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Effect of gravity settling on the onset of thermal
convection in a nanofluid-saturated porous
medium layer
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The onset of convection in a horizontal porous medium layer saturated with a nanofluid
and heated from below is investigated via linear stability analysis and numerical
simulation. The Darcy–Buongiorno model is used to describe the convective transport
behaviour of the nanofluid and the settling effect of nanoparticles due to gravity is
considered in addition to thermophoresis and Brownian diffusion. The linear stability
analysis shows that the gravity settling is a substantial stabilizing mechanism restraining
the destabilizing factors such as thermal buoyancy and thermophoresis. The stability
threshold is determined by the relative strength of thermophoresis to gravity settling. It
is found that the system is destabilized when the thermophoretic mobility prevails. As
the nanoparticle size increases, the gravity settling effect is promoted and makes the
system more stable. In particular, the onset of instability is dominated by the oscillatory
mode once the nanoparticle concentration is in a stably stratified profile across the
porous layer. When the Rayleigh–Darcy number RaD exceeds the critical value, the
spectrum of the growth rates of the unstable modes rises with increasing RaD and
Rn (i.e. the concentration Rayleigh number), and eventually the unstable modes in the
high-wavenumber region exhibit the same instability. The evolution of the convection is
further examined by numerical simulation. The results verify the stability characteristics
predicted by linear stability analysis. Moreover, the pattern of fingering convection of the
nanofluid concentration is observed once the nanofluid concentration is unstably stratified
and the density difference across the porous layer is large enough.
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1. Introduction

Due to recent advances in manufacturing technology, nanoparticles have become
commercially available. One of the main applications is in the devices of thermal
systems, where nanoparticles are dispersed in working fluids to improve the heat transfer
efficiency, thanks to their outstanding features in terms of high thermal conductivity
and large specific surface area. Suspensions of nanoparticles, known as nanofluids, have
received considerable attention over the past decade in a variety of industrial applications,
including electronics cooling, catalytic reactors and solar energy storage. The challenges
and developments related to nanofluids can be referred to recent papers (Rashidi et al.
2019; Shah & Muhammad 2019; Aglawe, Yadav & Thool 2021).

Despite their promising applications, the use of nanofluids does not always yield positive
results. Some studies have pointed out that the addition of nanoparticles may present
negative effects in practical applications. The reason is unclear since the mechanisms
behind the heat and mass transfer are not fully understood. For example, it is well known
that the enhanced heat transfer is not just caused by the improvement in the thermophysical
properties of the fluids, and the efficiency of convective heat transfer may decrease when
the volume fraction of nanoparticles exceeds a certain value (Keblinski et al. 2002;
Keblinski, Prasher & Eapen 2008; Ho et al. 2010). Furthermore, it was found that the heat
transfer rate is not only affected by the nanoparticle size, but also by the nanoparticle shape
(Ghaziani & Hassanipour 2017; Yazid, Sidik & Yahya 2017; Ambreen & Kim 2020). Even
so, the only fact could be verified is that the microscopic migration of nanoparticles plays
a critical role in the determination of macroscopic heat and mass transport phenomena.

In terms of convective transport in nanofluids, the most widely used theory is the
two-component mixture model proposed by Buongiorno (2006). The theory regards
nanoparticles as macromolecules dissolved in a base liquid, where the diffusion of
nanoparticles is dominated by two microscopic slip mechanisms: thermophoresis and
Brownian motion. Since Buongiorno’s model was established, numerous researchers have
employed it to explore the convective characteristics of various flow configurations via
either theoretical analysis or numerical simulation. So far, however, there have not been
any subtle experiments to validate his theory, and some measurements even apparently
contradict it. For instance, most work on stability analysis shows that thermophoresis
is a very strong destabilizing mechanism and always induces convection in nanofluids
as long as they are heated from below (Tzou 2008a,b; Kuznetsov & Nield 2010; Nield
& Kuznetsov 2010; Ruo, Yan & Chang 2021). However, a recent experiment reported
that the addition of nanoparticles can significantly improve the stability (Kumar, Sharma
& Sood 2020). On the other hand, some experiments pointed out that different shapes
of nanoparticles affect the heat transfer efficiency (Elias et al. 2013), which cannot be
explained by the Buongiorno model.

Recently, Chang & Ruo (2022) proposed a revised model to explain this contradiction
by considering the particle settling effect due to gravity as the main diffusion mechanism.
By performing the stability analysis for the Rayleigh–Bénard problem of nanofluids, they
demonstrated that the gravity settling effect is a significant stabilizing mechanism that
could suppress thermophoretic migration. In particular, they found that, for common
nanofluids, the stability threshold should be determined by the relative strength of
thermophoresis to the gravity settling effect.

This paper aims to extend the revised model to analyse the flow instability problem
within a horizontal nanofluid-saturated porous medium layer heated from below. A porous
medium is a solid material consisting of interconnected pores (voids). The utilization
of porous media is a more promising technique than the conventional fins to enhance
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heat transfer efficiency. Due to the characteristics of high permeability and thermal
conductivity, porous media such as metal foams have wide applications in various thermal
devices such as electronic cooling, catalytic reactors and heat exchangers. The combination
of a nanofluid and porous medium is regarded as an attractive technique in typical thermal
systems due to its dramatic improvement of the heat transfer efficiency (Dukhan 2023).
For the latest developments in heat transfer in porous media with nanofluids the reader is
referred to the review papers of Mahdi et al. (2015) and Kasaeian et al. (2017).

In nanofluid-saturated porous media, the interaction between nanoparticles, base fluid
and the walls of the pores involves complex multiscale mechanisms, including microscopic
particle migration, mesoscopic dispersion effects and macroscopic convective transport
phenomena. It is indeed a big challenge to attempt to establish a continuum model that
can properly describe the nonlinear interplay between the multiscale mechanisms in such
a flow system. Most studies used a simple combination of the Darcy model and the
Buongiorno model, and yielded a great number of informative results, as reviewed by
Kasaeian et al. (2017). A preliminary continuum model was proposed by Zhang, Li &
Nakayama (2015) to consider the interaction between the nanoparticles and the walls of
the pores, in which the volume average principle was used to take the effects of mechanical
dispersion and local thermal non-equilibrium into account. However, this model has not
yet been widely followed because some artificial coefficients are not easily obtained from
experiments. This difficulty is not due to the modelling of nanoparticle migration but the
theory of the porous medium itself.

Regarding general fluid flows in porous media, the theory has been developed for
decades and numerous relevant studies can be found in the literature (Nield & Bejan 2017).
However, there have been many new breakthroughs recently, one of which is the study of
mechanical dispersion effects at the level of the pore scale. Two recent papers (Hewitt
2020; De Paoli 2023) have provided comprehensive reviews for the theoretical, numerical
and experimental results in the field of convection in porous media, with more emphasis
on nonlinear numerical simulations. Among these studies, the experiments conducted by
Liang et al. (2018) showed that the strength of the dispersion effects mainly depends on the
flow velocity and the configuration of the pores (e.g. geometry, porosity). When the flow
velocity is low, all dispersion effects are ignorable and the Darcy model is appropriate
to describe the convective transport phenomena. However, if the flow velocity is high
enough, the mesoscopic dispersion effects will dominate the transport phenomena more
than the microscopic molecular diffusion. The impact of dispersion effects on heat transfer
performance has also been exhaustively explored via the nonlinear dynamic evolution, in
which some interesting convection patterns, such as fingers (Hewitt, Neufeld & Lister
2013; Liang et al. 2018), proto-plumes and mega-plumes (Hewitt, Neufeld & Lister 2014;
Wen, Corson & Chini 2015), were discovered.

The present study intends to explore the flow characteristics at the onset of instability
from a quiescent state. Therefore, the mechanisms associated with high flow speeds such as
mechanical dispersions can be ignored to simplify the analysis. The Darcy model was used
to describe the convective transport behaviour in the porous medium layer. The assumption
of local thermal equilibrium is made in which the interstitial heat transfer between the fluid
and solid phase is negligible. The Buongiorno model is then employed to account for the
migration of nanoparticles and the accompanying energy transport. However, we limited
the analysis to the case of high porosity in order to ignore the interactions between the
nanoparticles and the walls of the pores. As evidenced by molecular dynamics simulations
(Michaelides 2016, 2017), the diffusion of nanoparticles adjacent to a solid boundary is
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actually slower than the diffusion far away from the wall, owing to the effect of hydraulic
drag caused by the solid phase on the mobilities of the nanoparticles. If the pore size
of the solid phase is not much larger than the nanoparticle size, the Brownian diffusion
coefficient cannot be estimated simply by the existing formulas.

With some further assumptions, the resultant governing equations turn out to be
basically the same as those in previous studies (Nield & Kuznetsov 2009, 2014; Ruo, Yan &
Chang 2023), except for the additional term describing the gravity settling effect. Note that
this settling effect is induced by the diffusion mechanism of nanoparticles due to gravity
in the nanofluid, which is different from the effect of variable gravity considered in some
previous studies (Yadav 2020; Yadav, Chu & Li 2023). The objective of this study is to use
the revised model to investigate the development and growth of the thermal instability of
nanofluids in a horizontal porous medium layer, via linear stability analysis and direct
numerical simulation. Hence, the physical mechanisms behind the onset of instability
could be explored in a proper manner.

2. Modified convective transport equations

Consider a porous medium layer saturated by a nanofluid between two horizontal plates
and heated from below with temperatures Th and Tc at z = 0 and z = H, respectively (i.e.
Th > Tc). The nanofluid is a dilute suspension of nanoparticles with mean volume fraction
φ0. It is assumed that the nanoparticles could stably suspend in the base fluid without the
occurrence of aggregation or deposition, and the interaction between the nanoparticles and
the walls of the pores could be neglected. The conservation equation of nanoparticles in
the porous medium layer can be expressed by

∂φ

∂t
+ 1
ε
v · ∇φ = − 1

ρp
∇ · J p, (2.1)

where ε is the porosity of the porous medium, φ the volume fraction of nanoparticles,
ρp the density of nanoparticles, v the Darcy velocity and J p the mass diffusion flux of
nanoparticles. According to the revised model proposed by Chang & Ruo (2022), the main
slip mechanisms for the migration of nanoparticles should include the gravity settling
effect in addition to thermophoresis and Brownian motion. Hence, J p can be expressed by

J p = J p,B + J p,T + J p,G = −ρpDB∇φ − ρpDT
∇T
T

+ ρpφV g, (2.2)

where T is the temperature, V g the nanoparticle settling velocity due to gravity and DB and
DT are the Brownian and thermophoretic diffusion coefficients, respectively. According to
Buongiorno’s work (Buongiorno 2006), they are defined as

V g = d2
p(ρp − ρf )

18μf
g, DB = κBT

3πdpμf
, DT = β

μf

ρf
φ, (2.3a–c)

where g is the gravitational acceleration, dp the nanoparticle diameter, κB Boltzmann’s
constant, μf the viscosity of the base fluid, ρf the fluid density and β is the dimensionless
thermophoretic diffusion coefficient, estimated by

β = 0.26
κf

2κf + κp
, (2.4)
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in which κf and κp are, respectively, the thermal conductivities of base fluid and
nanoparticles. As discussed in the introduction, the present study considers a porous
medium layer with high porosity, in which the effect of the hydraulic drag caused by the
walls of the pores on the nanoparticle migration can be safely ignored. Thus, the diffusion
coefficients may be estimated simply by those formulas used in an unbound fluid domain,
i.e. (2.3a–c) and (2.4). Substituting (2.2) into (2.1) yields

∂φ

∂t
+ 1
ε
v · ∇φ = ∇ ·

(
DB∇φ + β

μf

ρf

φ∇T
T

− φV g

)
. (2.5)

The Darcy model is used for the porous medium and the momentum equation with the
Boussinesq approximation takes the following form:

∇p + μf

K
v = −{ρpφ + ρf (1 − φ)[1 − βT(T − Tc)]}gez, (2.6)

where p is the pressure, ez the unit vector of the z-coordinate, K the permeability and βT the
thermal expansion coefficient. Because the fluid is quiescent before the onset of instability,
we can assume that a local thermal equilibrium exists since the onset velocity is too low
to induce interstitial heat transfer between the fluid and solid phases. For a discussion of
the assumptions related to the local thermal non-equilibrium model the reader is referred
to Zhang et al. (2015). Accordingly, the energy equation can be described by the following
form:

(ρc)m
∂T
∂t

+ (ρc)f v · ∇T = κm∇2T + ε(ρc)p

(
DB∇φ + β

μf

ρf

φ∇T
T

− φV g

)
· ∇T,

(2.7)

where c is the specific heat, and the subscripts ‘m’, ‘f ’ and ‘p’, respectively, denote the
mean property of porous medium, fluid and nanoparticle. For example, the parameter κm,
representing the effective thermal conductivity of the porous layer, is calculated by

κm = (1 − ε)κs + εκf , (2.8)

where κs is the thermal conductivity of the solid phase of the porous medium. By assuming
constant temperature and zero flux of nanoparticles at the impermeable boundaries, the
boundary conditions at z = 0 can be given by

w = 0, T = Th, DB
∂φ

∂z
+ β

μfφ

ρf T
∂T
∂z

+ Vgφ = 0, (2.9a–c)

and at z = H we have

w = 0, T = Tc, DB
∂φ

∂z
+ β

μfφ

ρf T
∂T
∂z

+ Vgφ = 0, (2.10a–c)

where Vg = ‖V g‖ is the magnitude of the gravity settling velocity (Chang & Ruo 2022).
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3. Linear stability analysis

3.1. Basic state solution
The dimensionless variables marked by asterisk are introduced as follows:

(x∗, y∗, z∗) = (x, y, z)
H

, t∗ = αm

H2 t, p∗ = K
μfαm

p,

v∗ = H
αm

v, φ∗ = φ

φ0
, T∗ = T − Tc

Th − Tc
,

⎫⎪⎪⎬
⎪⎪⎭

(3.1a–f )

where v∗ = [u∗, v∗,w∗] and αm = κm/(ρc)f represents the effective thermal diffusivity
of the porous layer. Accordingly, the dimensionless governing equations together with the
boundary conditions take the following forms:

∇∗ · v∗ = 0, (3.2)

∇∗p∗ + v∗ = (RaDT∗ − Rm − Rnφ∗)ez, (3.3)

∂φ∗

∂t∗
+ 1
ε
v∗ · ∇∗φ∗ = 1

Le
∇∗ · (∇∗φ∗ + NAφ

∗∇∗T)+ Ng

Le
∂φ∗

∂z∗ , (3.4)

σ
∂T∗

∂t∗
+ v∗ · ∇∗T∗ = ∇∗2T∗ + ε

NB

Le
(∇∗φ∗ + NAφ

∗∇∗T∗) · ∇∗T∗ + ε
NBNg

Le
φ∗ ∂T∗

∂z∗ ,

(3.5)

w∗ = 0, T∗ = 1,
∂φ∗

∂z∗ + NAφ
∗ ∂T∗

∂z∗ + Ngφ
∗, at z∗ = 0, (3.6a–c)

w∗ = 0, T∗ = 0,
∂φ∗

∂z∗ + NAφ
∗ ∂T∗

∂z∗ + Ngφ
∗, at z∗ = 1. (3.7a–c)

The parameters in these equations are defined as

RaD = ρfβT(Th − Tc)KgH
μfαm

, Rm = ρf KgH
μfαm

, Rn = (ρp − ρf )φ0KgH
μfαm

,

Le = αm

DB
, NA = β

DB

μf

ρf

Th − Tc

Tc
, σ = (ρc)m

(ρc)f
, NB = ρpcp

ρf cf
φ0, Ng = VgH

DB
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.8a–h)

where RaD is the thermal Rayleigh–Darcy number, Rm the density Rayleigh number and
Rn can be regarded as the concentration Rayleigh number. The parameter Le is the Lewis
number, which denotes the ratio of the effective thermal diffusivity to the Brownian
diffusion coefficient, and NB represents the heat capacity ratio of nanoparticles to base
fluid at a given mean nanoparticle concentration. The parameters NA and Ng are the
modified diffusivity ratios that respectively describe the effects of thermophoresis and
gravity settling relative to Brownian motion at a specified nanoparticle diameter.

A time-independent quiescent solution of (3.2)–(3.7a–c) can be determined as the form
of v∗ = 0, φ∗ = φ̄(z∗) and T∗ = T̄(z∗). Consequently, (3.4) and (3.5) can be reduced to

d
dz∗

(
dφ̄
dz∗ + NAφ̄

dT̄
dz∗ + Ngφ̄

)
= 0, (3.9)

d2T̄

d2z∗ + ε
NB

Le

(
dφ̄
dz∗ + NAφ̄

dT̄
dz∗ + Ngφ̄

)
dT̄
dz∗ = 0. (3.10)

984 A5-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

12
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.124


Effect of gravity settling on nanofluid porous layer

0

1

2

3

5

1

0

–1

–5

4

5

NE

0.2 0.4 0.6

z∗

φ̄

0.8 1.0

Figure 1. The profiles of normalized nanoparticle volume fraction across the porous layer before the onset of
convection.

Equation (3.9) can be integrated and, by employing the boundary conditions (3.6c) and
(3.7c), we can obtain

dφ̄
dz∗ + NAφ̄

dT̄
dz∗ + Ngφ̄ = 0. (3.11)

Equation (3.11) is then substituted into (3.10) to give

T̄(z∗) = 1 − z∗, (3.12)

and the general solution of φ̄ can be derived by integrating (3.11) to give

φ̄(z∗) = C exp(NEz∗), (3.13)

in which the parameter NE is defined as NE = NA − Ng. The coefficient C can be
determined by integrating φ̄ across the porous layer and the integration should be equal to
unity due to the conservation of the nanoparticle concentration. Accordingly, the base-state
solution of φ̄ can be obtained and written as

φ̄(z∗) = NE exp(NEz∗)
exp(NE)− 1

. (3.14)

Obviously, φ̄ is a nonlinear function of z∗ and depends heavily on the parameter NE. The
profiles of φ̄ across the porous medium layer for several assigned values of NE are shown
in figure 1. This solution is basically the same as that of the nanoparticle concentration in
the thermal instability problem of a horizontal nanofluid layer (Chang & Ruo 2022).
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3.2. Linearization and normal mode expansion
To perform the linear stability analysis, small perturbations are superimposed on the
base-state solution to give the form

v∗ = v′ = [u′, v′,w′], φ∗ = φ̄(z∗)+ φ′, T∗ = T̄(z∗)+ T ′, p∗ = p̄(z∗)+ p′.

(3.15a–d)

Equations (3.2)–(3.7a–c) can be linearized accordingly by neglecting high-order terms to
give

∇ · v′ = 0, (3.16)

0 = −∇∗p′ − v′ + (RaDT ′ − Rnφ′)ez, (3.17)

∂φ′

∂t∗
+ 1
ε

NEφ̄w′ = 1
Le

[
∇∗2φ′ + NA

(
φ̄∇∗2T ′ − ∂φ′

∂z∗ + NEφ̄
∂T ′

∂z∗

)
+ Ng

∂φ′

∂z∗

]
, (3.18)

σ
∂T ′

∂t∗
− w′ = ∇∗2T ′ + ε

NB

Le

(
NEφ̄

∂T ′

∂z∗ − ∂φ′

∂z∗

)

+ εNANB

Le

(
φ′ − 2φ̄

∂T ′

∂z∗

)
+ ε

NBNg

Le

(
φ̄
∂T ′

∂z∗ + dT̄
dz∗φ

′
)
, (3.19)

and the boundary conditions at z∗ = 0 and z∗ = 1 are

w′ = 0, T ′ = 0,
∂φ′

∂z∗ + NAφ̄
∂T ′

∂z∗ − NEφ
′ = 0. (3.20a–c)

By taking the curl twice on (3.17), the pressure term can be eliminated and the
z-component leads to

∇∗2w′ = RaD

(
∂2T ′

∂x∗2 + ∂2T ′

∂y∗2

)
− Rn

(
∂2φ′

∂x∗2 + ∂2φ′

∂y∗2

)
. (3.21)

The differential equations (3.18), (3.19) and (3.21) together with the boundary conditions
(3.20a–c) establish a boundary value problem. Normal modes are employed to expand the
small perturbations in the following form:

[w′, T ′, φ′] = [ŵ(z∗), T̂(z∗), φ̂(z∗)] exp(st∗ + ikxx∗ + ikyy∗), (3.22)

where kx and ky are the wavenumbers in the x and y directions, respectively, and s =
sr + isi is a complex number in which the real part sr accounts for the growth rate of
disturbance and the imaginary part si is the oscillatory frequency. The neutral state is
determined by the condition of sr = 0. Substituting (3.22) into the governing equations,
we can obtain

NE

ε
φ̄ŵ − NAφ̄

Le
(D2 − k2 + NED)T̂ − 1

Le
(D2 − k2 − NED)φ̂ = −sφ̂, (3.23)

ŵ +
(

D2 − k2 − ε
NANB

Le
φ̄D

)
T̂ − ε

NB

Le
(D − NE)φ̂ = sσ T̂, (3.24)

(D2 − k2)ŵ + k2(RaDT̂ − Rnφ̂) = 0, (3.25)
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and the boundary conditions at z∗ = 0 and z∗ = 1 are

ŵ = 0, T̂ = 0, Dφ̂ + NAφ̄DT̂ − NEφ̂ = 0. (3.26a–c)

Here, D ≡ d/dz∗ and k =
√

k2
x + k2

y is defined as the horizontal wavenumber. Equations
(3.23)–(3.26a–c) form an eigenvalue problem that could be solved by the Chebyshev
collocation method. Firstly, the coordinate z∗ is transformed into the domain of ξ by
the relationship z∗ = (ξ + 1)/2. Thus, the variable ξ is defined within the domain of
−1 ≤ ξ ≤ 1, and then M-terms of the Chebyshev polynomials are employed as the set
of base functions to expand each of the variables as follows:

ŵ(ξj) ∼=
M∑

m=0

awmΨm(ξj), T̂(ξj) ∼=
M∑

m=0

aTmΨm(ξj), φ̂(ξj) ∼=
M∑

m=0

aφmΨm(ξj),

(3.27a–c)

where Ψm(ξj) = cos (m cos −1ξj). These expansions should satisfy not only the system
equations at the interior collocated points ξj = cos ( jπ/M) with j = 1, 2 · · · (M − 1), but
also the boundary conditions at ξ = ±1. Accordingly, we can obtain a matrix equation as
the following form:

AU = sBU, (3.28)

where U = {ŵ(ξ0), . . . ŵ(ξM), T̂(ξ0), . . . T̂(ξM), φ̂(ξ0), . . . φ̂(ξM)} ∈ R3M+3 and A and B
are the coefficient matrices. A matrix algorithm was used to calculate the eigenvalues
and one can get sufficient precision for the numerical solution with M = 30. The detailed
procedure for implementing the calculation can be found in Boyd (1989) and Canuto et al.
(2007).

4. Numerical scheme for nonlinear dynamic simulation

For numerical simulation, the Chebyshev collocation method with multi-domain
decomposition (Canuto et al. 2007) was used to discretize the governing equations
(3.2)–(3.7a–c), in a two-dimensional rectangular domain with aspect ratio ar, which is
defined as the ratio of width to height. This numerical approach is implemented by
partitioning the flow field into multiple subdomains. Within each subdomain, only a few
collocated points (i.e. Chebyshev–Gauss–Lobatto grid) are specified in order to suppress
the possible contamination of high-frequency modes. In this way, the continuity condition
of the physical field must be imposed at the interface between the subdomains. In the
present simulations with ar = 6, we typically used 15–90 subdomains with 5 collocated
points in both the x and y directions in each subdomain. The subdomains are somewhat
similar to the grids used in local approximation methods such as the finite element
method. Therefore, the average distance of collocated points within a subdomain can be
equivalently regarded as the resolution of the grid system. Note that the location of the
collocated point is where the physical quantities are stored.

To perform the computation efficiently and enforce the continuity equation, we adopt
the streamfunction ψ to replace the velocity. The momentum equation (3.3) becomes

∇∗2ψ − RaD
∂T∗

∂x∗ + Rn
∂φ∗

∂x∗ = 0. (4.1)

A typical difficulty related to the numerical simulation of nanofluid flow is that the Lewis
number is generally very large, which is due to the time scale of thermal diffusion being
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much shorter than that of Brownian diffusion. This feature inevitably causes a numerical
instability when a high spatial gradient of concentration develops as time evolves. To
improve numerical stability, we change (3.4) into the conservation form

∂φ∗

∂t∗
= −∇∗ · Qc, (4.2)

where Qc denotes the dimensionless nanoparticles flux through an infinitesimal control
volume, given by

Qc = 1
ε
φ∗v∗ − 1

Le
(∇∗φ∗ + NAφ

∗∇∗T∗ + Ngφ
∗ez). (4.3)

Accordingly, we can advance the time evolution of concentration explicitly with a
second-order Adams–Bashforth scheme. Such a treatment can suppress the numerical
instability induced by the stiffness of the matrix obtained by implicitly discretizing the
diffusion term.

For the other equations, the linear and nonlinear transport terms are treated explicitly
and implicitly, respectively. Then, they are solved together with the following boundary
conditions:

ψ = 0,
∂T∗

∂x∗ = 0,
∂φ∗

∂x∗ = 0, at x∗ = 0 and ar, (4.4a–c)

ψ = 0, T∗ = 1,
∂φ∗

∂z∗ + NAφ
∗ ∂T∗

∂z∗ + Ngφ
∗ = 0, at z∗ = 0, (4.5a–c)

ψ = 0, T∗ = 0,
∂φ∗

∂z∗ + NAφ
∗ ∂T∗

∂z∗ + Ngφ
∗ = 0, at z∗ = 1. (4.6a–c)

Obviously, some of the boundary conditions are not of the type of Dirichlet. Therefore,
we treat the nonlinear terms implicitly and the linear terms explicitly. In the simulations,
we advance all the dynamic equations in time and automatically adjust the size of time
step according to the Courant–Friedrichs–Lewy (CFL) condition, where the smallest
Chebyshev–Gauss–Lobatto grid is considered as the mesh size.

5. Results and discussion

The numerical code was first verified by making a comparison of the results with
the limiting case that the nanoparticle volume fraction φ0 is set to zero. That is, the
system reduces to the conventional thermal convection problem of a horizontal porous
layer saturated by a general viscous fluid, which is named the Horton-Rogers–Lapwood
problem (Nield & Bejan 2017). It is well known that the theoretical values of the
critical Rayleigh–Darcy number RaD,c and the corresponding critical wavenumber kc are
4π2 and π, respectively. The present numerical results are the same exactly as those
of the Horton-Rogers–Lapwood problem. To perform the analysis for a nanofluid, the
parameters used in the analyses are based on a Al2O3/water nanofluid in a metal foam
of aluminium, which can be found in the experimental study of Ghaziani & Hassanipour
(2017). The corresponding thermophysical properties are listed in table 1. Notice that the
porosity and permeability are based on experimental data which are not correlated by
the Kozeny–Carman correlation and we can obtain β = 3.85 × 10−3 and αm = 4.68 ×
10−6 m2 s−1 according to (2.4) and (2.8), respectively. Then, the dimensionless parameters
defined in (3.8a–h) can be determined for a given porous layer thickness H and a specified
mean diameter of nanoparticles dp.
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Aluminium Al2O3 NP Water

Density (kg m−3) 2700 3800 997
Specific heat (J kg−1 K−1) 900 880 4180
Thermal conductivity (W m−1 K−1) 237 40 0.61
Diameter (nm) — 20 ∼ 80 —
Permeability (m2) 1.0 × 10−7 — —
Porosity 0.92 — —
Viscosity (Pa s) — — 8.9 × 10−4

Thermal expansion (K−1) — — 2.0 × 10−4

Table 1. Thermophysical properties used in the present analysis at room temperature.

Note that both RaD and NA depend on the temperature difference ΔT (i.e. ΔT = Th −
Tc). Therefore, they can be correlated by

χA = RaD

NA
=
ρ2

f βTDBTcKHg

μ2
f αmβ

. (5.1)

Similarly, the parameters Rn and NB are dependent on φ0 and they can be linked by

χB = Rn
NB

= (ρp − ρf )ρf cf KHg
μfαmρpcp

. (5.2)

The stability characteristics would be explored by considering nanoparticles with different
sizes of the mean diameter dp to evaluate the influence of gravity settling. Three typical
diameters: 20, 40 and 60 nm, will be employed, which stand for the small, moderate and
large sizes of nanoparticles, respectively. The following sections will discuss the results in
sequence.

5.1. Results of nanofluid with small-diameter nanoparticles
The case of the nanofluid containing small-size nanoparticles was examined first with
dp = 20 nm and H = 0.05 m. The corresponding dimensionless parameters are Le =
1.91 × 105, Ng = 1.39, χA = 4.99 and χB = 40 916. The concentration Rayleigh number
Rn indicates the effect of nanoparticle volume fraction as the definition in (3.8c). The
variation of neutral curves for several selected values of Rn is illustrated in figure 2.
The curve of Rn = 0 corresponds to φ0 = 0, which is the same as that of general
viscous fluids with the minimum located at RaD,c = 4π2(∼39.47) and kc = π(∼3.14).
The corresponding temperature difference across the porous layer ΔT is 16.87 K. It is
found that the neutral curve descends quickly with increasing Rn and the minimum on the
curve moves to the left rapidly. For the curve of Rn = 5 × 10−5, which is equivalent to
φ0 = 1.52 × 10−9, the critical Rayleigh–Darcy number RaD,c and critical wavenumber kc

reduce to 12.71 and 1.22, respectively. As Rn increases to 10−4, RaD,c reduces further to
9.85 and kc approaches zero, which corresponds to φ0 = 3.04 × 10−9 and ΔT = 4.21 K.
This result reveals that the addition of nanoparticles to the base fluid exerts a vigorous
destabilizing effect on the system. Once Rn increases further (i.e. Rn > 10−3), the neutral
curve tends to be a horizontal line and the critical Rayleigh number remains constant at
6.94.
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Figure 2. Neutral curves of several assigned values of Rn for dp = 20 nm.

To further manifest the instability characteristics, we demonstrate the variations of RaD,c
and kc with Rn respectively in figures 3(a) and 3(b). The case of ignoring the effect of
gravity settling with Ng = 0 is also shown for comparison. For the case Ng = 1.39, one can
see that RaD,c declines rapidly when Rn increases and then approaches a constant 6.94 as
Rn > 10−3, which renders NE → 0 or NA → Ng. The corresponding critical wavenumber
kc also experiences an abrupt decline and tends to be zero after Rn > 10−4, while it
begins to rise from zero as Rn > 1. Note that the neutral curve for the case with Rn > 1
still exhibits a near horizontal line, as shown in figure 2, but the critical point moves
to the right gradually as Rn increases. For the case Ng = 0 in the absence of gravity
settling effect, however, both RaD,c and kc reduce to zero eventually as Rn increases,
which indicates an unrealistically unconditionally unstable system. The difference in the
predictions of instability behaviours verifies that the effect of the gravity settling of the
nanoparticles plays an important role in the flow instability analysis of nanofluids. Figure 4
illustrates the three typical patterns of convection cells after Rn exceeds 1. As shown
in figure 4(a) for Rn = 2.5, the convection cells appear with larger wavelength and the
gradient of the streamfunction is significant in the regions adjacent to the upper and lower
boundaries. As Rn increases to 25, as in figure 4(b), the wavelength is shortened and
the convection magnitude is distributed uniformly across the porous layer. The wavelength
decreases further as Rn increases to 250, as shown in figure 4(c). The convection gradually
concentrates within the central part of the porous layer, with more vigorous flow indicated
by the steep gradient of the streamfunction. Note that all these cases belong to the
stationary mode. According to (2.3c), the thermophoretic diffusivity is proportional to
the volume fraction of nanoparticles. Hence, the instability characteristic reveals that an
increase in the effect of thermophoresis would shorten the wavelength and enhance the
convection at the onset of instability once the nanoparticle concentration exceeds a certain
critical value.

Although the physical mechanisms dominating the instability behaviours can be
revealed by the linear stability analysis, most conditions in practical engineering
applications occur in the nonlinear region. For example, the Rayleigh–Darcy number
would be 23.35 for a nanofluid with a nanoparticle volume fraction of 0.076 % (i.e.
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Figure 3. Variations of (a) the critical Rayleigh number RaD,c and (b) the critical wavenumber kc with Rn for
the case of dp = 20 nm.
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Figure 4. The flow patterns of onset convection cells for dp = 20 nm: (a) Rn = 2.5 and kc = 0.649,
(b) Rn = 25 and kc = 3.214 and (c) Rn = 250 and kc = 5.971.

Rn = 25) and temperature difference of 10 K across the porous layer, which is much
greater than the critical value 6.94 predicted by the linear stability analysis. It is reasonable
to expect the convection would be more vigorous and the instability modes would be
coupled together to evolve and grow dynamically with time.

In order to explore the flow characteristics after the onset of instability, the spectrum
of the growth rate of small disturbances was investigated and the flow evolution was
simulated by direct numerical simulation. Figure 5 displays the spectrum of the growth
rate sr with wavenumber k for three typical values of RaD at Rn = 25 with dp = 20 nm. As
RaD = 6.95, which is slightly higher than the critical value 6.94, the growth rate initially
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Figure 5. The spectra of growth rate sr at Rn = 25 for three typical cases with RaD > RaD,c (dp = 20 nm).

rises rapidly, reaches a maximum and then declines slowly with increasing wavenumber
k. As RaD increases further, as in the cases of 7.2 and 7.7 shown in the figure, the growth
rate rises abruptly with increasing k and then reaches a constant. This result indicates
that the growth rate would be raised as RaD exceeds the critical value and the onset of
convection would be dominated by the disturbances in the region of high wavenumber.
That is, the onset of convection would exhibit convection cells with short wavelength
once the system condition is away from the predicted critical state in which the onset of
convection is a stationary mode and occurs at relatively lower wavenumber. As shown in
the case of RaD = 7.7, the high-wavenumber disturbances (i.e. k > 10) appear to possess
the same growth rates. Therefore, these modes would interact with and couple to each
other to dominate the convection behaviours and tend to develop slim convection cells
eventually.

The nonlinear instability characteristics were examined by direct numerical simulations
and the results are shown in figure 6 for the evolution of the streamline pattern at three
typical values of time t∗ with Rn = 25, RaD = 7.7 and dp = 20 nm. The parameters used
in the numerical simulations are given in table 2 for the three typical cases of dp, in which
the other two cases of dp = 40 and 60 nm will be discussed later. Here, the aspect ratio
ar = 6 for the two-dimensional rectangular domain was employed throughout the present
simulations, which is sufficient to simulate the flow within the porous layer between the
two parallel plates, since the wavelength predicted by linear analysis is quite short and
thus the effect of the lateral boundaries could be neglected safely. The basic states based
on (3.12) and (3.14) were used as the initial conditions and then small disturbances were
superimposed on the system to trigger the onset of instability. The small disturbances
were simulated by adding a randomly distributed streamfunction with the order of 10−12.
The disturbances grow with time and the pattern of streamlines evolves simultaneously.
The flow pattern continues to evolve until an approximately invariable form after t∗ = 1.0
without further significant variation. The magnitude and gradient of the streamfunction
increase gradually with t∗, as illustrated in figure 6, which indicates that the flow velocity
increases with the evolution of time. In addition, the convection cells are generally slim
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Figure 6. Temporal evolution of streamfunctions for the case of dp = 20 nm at Rn = 25 and RaD = 7.7:
(a) t∗ = 3.6, (b) t∗ = 4.0 and (c) t∗ = 4.4.

dp 20 nm 40 nm 60 nm

Rn 25.0 25.0 25.0
RaD 7.7 28.0 62.0
Le 1.91 × 105 3.81 × 105 5.72 × 105

NA 1.543 11.219 37.264
NB 6.11 × 10−4 6.11 × 10−4 6.11 × 10−4

Ng 1.39 11.12 37.54
σ 1.065 1.065 1.065

Table 2. The parameters used in the numerical simulations for the three typical cases of dp.

with short wavelengths, which is in consistent with the prediction of linear stability
analysis, as shown in figure 5.

It is noted that the corresponding temperature profiles across the porous layer present
little variation with time. However, the nanoparticle concentration may exhibit a fingering
pattern, as demonstrated in figure 7. At t∗ = 3.6, as shown in figure 7(a), the concentration
profile of nanoparticles is almost the same as the distribution at the initial state. The
nanoparticles are more concentrated in the upper half of the porous layer due to the
stronger thermophoretic effect (i.e. NE > 0). Once the flow velocity grows and exceeds
a certain critical value, for example, as shown in figure 7(b) at t∗ = 4.0, where the
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Figure 7. Temporal evolution of nanofluid concentration for the case of dp = 20 nm at Rn = 25 and
RaD = 7.7: (a) t∗ = 3.6, (b) t∗ = 4.0 and (c) t∗ = 4.4.

vertical flow velocity is greater than 0.2, the downward long narrow cells are triggered,
which is similar to the salt fingers observed in double-diffusive convection (Huppert &
Turner 1981). The fingering pattern develops further and is more apparent, as illustrated
in figure 7(c) at t∗ = 4.4. Obviously, the fingering pattern of nanoparticle concentration is
induced by the growth of the narrow convection cells and the unstable density gradient.
Note that the thermophoretic effect would develop an unstable vertical density gradient
as the system is heated from below, while the effect of gravity settling would make an
opposing contribution to reduce the upwards density gradient. Since the upper fluid layer is
heavier due to the higher nanoparticle volume fraction, the presence of narrow convection
cells acts to release the gravitational potential energy in the heavier nanofluid at the top.
Such a fingering pattern also may provide more passages with higher thermal conductivity
for heat conduction and thus enhance the heat transfer efficiency across the porous layer.

5.2. Results of nanofluid with moderate-diameter nanoparticles
In this section, we consider the condition of a nanofluid composed of moderate-diameter
nanoparticles to further examine the influence of the gravity settling effect. The typical
case of dp = 40 m was employed in the analysis, and according to (2.3a) and (3.8h), the
parameter Ng would be enlarged 8 times if the mean diameter of nanoparticles is doubled.
Hence, the parameter Ng increases to 11.12 and the other related dimensionless parameters
are as follows: Le = 3.81 × 105, χA = 2.50 and χB = 40916. The variation of the neutral
curves with Rn is illustrated in figure 8. It is found that the neutral curves also descend and
flatten gradually with increasing Rn. That is, the addition of nanoparticles with moderate
diameter to the base fluid still presents a destabilizing effect on the system and a tiny
concentration of nanoparticles is sufficient to produce a significant destabilizing effect.
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Figure 8. Variation of neutral curves with Rn for the case of dp = 40 nm.

As Rn exceeds 10−4, the minimum on the neutral curve approaches a constant but the
corresponding critical wavenumber may vary with increasing Rn.

The corresponding variations of RaD,c and kc with Rn are illustrated in figure 9(a,b),
respectively. The results of the case in the absence of the gravity settling effect (i.e.
Ng = 0) are also displayed for comparison. Obviously, the neglect of the gravity settling
effect would cause unrealistic instability behaviours like the results observed in the case
dp = 20 nm as shown in figure 3. Once the effect of gravity settling was taken into
consideration, the value of RaD,c decreases first and then gradually approaches a constant
27.76. The variation characteristic is similar to the case dp = 20 nm. However, for the
critical wavenumber kc, the variation is quite different from the case dp = 20 nm. Instead
of decreasing to nearly zero as observed in figure 3(b), it presents a slight reduction first
and then rises with Rn after Rn > 1. The variation of kc in the high Rn region is less
important because the neutral curve would be a near horizontal line as Rn is large enough,
which indicates the instability for a wide range of wavenumber k would be very close
at the onset of instability. The flow patterns for three typical Rn values: 2.5, 25 and
250 are shown in figure 10(a–c), respectively. At lower nanoparticle concentration with
Rn = 2.5, the convention cells almost occupy the whole thickness of the porous layer. As
Rn increases to 25, the wavenumber increases and the flow velocity rises, as indicated by
the denser streamlines with a higher gradient of the streamfunction. The convection tends
to concentrate in the middle region of the porous layer and the more vigorous flow may
induce the weak small cells close to the upper and lower boundaries, as in the pattern at
Rn = 250.

The spectrum of growth rate for the state with RaD over the critical value is more
attractive in practical conditions. Figure 11 shows the spectra of growth rate for three
typical cases with higher RaD than RaD,c at Rn = 25. It is found that the spectrum of the
growth rate rises with increasing RaD and, for an assigned RaD, the growth rate exhibits
an increase with wavenumber k, reaches a maximum and then decreases gradually. The
unstable modes in the low- and high-wavenumber regions are obviously inhibited by the
magnified gravity settling effect. On the other hand, the unstable modes with moderate
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Figure 9. Variations of (a) the critical Rayleigh–Darcy number RaD,c and (b) the critical wavenumber kc
with Rn for the case of dp = 40 nm.
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Figure 10. The flow patterns of onset convection cells for dp = 40 nm: (a) Rn = 2.5 and kc = 3.63,
(b) Rn = 25 and kc = 5.82 and (c) Rn = 250 and kc = 7.02.

wavenumbers are conspicuous and dominate the onset of instability. For example, as
shown for the case RaD = 28.2, the most unstable modes occur approximately within the
range k = 4.7 ∼ 5.0. This result is quite different from the case of small nanoparticle
diameter where the unstable modes with high wavenumbers determine the instability
characteristics.

The results of the numerical simulation for the flow patterns are illustrated in figure 12
with Rn = 25 and RaD = 28. The other parameters used in the simulation are listed in
table 2. The convection cells grow gradually with time, as shown in figure 12(a) for
t∗ = 1.0. The flow pattern eventually approaches a steady form but the magnitude and
gradient of the streamfunction continue to rise with time, as shown in figures 12(b)
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Figure 11. The spectra of growth rate sr at Rn = 25 for three typical cases with RaD > RaD,c (dp = 40 nm).

and 12(c) for t∗ = 3 and 5, respectively, which indicates that the flow velocity increases
continuously. In particular, we can estimate the wavenumber as approximately 4.4 within
the two-dimensional domain with ar = 6, which is in excellent agreement with the most
unstable mode with kmax = 4.5 as predicted in figure 11. Because the simulation was
performed within a confined domain and we have taken the nonlinear coupling effects into
consideration, this result reveals that the present model for direct numerical simulation can
explore the instability behaviours precisely. After t∗ > 5, the dimensionless flow velocity
would be greater than 0.1, which is sufficient to induce the variations of nanoparticle
concentration and temperature across the porous layer.

The evolution of nanoparticle concentration is demonstrated in figure 13. As t∗ < 5,
the flow velocity is too weak to induce variations in nanoparticle concentration and
temperature. Hence, both the nanoparticle concentration and temperature profiles remain
the same as those in the basic state. Once the convection cells develop to a certain
extent after t∗ > 5, the growing convective motion causes the concentration profile to
transform into a wavy distribution, as shown in figures 13(b) and 13(c). The corresponding
temperature profiles are displayed in figure 14. It is obvious that the temperature profile
would be affected by the convection later than the concentration profile and then also
begin to vary into a wavy form. The major reason is due to the high Lewis number of the
nanofluid and the thermal diffusivity being generally much higher than the diffusivity of
the nanoparticles. It is noted that, once the dimensionless flow velocity exceeds 1.0, the
gradients of nanoparticle concentration and temperature will rise rapidly. Under such a
condition, the local thermal equilibrium between the matrix of the porous medium and
the nanofluid could be violated and then cause the deviation of the simulation result
from the practical condition. In addition, according to the CFL convergence condition,
the steeper gradient of nanoparticle concentration should accompany a smaller time step
in the solution process to avoid the occurrence of divergence. This would consume much
time and raise the cost of the simulation greatly. Therefore, it is crucial to perform the
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Figure 12. The evolution of the streamfunction at Rn = 25 and RaD = 28 for the case of dp = 40 nm:
(a) t∗ = 1, (b) t∗ = 3 and (c) t∗ = 5.

numerical simulation within an appropriate range of t∗ which is sufficient to obtain correct
results for the nonlinear instability behaviours.

Note that the fingering pattern of nanoparticle concentration was not observed at the
condition of Rn = 25. However, once the parameter Rn increases further, which indicates
a higher nanoparticle concentration and thermophoretic diffusion effect, the dimensional
density gradient across the porous layer would be raised and the onset of fingering
convection can still be triggered. As shown in figure 15, in which Rn increases to 250,
the onset of nanoparticle convection occurs at approximately t∗ = 6, as illustrated in
figure 15(a), due to the higher thermophoretic effect indicated by (2.3c), and then the
fingering convection of nanofluid concentration emerges and grows gradually with time.
It is found that, as shown in figure 16, the spectrum of the growth rate from the linear
stability analysis for Rn = 250 presents a similar pattern to figure 5. That is, the unstable
modes in the high-wavenumber region present comparable growth rates. Hence, the onset
of instability would be dominated by the unstable modes with high wavenumbers again
and the resultant long narrow convection cells cause the occurrence of a fingering pattern
once the convection magnitude is strong enough.
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Figure 13. Temporal evolution of nanofluid concentration for the case of dp = 40 nm at Rn = 25 and
RaD = 28: (a) t∗ = 5, (b) t∗ = 5.4 and (c) t∗ = 5.8.

5.3. Results of nanofluid with large-diameter nanoparticles
The effect of gravity settling exerts a significant stabilizing effect on the system stability
as the mean diameter of the nanoparticles increases. Since a nanoparticle diameter within
the range of 20 ∼ 60 nm is commonly used in nanofluids, in this section, we further
consider the typical case of a nanofluid with a lager nanoparticle diameter of 60 nm. The
effect of gravity settling would be enlarged 27 times relative to the case of dp = 20 nm.
Hence, the instability characteristics are expected to be different from those of a nanofluid
with a smaller nanoparticle diameter. The corresponding dimensionless parameters are as
follows: Le = 5.72 × 105, Ng = 37.54, χA = 1.66 and χB = 4.09 × 104. The variation of
the neutral curves with Rn is shown in figure 17(a). As Rn is less than 0.01, the nanoparticle
concentration is too low to have any apparent influence on the flow instability. The critical
value of RaD is still quite close to the theoretical value 4π2 of the case for the porous
layer saturated with pure viscous fluid and only the stationary mode can be observed
on the neutral curve. Once the nanoparticle concentration increases with Rn over 0.01,
however, in contrast to the small- and moderate-diameter nanoparticles, the nanofluid with
large-diameter nanoparticles exhibits enhanced flow stability. The neutral curve never dips
lower but rises gradually with increasing Rn. In particular, the oscillatory mode emerges
on the neutral curve in the range of wavenumber from 1.5 to 6.4, as shown in figure 17(b),
and the oscillatory frequency grows gradually with increasing Rn. This result reveals the
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Figure 14. Temporal evolution of temperature for the case of dp = 40 nm at Rn = 25 and RaD = 28:
(a) t∗ = 5, (b) t∗ = 5.4 and (c) t∗ = 5.8.

significance of the gravity settling effect, which is a strong stabilizing factor and may
induce the onset of the oscillatory mode.

To demonstrate the linear stability characteristics clearly, the variations of RaD,c, kc and
the magnitude of the critical oscillatory frequency |si,c| with Rn are respectively illustrated
in figure 18(a–c). One can see that RaD,c is equal to 39.47 and almost invariable until
Rn is greater than 0.1, then RaD,c rises and the corresponding value of NA approaches
Ng eventually. This result verifies the instability mechanism again that the stability of
nanofluid flow is dominated by the relative strength of thermophoresis to gravity settling.
Once the effect of thermophoresis prevails over the effect of gravity settling, the system
would become unstable. Therefore, a larger nanoparticle diameter would produce a
stronger gravity settling effect that makes the critical value of RaD rise. In other words,
the system tends to be more stable. In particular, it is noted that the equivalent parameter
NA approaches Ng in the negative direction of Ng with increasing Rn (i.e. NE < 0), which
is different from the two cases of small- and moderate-nanoparticle diameters. That is, the
upward gradient of nanoparticle volume fraction is always negative at the critical state with
a stably stratified distribution in the basic state. Under such a condition, the contribution of
nanoparticle concentration to nanofluid density is opposite to the contribution of thermal
instability, and the interaction between the destabilizing effect of thermophoresis and the
stabilizing effect of gravity leads to the result that the oscillatory mode prevails over the
stationary mode and dominates the onset of instability. Note that, when the thermophoretic
effect is strong enough to produce an unstable profile of nanofluid concentration, the
oscillatory mode vanishes and the stationary mode dominates again. If the effect of gravity
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Figure 15. Temporal evolution of nanofluid concentration for the case of dp = 40 nm at Rn = 250 and
RaD = 28: (a) t∗ = 6, (b) t∗ = 6.5 and (c) t∗ = 7.
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Figure 16. The spectra of growth rate sr at Rn = 250 for three typical cases with RaD > RaD,c (dp = 40 nm).

settling is ignored, one would obtain unrealistic results of unconditional instability again,
as in the red curves shown in figure 18 with Ng = 0. The variation of kc is limited and
it first decreases slightly from 3.14 to 3.06, and then becomes constant at 3.14 again. The
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Figure 17. Variations of (a) neutral curves with Rn, and (b) the corresponding oscillatory frequency for the
case of dp = 60 nm.

variation of |si,c| is remarkable and it begins to rise as Rn > 10−3, and then approaches a
constant of 14.1.

Three typical flow patterns of the oscillatory mode are shown in figure 19. At Rn = 2.5,
the oscillatory convection cells are inclined and occupy the whole thickness of the porous
layer. As Rn increases to 25 and 250, as shown in figures 19(b) and 19(c), respectively,
the inclined convection cells gradually turn into square cells with higher oscillatory
frequency. The gradient of the streamfunction presents infinitesimal variation in these
flow patterns, which implies the convection magnitudes at the onset of instability are
almost equivalent in these cases. The variations of growth rate sr and the corresponding
magnitude of the oscillatory frequency |si| for several typical cases with RaD > RaD,c at
Rn = 25 are respectively shown in figures 20(a) and 20(b). It is found that the unstable
modes appear as RaD > 61.2, and the spectrum extends and rises gradually with RaD.
However, the corresponding oscillatory frequency |si| decreases with increasing RaD, as
shown in figure 20(b). The most unstable mode with the maximum growth rate moves
gradually to the right from kmax = 3.14 at RaD = 61.3 to kmax = 3.6 at RaD = 62. Note
that, once RaD is close to 62.33 (i.e. NA > Ng), the stationary mode would emerge on the
spectrum and gives the maximum growth rate, as shown in figure 20(a). The profile of
nanofluid concentration would become unstably stratified at the basic state. As a result,
the most unstable mode would be replaced by the stationary mode with |si| = 0. After
RaD > 62.33, the stationary mode on the spectrum extends gradually, while the oscillatory
mode recedes and then vanishes eventually. The spectra of the cases with RaD > 62.33 in
figure 20(a) are all stationary modes and the variation is similar to the result displayed in
figure 11.

The onset of the oscillatory mode was verified by numerical simulation and the results
are demonstrated in figure 21 for the evolution of flow patterns with time at Rn = 25
and RaD = 62. The other parameters are listed in table 2. Square convection cells are
observed and, in particular, the convection cells become travelling waves and oscillate in
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Figure 18. Variations of the critical values (a) RaD,c, (b) kc and (c) |si,c| with Rn for the case of dp = 60 nm.

the horizontal direction. The convection magnitude also presents oscillation but generally
grows with time. The wavenumber oscillates in the range from 3.14 to 3.66, which is
consistent with the result of linear stability analysis that the most unstable mode is
determined by the oscillatory modes near kmax = 3.6. The oscillatory frequency is not a
constant but varies with time. The difference between the results of linear stability analysis
and direct numerical simulation is primary due to the confined domain in numerical
simulation, while the horizontal porous layer is assumed to extend infinitely in horizontal
direction. However, the results of numerical simulation are still in excellent agreement
with the instability behaviours predicted by the linear stability analysis. The corresponding
profiles of nanofluid concentration are shown in figure 22. It is noted that, at RaD = 62,
the parameter NE is negative, which results in a stably stratified nanofluid layer at the basic
state, as indicated in figure 22(a). Once the convection of oscillatory cells is strong enough,
we can observe the wavy profile of nanofluid concentration, as shown in figure 22(b). The
wavy pattern grows gradually and oscillates as travelling waves in the horizontal direction,
as illustrated in figure 22(c). A supplementary movie, available at https://doi.org/10.1017/
jfm.2024.124, shows the temporal behaviour of the travelling wavy patterns.

The fingering pattern of nanofluid concentration still can be observed when Rn increases
with NE > 0. For example, at Rn = 250 with RaD = 63.5, the spectrum of the growth rate
presents the same form as in the case RaD = 28 or 28.2 in figure 16. Moreover, the growth
rate is much higher and would exceed 100 in the high-wavenumber region and the density
difference across the porous layer is significant in an unstably stratified distribution.
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Figure 19. The flow patterns of onset convection cells for dp = 60 nm: (a) Rn = 2.5, kc = 3.07, RaD,c =
52.32 and |si,c| = 7.7, (b) Rn = 25, kc = 3.14, RaD,c = 61.21 and |si,c| = 13.64, (c) Rn = 250, kc = 3.14,
RaD,c = 62.33 and |si,c| = 14.09.
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Figure 20. (a) The spectra of growth rate sr at Rn = 25 for several typical cases with RaD > RaD,c (dp =
60 nm), and (b) the corresponding magnitudes of oscillatory frequency |si|. (The solid and dashed lines indicate
the stationary (ST) and the oscillatory (OS) modes, respectively.)

984 A5-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

12
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.124


Effect of gravity settling on nanofluid porous layer

–9.3 × 10–3 –0.005 0

Stream

0.005 9.5 × 10–3

–2.5 × 10–2 –0.01 0

Stream

0.020.01 3.3 × 10–2

–1.4 × 10–1 –0.05 0
Stream

0.05 1.4 × 10–1

(a)

(b)

(c)

Figure 21. The evolution of oscillatory flow patterns at Rn = 25 and RaD = 62 for the case of dp = 60 nm:
(a) t∗ = 6.01, (b) t∗ = 6.26 and (c) t∗ = 6.74 (see supplementary movie).

Therefore, the onset of a fingering pattern of nanofluid concentration would be triggered
quickly by the unstable modes with high wavenumbers, as revealed in figure 15.

6. Conclusions

The thermal instability in a horizontal porous layer saturated with a nanofluid was
investigated in this study. The Darcy model was used for the high-porosity porous layer
and the diffusion of nanoparticles was simulated by the revised Buongiorno model, in
which the effect of gravity settling was taken into consideration. By linear stability
analysis, the stability characteristics were found to depend heavily on the size of the
nanoparticles. For a nanofluid with a smaller mean diameter of nanoparticles, the effect
of thermophoresis is more pronounced than the effect of gravity settling, which results
in a highly unstable density profile across the porous layer. As a result, the system
was destabilized significantly. In addition, once RaD exceeds the critical value, the
spectrum of growth rate behaves as a flat line in the high-wavenumber region to govern
the onset of instability. The convection would present in the form of small narrow
convection cells, which has been verified by direct numerical simulation. In particular,
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Figure 22. Temporal evolution of nanofluid concentration for the case of dp = 60 nm at Rn = 25 and
RaD = 62: (a) t∗ = 6.01, (b) t∗ = 6.26 and (c) t∗ = 6.74 (see supplementary movie).

the narrow convection cells may trigger the occurrence of a fingering pattern of nanofluid
concentration, which could be a possible mechanism to enhance the heat transfer efficiency
across the layer. For the case of a nanofluid with a larger size of the nanoparticle diameter,
the gravity settling effect would be enlarged to balance the thermophoretic effect. Hence,
the flow would be stabilized by employing the nanofluid and the onset of instability
would be dominated by the oscillatory mode if the gravity settling effect is large enough
to produce a stably stratified nanofluid concentration at the basic state. However, if the
nanofluid concentration is lower, the convection cells would not induce the appearance
of a fingering pattern of the nanofluid concentration but instead a pattern in the form
of travelling waves. If the nanofluid concentration is large enough, the fingering pattern
still can be observed once the thermophoretic effect prevails over the gravity settling
effect to produce an initially unstably stratified nanofluid concentration profile. Notice
that the heat transfer efficiency, or Nusselt number, is not discussed in this work. The
main reason for this relates to the assumptions made in the present model. Since this
study aims to explore the effect of the gravity settling of nanoparticles on the onset of
Darcy-type Rayleigh–Bénard convection, it is appropriate to assume the conditions of
local thermal equilibrium, constant thermophysical properties and negligible mechanical
dispersion effects. However, the interstitial heat transfer between the fluid and solid matrix
may become significant when the flow velocity is high (Zhang et al. 2015) and the effect
of mechanical dispersion could be more dominant than molecular diffusion. The present
results reveal that, unlike pure fluid systems, convection in nanofluid systems beyond
the critical condition is usually violent, even at low Rayleigh number. As shown by the
present linear stability analysis and numerical simulation, the induced velocity grows
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quickly at a finite time after the onset of convection, which may cause the assumptions
break down already. Thus, the present numerical simulations are valid only in a short
period of time after the onset of instability. Nevertheless, the numerical simulations in
this work confirm the results of linear stability analysis. It also provides a preliminarily
understanding of the flow characteristics after the onset of convection. The other reason
is due to the difficulty arising from the numerical method itself. Even though we ignore
the failure of the assumptions, it is still difficult to proceed with calculation once the steep
concentration gradients appear in the flow field after a longer time. Briefly, the diffusion of
nanoparticles caused by Brownian motion is much slower than thermal diffusion, which
causes an extremely high Lewis number for the nanofluid in comparison with general
solute fluids. This inevitably leads to great difficulties in numerical calculations. In fact,
the migration of nanoparticles tends to induce high concentration gradients within the flow
structure because the time scale of nanoparticle diffusion is much longer than the other
characteristic times. This phenomenon implies that a finer mesh structure and a smaller
time step are required in the simulations. That is, the simulation of vigorous convection
far beyond the critical condition would be quite costly but could be studied further in the
future.

The present results reveal that the flow tends to be destabilized by using smaller
nanoparticles in the composition of the nanofluid. The work also promotes the occurrence
of fingering convection of nanoparticles in the porous layer. On the contrary, a larger
nanoparticle size would stabilize the flow and a higher temperature difference is required
to trigger the onset of convection. A three-dimensional numerical simulation in the
future would benefit our understanding of the structure of thefingering pattern of the
nanofluid concentration and the mechanisms that induce this flow instability behaviour.
An experimental study is also very interesting and important to observe the possible
occurrence of fingering convection in a nanofluid-saturated porous layer and confirm the
present numerical predictions.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.124.
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