

∂v1∂v1 (Pᾰ
2
) = Pss ,

∂2

∂v i∂v j (Pᾰ
2
) = (2P − 2sPs + s2Pss) l̆ i l̆ j + (2P − sPs)h̆ i j .

Lemma A.3 Let Q = Q(r, s) be a function on a domain U ⊂ R2. _en

∂2

∂v1∂v1 (Qᾰ
2 l̆ i) = Qss l̆ i ,

∂2

∂v j∂vk (Qᾰ
2 l̆ i) = (2Q − 2sQs + s2Qss) l̆ j l̆k l̆ i + (Q − sQs)(h̆ jk l̆ i + l̆ j h̆ i

k + l̆k h̆ i
j).
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