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DADE'S CONJECTURE FOR CHEVALLEY GROUPS G2(q) 
IN NON-DEFINING CHARACTERISTICS 

JIANBEIAN 

ABSTRACT. This paper is part of a program to study the conjecture of E. C. Dade on 
counting characters in blocks for several finite groups of Lie type. The local structures 
of certain radical chains of Chevalley groups of type Gi are given and the ordinary con­
jecture is confirmed for the groups when the characteristic of the modular representation 
is distinct from the defining characteristic of the groups. 

0. Introduction. Let G be a finite group, r a prime and B an r-block of G. In his 
paper [10], Dade conjectured that the number of ordinary irreducible characters of B 
with a fixed height can be expressed as an alternating sum of the numbers of ordinary 
irreducible characters of related heights in related blocks B' of certain local r-subgroups 
of G. It is mentioned on page 187 of [10] that the final form of the conjecture can be 
confirmed by verifying it for all non-abelian finite simple groups. In this paper, we prove 
the ordinary conjecture for the Chevalley groups of type G2 when r is distinct from the 
characteristic of the group. 

In Section 1 we fix some notation and state the ordinary conjecture. In Section 2 
we first simplify the family of radical r-chains %SG) to get a G-invariant subfamily 
^°(G), and then determine the local structures of radical r-chains in ^°(G), where G is 
a Chevalley group of type G2. In Section 3 and 4 we prove Dade's ordinary conjecture 
for G when r is odd and even, respectively. It turns out that the Alperin-McKay and the 
Brauer height conjectures imply the ordinary conjecture of Dade when an r-block of G 
has a non-cyclic abelian defect group. 

1. The ordinary conjecture of Dade. Throughout this paper we shall follow the 
notation of Dade [10]. Let Irr(G) be the set of all irreducible ordinary characters of a 
finite group G and Blk(G) the set of all r-blocks of G. Let C be an r-subgroup chain of 
G, 

(1.1) C:Po<Px<-'<Pn. 

Then n = \C\ is called the length of C, C(Q = CG(Q = CG(Pn) and 

(1.2) N(Q = NG(Q = NG(P0)DNG(Pl)n- • • nNG(Pn) 
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are called centralizer and normalizer of C in G, 

(1.3) Q : P 0 < P i < • • • <P*andC*:l <P*+i < ••• <P„ , 0<k<n-\ 

are called &-*/* z'mfta/ and final r-subchains of C, respectively. Note that the definition of 
C* does not agree with that of Dade [10, p. 191]. Thus NG(Q < NG(Cn-X) < < 
NG(C0) = N(P0) and NG(Ck+l) = NNG{Ck)(Pk+\) for all A: > 0. In addition, C is called a 
radical r-chain if it satisfies the following two conditions: 

(a) P0 = Or(G) and (b) Pk = Or(NG(Ck)) 
for all 1 < k < n. Thus P*+i is a radical subgroup of A^(Q), where 0 < k < n — 1 and 
an r-subgroup R of G is racfca/ if R = Or(NG(R)). Denote by ^ = f^(G) the set of all 
radical r-chains of G. 

Given C E %{G)9 B E Blk(G) and rf a non-negative integer, let Blk(7V(Q | B) = 
[b E B1k(N(Q) : bG = B) (in Brauer sense) and let k(N(Q9B9d) be the number of 
characters of the set 

(1.4) Jn(N(Q,B9d) = {V> E Irr(7V(C)) : B(i)f = B, and d(V0 = </}, 

where #(V0 is the block of N(C) containing -0 and d(V0 is the r-defect of xjj (see [10], (5.5) 
for the definition). Then the following is Dade's ordinary conjecture, [10, Conjecture 
6.3]. 

DADE'S CONJECTURE. lfOr(G) = 1 and B is an r-block of a finite group G with 
defect d(B) > 0, and ifd is a non-negative integer, then 

(1.5) £ (-lf\k(N(Q9B9d)=09 
Celt/a 

where %^jG is a set of representatives for the G-orbits in %^. 

Given A G Z and B E Blk(G), let Irr(Z?) be the set of irreducible ordinary characters 
of B9 k(B) = | Irr(5)| and let k(B, h) be the characters of the set 

(1.6) Irr(2?,/0 = {X E Irr(£) : h(X) = h}9 

where the height h(\) of % E Irr(i?) is defined on page 151 of [12]. 

2. Radical chains of Giiq). The notation and terminology of Section 1 are contin­
ued in this section. Let F^ be the field of q elements of characteristic/? distinct from r, and 
G the Chevalley group G2(q). Throughout this paper we shall also follow the notation of 
[2] and [18]. In particular, if 77 = ± , then 2^+27 denotes the extraspecial 2-group of order 
21+27 and type 77, and if r is odd, then r1^21 denotes the extraspecial r-group of order r1+27 

with exponent r or r2 according as 77 = + or —. Given an integer n > 0, denote by D2n a 
dihedral group of order 2n9 by £> an elementary abelian group of order r", and by Tn a 
cyclic group of order n. 

For a sign 6 = ± , let T&, l\, and 7| be maximal tori of G such that T$ ~ ~Lq-b x Zqs, 
7 | ~ Z^2+<5^+1,and7| ~ Z^2_1.Here, for simplicity, we always identify q—8 with q—8l. 
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Denote by K& a maximal subgroup of G which contains a subgroup L$ ~ SL(3,<5<7) of 
index 2, where SL(3,— q) = SU(3,#). Thus K5 is L$ extended by an involutory outer 
automorphism (see [5, p. 254]). Moreover, T& and 7f for / = 2, 3 can be embedded 
as maximal tori of K6 (see (15.2) of [5]) and NG(T6)/T5 ~ Dn, NG(P2)lT\ ~ Z6, 
NG{T\)IA - z2 x Z2 (see Table I of [18]). In addition, if q is odd, then by Theo­
rem A of [18] and Theorem 3 (2) of [5], G has only one conjugacy class of involutions 
z, and CG(Z) ~ SO+(4,^). By Lemma 2.4 of [18], G has only one class of subgroups isg, 
and CG(ES) = Es, NG(ES)/ES ~ GL(3,2). 

We may always suppose a block B G Blk(G) has a non-cyclic group, since otherwise 
Dade's conjecture for B follows by Theorem 9.1 of[10]. Sor|(#2— 1) (see p. 25 of [2]). 
Let r° or r*+1 be the exact power of r dividing q2 — 1 according as r is odd or even, and 
let the sign e be chosen such that r^lq — e. 

Let <D(G, r) be a set of representatives for conjugacy G-classes of radical r-subgroups 
of G and denote by //* a non-conjugate subgroup of G which is isomorphic to a subgroup 
H of G. Suppose r > 3, then by pages 358-159 of [15] and Table II of [18], G has two 
classes of subgroups isomorphic to GL(2,e#) with representatives L and L*. We may 
suppose! < Ke, so that Z(Le) = Q{ (o3(Z(L))) when r = 3. Let Z^ = Or(Z(L)) and 

Z^ = 0r(Z(Z,*)). The elements of 0(G, r) can be obtained from (ID), (IE) and (1G) of 
[2] and their proofs. Suppose r > 5. Then we may take 

Q>(G9r) = {l9Zr.9Z%9Or(Te)}. 

Suppose r = 3. Then we may take 

0(G,3) = 

{l,Z(Z,e) = Z3,Z*,03(re),£ = £} if a = 1 and3 ^ 4 - e, 
{l,Z(Le) = ^3,Z^,£ = S} i f a = l and3 = tf-e, 
{hZ(Le\l3a,Z*3a,03(Te),E,E*,S} if a >2and3a^q-e, 

{ {l9Z(L€)9Zy9Z^9E9E*9S} if a >2md3a = q-e9 

where E ~ E* ~ 3j+2 and S G Syl3(G) is a Sylow 3-subgroup. 
We may suppose Z^, Z^ < Or(re). Define radical r-chains C(l) and C(2) as follows: 

(l<Z,«<Or(Te) i f r > 5 , 
(2.1) l j 1 l < % ) ifr = 3, 

C(2): K Z£ < Or(re) i f r > 3 . 

If C G ^(G) is given by (1.1) with \C\ > 2, then we may suppose Pi G 0(G,r) and 
P2 G 0(Afc(Pi),r). Suppose CG(Px) ~ GL(2,e#), so that by (lC)of [2],P2 is radical in 
CG(PI) as r > 3. Thus we may take P2 = Or(Te). It follows that if r > 5, then we may 
take 

^(G)/G={C(1)0,C(1)1,C(2)1,C(1)1,C(1),C(2)} 

and set ^°(G) = !^(G). If r = 3, then let ^°(G) be a G-invariant subfamily of <XSG) 
such that 

(2.2) %°(G)/G= {C(1)0,C(1),C(2)1,C(2)}. 
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(2A). Let G = (?2(<7). In the notation above, suppose r > 3. IfB G Blk(G) with 
&(B) > 0 and del with d>0, then 

Y, (-l) | c |k(tf(C),B,«/)= £ (-l)Mk(N(Q,B,d). 
C£%IG)IG CeHl0(G)/G 

PROOF. Suppose r = 3 and C G ^.(G) is given by (1.1) with \C\ > 1. We may 
suppose Pi G <t>(G,3) and Pi < Le. Let <I>+(G,3) be the subset of <D(G,3) of non-
abelian radical 3-subgroups. If Pi G <J>+(G,3), then Z(PX) = Z(Lt). If Pi = Z3«, then 
Q,(P,) = Z(I£). If Pi = 03(re), then NG[P\) = NG(Tt) = NK((Tt) (see (IE) (b) of 
[2]). In all cases ATG(Pi) < NG(Z(Lej) = Kt. Given R G 0>+(G, 3) U {Z3», G3(7;)} with 
|/?| > 3, define G-invariant subfamilies M+(G) and fW°(G) of ^.(G) such that 

fW+(*)/G = {C G ^ ( G ) / G : Px = * } , and 

M°(R)/G = {C G £ ( G ) / C : Pi = Z(Le),P2 = R}. 

If C G !M"+(fl) is given by (1.1), then 

g(C): 1 < Z(L()< R = P, < P2 < . . . < P„ 

is an element of fW°(fl) and N(C') = N(g(C')). Thus 

(2.4) k(7V(C),5,^) = k(N(g(C')),B,d) 

and the contributions of C and g(C") in the sum (1.5) is zero. It is clear that g induces a 
bijection between !M+(R) and ^f°(R). We may suppose 

C E X(G) = ^ (G) \ U(5tf°(*) U 3lT(*)), 

where i? runs over the set 3>+(G, 3) U {Z3*, 03(re)} with \R\>3. So Pi E {Z(Le), T%a}. 
Suppose |C| > 2. If Pi = Z(L€), then by (1C) of [2], we may take P2 E <£(Le,3), 

so that P2 E 0(G,3)\{l,Z(Le),Z^} and C E fW°(P2). Contradiction. If Px = T\a9 

then as shown before (2A), we may take P2 = #3(T€) and C = C(2). It follows that 
X(G) = ^°(G), and this proves (2A). 

Suppose r = 2, so that # is odd and 0(G, 2) is given in Section 2 of [2]. A 2-group 
R is called of symplectic type if R is a central product EP over Z(£) = Qi(Z(P)) of an 
extraspecial 2-group £ and a 2-group P such that P is either cyclic or isomorphic to a 
semidihedral group SD2p, a dihedral group D2p or a generalized quaternion group Q2p of 
order 2^, where /3 > 4. Given a sign 5, suppose Tb is a torus of L5 = SL(3, fiq) and of 
CG(Z) = SO+(4, q). As shown in the proof of (3B) of [2], we may suppose 

(2.5) N(T8) = NG(T6) = (T59p9a9r)9 

NLS(T6) = (T6,(T,T) tmdNS0+{4q)(T5) = {T89p9r)9 where |p| = |r| = 2, |cr| = 3, p E 
Z(N(Ts)/Ts)9 and rar = a~l. In addition, (P9CT9T) = D\29 p acts on Ts by fp = t~l for 
all / E Tb. 
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If 2a ^ q - e, then 02(Te) ^ Te and 02{T-e) ^ r_£. From Section 2 of [2], we may 
take 

o(G,2) = {i,z2,z2a,z2fl+1^8,o2(r_exo2(re),z2wz2,(o2(rc),p),^,s}, 

where Z2 = 02(CG(z)) = 02(SO\4,q))9Z2a = 02(GL(2,eqj), Z2,+1 = 02{l\)9 EP 
is a non-abelian 2-groups of symplectic type, and S G Syl2(G). In addition, G has two 
classesofZ2a,Z2a+i,Z2aff2, and EP except when EP = 2l

+
+4

9q = ±3 (mod 8),and£jP = 
2i+2Z2a, in which cases G has one class of EP. If 2a = q — e and # ^ 3, then 02(7e) = Te 

and 02(r_e) ^ 7Le, 02(re) is not a radical 2-subgroup of G since 02(NG(Te)/ Te) ~ Z2, 
so that by Section 2 of [2], we may take 

o(G,2) = {i,z2,z2a,z2a+1,^8,o2(r_£),(o2(r£),p),£P,5}, 

and similarly, if q = 3, then Z2a+i, 02(Te) and 02(T-e) are non-radical 2-subgroups in G, 
and so we may take 

0>(G,2) = {l9Z2,Z2.9Es,(02(Te)9p)9EP9S}9 

where the radical 2-subgroups are defined as above. 

We define chains C(i) for 1 <i<4 as follows. 

C(l): 1 < Z2 < 02(r_£), 

f l < Z 2 < 0 2 ( 7 e ) i f 2 « ^ - e , 

(2.6) W' \ 1 < (<h(Te)9 p)<Sf if2a=q- e, 

C(3): K Es < 2|+4, 
C(4):l <ES<W<S", 

where 2*+4 < Afc(£8), W = (p,Q2(02(Te))) < NG(Es) containing ES = 
(p,Q1(02(re))), W/Es ~ Z2 x Z2, S" G Syl2(WG(£8)) containing JF, and S' 
G Syl2(iVG(rc)). In the following we are going to show that each C(J) e %SG) except 
wheny = 1 and q = 3, in which case C{\)\ C(l) £ ^(G). Let ^°(G) be a G-invariant 
subfamily of %iG) such that ifq^3, then 

(2.7) f^°(G)/G = {C(1)0,C(1)1,C(1)1,C(1),C1(2),C(2),C(3)1,C(3),C(4)2,C(4)}, 

where Cx{2) = C(2)1 or C(2)i according to whether 2* ^ <? - e or 2a = # - e; if # = 3, 
then 

(2.8) ^°(G)/G = {C(1)0,C(1)1,C(2)1,C(2),C(3)1,C(3),C(4)2,C(4)}. 

We have the following proposition. 
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(2B). IfB is a 2-block ofG = G2(q) with d(B) > 0 and ifd G Z with d>0, then 

£ (-lpk(NG(Q,B,d)= £ (-lf]HNG(Q,B,d). 
Ce%SG)/G Ce$J>(G)/G 

PROOF. The proof of (2B) is similar to that of (2 A). Suppose C G ̂ (G) is given by 
(1.1) with \C\ > 1 andPj G <D(G,2). Let 7V(Q = 7VG(Q and C(Q = CG(Q. 

(1) Suppose Pi = Z2 and |C| > 2, so that we may take P2 G 0>(SO+(4, #), 2). As 
shown in the proof of (2B) and (2C) of [2], we may suppose P2 G 0(G, 2) and both E% 
and (02(Te)9p) are non-radical 2-subgroups of SO+(4, #). Let 

Q = {i, z2, o2(r_e),£8, o2(re), (o2(Te)9 P)} c o(G, 2) 

and take 7? G <D(G, 2)\Q. Then Z2 = Qi (Z(R)). Replace Z(Le) by Z2 in (2.3). Then (2.4) 
holds and we may suppose 

C${){M+{R)UM\RJ), 
R 

where R runs over the set 0(G, 2)\Q. Thus we may take Pi G Q and if Pi = Z2 with 
\C\ > 2, then we may suppose P2 G {02(7

T_e), 02(Te)}. In particular, if q = 3 and 
Pi = Z2, then |C| = 1, and if 2a = q-eandq^3, thenP2 = 02(T_e). 

(2) If Pi = 02(Te)9 then 2« ± <? - e, tf(/>0 = N(Te) = (Te,a,p,r) and (p9r) G 
Syl2(Di2). Thus we may take 

O(N(O2{T€))92) = {o2(re),(o2(re),p),z2^z2,(z2^z2)*,5/}, 

where Z2a } Z2 = (02(Te)9r)9 (Z2* i Z2)* = (G2(7e), ̂ r) and S' = (02(Te), p9r). Replace 
Z(Le) by 02(r6) and fl by (02(7;), p) in (2.3). Then (2.4) holds. Thus we may suppose 
Pi £ {Z2« X Z2,(Z2a I Z2)*,S'}. Moreover, we may suppose Pi and (02(Te)9p) are not 
conjugate in G. 

Suppose 2a = q - e. If Pi = (02(Te)9p)9 then 7V(Pi) = N(Te) and P2 = Sf G 
Syl2(N(Pi)). Thus C(2) and C(2)i are radical chains. 

(3) Suppose C G ̂ (G) such that 

C , : 1 < G 2 ( 7 ; ) < P 2 < . . < P W , 

where P2 G {Z2* J Z2, (Z2*) Z2)*,S'}. Define radical 2-chain 

g(C): 1 < Z2 < 02(Te) < P2 < • • • < Pn. 

Then7V(C;) = N(g(C')) sinceN(Te)nN(P2) < {Tt9p9r) < N(Z2). Thus (2.4) holds for C 

andg(C'). SinceNN(l2)(02(Tej) = (TC9p9r)9 it follows that the normalizer of (02(T€)9p) 

in NN(z2)(02(Te)) is a Sylow 2-subgroup (02(Te)9p,r) of N(Te)9 so that (02(Te)9p) is a 

non-radical subgroup of A/^(Z2)(02(re)). Thus we may take 

0{Nm2)(02(Te))92) = {02{Te\I_2a l Z2,(Z2a l Z2)*,S'}. 
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It follows that the remaining chains C G $t(G) such that Pi is conjugate to Z2 or 02(Te) 
and \P2\ ^ 4 have representatives, C(l)i, C(2) and Q2)1. 

(4) lfPx = £8,thenAr(£8)/£8 = GL(3,2)andwemaytake/y£8 G 0(GL(3,2),2). 
It follows by the Borel and Tits theorem, [8] that either P2/Es ~ Z 2 x Z 2 or P2 = S", In 
the formal case, P2/Es is the unipotent radical of a parabolic subgroup of GL(3,2), and 
NN{E%)(PI)IP2 — GL(2,2). So N(E%) has two non-conjugate subgroups K and W such 
that*:/£8 - FT/£8 ^ Z2 x Z2. We may suppose P2 G {K, W,S"}. 

In the notation of (2B) of [2] 2j+4 = (*i,jc2,X3,jt4) can be regarded as a subgroup of 
CG(Z) = SO+(4,#), where (x\9x2) ~ (JC3,JC4) ~ Z>8. Thus (z,jti,x3) ~ 2s8. Since G has 
exactly one class of subgroups £8, we may supposed = (z, JCI, JC3) and so 2|+4 < N(E%). 
The group induced by actions of elements of 2 j + 4 on E% is the unipotent radical of a 
parabolic subgroup of N{E%)/E%. So we may supposed = 2j+4. 

LetiV(re) = (r e ,p,a,r) , Q2(02(re)) = (w,w)andX= (p,w,w), where p ,a , r are 
given by (2.5). Then | u\ = \w\ = 4anda,TG N[C1\QC)). But Cl\(X) = ( p , w W ) ~ES, 
so we may identify Qi(X) withEs. Let# ' = (a,r,X). Then W < N(E*), Nf/X~ 53 and 
X/Q\(X) ~Z2x Z2. It follows from the actions of elements of N' on E% = Q\(X) that 
N'/Es is a parabolic subgroup of N(Es)/Es, so that X = 02(N

f) is a radical 2-subgroup 
of N(Eg). Since Z(X) = (w2, w2) has order 4, it follows thatX 9̂  /C and we may suppose 
W = X. If a ^ 2, then N* ^ A^(^) since 02(Tt) < N(W). If a = 2, then PF = (p, 02(Te)) 
and N' = N(W). 

Apply (2.4) to 

C: KES< 2|+4 < S" andg(C): 1 < Es < S". 

Then the remaining chains in ^ (G) with P\ ~ .Eg have representatives C(3), C(3)i, C(4) 
andC(4)2. 

(5) If Pi = 02(7_e), then q ± 3 and JV^) = N(T-e) = (r_c,<7,T,p), where a,r ,p 
are given as before. Thus we may supposeP2 G {2s8,Z)8,Z)g, 0 } , where E% = (P\,p), 
Ds = (Pur), Dl = {Pl9pr), and g = (£8,r) G Syl2(^(P0). Let 

C: 1 < 02(r_£) < Es and g(C): 1 < 02(7_e) < £8 < g. 

Since C(£8) = £8«Ar(C), it follows by Corollary V.3.11 of [12] that hr(b(Cj) = 

br(N(CJ), where b(C) is the principal block B0(N(C)) of N(C). Similarly, 

Irr(z>(g(C'))) = Irr(^(g(C /))) with b(g(C')) = B0(tf(g(C))). Now7V(g(C')) = fi 

and A^C") = (Q, a). By Clifford thaory, l r r (0 has 8 linear characters and 2 characters 

of degree 2, and Irr((g, cr)) has 4 linear characters, 2 characters of degree 2 and 4 of 

degree 3. Thus k(b(C'l h) = k(&(g(C)), /*) and by (5.7) of [10], 

k(tf(C),5,d) = k(N(g(C'j)9B,d), 

so that (2.4) holds and we may take P2 G {D8,£8, g } . Let 

C: 1 < 02(r_6) < P2 < • • • < Pn, and 

g(C): 1 < Z2 < 02(T-t) <P2<.<Pn. 
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Then g{C) G %iG) and Af(C') = N(g(Cfj) since N(T-e)nN(P2) < T_eQ < N(Z2). So 
(2.4) holds and a proof similar to that of (3) above shows that we may take 

<t>(%z2)(02(r_£)),2) = {02(T.e),D8,DlQ}. 

Thus the remaining radical chains C G ̂ (G) such that Pi is conjugate to Z2 or 02(T-e) 
and,P2 is not conjugate to C>2(Te) have representatives, C(l)i, C(l) and C(\)1. Thus (2B) 
follows. 

(2C). Let C G ^°(G), C(C) - CG(Q, and N(Q = Afc(Q. Sn/paw? r > 3 W 
|C| > 1. 7%e/i 

c C(0) N(Q Conditions 

0(1),: 1 < Z ^ GL(2,e9) (GL(2, eq),p) r>5 

QiyiKacn) r£ NG(Tt) r>5 
0(2)!: 1 <Zp, GL(2,e<7) (GU2,eq),p) r > 3 

C(l): 1 < Z,- < Or(r£) Tt (Te,P,r) r > 5 
C(2): 1 < Zp, < Or(Tc) Tt (Te,P,T) r>3 

0(1): 1 < Z(4) u Kt r = 3 

where p, a, r are given by (2.5). 

PROOF. The proof is given either by that of (2 A) or by Section 1 of [2]. 

(2D). Let C G ^°(G), C(Q = CG(C), and N(C) = iVG(Q. Suppose r = 2 and 
\C\ > \.If2a^q-e,then 

c C(Q N(Q/C(QPlcl 

0(1),: 1 < Z 2 S0+(4,q) 1 
C(\)xA<02(T.t) (T-*,p) GL(2,2) 
C(2)':\<02(Tt) Tt Dn 

C ( 3 ) , : l < £ 8 Es GL(3,2) 
0(1): 1 < Z2 < 02(r_e) {T^P) z 2 
0(2): 1 < Z2 < 02(r£) Tt Z2 x Z2 

0(3): 1 < Es < 2[+4 Z(2|+4) GL(2,2) 
C(4)2:1< Es < W Z{W) GL(2,2) 

0(4): 1 < £8 < ff < 5" Z(S") 1 

where p,a, rare given by (2.5), Es = (p,Q,(02(r ())) , W= (p,Q.2(02(T())} < N(Es) 

with NN(Es)(W) = (a,r, W), andS" G Syl2(iV(£8)) containing W. If2a = q - t, then 

0(2),: 1 < (02(Te),p) andC{2): 1 < {02{T€),p) < S', where S' G S>y\2{N(Tt)). More­

over, C(C(2),) = Q, (02(Te)), N(C(2)i) = N(Te), C(C(2)) = Z(5"), andN(C{2)) = S'. 

PROOF. The proof is given either by that of (2B) or by Section 2 of [2]. 
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3. The conjecture for odd primes. The notation and terminology of Sections 1 
and 2 are continued in this section. We shall identify a dual group of G = Gi{q) with G. 
Let £(G,(s)) be the set of the irreducible constituents of Deligne-Lusztig generalized 
characters associated with the conjugacy class (s) of a semisimple element s E G, and 
let 

<Zr(G,(s))=U'E(G,(su)), 
u 

where s E G^ is semisimple and u runs over all the r-elements of CG{S). Then %-^G, (s)) 
is a union of r-blocks. 

Let Blk°(G, r) be the set of r-blocks of G with non-cyclic defect groups. In the rest of 
this section we suppose r > 3. By [15] and [16], 

(3.1) Blk°(G,r) = {BuB2,B3,Ba,Bb,BXa}, 

where B\ = Bo(G), and a = 1 or 2 according as e = + or —. In addition, if q is even, then 
there is no blockB2. If gcd(#, 3) = 3, then there is no blockB$. Supposed C.%.{G, (S)) 
for some semisimple r'-element s of G. Then CG(S) is given by (3.4) of [2]. Moreover, 
suppose r = 3, then by Tables I and II of [16], 

(3.2) k(Buh) 

9 ifh = 0, 
( 3 a - l ) + ^ ( 3 * - 3 ) ( 3 a + 9) ifa^ land/*= 1, 
3 ifa^ landh = 2a- 1, 
5 if a — 1 and h = 1, 
0 otherwise. 

(3A). Let R = T^orRe {Z^, Z^ } according asr = 3orr>5.SetH = NG(R). 
Then Alperin-McKay conjecture holdsfor each blockB E B\k° (H, r) andk(B) = k(B,0). 

PROOF. By (2C), H = (GL(2, eq\ p) for some p E G. Let D be a defect group 
of 5, AT = #//(£>) and b E Blk(^ | B). Then AT = (re,p,T) for some r E GL(2,e?) 
and D E Sylr(//). It follows by (8B) of [13] and Clifford theory that k(B) = k(B,0) 
and k(b, 0) = k(b). The equation k(B) = k(&) is essentially a consequence of Brauer's 
permutation lemma and (2H) of [13] (cf. the proof of (3G) of [1]). Thus (3 A) holds. 

(3B). Let G — G2O7) and let r be a prime such that gcd(r,g) = 1. If r > 3, then 
Dade s conjecture holdsfor G. 

PROOF. We may supposed E Blk°(G,r). Let C = C(2)i and C = C(2). In the 
notation of (3A) N(Q = H and N(C) = ^ . By Brauer's First and Third Main The­
orems, B\k(N(Q I B) = {b(Q} and b(Q has a defect group D = Or(Te). Again by 
Brauer's First Main Theorem, B\k(N(C) | B) = {b(C)} and b(Cf^ = 6(Q. By 
(3A), k(6(Q, A) = k(6(C), h) for all A E Z and by (5.7) of [10], 

(3.3) k(N(Q,B,d) = k(N(C'),B,d) 

for non-negative integers d. If r > 5, then let C = C(l)i and C = C(l). The same proof 
as above shows that (3.3) holds. 
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Let C = C(l) or C(l)1 according as r = 3 or r > 5. In the former case N(Q = K€9 

and in the latter case N(C) = N(Te). It suffices to show that 

(3.4) k(G9B9d) = k(N(Q9B9d)9 

ford e l with d > 0. A proof similar to above shows that Blk(N(Q | B) = {b(Q}. 
If r > 5, then (3.4) follows by (1 A) of [3]. Suppose r = 3 and B is a non-principal 
block. Then B has a defect group D = Or{Te). By (1A) of [3], k(B) = k(B90) = 
k(bN) = k(bN90)9 where bN G Blk(iV(£>) | 5) . Since N(D) = NKe(D)9 it follows that 
bN G B\k(N(D) | b(Q). It suffices to show that 

(3.5) k(bN) = k(b(C))=k(b(C)90). 

If g is an odd power of 2, then Ke can be regarded as a maximal subgroup of the Ree 
group 2F4(q) by Main Theorem (3) of [20]. In this case and moreover, in the case r\q + 1, 
(3.5) follows by the proof of (3 A) (2) of [4]. If 3\q - 1, then replace SU(3, q) by SL(3, q), 
7g by T€9 and some obvious modifications in the proof of (3A) (2) of [4], so that (3.5) 
still holds. 

Finally, suppose r = 3 and B = Bx. Then b(Q = B0(Ke). If 3\q + 1, then (3.4) 
follows by (3.2) and [4], (3.6). If 3\q — 1, then (3.4) follows by a proof similar to that of 
(3.6) of [4] with U(3, q2) replaced by GL(3, q)9 SU(3, q2) by SL(3, q)9 and some obvious 
modifications. 

4. The conjecture for the even prime. The notation and terminology of Sections 1 
and 2 are continued in this section. Suppose r = 2. By [17], 

Blk (G,2) = {B\9Bi9Bia9B\b,B2a,B2b,Bxl,Bx2} 

where Bx = #0(G) and if gcd(#, 3) = 3, there is no block B3. Suppose B G Blk°(G, 2) 
such that B C ^ ( G , (S)) for some semisimple 2/-element s of G, so that CG(S) is given 
by (3.9) of [2]. Let r/ = ± such that <? = 77 (mod 3). 

Given 5 G Blk(G), a radical chain C is called a 5-cAaw if Blk(iV(Q | B) ^ 0. If 
5 G Blk°(G, 2) has a defect group D9 then by (3D) of [2], D is either abelian or D G 
{5Z)2a+2, Z2* I Z2,S}, where 5 G Syl2(G). 

(4A). Suppose B G Blk°(G, 2) wzY/z a defect group D. Then we may take 

*L°(B)/G 

{1 ,1< Z 2 , 1 < 02(TS), 1 < Z2 < 02(TS)} ifD = 02(TS), 
{1,1 < Z2,1 < 02(T-t), 1 < Z2 < 02(T^)} ifD ~ 5£»2„+2, 
{1 ,1< Z 2 , 1 < 6>2(rd), 1 < Z2 < 02(Te)} ifD ~ Z2« l Z2, 
^.°(G)/(? i/fl = 5i. 

PROOF. The proof follows by that of (3E), (3F) and (3G) of [2] and Lemma 6.9 of 
[10]. 
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(4B). Let G = G2{q) andB e Blk°(G,2)\{BXl,BXl). 
(a) SupposeB = B\. Then 

k(B,h) = 

2a+i -

il(2a 

2 

10 

4)(2a - 2) 

(b) Suppose B = Z?3. 7%en 

k(5,A) = 

2fl+1 

i-4(2 

2 a - l 
4 
2 a - l 
1 

10 

ifh- = 0, 
ifh- = 1, 
ifh--= 2, 
ifh- = 2a-l, 
ifh--= a + l , 
otherwise. 

ifv = e and h = 0, 
ifri = e aw*/ h = 1, 

ifv = e and h = a, 

iff] = —eandh = 0, 

ifn = —eandh = 1, 
ifv = —eandh = a> 
otherwise. 

(c) SupposeB G {Bia,B2a,B\b,B2b}- Then 

HB,h) 

2a+l 

2 a - l ( 2 « 

2a-\ 

4 
2 f l - l 
1 

10 

ifB e {Baa,Bab} andh = 0, 
1) ifBe{Baa,Bab}andh=l, 

ifB G {#<*a, #<**>} 0/irf A = a, 
ifBe{Bpa,B(3b}andh = 0, 
ifBe{Bpa,Bpb}andh= 1, 
i /5 G {Bpa,Bpb} andh — a, 
otherwise, 

where a = 1 or 2 according as e = + or —, a«d /? + a = 3. 

PROOF. It is an easy consequence of [ 17]. 

(4C). Let q be a power of an odd prime p, and let B — B\ = Bo(G) be the principal 
2-block ofG= Giiq). Then B satisfies Dade s conjecture. 

PROOF. Let C e ^°(G) be given by (2.7) or (2.8). By Brauer's Third Main Theorem, 
Blk(jV(Q | Bi) = {b(Q}, where b(Q = B0(N(CJ). 

(1) Suppose q ^ 3. Set C = C(l)1 and C = C(l). Let T = 7_£ and N(T) = 
NG(T) = (7, p, CT,T), where p, a,r are given by (2.5). By (2D), C(Q = C{C) = (T, p), 
N(Q = N(T), and N(C) = {C{C'\T). If b = B0(C(CJ) then£8 = (02(T),p) is a 
defect group of ft, b"^ = b(Q and ^ c ' > = 6(C). Now 6(7) = £0(r) contains 4 linear 
characters, and each of them is stabilized by p, so Irr(6) has 8 linear characters. Since 
T permutes the set Irr(ft(r)), r stabilizes exactly 2 linear characters of Irr(ft(r)). Since 
p E Z(Dn\ it follows that T stabilizes exactly 4 characters of Irr(6). Thus Irr(ft(C)) has 
8 linear characters and 2 characters of degree 2, and so k(ft(C), 0) = 8, k(ft(C), l) = 2, 
and k(ft(C), A) = 0 for h ± 0 ,1. 
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Similarly, a permutes Irr(6(J)), and so a stabilizes only the trivial character of b{T). 

Thus the principal block 6((C(C),a)) of (C(Q,cr) has 6 linear characters and 2 irre­

ducible characters of degree 3. Since (a9r) ~ S3 and p G Z(D\2)9 it follows that r 

stabilizes the two characters of degree 3 in Irr( &((C(Q,cr)) ], so that Irr(fe(C)) has 4 

characters of degree 3. We claim that Irr(Z?(C)) has exactly 4 linear characters, so that 

r stabilizes exactly 2 linear characters of Irn £((C(Q,cr)) j and Irr(Z?(C)) has 2 char­

acters of degree 2. Indeed, N(Q is solvable, so the Alperin-McKay conjecture has an 

affirmative answer for b(C) (see p. 171 of [12]). If Q is a defect group of b{C)9 then the 

principal block b(Q) of N^Q(Q) corresponds to b(C) under the Brauer correspondence. 

Thus k{b(Q)90) = k(b(Q9 0). We may suppose that 0 < #((?), so that Q is a defect 

group of 6(C). Since a $ NN{Q(Q), it follows that NN{Q(Q) < N(C'\ and so b(Q) corre­

sponds to &(C7) under the Brauer correspondence. Since N(C') is also solvable, it follows 

that k(b(Q)9 0) = k{b(C)9 0). As shown above k(b(C), 0) = 8, so k(ft(C), 0) = 8. But 

Irr(Z?(Q) has 4 characters of degree 3, so Irr(Z>(C)) has 4 linear characters and the claim 

follows. Thus k(b(Q9 A) = k(b(C)9 h) for all h, and so 

(4.1) k(tf(C), B9 </) = k(N(C"), 5, d) 

for integers d > 0. If q = 3, then C(l)1 and C(l) are non-radical 2-chains, so that we 
may suppose (4.1) holds. 

(2) Let C = C(2)! or C(2)i according to whether 2a ^ q - e or 2a = q - e9 and 
let C = C(2). Let T = Te and N(T) = NG(T) = (T9p9a9r). Then N(Q = N(T) and 
7V(C') = ( 7 > , T ) . If b = B0(T), then 02(T) is a defect group of b9 and Irr(fr) has 22a 

linear characters. Regard T as a subgroup of Le = SL(3, eq). Let </> be an isomorphism 
from T to Irr(r), £ G Irr(6) and #(£) the stabilizer of f in N(C). Then £ = (/>(y) for some 
y £ 02(7) such that y — y\ ^y2^y^ with j ^ ^ = 1- The same proof as that of (3.2) 
of [4] shows that 

(T9p,T9cr) i f j > = l , 
(T9 p) iiy E fti (02(TJ) and^ ^ yl9 

(T9r) ify{=y2andy1^l9 

(T9p9r) ifji = y2and\y\ = 29 

(T9frr) ify^y^andy2^!, 
T otherwise. 

(4.2) N(0 

Now £ = </>(y) € Qi (irr(fe)) if and only if j ; E Qi (02(T))9 so £>i2 permutes Qi (lrr(6)). 
As shown in the proof of (4.1) Q.\ (lrr(Z?)) has 10 extensions in Irr(Z?(C)), 4 linear char­
acters, 4 characters of degree 3, and 2 of degree 2. Let X(r) be characters of Irr(6) \ 
Qi (LT(6)) stabilized by r. By (4.2), |X(T)| = 2" - 2 and p permutes X{r). Thus Irr(6(C)) 
contains 2a — 2 characters of degree 6 covering characters in X(T). Similarly, Irr(Z?(Q) 
contains 2a — 2 characters of degree 6 covering characters in X(pr)9 where X(pr) is de­
fined as above. Thus Irr(6) has 2 2 f l - 3 x ( 2 f l - 2 ) - 3 x (2a - 2) - 4 characters £ such 
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that N(0 = T. So Irr(fe(Q) has ^ ( 2 ^ - 3 x 2a+1 +8) characters of degree 12, and hence 

(4.3) k(b(Q,h) = 

' 8 if A = = 0, 
2a+1 — 2 if ^ = = 1, 

&P - 3 x 2 a + 1 + 8) ifA = = 2, 

lo otherwise. 

Similarly, by Clifford theory and (4.2), Irr(6(C")) has 8 linear characters and 2 char­
acters of degree 2 covering characters in Qi(lrr(6)), 2a — 2 characters of degree 2 
covering characters in X(T), 2a — 2 of degree 2 covering characters in Jf(pr), and 
I (22* - (2* - 2) - (2a - 2) - 4) characters of degree 4. It follows that 

[8 if A = = 0, 
2a+l — -2 if A = = 1, 
I(22° - 2 a + 1 ) if A = = 2, 

lo otherwise 

k(6(C),A) = 

Since d(ft(Q) = d(*(C)) = 2a + 2, it follows that 

( - l ) ' c | + 1 k(N(Q,B9d) + ( - l ) | c ' l + 1 k(tf(C),£,</) 
(4.4) f ( 2 2 * - 2 - l ) i f j = 2a, 

0 otherwise. 

(3) Let C = C(3)i: 1 < £8 and C = C(3): 1 < £8 < * , where # = 2|+4. Since 
CN(Q(Es) = ES<N(Q, it follows that LT(&(C)) = fcr(#(0). Similarly, L T ( 6 ( C ) ) = 
Irr(jV(C')). 

As shown in the proof of (2B) (4) N(C')/E$ is a parabolic subgroup of GL(3,2) and 
N(C')/K = GL(2,2) is a Levi subgroup of N(C)/ES. Thus N(C)/ES ~ S4, where S4 

is a symmetric group on four letters. Let GL(2,2) = (g,v) and E% = (x,y,z)9 where 
(z) = C{C) = Z(K), \g\ = 3 and |v| = 2 modulo K. We may supposed = y9z% = z 
andj^ = xy, so that x9y are elements of the commutator subgroup [N(C), N(C')] and 
E% < [NiC'XNiC')]. Thus [N(C),N(C)]/Es ~ [S4,S4] = ^4 and 

N(Cf)/[N(C)9N(Cf)\ ~ Z2. 

So N ( C ) has exactly 2 linear characters. A linear character £ G Irr(A~) stabilized by 
GL(2,2) has an extension to N(C). By Clifford theory, £ has 2 linear extensions and one 
of degree 2. But N(C) has exactly two linear characters, so ]ir(K) has exactly one linear 
character, the trivial character stabilized by both g and v. Similarly, 

(K,g)/[(K,g),(K,g)]~l3 

and (K, v) / [(K9 v), (K, v)] ~ E%9 so g and v stabilize exactly one and four linear charac­
ters of Irr(i£), respectively. 

Since K ~ 2^+4, ]rr(K) has exactly one faithful character \ of degree 4 and 16 linear 
characters. Thus x g = Xv = X a n d X n a s a n extension to N(\) = N(C'). So Irr((AT,g)) 
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has 3 linear characters, 3 characters of degree 4 and 5 characters of degree 3. Moreover, 
v permutes 3 linear characters and 3 characters of degree 4 in ln((K,g)), and v stabilizes 
exactly 3 characters of degree 3. It follows by Clifford theory that I r r ^ C ' ) ) has 2 linear 
characters, 1 character of degree 2, 6 of degree 3, 2 of degree 4, 1 of degree 6 and 1 of 
degree 8. Thus 

if h = 0, 
2 if h = 1, 
2 if A = 2, 
1 if A = 3, 
0 otherwise. 

k(b(C'\h) = l 

Since Irr(fo(C)) = Irr(JV(Q), it follows by Table III of [18] that 

k(b(Q,h) = 

Since d(b(CJ) = d(b(C')) = 6, it follows that 

8 if/* = 0, 
2 if A = 1, 
1 if h = 3, 

10 otherwise. 

(-l)lcl+1 k(N(Q,B,d) + (-l)lc 'l+1 k(AT(C/),5, J) = j Q 
2 if </ = 4, 

otherwise. 

(4) Let C = C(4)2 and C = C(4). By (2D), N(C) = S" and C(S") = Z(S"). 
So Irr(Z>(C')) = br (N(Cj). In the notation above, we may suppose that S" = (K,v) 
with K ~ 2|+4. As shown in the proof (3) above, v stabilizes exactly 4 linear characters 
and the faithful character of degree 4 in Irr(AT). By Clifford theory, Jrr(jV(Cffj has 8 
linear characters, 6 characters of degree 2, and 2 of degree 4. Thus k(&(C"), 0) = 8, 
k(b(C'% l) = 6, k(Z>(C), 2) = 2, and k(b(C), h)=0forh> 3. 

As shown in the proof of (2B) (4) N(Q = (a,r, p, Q2 (02(r£))) and C(Q = Z(JF) -
£4 , so that Irr(6(0) = hr(N(CJ). Suppose a = 2 and 2* = 9 - e. Then JF = (p, 0 2 (^)) 
and A^(Q = N(W) = N(Te). Thus k(ft(Q, h) is given by (4.3) with a = 2. In other cases, 
k(Z?(Q, A) is also given by (4.3) with a — 2, since N(C) is independent of the choices of 
the denning field. Thus k(ft(Q, 0) = 8, k(ft(Q, l) = 6, and k(fc(C), A) = 0 for h > 2. 
So 

(-i^^(N(Q,B,d)H-\r^NiC),B,d) = n j ^ e 

It follows that 

(4.5) k(N(C(3)x)9h) +k(^(C(4)),A) = k(tf(C(3)),*) + k(Af(C(4)2),/*) 

for all integers h > 0. 
(5) Suppose C = C(l)i. Then N(Q = SO+(4,^). By Theorem 13 of [9], b(C) = 

£ 2 (JV(Q, (1)). Let H = N(Q9 and let s be a 2-element of G and Z, = CG(s). If |s| > 4, 
then we may suppose Z(H) = Qi((s)), since G has only one class of involutions. So 
L = CH(S). Thus L G {GL(2, eq), Te,J^} and/, is a regular subgroup of//, where 8 = ± . 
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By Proposition 6.6 of [11], ±R% (for some sign) induces a bijection between £(Z, (s)) 

and £(//,(*)). 

We first count the number of characters of £ ( / / , (s)), where L ~ T-f-x • Suppose s' is 
another2-elementof//conjugatetosinG.Thengsg-1 = s'forsomeg G G. SinceCQ{S') 
is cyclic and CH(s') < CG(s% it follows that CH(sf) ~ Z^2_b so that Z{H) = Q\((sf)). 
But Z(H) = Qi((s)), so g centralizes Z(H) and g G H. Thus (S)G Pi / / is a single class 
of //, where (S)G is the conjugacy G-class containing s. Since G has ^2* classes of such 
2-elements s (cf. 2.2.1 and 2.3.1 of [17]) and since £(L, (S)^ has only one character, it 
follows that £2(#,(1)) contains 2a~x characters x G £(if,(s)), where C//(s) ~ Z ^ . 
In addition, all of them have height a + 1 since x(l) = (#' L)p>. 

Suppose L en GL(2,eg). Then L is a regular subgroup of //. Since s and s - 1 are 
conjugate in //, //has | (2 a — 2) classes of such 2-elements. For each class (s), £(/, , (s)/,) 
has two characters with degrees 1 and q, respectively. Since H has two conjugacy classes 
of regular subgroups isomorphic to GL(2, eq)9 it follows that %i (//, (1)) contains (2fl—2) 
characters of degree (//: L)p> and (2a — 2) characters of degree q(H: L)p> in £ ( / / , (S)) with 
L = CH(s) ~ GL(2, eq). In particular, £2(// , (1)) contains 2(2a - 2) such characters of 
height 1. 

Suppose L en Te, and let K = NH({S}). Then K/L en E4 is a subgroup of NG(L)/L en 
D12. In this case (S)G H / / is not a single class of//. Let L = Z^_e x Z^_e and x G 
Z^_e. It is clear from (4.2) that each element w of Qi(02(L)) is stabilized by a non-
trivial element of K/L. Thus L < CH{w) and so C//(w) efc Te. Similarly, each element 
w G {x x x,x x x - 1 } is stabilized by a non-trivial element of K/L. Thus / / contains 
(2

2" - (2fl - 2) - (2* - 2) - 4) 2-elements 5 such that CH(s) = L. Since \K/L\ = 4, 
//contains exactly \{22a — 2a+]) classes of such 2-elements s. But ^ ( Z , ^ ) has only 
one character, so *Ez(H,(l)) contains \{22a — 2a+l) characters in £(//,($)) with L = 
CH(S) en Tt. In particular, each such character has height 2. 

If 5 G Z(//), then there exists a bijection between *£(//, (5)) and £ ( / / , (1)) preserving 
degrees. Now H has four unipotent irreducible characters with degrees l,q,q, q2, and 
\Z(H)\ = 2. So ^(H, (1)) has two characters of degree 1, four of degree q and two of 
degree q2, and all of them have height 0. 

Finally, let Q = U5 £(//,(?)), where s runs over non-central involutions of//. So 
K = CH(s) = (Lo,p), whereLQ = SO5^,q) x SQ5(2,q),6 = ± and 0 is an involution. 
Since L0 en GL(1,&7) x GL(l,Sq), it follows that *£(/,(), 0) ) contains only the trivial 
character of Lo and K/LQ en Z2 acts trivially on £(Lo, (1)). The stabilizer in K/Lo of the 
trivial character is K/LQ itself. By Proposition 5.1 of [19], £ ( / / , (?)) contains exactly 2 
characters. Since H has two classes of non-central involutions, it follows that Q has 4 
characters. 

Let H\ = Hi = Sp(2, q) — SL(2, q), and let F; be the underlying symplectic space of 
//,. Then the tensor product V = V\ 0 V2 is a 4-dimensional orthogonal space with plus 
type. Thus we may suppose H = SO(F). The group H\ ® //2 is a subgroup of index 2 of 
/ / and //1 ® #2 is a central product over Z(H\) = Z(//2). 
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Let a be a generator of the multiplicative group F*, and let ga = diag {1, a} under a 
symplectic basis of V[. Then g = ga®ga €H(cf. the proof of [2], (2B)). In addition, g 
permutes two non-conjugateH\ ®//2-classes, sog G H\(H\ (g>//2) and// = (H\ (g)//2,g). 
As shown in the proof of [14], Section 5.2 SL(2,q) has two irreducible characters of 
degree ^(q+\) and two of degree j(q—l) which are permuted by ga respectively, since 
ga G GL(2, q). Moreover, these four characters lie in the principal block of SL(2, q). 

Let X ' G Irr(SL(2,<7)) with x ' ( l ) = \{q ~ e), and let X " = (xT"- Then x ' and X" 

induce the same linear character on Z(SL(2, qfj. Thus \' ® x" *s a n irreducible character 
of Hi <g> //2 and (x' 0 x")* = X7' ® x'> Similarly, x' ® x' £ ^ ( / / i <g> //2) and 

(x'^x'^x"^"-
Thus / / has two irreducible characters xi and \2 of degree \{q — e)2. Let y>' G 
Irr(SL(2, #)) with ^'(1) = \{q + e), and let <//' = (V)^ . A proof similar to above shows 
that//has two irreducible characters ip\ and </?2 of degree \{q+e)2. It follows from the de­
grees of characters given above that XuVi G Q f o r / = 1,2. Thus Q = {xi>X2, ^ 1 ^ 2 } , 
andh(xi) = h(X2) = 2a - 1, hfai) - hfo>2) = 1. 

It follows that 

k(*(Q,A) 

8 if£ = 0 
2 (2 a --2) + 2 if/1 = 1, 
i(22" - 2 a + 1 ) if h = 2, 
2 ifh = 2a-
2 a - l ifh = a+l, 

.0 otherwise. 

1, 

It follows by (4B) (a) and (5.7) of [10] that k(G,B,d) = k(N(Q,B,d) except when 
d = 2a, in which case 

(4.6) k(G,B,2a)-k{N(Q,B,2a) = -\{22a~2 - 1). 

Thus Dade's conjecture for B follows by (4.4), (4.5) and (4.6). This completes the proof. 

(4D). Let G = Gi(q) and B G Blk°(G,2), where q is a power of an odd prime. If 
B 7̂  B\ = Bo(G), then B satisfies Dade s conjecture. 

PROOF. The proof of (4D) is similar to that of (4C) or (3B), so we sketch a proof. 
Supposed C 2i(G,(s)). 

(1) If a defect group D ofB is abelian, then D = 02(7i) for some 6 = ±. By (1 A) of 
[3], it suffices to show that 

(4.7) k(N(l < Z2\B9d) = k(tf(l < Z2 < 02(Ts))9B9d) 

for all integers d > 0. Let C: 1 < Z2 and C: 1 < Z2 < 02(T8). Then the Brauer 
correspondence induces a bijection between B l k ^ Q | 2?) and Blk(AT(C") | # ) . For 
b(C) G Blk(AT(C) I B)9 set b(Q = b{C'f^. By direct calculation (cf the proof of 
(3A)), k(ft(Q) = k(ft(C),0) = k(ft(C)) = k(ft(C),0) and (4.7) follows. 
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(2) Supposed G {B\a,B2a,B\b,B2b}> Then D ~ Z2a I T-i or SD2a+2 according as 
B G {Baa,Bab} or B G {Bpa,Bpb}, where a = 1 or 2 according as e = + or —, and 
(3 + a = 3. 

Suppose D~Z2al Z2, so2a ^ q-e. Let C = Q2)1 and C7 = C(2). Then # ( Q = 
N(Te) = Te x D12, and JV(C) = Te x (Z2 x Z2). Since 02(Te) is the only maximal 
normal abelian subgroup of D, it follows that N(D) < N(02(Te)) = # ( Q . Similarly, 
#(£>) < N(C) since fli(Z(£>)) = Z2 and N(C) = NN(l2)(02(Te)). By Brauer's First 
Main Theorem, 

(4.8) B\k(N(Q | B) = {b(Q} and B\k(N(Cf) \ B) = {b(C)}. 

Let b G Blk(C(C7) | Z>(C7)). By a result of Fong, Theorem V.3.14 of [12], we may 
suppose D < N(b) and \N(b):DTe\2 = 1, where N(b) is the stabilizer of b in 7V(C). 
Thus N(b) = DTe < N(Cf) (cf [2], (3.8)). But N(Q < N(b) for each f G Irr(Z>), so 
iV(0 = iV(0, where W7(0 = #(© H Af(C7). The mappings Ind^g and I n d ^ induce a 
height-preserving bijection between the sets Irr (&(Q) a n d hr(Z?(C7)). Thus k(Z>(Q, /*) = 
k(Z?(C7), /*) for all integers h. It suffices to show that 

(4.9) k(G,B,d) = k(tf(l < Z2),B,d) 

for all non-negative integers J. 
Suppose D ~ SJV2 , so that q ^ 3. Let C = Ql ) 1 and C7 = C(l). Then the Brauer 

correspondence induces a bijection between Blk(Af(Q | 2?) and Blk(Af(C7) | Z?) such that 

for b{C) G Blk(AT(C7) | B) both 6(C) and b(C) = 6(CY(C) have a same defect group g. 

Letfo G Blk(C(C7) | ft(C7)). A proof similar to above shows that N(b) = QC(Q = AT(C7), 

and two mappings Ind^|9 and mdj$£* induce a height-preserving bijection between 

Irr(6(0) and Irr(Z)(C7)), where £ G Irr(Z>). So it suffices to show (4.9). 

Let C = C(l)i and b(Q G B\k(N(Q | B). We may suppose b(Q C £2(AT(C),(S)). 

Thus C/V(Q(.S) is a regular subgroup Z of N(C) = SO+(4,^), where L ~ GL(2,e^) or 
GL(2, -e#) according as D ~ Z2* * Z2 or S£>2a+2. It follows by [6], Theorem 2.3 that 
b(Q = <E2(N(Q,(s)) and 

(4.10) k(fc(Q,A)=k(6L,A) 

for all non-negative integers h, where bi = BQ(L). 

lfB = B\a or B\b, then CG(s) = L ~ GL(2, #) is a regular subgroup of G. Again by 
[6], Theorem 2.3, 

(4.11) k(B,h) = k(bL,h) 

for all non-negative integers h. This implies (4.9). 
If B = B2a or 2?2&, then CG(S) = L ~ U(2,#) and ±i?f for some sign induces a 

height-preserving bijection between Irr(Z>£) and £2 (G, (S)) . Thus (4.11) and (4.9) hold. 
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(3) Suppose B = #3, so that gcd(g, 3) = L A defect group D of 2? is isomorphic to 
Z2<> I Z2 or SD2a+i according as 77 = e or — e. 

Suppose D ~ ~l2al Z2, so that 2a ^ q — e. A proof similar to that of (2) above shows 
that N(D) < N(Q, N(D) < N(C), and (4.8) holds. Let b G Blk(C(C) | b(C'j). By 
Theorem 3.2 of [7], we may suppose 

ln(b) = {(f>(ys):ye02(Te)}, 

where </> is a isomorphism from Te to Irr(re). It follows by [2], (3.6), (3.7) and (3.8) that 

Irr(fe) has exactly one character £ = <f)(s) such that (-/V(0: ?e) = 6, 3(2* — 1) characters 

£ such that (# (0 : Te) = 2, and 22* - 1 - 3(2* - 1) characters £ such that N(Q = r€. 

By Clifford theory, Irr(Z)(C)) contains 1 character of degree 4 and 2 characters of degree 

2 covering </>(s), 2(2* - 1) of degree 6, and \{l2a - 1 - 3(2* - 1)) of degree 12. So 

k(Z?(Q,0) = 2(2* - 1) + 2 = 2*+1, k ( i (Q, l) = 1 + ±(22* - 1 - 3(2* - 1)), and 

k(b(Q,h) = 0 f o r A ^ 0 , l . 
Let ̂ '(Z?) = N(b)nN(C) andNf(Q = N(OnN(C). ThmN'(b) = DTe, andIrr(fe) has 

2* characters £ such that (#'(£): Te)=2, and 22* - 2* characters £ such that #'(£) = Te. 
By Clifford theory, Irr(fc(C')) has 2*+1 characters of degree 2 and ±(22* - 2*) of degree 
4. So k(6(C),0) = 2*+1, k(6(C), l) - \{22a - 2*), and k(b(C% h) = 0 for h ^ 0 ,1. It 
follows that 

(_l) | c | + 1 k(jV(C),B,rf) + (-l) | c ' l+1 k(N(C'\B,d) 

(4.12) 1 + l
z(2

la + 2 - 3 x 2 * ) - |2*(2* - 1) if d = d(B) - 1, 
10 otherwise. 

Suppose D ~ SD2a+i, so that q ^ 3. Let C = C(l){ and C = C(l). A proof similar 
to that of (2) above shows that the Brauer correspondence induces a bijection between 
B\k(N(Q I B) and Blk(Af(C) | B) such that b(C) and b(Q = b(Cf^ have a same 
dihedral group Q = £>8, where b(C) € Blk(iV(C) | B). It follows by [2], (3.6), (3.7) and 
(3.8) and Clifford theory that Irr(fe(C)) has 1 character of degree 4, 2 of degree 2, and 2 
of degree 6, and Irr(6(C/)) has one character of degree 4 and four characters of degree 
2. Thus 

k(b(C),h)=k(b(C'),h) 

for integers /z > 0, so it suffices to show (4.9). 
Finally, let C = C(l)i andL = CN(Q(s). ThenBlk(iV(C) | B) = {b(Q}, a n d ! ~ 

GL(2,e#) or GL(2, — eq) according as D ~ T2a \ Z2 or SD2a+i. Let £/, = B0(L) and 
#77 = #ia or B2a according as r\ — e or —e. As shown in the proof of (2) above 

k(Bv,h) = k(bL,h) = k(b(C),h) 

for integers h>0.1frj = - e , then by (4B) (b) and (4B) (c), k(£, A) = k(Bv, h), so that 
k(£, h) = k(b(Q9 h) and Dade's conjecture follows. If 77 = e, then by (4B) (b) and (4B) 
(c), k(B, h) = kiBrj, h) except when h = 1, in which case 

k(B,h)-k(b(Q,h) = l + ±(22* + 2 - 3 x 2 * ) - ± 2 * ( 2 * - 1) if A = 1, 
0 otherwise. 
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Thus Dade's conjecture follows by (4.12), and this proves (4D). 
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