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Abstract

This is a study of formal power series under the binary operation of formal composition from
a group-theoretical point of view. Various "large" properties are derived.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 20 F 99.

The aim of this article is to study formal power series, under the binary operation
of formal substitution, from a group-theoretical point of view. This is prompted
by [7], and is in the spirit of [9], [10], rather than of [1], [2], [4], [5], [6], [8], where
both motivation and methodology come either from analysis or other areas of
algebra. It seems to me that such an approach is justified on two grounds. First
of all, ideas from group theory suggest new methods, and conversely, the groups
involved arise in such a natural way as to be worthy of study in their own right.
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Australian National University, the National University of Singapore, and the
University of Adelaide during the preparation of this article, and to record thanks
to colleagues at these institutions and elsewhere for many valuable suggestions.
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1. Definitions and notation

Given a commutative ring R with identity, let G(R) denote the set of all
formal power series

a = ^2akx
k eR[[x\), ao = 0,ai = l,

fc>0

under formal substitution: given /? € G{R), put aft — Z)fc>oa/t/?fc. We write
a = x + axn+ to denote that ak = 0 for 2 < k < n. When a — an ^ 0, it is
called the leading coefficient of a, l(a) = a, and then n is called the degree of a,
n = d(a). When a € R[x], we write deg(a) for its polynomial degree.

Now for each n € N, put Kn = {a € G(R)\d(a) > n}, and define a relation
on G{R) by

Kn,

t h a t is, a - /3 = x n + 1 7 for some 7 €

LEMMA 1. For each n e N,
(i) ~ n is an equivalence relation on G{R),
(ii) ~ n respects composition: if a ~ n a' and /? ~ n /?'', then a(l ~ n a'/?',
(iii) each ~n-class contains exactly one polynomial a e G(R) withdeg(a) < n.

The proof is straightforward and we omit it.
Define Gn(R) — G{R)/ ~n ; formal substitution in G(R) thus induces a binary

operation in each Gn(R), which may be thought of as composition of polynomials
modulo xn + 1, and we have natural homomorphisms

rn: G(R) - Gn(R), an: Gn+1(R) -f Gn(R)

such t h a t Tn+i<7n = rn for all n € R . We th ink of these as t runca t ing m a p s , and
note t h a t Ker r n , which is jus t t he pre- image of the ~ n - c l a s s containing x, is j u s t

PROPOSITION 1. (i) For each n € N, Gn(R) is a group.
(ii) G(R) is the inverse limit of the system {Gn,an: Gn+\ —> Gn\n € N}.
(iii) G(R) is a group.

The proof is again routine and we omit it, except to say that for the associative
law in Gn(R), use Lemma l(iii) and the fact that composition of polynomials is
associative (since R[[x]\ acts on R by substitution).
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2. Large properties

This section concerns four properties G(R) shares with the free group F? of
rank 2, under various restrictions on R.

PROPOSITION 2. If R+ is torsionfree, then so is G(R).

PROOF. If a, P € G(R) \ {x} then a direct calculation shows that

(1) d(a)=d(0)=>l{al3) = l(a)+l(0),

where we interpret l(x) — 0. It follows that

(2) l{an) = nl{a), n € Z, a e G{R),

from which the assertion is obvious.

LEMMA 2. Ifa = x + axm+, /? = x + bxn+, then

(3) Q-1/?"1a/3 = x + a 6 ( m - n ) x m + " - 1 + .

PROOF. Put

a = x + axm + xm+1f{x), p = x + bxn + xn+1g(x),

where f(x),g(x) € R[[x]] and work in Gm+n-i(R), that is, modulo x m + n :

(4) ap = j3 + a(x + bxn + xn+1g{x))m + (x + bxn + xn+1g{x))m+1 f(0)

= p + axm+ mabx"1^-1 + xm+1f(x)

= a + p + mabxm+n-1 - x.

Hence, by (2) with n = —1,

a-1/?"1 = a"1 + p-1 + mabx"1^-1 - x,

and so

a^P^a = x + p~la + mafta"1"1"""1 - a

= x + (p-1 +a- nabx™*"'1 - x) + ma6xm +"-1 - a, by (4),

= /r1+a6(m-n)xm + n-1.

Finally,

o.-xp-xaP = x + ab(m - n)/?"1*"-1 = x + ab{m - n)xm+n-1.

PROPOSITION 3. G(R) is residually nilpotent.

PROOF. It follows at once from (3) that ^2{G(R)) = G{R)' C K3 (see Section
1), and by induction on n that ^n(G(R)) C Kn+\. Since HneN Kn = {x}, the
result follows.
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LEMMA 3 [1, PROPOSITION 2.1]. Let R be an integral domain of charac-
teristic zero. Given a = x + axm + eG{R), o ^ O , and b € R, there is at most
one 0 = x + bxm + eG(R) that commutes with a.

PROOF (J. S. WILSON). If 0' also commutes with a and satisfies d(0') = m
and 1(0') = b, then a commutes with 0'0~1. But by (1), d{0'0~1) > m, whereas
it follows from (3) that commuting elements of G(R) \ {x} have the same degree.
Thus, 0' = 0.

The next result was proved independently, using essentially the same method,
by W. D. Nichols.

PROPOSITION 4. Let R be a principal ideal domain of characteristic zero. If
a, 0 G G{R) commute, then a and 0 are powers of a common element. Commu-
tation is an equivalence relation on G(R) \ {x}.

PROOF. Assume that a0 = 0a, where a, 0 G G\{x}, so that (by (3) again),

a = x + axm+, 0 = x + bxm+, aft ^ 0.

Putting h = (a,b), the highest common factor, we have

h = ra + sb, a = ha', b — hb',

for some r, s, a', b' € R. Now define

1 = a
r0s = x + hxm+,

by (1) and (2). Now a commutes with 7°' = x + axm+, whence a — 7°', by
Lemma 3. Similarly, 0 = 76'.

Now it follows from (2) and Lemma 3 that nth roots, when they exist, are
unique in G{R). It follows that if ak0l = 0lak for k, I G Z \ {0}, then a0 = 0a
and a, 0 are again powers of a common 7. The standard argument then proves
transitivity of commutation.

PROPOSITION 5. // 1 G R has infinite order in R+, then G(R) contains a
copy of F2.

PROOF (J. S. WILSON). It is shown in [9] that the functions

A: z (-• z + 1, / C Z H Z 3

generate a copy of F2 in Sym(R), and thus in Sym(R*), where R* = R U {00}.
Then the same is true for their conjugates by £: z i-» 1/z, namely
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By the Nielsen-Schreier theorem, the same is t rue of

X',fi-1X'fi = X":z^z{l + z3)-^3,

and finally of the conjugates of these by rj: z H-> 32,

rf-'X'rt: z ~ jf^, i ^ A V * H : ( 1 + (SZ) 3 ) " 1 / 3 ,

and both of these lie in G(Z) C G(R).

EXAMPLE. The main result of [8] suggests that the polynomials in G(Z) are
close to forming a free monoid. However, it is not hard to find polynomials a-i,
<*3> /?3, 02 £ G(Z) that are irreducible with respect to composition and satisfy
01-203 = 03/3-2. For example, take

fa = x + 32z2 +256x3,

a3 = x + 8x2 1 6 3 0

3. The lower central series

From the proof of Proposition 3, we already know that iv(G(R)) C Kn+i for
all n > 2 and all R. In this section, we obtain a partial converse in the case when
R is the field Zp of p elements for any prime p > 5, and (following a suggestion
of J. S. Wilson) the full converse where R is the field Q of rational numbers.

PROPOSITION 6. Letp be a prime and n a positive integer. Then the class
ofGn(Zp) is equal to

n — 2 — , when p > 3
L P J

and to
\-\ , when p = 2.

This is a result of I. O. York; we hope that a proof will appear in a future
paper.

PROPOSITION 17. For all n>2, 7n(G(Q)) = Kn+i.

PROOF. This follows from the fact that qn{G{Q)) C Kn+i, together with the
claim:

(5) KnC[a,Kn-!], n>3,
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where a — x + x2, by a simple induction on n. To prove (5), fix n > 3 and
7 € Kn; then we have to solve the equation

(6) a/? = /?cn

for fie Kn-i. Let

7 = Y^ ck*k = x + cn + 1xn + 1+,
k>0

r > 0

so that bn = cn+i/(2 - n), from (3). We obtain an equation for bk-i in terms
of known Cj and earlier bi by comparing coefficients of xk in (6) for k > n.

Now the left-hand side of (6) is

( )
k>0 fc>0 \t=0 /

in which the coefficient of xk is equal to

(7) 6fc + 26fc_1 + / ( 6 2 , . . . A _ 2 ) ,

for k > n > 3, where / is some polynomial. On the other hand, the right-hand
side is

f ) \
s>0 \ «=0 / J r>0 \s>0

where ds = cs + J2i=o c«cs-«> a n ( i t n e coefficient of xfc is the same as that in

namely,

(8) h + 6fc_!(fc - l)rf2 + g(b2,... ,6fc-2, d2, • • .,<**)•

Comparing (7) and (8), bk cancels, and as d2 = c2 + c\ = 1, there remains an
expression for (k — 3)bk-i in terms of known d, and earlier bi, which recursively
yields the bk-i (k > n > 3).

REMARK. This proof shows that the /? so determined is unique, and it follows
that the maps

K2 - Kn+1 = 7n(G(Q)) ]
6 ->[6,a,...,a] > , n > 2,

are all bijective.
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