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CONVERGENCE OF THE KIEFER–WOLFOWITZ ALGORITHM IN THE
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Abstract

In this paper we estimate the expected error of a stochastic approximation algorithm
where the maximum of a function is found using finite differences of a stochastic rep-
resentation of that function. An error estimate of the order n−1/5 for the nth iteration
is achieved using suitable parameters. The novelty with respect to previous studies is
that we allow the stochastic representation to be discontinuous and to consist of possibly
dependent random variables (satisfying a mixing condition).

Keywords: Stochastic approximation; dependent data; threshold strategies

2020 Mathematics Subject Classification: Primary 93E35
Secondary 91G60

1. Introduction

We are interested in maximizing a function U : Rd →R which is unknown. However, we
can observe a sequence J(θ, Xn), n ≥ 1, where J : Rd ×R

m →R is measurable,

E[J(θ, X1)] = U(θ ), θ ∈R
d, (1)

and Xn, n ≥ 1, is an R
m-valued stationary process in the strong sense. The stochastic represen-

tations J(θ, Xn) are often interpreted as noisy measurements of U(θ ). In this paper we focus on
applications to mathematical finance, described in Section 6 below, where J(θ, Xt) are func-
tionals of observed economic variables Xt and θ determines an investor’s portfolio strategy.
In that context, stochasticity does not come from measurement errors; rather, it is an intrinsic
property of the system. Maximizing U serves to find the best investment policy in an online,
adaptive manner.

We study a recursive algorithm employing finite differences, as proposed by Kiefer and
Wolfowitz in [14]. This is a variant of the Robbins–Monro stochastic gradient method [19]
where, instead of the objective function itself, its gradient is assumed to admit a stochastic
representation.

The novelty in our work is that we do not assume differentiability, nor even continuity,
of θ → J(θ, ·), and the sequence Xn may well be dependent as long as it satisfies a mixing
condition. The only result in such a setting that we are aware of is in [16], which, however,
studies only almost sure convergence, without a convergence rate. Our purpose is not to find
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Discontinuous Kiefer–Wolfowitz procedures 383

the weakest possible hypotheses but to arouse keen interest in the given problem that may lead
to further, more general results. Our work is also a continuation of [7, 4], where discontinuous
stochastic gradient procedures were treated.

The main theorems are stated in Section 2 and proved in Section 3. Section 4 recalls earlier
results that we are relying on. A numerical example is provided in Section 5. We explain the
significance of our results for algorithmic trading in Section 6.

2. Set-up and results

For real-valued quantities X, Y , the notation X = O(Y) means that there is a constant C > 0
such that |X| ≤ CY . We will always work on a fixed probability space (�,F , P) equipped with
a filtration Fn, n ∈N, such that F0 = {∅, �}. A decreasing sequence of sigma-algebras F+

n ,
n ∈N, is also given, such that, for each n ∈N, Fn and F+

n are independent and Xn is adapted
to Fn. The notation E[X] refers to the expectation of a real-valued random variable X, while
Ek[X] is a shorthand notation for E[X|Fk], k ∈N. Pk(A) refers to the conditional probability
P(A|Fk). We denote by 1A the indicator of a set A. The notation ω refers to a generic element
of �. For r ≥ 1, we refer to the set of random variables with finite rth moments as Lr. Vertical
bars |·| denote the Euclidean norm in R

k, where k may vary according to the context.
For i = 1, . . . , d, let ei ∈R

d denote the vector in which the ith coordinate is 1 and the other
coordinates are 0. For two vectors v, w ∈R

m, the relation v ≤ w expresses that vi ≤ wi for all
the components i = 1, . . . , m. Let Br := {

θ ∈R
d: |θ | ≤ r

}
denote the ball of radius r, for r ≥ 0.

Let the function U : Rd →R have a unique maximum at the point θ∗ ∈R
d. Consider the

following recursive stochastic approximation scheme for finding θ∗:

θk+1 = θk + λkH
(
θk, Xk+1, ck

)
, for k ∈N, (2)

starting from some initial (deterministic) guess θ0 ∈R
d, where H is an estimator of the gradient

of J, defined as

H(θ, x, c) =
d∑

i=1

J(θ + cei, x) − J(θ − cei, x)

2c
ei,

for all θ ∈R
d, x ∈R

m, and c > 0.
The sequences (λk)k∈N and (ck)k∈N appearing in (2) will consist of positive real numbers,

which are to be specified later. We will distinguish the cases where λk, ck tend to zero and
where they are kept constant, the former being called decreasing-gain approximation and the
latter fixed-gain approximation.

Remark 2.1. Our results below could easily be formulated in a more general setting where
J
(
θk + ckei, Xk+1(i)

)
and J

(
θk − ckei, X′

k+1(i)
)
, i = 1, . . . , d, are considered with distinct

Xk+1(i) and X′
k+1(i). In the applications that motivate us this is not the case; hence, for reasons

of simplicity, we stay in the present setting.

Assumption 2.1. U is continuously differentiable with unique maximum θ∗ ∈R
d. Let G(θ ) =

∇U(θ ). The function G is assumed Lipschitz-continuous with Lipschitz constant LG.

We assume in the sequel that the function J in (1) has a specific form. Note that though J is
not continuous, U can nonetheless be continuously differentiable, by the smoothing effect of
randomness.

https://doi.org/10.1017/apr.2022.25 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2022.25


384 M. RÁSONYI AND K. TIKOSI

Assumption 2.2. Let the function J be of the following specific form:

J(θ, x) = l0(θ )1A0(x) +
ms∑
i=1

1Ai(x)li(θ, x),

where li : Rd ×R
m →R

d are Lipschitz-continuous (in both variables) for i = 1, . . . , ms, and
for some mp, m′

p ∈N,

Ai(x) :=
(

∩mp
j=1

{
θ : x ≤ gj

i(θ )
})⋂(

∩m′
p

j=1

{
θ : x > hj

i(θ )
})

, i = 1, . . . , ms,

with Lipschitz-continuous functions gj
i, hj

i : Rd →R
m. Furthermore, A0(x) := R

d \ ∪ms
i=1Ai(x)

and

∪x∈Rm ∪ms
i=1 Ai(x) ⊂ BD

for some D > 0. The function l0 is twice continuously differentiable, and there are constants
L′′

1, L′′
2 such that

L′′
1I ≤ ∇∇l0 ≤ L′′

2I,

where I is the d × d identity matrix.

Remark 2.2. Assumption 2.2 implies that ∇l0 grows linearly, and hence l0 itself is locally
Lipschitz with linearly growing Lipschitz coefficient; that is,

|l0(θ1) − l0(θ2)| ≤ L0(1 + |θ1| + |θ2|)|θ1 − θ2|,

with some L0 > 0, for all θ1, θ2 ∈R
d.

In plain English, we consider J which is smooth on a finite number of bounded domains
(the interior of the constraint sets Ai(x), i = 1, . . . , ms) but may have discontinuities at the
boundaries. Furthermore, J (and hence also U) is required to be quadratic ‘near infinity’ (on
A0(x)).

We briefly explain why such a hypothesis is not restrictive for real-life applications.
Normally, there is a compact set Q (e.g. a cube or a ball) such that only parameters from
Q are relevant, i.e. U is defined only on Q. Assume it has some stochastic representation

U(θ ) =E[J(θ, X0)], θ ∈ Q, (3)

and a unique maximum θ∗ ∈ Q. Assume that Q ⊂ BD for some D. Extend U outside BD as
U(θ ) = −A|θ |2 + B for suitable A, B. Extend U and J to BD \ Q as well in such a way that
U is continuously differentiable, and U(θ ) < U(θ∗) for all θ = θ∗ (see Section 4 of [5] for a
rigorous construction of this kind). Set J := U outside Q. Then our maximization procedure
can be applied to this setting for finding θ∗.

Defining U = l0 to be (essentially) quadratic outside a compact set is one way of solving
the problem that such procedures often leave their effective domain Q. Other solutions are
resetting (see e.g. [9]) or an analysis of the probability of divergence (see e.g. [2]).

The next assumption postulates that the process X should be bounded and the conditional
laws of Xk+1 should be absolutely continuous with a bounded density.
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Assumption 2.3. For each k ∈N,

Pk
(
Xk+1 ∈ A

)
(ω) =

∫
A

pk(u, ω)du, P − almost surely, A ∈B(Rd)
for some measurable pk : Rd × � →R+, and there is a fixed constant F such that pk(u, ω) ≤ F
holds for all k, ω, u. The random variable X0 satisfies |X0| ≤ K0 for some constant K0.

Note that, by strong stationarity, the process Xk is uniformly bounded under Assumption 2.3.
We will assume a certain mixing property about the process Xn which we recall now.

A family of R
d-valued random variables Zi, i ∈ I, is called Lr-bounded for some r ≥ 1 if

supi∈I E|Zi|r < ∞; here I may be an arbitrary index set.
For a random field Yn(θ ), n ∈N, θ ∈R

d, bounded in Lr for some r ≥ 1, we define, for all
n ∈N,

Mn
r (Y) = ess sup

θ

sup
k∈N

E
1/r[|Yn+k(θ )|r |Fn],

γ n
r (τ, Y) = ess sup

θ

sup
k≥τ

E
1/r [∣∣Yn+k(θ ) −E

[
Yn+k(θ )

∣∣F+
n+k−τ ∨Fn

]∣∣r |Fn
]
, τ ≥ 0,

�n
r (Y) =

∞∑
τ=0

γ n
r (τ, Y).

These quantities clearly make sense also for any Lr-bounded stochastic process Yn, n ∈N (the
essential suprema disappear in this case). Mn

r (Y) measures the (conditional) moments of Y ,
while �n

r (Y) describes its dependence structure (like covariance decay). In particular, one can
define Mn

r (X), �n
r (X). We clearly have Mn

r (X) ≤ K0 under Assumption 2.3. The quantities �n
r (X)

will figure in certain estimates later.

Assumption 2.4. For some ε > 0, γ n
3 (τ, X) = O

(
(1 + τ )−4−ε

)
, where the constant of O(·) is

independent of ω, τ , and n. Furthermore,

E
[∣∣Xn+k −E

[
Xn+k|F+

n

]∣∣]= O
(
k−2−ε

)
, k ≥ 1,

where the constant of O(·) is independent of n, k.

Both requirements in Assumption 2.4 are about how the effect of the past on the present
decreases as we go back farther in time.

Example 2.1. Let εn, n ∈N, be a bounded sequence of independent and identically distributed
(i.i.d.) random variables in R

m with bounded density w.r.t. the Lebesgue measure, and choose
Fk := σ (εj, j ≤ k) and F+

k := σ (εj, j ≥ k + 1). Then Xn := εn, n ∈N, satisfies Assumptions
2.3 and 2.4. A causal infinite moving average process whose coefficients decay sufficiently fast
is another pertinent example. Indeed, using the argument of Lemma 4.2 of [4], one can show
that Xn := ∑∞

j=0 sjεn−j, n ∈N, satisfies Assumption 2.4, where the εi are as above, s0 = 0, and

|sj| ≤ (1 + j)−β holds for some β > 9/2. Assumption 2.3 is also clearly satisfied in that model.

Remark 2.3. A random field Yn(θ ), n ∈N, is called uniformly conditionally L-mixing if Yn(θ )
is adapted to the filtration Fn, n ∈N, for all θ , and the sequences Mn

r (Y), �n
r (Y), n ∈N, are

bounded in Lr for each r ≥ 1. Our Assumption 2.4 thus requires a sort of related mixing
property. Conditional L-mixing was introduced in [4], inspired by [8].
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2.1. Decreasing-gain stochastic approximation

The usual assumption on the sequences (λk)k=1,2,... and (ck)k=1,2,... in the definition of the
recursive scheme (2) are the following (see [14]):

ck→0, k → ∞,
∞∑

k=1

λk =∞,

∞∑
k=1

λkck <∞,

∞∑
k=1

λ2
kc−2

k <∞. (4)

In the sequel we stick to a more concrete choice which clearly fulfills the conditions in (4)
above.

Assumption 2.5. We fix λ0, c0 > 0, γ ∈ (0, 1/3), and set

λk = λ0

∫ k+1

k

1

u
du

and ck = c0k−γ , k ≥ 1. We also assume c0 ≤ 1.

Asymptotically λk behaves like λ0/k. However, our choice somewhat simplifies the
otherwise already involved theoretical analysis.

The ordinary differential equation (ODE) associated with the problem is

ẏt = λ0

t
G(yt). (5)

The idea of using an associated deterministic ODE to study the asymptotic properties of
recursive schemes was introduced by Ljung in [17]. The intuition behind this association is
that in the long run the noise effects average out and the asymptotic behavior is determined by
this ‘mean’ differential equation. A heuristic connection between the dynamics of the recursive
scheme and the ODE can be seen if one looks at the Euler discretization of the latter.

The solution of (5) with initial condition ys = ξ will be denoted by y(t, s, ξ ) for 0 < s ≤ t.

Assumption 2.6. The ODE (5) fulfills the stability assumption formulated below: there exist
C∗ > 0 and α > 0 such that ∣∣∣∣∂y(t, s, ξ )

∂ξ

∣∣∣∣≤ C∗ ( s

t

)α

for all 0 < s < t.

Our main result comes next.

Theorem 2.1. Let Assumptions 2.1, 2.2, 2.3, 2.4, 2.5, and 2.6 hold. Then E|θn − θ∗| =
O
(
n−χ + n−α

)
, n ≥ 1, where χ = min

{ 1
2 − 3

2γ, γ
}

and the constant in O(·) depends only
on θ0.

To get the best result, set γ = 1
5 . In this case the convergence rate is χ = 1

5 (provided that
α ≥ 1/5). For Kiefer–Wolfowitz procedures, [20] establishes a convergence rate n−1/3 under
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fairly restrictive conditions (e.g. J is assumed smooth and X is i.i.d.). Our approach is entirely
different from that of [20] and relies on the ODE method (see e.g. [15]) in the spirit of [9, 11,
10], where so-called SPSA procedures were analyzed.

Theoretical analysis in the present case is much more involved for two reasons: the dis-
continuities of J and the state-dependent setting (hardly analyzed in the literature at all). Our
results are closest to those of [10], where a rate of n−2/7 is obtained for the SPSA algorithm
(a close relative of Kiefer–Wolfowitz), with strong smoothness assumptions imposed on J. As
already remarked, in the absence of smoothness ours is the first study providing a convergence
rate. Further strengthening of our result seems to be difficult and will be the object of further
investigations.

We also point to two related papers where stochastic gradient procedures are analyzed: [7]
treats the Markovian case while [4] is about possibly non-Markovian settings. In these studies,
the gradient of J is assumed to exist, but it may be discontinuous. Some of the ideas of [4]
apply in the present, more difficult case where even the continuity of J fails.

2.2. Fixed-gain stochastic approximation

Let us also consider a modified recursive scheme

θk+1 = θk + aH(θk, Xk+1, c), k ∈N, (6)

where a and c are fixed (small) positive reals, independent of k. In contrast with the previ-
ous scheme (2), which is meant to converge to the maximum of the function, this method is
expected to track the maximum.

The ODEs associated with the problem are

ẏt = λG(yt), (7)

for each λ > 0.
Note that, by an exponential time change, one can show that Assumption 2.6 on the ODE

(5) implies (7) being exponentially stable, i.e. satisfying∣∣∣∣∂y(t, s, ξ )

∂ξ

∣∣∣∣≤ C∗e−αλ(t−s), 0 < s ≤ t,

for some α > 0 (possibly different from the one in (5)).

Theorem 2.2. Let Assumptions 2.1, 2.2, 2.3, 2.4, and 2.6 hold. Then E|θn − θ∗| =
O
(

max
(

c2,
√

a
c

)
+ e−aαn

)
holds for all n ≥ 1, where the constant in O(·) depends only

on θ0.

Note that, similarly to the decreasing-gain setting, this leads to the best choice being c = a
1
5 .

We know of no other papers where the fixed-gain case has been treated. In the case of stochastic
gradients there are many such studies obtaining a rate of

√
a for step size a; see e.g. [4] and

the references therein.

3. Proofs

The following lemma will play a pivotal role in our estimates: it establishes the conditional
Lipschitz-continuity of the difference function obtained from J.
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Lemma 3.1. Under Assumptions 2.2 and 2.3, there is C� > 0 such that, for each i = 1, . . . , d
and c ≤ 1,

Ek
∣∣J(θ̄1 + cei, Xk+1

)− J
(
θ̄1 − cei, Xk+1

)− J
(
θ̄2 + cei, Xk+1

)+ J
(
θ̄2 − cei, Xk+1

)∣∣
≤ C�

[|θ̄1 − θ̄2| + c2]
holds for all k ∈N and for all pairs of Fk-measurable R

d-valued random variables θ̄1, θ̄2.

Proof. We assume that ms = 1, mp = 1, m′
p = 0. We will briefly refer to the general

case later. We thus assume that J(θ, x) = l1(θ, x)1{x≤g(θ)} + l0(θ )1A0(x) with some Lipschitz-
continuous g, l1 with Lipschitz constant L1 (for both). Let K1 be an upper bound for l1 in
BD+2.

Consider first the event A1 := {
θ̄1, θ̄2 ∈ BD+1

}
and the corresponding indicator I1 := 1A1 .

Note that on I1 we have θ̄j ± cei ∈ BD+2, j = 1, 2. Now estimate

Ek

∣∣∣I1l1
(
θ̄1 + cei, Xk+1

)
1{

Xk+1≤g
(
θ̄1+cei

)} − I1l1
(
θ̄2 + cei, Xk+1

)
1{

Xk+1≤g
(
θ̄2+cei

)}∣∣∣
≤Ek

∣∣∣I1l1
(
θ̄1 + cei, Xk+1

)
1{

Xk+1≤g
(
θ̄1+cei

)} − I1l1
(
θ̄2 + cei, Xk+1

)
1{

Xk+1≤g
(
θ̄1+cei

)}∣∣∣
+Ek

∣∣∣I1l1
(
θ̄2 + cei, Xk+1

)
1{

Xk+1≤g
(
θ̄1+cei

)} − I1l1
(
θ̄2 + cei, Xk+1

)
1{

Xk+1≤g
(
θ̄2+cei

)}∣∣∣
≤ L1Ek

∣∣θ̄1 − θ̄2
∣∣+ K1

m∑
j=1

[
Pk
(
gj(θ̄2 + cei

)
< Xj

k+1 ≤ gj(θ̄1 + cei
))

+Pk
(
gj(θ̄1 + cei

)
< Xj

k+1 ≤ gj(θ̄2 + cei
))]

≤ L1
∣∣θ̄1 − θ̄2

∣∣+ 2mK1L1F
∣∣θ̄1 − θ̄2

∣∣. (8)

In the same way, we also get

Ek
∣∣I1l1

(
θ̄1 − cei, Xk+1

)− I1l1
(
θ̄2 − cei, Xk+1

)∣∣≤ L1
∣∣θ̄1 − θ̄2

∣∣+ 2mK1L1F
∣∣θ̄1 − θ̄2

∣∣.
As l0 is clearly Lipschitz on BD+2, we also have∣∣I1l0

(
θ̄1 ± cei, Xk+1

)− I1l0
(
θ̄2 ± cei, Xk+1

)∣∣= O
(∣∣θ̄1 − θ̄2

∣∣).
Let L′′

2 be an upper bound for the second derivative ∇∇l0; recall Assumption 2.2. Now let A2
be the event that the line from θ̄1 to θ̄2 does not intersect BD+1 at all; let I2 := 1A2 . It follows in
particular that neither θ̄1 ± cei nor θ̄2 ± cei fall into BD. Since J = l0 outside BD we can write,
by the Lagrange mean value theorem,

EkI2
∣∣J(θ̄1 + cei, Xk+1

)− J
(
θ̄2 + cei, Xk+1

)− J
(
θ̄1 − cei, Xk+1

)+ J
(
θ̄2 − cei, Xk+1

)∣∣
= 2cEkI2

∣∣∂θi l0(ξ1) − ∂θi l0(ξ2)
∣∣

≤ 2c sup
u∈Rd

∣∣∇(∂θi l0(u))
∣∣Ek|ξ1 − ξ2|

≤ 2cL′′
2Ek|ξ1 − ξ2|

≤ 2cL′′
2

[∣∣θ̄1 − θ̄2
∣∣+ 2c

]≤ 2L′′
2

∣∣θ̄1 − θ̄2
∣∣+ 4c2L′′

2,

with some random variables ξj ∈
[
θ̄j − cei, θ̄j + cei

]
, j = 1, 2, remembering our assumptions on

l0 and c ≤ 1.
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Turning to the event � \ (A1 ∪ A2), let us consider the directed straight line from θ̄1(ω) to
θ̄2(ω); let its first intersection point with the boundary of BD+1 be denoted by κ1(ω) and its
second intersection point by κ2(ω). In the case where there is only one intersection point, it is
denoted by κ1(ω). Let I3 be the indicator of the event that there is only one intersection point
(κ1) with BD+1 and that θ̄1 is inside BD+1. The arguments of the previous two cases guarantee
that

EkI3
∣∣J(θ̄1 + cei, Xk+1

)− J
(
θ̄2 + cei, Xk+1

)− J
(
θ̄1 − cei, Xk+1

)+ J
(
θ̄2 − cei, Xk+1

)∣∣
≤EkI3

∣∣J(θ̄1 + cei, Xk+1
)− J

(
κ1 + cei, Xk+1

)− J
(
θ̄1 − cei, Xk+1

)+ J
(
κ1 − cei, Xk+1

)∣∣
+EkI3

∣∣J(κ1 + cei, Xk+1
)− J

(
θ̄2 + cei, Xk+1

)− J
(
κ1 − cei, Xk+1

)+ J
(
θ̄2 − cei, Xk+1

)∣∣
= O

(∣∣θ̄1 − κ1
∣∣)+ O

(∣∣κ1 − θ̄2
∣∣)+ O

(
c2)

= O
(∣∣θ̄1 − θ̄2

∣∣)+ O
(
c2).

Similarly, if I4 is the indicator of the event where there is one intersection point and θ̄2 is
inside BD+1, then we also get

EkI4
∣∣J(θ̄1 + cei, Xk+1

)− J
(
θ̄2 + cei, Xk+1

)− J
(
θ̄1 − cei, Xk+1

)+ J
(
θ̄2 − cei, Xk+1

)∣∣
= O

(∣∣θ̄1 − θ̄2
∣∣+ c2).

Let I5 denote the indicator of the case where both θ̄1, θ̄2 are outside BD+1 and there are two
intersection points κ1, κ2. We get, as above,

EkI5
∣∣J(θ̄1 + cei, Xk+1

)− J
(
θ̄2 + cei, Xk+1

)− J
(
θ̄1 − cei, Xk+1

)+ J
(
θ̄2 − cei, Xk+1

)∣∣
= O

(∣∣θ̄1 − κ1
∣∣)+ O

(∣∣κ1 − κ2
∣∣)+ O

(∣∣κ2 − θ̄2
∣∣)+ O

(
c2)

= O
(∣∣θ̄1 − θ̄2

∣∣+ c2).
Finally, in the remaining case (where there is only one intersection point with BD+1 though
both θ̄1, θ̄2 are outside BD+1), we similarly get an estimate of the order O

(|θ̄1 − θ̄2| + c2
)
, and

hence we eventually obtain the statement of the lemma.
When mp = 0 and m′

p = 1, the same ideas work. When mp + m′
p > 1 we can rely on the

elementary observation that

∣∣∣∣∣
mp∏
j=1

1{
Xk+1≤gj

(
θ̄1+cei

}}− mp∏
j=1

1{
Xk+1≤gj

(
θ̄2+cei

}}∣∣∣∣∣≤
mp∑
j=1

∣∣∣∣∣1{Xk+1≤gj
(
θ̄1+cei

}} − 1{
Xk+1≤gj

(
θ̄2+cei

}}∣∣∣∣∣,
and on its counterpart for the hj. Estimates can be repeated for each summand in the definition
of J, so the case ms > 1 follows, too. �

The arguments of the previous lemma, (8) in particular, also give us the following.

Lemma 3.2. Under Assumptions 2.2 and 2.3, there is C� > 0 such that, for each i = 1, . . . , d,

Ek
∣∣J(θ̄ + cei, Xk+1

)− J
(
θ̄ − cei, Xk+1

)∣∣≤ C�c, 0 < c ≤ 1,

holds for all k ∈N and for all Fk-measurable BD+1-valued random variables θ̄ . �
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3.1. Moment estimates

In this subsection, we will prove that the first moments of our iteration scheme remain
bounded. This will be followed by other moment estimates. We start with a preliminary lemma
on deterministic sequences.

Lemma 3.3. Let xk ≥ 0, k ∈N, be a sequence; let ζk > 0, k ≥ 1, be another sequence. If they
satisfy νζk < 1, k ≥ 1, and

xk ≤ (1 − νζk)xk−1 + cζk, k ≥ 1,

with some c, ν > 0, then

sup
k∈N

xk ≤ x0 + c

ν
.

Proof. Following the argument of Lemma 1 in [6], we notice that

xk ≤
k∏

i=1

(
1 − νζi

)
x0 + c

k∑
i=1

ζi

k∏
j=i+1

(
1 − νζj

)
,

where an empty product is meant to be 1. We can write

k∑
i=1

ζi

k∏
j=i+1

(
1 − νζj

)

= 1

ν

k∑
i=1

⎛
⎝ k∏

j=i+1

(
1 − νζj

)−
k∏

j=i

(
1 − νζj

)⎞⎠
≤ 1

ν
.

This shows the claim. �
Certain calculations are easier to carry out if we consider the continuous-time embedding

of the discrete-time processes. Consider the following extension θt, t ∈R+, of θk, k ∈N: let

θt := θk +
∫ t

k
auH(u, θk)du

for all k ∈N and for all k ≤ t < k + 1, where H(u, θ ) = H(θ, Xk+1, ck) for all k ∈N, and for
all k ≤ u < k + 1, cu = ck and au = λ0/ max{u, 1}, u ≥ 0. Extend the filtration to continuous
time by Ft := F�t�, t ∈R+. Now fix μ > 1. We introduce an auxiliary process that will play
a crucial role in later estimates. For each n ≥ 1 and for �nμ� ≤ t < �(n + 1)μ�, define yt :=
y
(
t, �nμ�, θ�nμ�

)
, i.e. the solution of (5) starting at �nμ� with initial condition y�nμ� = θ�nμ�.

We introduce the L1-norm
‖Z‖1 := E|Z|

for each R
d-valued random variable Z.

Lemma 3.4. Under Assumptions 2.2 and 2.3, we have

sup
t≥1

‖yt‖1 + sup
t≥1

E‖θt‖1 < ∞.
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Proof. Note that 2ckHj(θ, x, ck) = l0
(
θ + ckej

)− l0
(
θ − ckej

)
, for all x, j = 1, . . . , d, when

θ /∈ BD+1. Furthermore, the function l0
(
θ + ckej

)− l0
(
θ − ckej

)
is Lipschitz on BD+1, which

together with Lemma 3.2 implies∥∥∥∥∥ l0
(
θ + ckej

)− l0
(
θ − ckej

)
2ck

− Hj(θ, Xk+1, ck
)∥∥∥∥∥

1

≤ C̄, θ ∈R
d, (9)

for a fixed constant C̄. Clearly,

||θk+1||1 ≤
∥∥∥∥∥∥θk − λk

2ck

d∑
j=1

[
l0
(
θk + ckej

)− l0
(
θk − ckej

)]
ej

∥∥∥∥∥∥
1

+
∥∥∥∥∥∥

λk

2ck

d∑
j=1

[
l0
(
θk + ckej

)− l0
(
θk − ckej

)]
ej − λkH

(
θk, Xk+1, ck

)∥∥∥∥∥∥
1

.

Note that, by Assumption 2.2, l0 is strongly convex; in particular,

〈∇l0(θ ) − ∇l0(0), θ〉 ≥ A0|θ |2, θ ∈R
d,

for all θ , with some A0 > 0. Hence also

〈∇l0(θ ), θ〉 ≥ A|θ |2 − B, θ ∈R
d,

for suitable A, B > 0. But then for all a > 0 small enough,

|θ − a∇l0(θ )| ≤ (1 − A′a)|θ | + aB′, θ ∈R
d,

for suitable A′, B′ > 0. By the mean value theorem,

l0
(
θk + ckej

)− l0
(
θk − ckej

)= 2ck∂jl0(ξj)

for some random variable ξj ∈
[
θk − ckej, θk + ckej

]
. Since ∇l0 is Lipschitz,

max
j

∥∥∇l0(θk) − ∇l0(ξj)
∥∥

1 ≤ L′

for some L′ > 0. It then follows easily that, for k ≥ k0 large enough so that λk is small
enough, ∥∥∥∥∥∥θk − λk

2ck

d∑
j=1

[
l0
(
θk + ckej

)− l0
(
θk − ckej

)]
ej

∥∥∥∥∥∥
1

≤ λkdL′ + ||θk − λk∇l0(θk)||1
≤ λk

(
B′ + dL′)+ (

1 − A′λk
)||θk||1

holds. By (9),∥∥∥∥∥∥
λk

2ck

d∑
j=1

[
l0
(
θk + ckej

)− l0
(
θk − ckej

)]
ej − λkH

(
θk, Xk+1, ck

)∥∥∥∥∥∥
1

≤ λkdC̄.
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Apply Lemma 3.3 with the choice xk := ||θk||1, c := d(L′ + C̄) + B′ and ζk := λk, ν := A′
to obtain that supk≥k0

‖θk‖1 < ∞. Then trivially also supn∈N ‖θn‖1 < ∞ holds, which easily
implies supt≥1 ‖θt‖1 < ∞ as well.

Now turning to yt we see that, for n ≥ 1 and �nμ� ≤ t < �(n + 1)μ�,

|yt − θ∗| = ∣∣yt − y
(
t, �nμ�, θ∗)∣∣

≤ |θ�nμ� − θ∗|C∗,

finishing the proof. �
Lemma 3.5. Let Assumptions 2.2 and 2.3 hold. Then there exists Cl > 0 such that
supk≥1 |J(θ, Xk)| ≤ Cl

(
1 + |θ |2).

Proof. Recall that

|J(θ, x)| ≤ |l0(θ )| +
ms∑
i=1

1Ai(x) |li(x, θ )| ,

where the functions li are bounded on the bounded sets ∪x∈Rd Ai(x) for i = 1, . . . , d, and l0
grows quadratically. �

The difficulty of the following lemma consists in handling the discontinuities and the
dependence of the sequence Xk at the same time.

Lemma 3.6. Let Assumptions 2.2 and 2.3 hold. Then for each R > 0 the random field J(θ, Xn),
θ ∈ BR, n ∈N, satisfies

Mn
3(J(θ, X)) ≤ Cl

(
1 + R2),

�n
3(J(θ, X)) ≤ L

(
1 + R2),

for some L > 0, where Cl is as in Lemma 3.5.

Proof. The first statement is clear from Lemma 3.5. Let n ≥ 0, τ ≥ 1 be fixed. For k ≥ τ ,
define X+

k =E
[
Xn+k|F+

n+k−τ ∨Fn
]
. For the sake of simplicity, we assume that ms = 1 in the

definition of J, mp = 0, but the same argument would work for several summands, too. We also
take the process X unidimensional (m := 1), noting that the same arguments easily carry over
to a general m.

We now perform an auxiliary estimate. Let ετ > 0 be a parameter to be chosen later and let
1 ≤ j ≤ m′

p. We will write h below instead of h1. Define Zk = Xn+k − X+
k and estimate

En

∣∣∣1{
Xn+k>hj(θ)

} − 1{
X+

k >hj
(
θ
})∣∣∣3 =En

∣∣∣1{
Xn+k>hj(θ)

} − 1{
X+

k >hj
(
θ
})∣∣∣

≤ Pn
(
Xn+k ∈ (hj(θ ) − |Zk|, hj(θ ) + |Zk|

))
≤ Pn

(
Xn+k ∈ (hj(θ ) − |Zk|, hj(θ ) + |Zk|

)
, |Zk| ≤ ετ

)+ Pn(|Zk| ≥ ετ )

≤ 2Fετ +
En

[∣∣Xn+k − X+
k

∣∣3]
ε3
τ

,
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where the last inequality follows from Assumption 2.3 and the Markov inequality. Now
estimate

E
1/3
n

∣∣∣∣∣∣
⎛
⎝ m′

p∏
j=1

1{
Xn+k>hj(θ)

}
⎞
⎠ l1(Xn+k, θ ) −

⎛
⎝ m′

p∏
j=1

1{
X+

k >hj(θ)
}
⎞
⎠ l1

(
X+

k , θ
)∣∣∣∣∣∣

3

≤E
1/3
n

∣∣∣∣∣∣
⎛
⎝ m′

p∏
j=1

1{
Xn+k>hj(θ)

} −
m′

p∏
j=1

1{
X+

k >hj(θ)
}
⎞
⎠ l1(Xn+k, θ )

∣∣∣∣∣∣
3

+E
1/3
n

∣∣∣∣∣∣
(
l1(Xn+k, θ ) − l1

(
X+

k , θ
)) m′

p∏
j=1

1{
X+

k >hj(θ)
}
∣∣∣∣∣∣
3

≤E
1/3
n

⎡
⎢⎣
∣∣∣∣∣∣

m′
p∑

j=1

∣∣∣1{
Xn+k>hj(θ)

} − 1{
X+

k >hj(θ)
}∣∣∣
∣∣∣∣∣∣
3

(L1(|Xn+k| + R) + |l1(0, 0)|)3

⎤
⎥⎦

+ L1E
1/3
n

∣∣Xn+k − X+
k

∣∣3
≤ C1(1 + R)

⎛
⎝ε1/3

τ +
E

1/3
n

[∣∣Xn+k − X+
k

∣∣3]
ετ

⎞
⎠

for some C1, where we used the Lipschitz-continuity of the function l1, as well as the
observation that∣∣∣∣∣∣

m′
p∏

j=1

1{
Xn+k>hj(θ)

} −
m′

p∏
j=1

1{
X+

k >hj(θ)
}
∣∣∣∣∣∣≤

m′
p∑

j=1

∣∣∣1{
Xn+k>hj(θ)

} − 1{
X+

k >hj(θ)
}∣∣∣.

A similar estimate works for l0, but we get the upper bound

E
1/3
n

∣∣∣1A0(Xn+k)l0(θ ) − 1
A0

(
X+

k

)l0(θ )
∣∣∣3

≤ C1
(
1 + R2)(ε1/3

τ + E
1/3
n
[|Xn+k − X+

k |3]
ετ

)

instead. For the second inequality of the present lemma, note first that Lemma 4.1 below
implies

E
1/3
n

[∣∣J(θ, Xn+k
)−E

[
J
(
θ, Xn+k

)|Fn ∨F+
n+k−τ

]∣∣3]
≤ 2E1/3

n

[∣∣J(θ, Xn+k
)− J

(
θ, X+

k

)∣∣3] ;

hence it suffices to estimate the latter quantity. From our previous estimates it follows that, for
some C > 0,

E
1/3
n

[∣∣J(θ, Xn+k
)− J

(
θ, X+

k

)∣∣3]≤ C
(
1 + R2)[ 3

√
ετ + E

1/3
n
∣∣Xn+k − X+

k

∣∣3
ετ

]
. (10)
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Choose ετ := (τ + 1)−3−ε/2. Summing up the right-hand side for τ ≥ 1 we see that, by
Assumption 2.4, the sum has an upper bound independent of k. The statement follows as the
case τ = 0 is easy. �

3.2. Decreasing-gain case

The following lemma contains the core estimates of the present paper.

Lemma 3.7. Let n ≥ 1. Let �nμ� ≤ t < �(n + 1)μ� for μ := 1/γ and let Assumptions 2.1, 2.2,

2.3, 2.4, 2.5, and 2.6 hold. Then E|θt − yt| = O
(
n−β

)
, where β = min

(
1

2γ
− 1

2 , 2
)

.

Proof. For �nμ� ≤ t < �(n + 1)μ�,

|θ�t� − yt| ≤ |y�t� − yt| + |θ�t� − y�t�|

≤
t∫

�t�
au
∣∣G(yu

)∣∣ du +

∣∣∣∣∣∣∣
�t�∫

�nμ�
au
(
H(u, θ�u�) − G

(
yu

))
du

∣∣∣∣∣∣∣
≤ anμ

t∫
�t�

∣∣G(yu

)∣∣ du

+

∣∣∣∣∣∣∣
�t�∫

�nμ�
au
(
H(u, θ�u�) − H

(
u, yu

))
du

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
�t�∫

�nμ�
au
(
H
(
u, yu

)−E
[
H
(
u, yu

)|F�nμ�
])

du

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
�t�∫

�nμ�
au
(
E
[
H
(
u, yu

)|F�nμ�
]− G

(
yu

))
du

∣∣∣∣∣∣∣
=: �0 + �1 + �2 + �3.

Estimation of �0. Since G has at most linear growth, Lemma 3.4 guarantees that

E[�0] = O

(
anμ

∫ t

�t�
(E|yu| + 1) du

)
= O(n−μ).

Estimation of �1. Recall that, by the tower property for conditional expectations,

E
∣∣H(u, θu) − H

(
u, yu

)∣∣=EEk
∣∣H(u, θu) − H

(
u, yu

)∣∣
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for all k ∈N. Applying this observation to k = �u�, Lemma 3.1 implies that

E[�1] =E

∣∣∣∣∣∣∣
�t�∫

�nμ�
au
(
H(u, θ�u�) − H

(
u, yu

))
du

∣∣∣∣∣∣∣
≤

t∫
�nμ�

auE
∣∣H(u, θ�u�) − H

(
u, yu

)∣∣ du

≤ C�

t∫
�nμ�

au

cu
E
∣∣θ�u� − yu

∣∣ du + C�

t∫
�nμ�

au

cu
c2

u du. (11)

Henceforth we will write

�′
1 := C�

�(n+1)μ�∫
�nμ�

au

cu
c2

u du.

Notice that
E
[
�′

1

]= O
(
n−μγ−1)= O

(
n−2).

Estimation of �2. Notice that H(u, θ̄ ) =E
[
H(u, θ̄ )|F�nμ�

]
for all F�nμ�-measurable θ̄ such

that, almost surely, θ̄ /∈ BD, since J(θ, x) does not depend on x outside BD by Assumption 2.2.
Thus

�2 ≤ sup
�nμ�≤t<�(n+1)μ�

∣∣∣∣∣∣∣
t∫

�nμ�
au1{yu∈BD}

(
H
(
u, yu

)−E[H
(
u, yu

)|Fnμ]
)

du

∣∣∣∣∣∣∣ .

We will use the inequality of Theorem 4.1 below with r = 3, with Rt := Ft+�nμ�, t ∈R+,
R+

t := F+
t+�nμ�, with the process defined by

Wt = 1{yt+�nμ�∈BD}ct+�nμ�
(
H
(
t, yt+�nμ�

)−E
[
H
(
t, yt+�nμ�

)|F�nμ�
])

, t ≥ 0, (12)

and with the function ft = at+�nμ�/ct+�nμ�. Note that {yt ∈ BD} ∈F�nμ� for all �nμ� ≤ t < �(n +
1)μ�. We get from Lemma 4.2 below and from the cited inequality that

E[�2] =E
[
E
[
�2|F�nμ�

]]≤E
[
E

1/3[�3
2

∣∣F�nμ�
]]

≤ C′(3)

⎛
⎜⎝

�(n+1)μ�∫
�nμ�

(
au

cu

)2

du

⎞
⎟⎠

1/2

E
[
M̃3 + �̃3

]

≤ C′(3)

⎛
⎜⎝

�(n+1)μ�∫
�nμ�

(
au

cu

)2

du

⎞
⎟⎠

1/2

C
(
1 + D2).

We thus get

E[�2] = O

⎛
⎜⎝

�(n+1)μ�∫
�nμ�

(
au

cu

)2

du

⎞
⎟⎠

1/2

= O
(

n
−μ+2μγ−1

2

)
.
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Estimation of �3. We have

E[�3] ≤E

⎡
⎢⎣

t∫
�nμ�

au
∣∣E[H(u, yu

)|F�nμ�
]− G

(
yu

)∣∣ du

⎤
⎥⎦

≤E

⎡
⎢⎣

t∫
�nμ�

au sup
ϑ∈Rd

∣∣E[H(ϑ, X�u�+1, c�u�
)|F�nμ�

]−E
[
H
(
ϑ, X�u�+1, c�u�

)]∣∣ du

⎤
⎥⎦

+E

⎡
⎢⎣

t∫
�nμ�

au sup
ϑ∈Rd

∣∣E[H(ϑ, X�u�+1, c�u�
)]− G(ϑ)

∣∣ du

⎤
⎥⎦ . (13)

To handle the second sum, note that, for each i = 1, . . . , d,

E[Hi(ϑ, Xk+1, ck)] = U(ϑ + ckei) − U(ϑ − ckei)

2ck
= Gi(ξ i

k

)
for some ξ i

k ∈ [ϑ − ckei, ϑ + ckei]. The Lipschitz-continuity of G implies that |Gi
(
ξ i

k

)−
Gi(ϑ)| ≤ LGck, so

E

⎡
⎢⎣

t∫
�nμ�

au sup
ϑ∈Rd

∣∣E[H(ϑ, X�u�+1, c�u�
)]− G(ϑ)

∣∣ du

⎤
⎥⎦≤

t∫
�nμ�

audLGc�u� du

= O

⎛
⎜⎝

�(n+1)μ�∫
�nμ�

u−1−γ du

⎞
⎟⎠= O

(
n−2).

Now we turn to the first sum in (13). Define X+
k =E

[
Xk|F+

�nμ�
]
, k ≥ �nμ�. First let us

estimate
E�nμ�

[∣∣H(ϑ, Xk+1+�nμ�, ck+�nμ�
)− H

(
ϑ, X+

k+1+�nμ�, ck+�nμ�
)∣∣].

Fix εk > 0 to be chosen later. By an argument similar to that of Lemma 3.6 (using the first
instead of the third moment in Markov’s inequality) we get that, for some constant C1,

ck+�nμ�E�nμ�
[∣∣H(ϑ, X�nμ�+k+1, ck+�nμ�

)− H
(
ϑ, X+

�nμ�+k+1, ck+�nμ�
)∣∣]

≤ C1

[
εk + E�nμ�

[∣∣X�nμ�+k+1 − X+
�nμ�+k+1

∣∣]
εk

]
.

Choose εk = (1 + k)−1−ε/2. Then using Assumption 2.4 we get

ck+�nμ� sup
ϑ∈Rd

E
[∣∣H(ϑ, X�nμ�+k+1, c�nμ�+k

)− H
(
ϑ, X+

�nμ�+k+1, ck+�nμ�
)∣∣|F�nμ�

]= O
(
k−1−ε/2),

which also implies

ck+�nμ� sup
ϑ∈Rd

E[|H(ϑ, X�nμ�+k+1, c�nμ�+k) − H(ϑ, X+
�nμ�+k+1, c�nμ�+k)|] = O

(
k−1−ε/2).
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Since
E
[
H
(
ϑ, X+

k+1, c�nμ�+k
)|F�nμ�

]=E
[
H
(
ϑ, X+

k+1, ck+�nμ�
)]

for k ≥ �nμ� by independence of F�nμ� and F+
�nμ�, we have⎡

⎢⎣
t∫

�nμ�
auE sup

ϑ∈Rd

∣∣E[H(ϑ, X�u�+1, c�u�
)|F�nμ�

]−E
[
H
(
ϑ, X�u�+1, c�u�

)]∣∣ du

⎤
⎥⎦

≤
∞∫

�nμ�

au

cu
cuE sup

ϑ∈Rd
E

[∣∣∣H(ϑ, X�u�+1, ck
)− H

(
ϑ, X+

�u�+1, ck

)∣∣∣ |F�nμ�
]

du

+
∞∫

�nμ�

au

cu
cu sup

ϑ∈Rd
E

[∣∣∣H(ϑ, X�u�+1, ck
)− H

(
ϑ, X+

�u�+1, ck

)∣∣∣] du

≤ C2
a�nμ�
c�nμ�

∞∑
k=1

k−1−ε/2

with some C2 so
E[�3] = O

(
nμ(γ−1)).

Combining the estimates we have so far, we get

E
[
�0 + �′

1 + �2 + �3
]= O

(
n−μ + n−2 + n

−μ+2μγ−1
2 + n−2 + nμ(γ−1)

)
. (14)

Notice that E|θt − yt| is always finite; see Lemma 3.4 above. Use Gronwall’s lemma and (11)
to obtain the inequality

E
[|θ�t� − yt|

]≤ E[�0 + �′
1 + �2 + �3] exp

(
C3

∫ �(n+1)μ�

nμ

au

cu
du

)

with some constant C3. From Lemma 3.2 it is also easy to check that E|θt − θ�t�| = O(n−μ).
Note furthermore that the terms n−μ and nμ(γ−1) are always negligible in (14). These
observations lead to

E|θt − yt|
= O

(
n

−μ+2μγ−1
2 + n−2

)
exp

(
C4nμγ−1)

= O
(

n
1
2 − 1

2γ + n−2
)

with some C4, finishing the proof. �
Proof of Theorem 2.1. Let

di = sup
�iμ�≤s<�(i+1)μ�

E|θs − ys|, i = 1, 2, . . . .

By Fatou’s lemma, we also have

E
∣∣θ�(i+1)μ� − y�(i+1)μ�−

∣∣≤ di,

where ys− denotes the left limit of y at s.
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It follows from Lemma 3.7 that di = O
(
i−β

)
. Combining this with Assumption 2.6 and

using telescoping sums we get, for each integer N ≥ 1,

E|y(�Nμ�, 1, θ1) − θ�Nμ�| =E|y(�Nμ�, 1, θ1) − y(�Nμ�, �Nμ�, θ�Nμ�)|

≤
N∑

i=2

E
∣∣y(�Nμ�, �(i − 1)μ�, θ�(i−1)μ�) − y(�Nμ�, �iμ�, θ�iμ�)

∣∣

≤
N∑

i=2

E
∣∣y(�Nμ�, �iμ�, y(�iμ�, �(i − 1)μ�, θ�(i−1)μ�))

−y(�Nμ�, �iμ�, θ�iμ�)
∣∣

≤ C∗
N∑

i=2

(
i + 1

N

)αμ

di−1 = O
(
N−β+1),

noting that y(�iμ�, �(i − 1)μ�, θ�(i−1)μ�) equals the left limit y�iμ�−. A similar argument
provides, for all t ∈ (�Nμ�, �(N + 1)μ�),

E|θt − y(t, 1, θ1)| = O
(
N−β+1).

Taking the μth root we obtain

E|θt − y(t, 1, θ1)| = O
(

t
−β+1

μ

)
, t ≥ 1.

To conclude, note that by the stability Assumption 2.6, |y(t, 1, θ1) − θ∗| ≤ C∗|θ1 − θ∗|t−α and
that E|θ1| < ∞, as easily seen using Lemma 3.2. �

3.3. Fixed-gain stochastic approximation

Define T = c
a . For nT ≤ t < (n + 1)T , define yt = y(t, nT, θnT ), i.e. the solution of (5) with

the initial condition ynT = θnT . We use the piecewise linear extension θ t of θt and the piecewise
constant extension H(t, θ ) of H(θ, Xk+1, c) as defined in the decreasing-gain setting, but a and
c are now constants.

Lemma 3.8. Let Assumptions 2.1, 2.2, 2.3, 2.4 and 2.6 hold. Then for t ∈ [nT, (n + 1)T] there

is C > 0 such that E|θt − yt| ≤ C max
(

c2,
√

a
c

)
.

Proof. Using essentially the same estimates we derived in the decreasing-gain setting, for
fixed a and c we get

E[�0] ≤ C0a, (15)

E[�1] ≤ C1

[
a

c

t−1∑
nT

E|θk − yk| + c2

]
, (16)

E[�2] ≤ C2

(
t−1∑
nT

(
a2

c2

))1/2

≤ C2

(
c

a

a2

c2

)1/2

= C2

√
a

c
, (17)

E[�3] ≤ C3

[
a

c
+

t−1∑
nT

ac

]
= C3Tac + C3

a

c
= O

(
c2 + a

c

)
, (18)
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with suitable constants C0, C1, C2, C3. Combine these estimates and use Gronwall’s lemma

to get the statement. To choose optimally, set c2 =
√

a
c , that is, c = a

1
5 . In this case E|θt − yt| ≤

C4a
2
5 for some C4. �

Proof of Theorem 2.2. Let

di = sup
iT≤s<(i+1)T

E|θs − yi
s|.

It follows from Lemma 3.8 that di ≤ C max
(

c2,
√

a
c

)
. Combining this with Assumption 2.6

and using telescoping sums we get

E|y(NT, 1, θ1) − θNT | =E|y(NT, 1, θ1) − y(NT, NT, θNT )|

≤
N∑

i=2

E
∣∣y(NT, (i − 1)T, θ(i−1)T ) − y(NT, iT, θiT )

∣∣

≤
N∑

i=2

E
∣∣y(NT, iT, y(iT, (i − 1)T, θ(i−1)T )) − y(NT, iT, θiT )

∣∣

≤
N∑

i=2

(
C∗e−aα(NT−iT)

)
di−1 ≤ Ĉ max

(
c2,

√
a

c

)

with some Ĉ, since
∑N

i=2 e−aα(NT−iT) has an upper bound independent of N. We similarly get

sup
NT≤t<(N+1)T

E|θt − y(t, 1, θ1)| ≤ Č max

(
c2,

√
a

c

)

with some Č. To conclude, note that by the stability Assumption 2.6, |y(t, 1, θ1) − θ∗| ≤
C∗|θ1 − θ∗|e−aαt and therefore

E|θt − θ∗| = O

(
max

(
c2,

√
a

c

)
+ e−aαt

)
. �

4. Auxiliary results

We define continuous-time analogues of the key quantities M and � from Assumption 2.4
and establish a pivotal maximal inequality for them.

Consider a continuous-time filtration (Rt)t∈R+ as well as a decreasing family of sigma-fields(R+
t
)

t∈R+ . We assume that Rt is independent of R+
t , for all t ∈R+.

We consider an R
d-valued continuous-time stochastic process (Wt)t∈R+ which is progres-

sively measurable (i.e. W : [0, t] × � →R
d is B([0, t]) ⊗Rt-measurable for all t ∈R+).

From now on we assume that Wt ∈ L1, t ∈R+. Fix r ≥ 1. We define the quantities

M̃r := ess sup
t∈R+

E
1/r [|Wt|r|R0

]
,

γ̃r(τ ) := ess sup
t≥τ

E
1/r[|Wt −E[Wt|R+

t−τ ∨R0]|r|R0], τ ∈R+,

and set �̃r := ∑∞
τ=0 γ̃r(τ ).
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Now we recall a powerful maximal inequality, Theorem B.3 of [1].

Theorem 4.1. Let (Wt)t∈R+ be Lr-bounded for some r > 2 and let M̃r + �̃r < ∞ almost surely.
Assume E[Wt|R0] = 0 almost surely for t ∈R+. Let f : [0, T] →R be B([0, T])-measurable
with

∫ T
0 f 2

t dt < ∞. Then there is a constant C′(r) such that

E
1/r

[
sup

s∈[0,T]

∣∣∣∣
∫ s

0
ftWt dt

∣∣∣∣
r

|R0

]
≤ C′(r)

(∫ T

0
f 2
t dt

)1/2 [
M̃r + �̃r

]
, (19)

almost surely. �
We also recall Lemma A.1 of [4].

Lemma 4.1. Let G,H⊂F be sigma-algebras. Let X, Y ∈R
d be random variables in Lp such

that Y is measurable with respect to H∨ G. Then for any p ≥ 1,

E
1/p[|X −E[X|H∨ G]|p∣∣G]≤ 2E1/p [|X − Y|p∣∣G] .

Lemma 4.2. Let the process Wt be defined by (12). Taking the filtration Rt := Ft+�nμ� and
R+

t := F+
t+�nμ�, we get M̃r + �̃r ≤ C

(
1 + D2

)
for some C > 0.

Proof. Estimations of Lemma 3.6 with R = D and with yt+�nμ� instead of θ imply the
statement. �

5. Numerical experiments

In what follows we present numerical results to check the convergence of the algorithm for
a simple discontinuous function J, defined as

J(θ, X) =
{

(θ − X)2 + 1 if X ≤ θ,

(θ − X)2 otherwise,

where X is a square-integrable, absolutely continuous random variable. Clearly, this function
is not continuous in the parameter, but its expectation is continuous:

U(θ ) =EJ(X, θ ) =
∫ θ

−∞
((

x − θ2)+ 1
)
f (x)dx +

∫ ∞

θ

(x − θ )2f (x)dx

=E(X − θ )2 + F(θ ) =EX2 − 2θEX + θ2 + F(θ ),

where f (·) and F(·) are respectively the density function and the distribution function of X.
Assuming that F is differentiable, we need to solve

∂U(θ )

∂θ
= −2EX + 2θ − f (θ ) = 0

in order to find arg min EJ(X, θ ).
For the numerical examples we will use the recursion

θk+1 = θk + 1

k + k0

J
(
θ + (k + k0)−1/5, Xk+1

)− J
(
θ − (k + k0)−1/5, X′

k+1

)
(k + k0)−1/5

. (20)

To compute the expected error, Monte Carlo simulations were used with 10000 sample
paths and the number of steps k ranging from 28 to 220. We fit regression on the log–log plot to
get the convergence rate only on

[
213, 220

]
and set k0 = 10000 to avoid the initial fluctuations

of the algorithm.
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TABLE 1. Convergence speed for different distributions of i.i.d. noise.

independent Xk+1, X′
k+1 identical Xk+1 = X′

k+1

N(0, 1) −0.299 (R2 = 0.999) −0.459 (R2 = 0.999)
U([0, 1]) −0.14 (R2 = 0.997) −0.14 (R2 = 0.997)
Beta(2, 2) −0.374 (R2 = 0.999) −0.393 (R2 = 0.999)

5.1. Independent innovations

In this section we assume that the consecutive ‘measurement noises’ Xn are i.i.d. We con-
sider three different choices for the distribution of the noise: the normal, uniform, and beta
distributions. Note that the normal distribution violates boundedness, and for the uniform dis-
tribution the differentiability of F fails; however, convergence is achieved even in these cases.
We also distinguish between the case where the observations Xk+1 and X′

k+1 are the same and
the case where they are independent. Here we refer back to Remark 2.1, where we point out
that this choice does not influence our theoretical results, although it may make a visible dif-
ference numerically. This phenomenon has already been observed; see [12] for more about the
variance reduction technique called common random numbers (CRN). The values in Table 1
below represent the slope of the linear regression we fit on the log–log plot of the average
absolute error versus the number of steps, together with the R-squared value measuring the
goodness of the fit.

The lower limit that we theoretically achieved for the convergence rate in Theorem 2.1 was
−0.2; however, the numerical experiments we present show that the practical convergence rate
can outperform this.

5.1.1. Standard normal distribution. Assume that X ∼ N(0, 1). Then the function whose
minimum we aim to find is U1(θ ) = 1 + θ2 + �(θ ), where � denotes the cumulative distri-

bution function of the standard normal distribution. We get the solution θ∗ = −
√

W
(

1
8π

)
≈

−0.19569, where W is the Lambert W function.
Figure 1 illustrates the convergence of two variations of the algorithm (20) for U1, starting

the iteration from θ0 = −0.1. In Figure (1a) we present the case where Xk+1 and X′
k+1 are

independent on a log–log plot; we observe a convergence rate of k−0.299. Figure (1b) shows
the case where Xk+1 = X′

k+1, which yields a convergence rate of k−0.459.

5.1.2. Uniform distribution on [0, 1]. Let X ∼ U([0, 1]). Then the function whose mini-
mum we aim to find is U2(θ ) = 1/3 − θ + θ2 + Funi(θ ), where Funi denotes the cumulative
distribution function of the Uniform([0, 1]) distribution. We get the solution θ∗ = 0.

Figure 2 illustrates the convergence of two variations of the algorithm (20) for U2, starting
the iteration from θ0 = 1. In Figure (2a) we present the case where Xk+1 and X′

k+1 are inde-
pendent on a log–log plot, while (2b) shows the case where Xk+1 = X′

k+1. Both cases yield a
convergence rate of k−0.14, which is worse than the theoretical rate k−0.2.

5.1.3. Beta(2, 2) distribution. Let X ∼ Beta(2, 2). Then the function whose minimum we
aim to find is U3(θ ) = 0.3 − θ + θ2 + Fβ (θ ), where Fβ denotes the cumulative distribution

function of the Beta(2,2) distribution. We get the solution θ∗ = 2−√
2.5

3 ≈ 0.13962.
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(a)

Xk+1 and X ′
k+1 independent

(b)

Xk+1 = X ′
k+1

FIGURE 1. Log–log plot of E|θ∗ − θk| versus number of iterations for i.i.d. standard normal innovations.

(a) (b)

FIGURE 2. Log–log plot of E|θ∗ − θk| versus number of iterations for i.i.d. uniform innovations.

Figure 3 illustrates the convergence of two variations of the algorithm (20) for U3, starting
the iteration from θ0 = 1. In Figure (3a) we present the case where Xk+1 and X′

k+1 are indepen-
dent on a log–log plot; we observe a convergence rate of k−0.374. Figure (3b) shows the case
where Xk+1 = X′

k+1, which yields a convergence rate of k−0.393.

5.2. AR(1) innovations

For an example with non-i.i.d. Xt, assume that the ‘noise’ is an AR(1) process defined as

Yt+1 = κYt + εt+1, for t ∈Z,

where εt is standard normal for t ∈Z and |κ| < 1. Clearly, Yt =∑∞
k=0 κkεt−k, and therefore

Yt ∼ N
(

0, 1
1−κ2

)
. For the sequences Xt and X′

t we have two options: either we take consecutive
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(a)

Xk+1 and X ′
k+1 independent

(b)

Xk+1 = X ′
k+1

FIGURE 3. Log–log plot of E|θ∗ − θk| versus number of iterations for i.i.d. beta innovations.

(a) (b)

FIGURE 4. Log–log plot of E|θ∗ − θk| versus number of iterations for AR(1) innovations.

measurements, i.e. Xk = Y2k−1 and X′
k = Y2k, or we use identical values, i.e. Xk = X′

k = Yk.
In both cases,

U4(θ ) =EJ(θ, X) = θ2 + 1

1 − κ2
+ �

(
θ
√

1 − κ2
)

.

Solving this for κ = 0.75, we get the optimal value θ∗ ≈ −0.13144.
Figure 4 and Table 2 illustrate the convergence rate of the algorithm (20) for the function U4,

starting from θ0 = 0. In Figure (4a) we present the rate in the case where we take consecutive
measurements of the AR(1) process (Xk = Y2k−1 and X′

k = Y2k); the convergence rate of k−0.333

is observed. Figure (4b) shows the case where the two measurements are the same
(
Xk = X′

k =
Yk
)
, with the rate k−0.487.
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TABLE 2. Convergence rate for AR(1) noise.

consecutive observations: Xk = Y2k−1 and X′
k = Y2k identical: Xk = X′

k = Yk

AR(1) –0.333
(
R2 = 0.999

)
–0.487

(
R2 = 0.999

)

6. Application to mathematical finance

The price of a financial asset either follows a trend during a given period of time or just ram-
bles around its ‘fair’ price value—at least, so it seems to many actual traders. This ‘rambling’,
in more mathematical terms, means that the price is reverting to its long-term average. Such
a mean-reversion phenomenon can be exploited by ‘buying low, selling high’-type strategies.
Discussions on this topic involve plenty of common-sense advice and benevolent concrete sug-
gestions; see e.g. [22–24]. There also exist theoretical studies about optimal trading with such
prices; see e.g. [13]. However, a rigorous approach to adaptive trading algorithms of this type
is lacking.

The results of the present paper provide theoretical convergence guarantees for such algo-
rithms which cannot be deduced from the existing literature on stochastic approximation. The
most conspicuous feature of mean-reversion strategies is that they are triggered when the
price reaches a certain level. This means that their payoffs are discontinuous with respect to
the parameters; gradients do not exist, and only finite-difference approximations can be used
(the Kiefer–Wolfowitz method). Their convergence in the given discontinuous case cannot be
shown based on available results; hence we fill an important and practically relevant gap here.

Below, we describe a trading model in some detail and explain how it fits into the framework
used in the previous sections. Let the price of the observed financial asset be described by a
real-valued stochastic process St, t ∈Z, adapted to a given filtration Ft, t ∈Z, representing the
flow of information. (Alternatively, St may be the increment of the price at t, which can safely
be assumed to follow a stationary process.)

Our algorithm will be based on several dynamically updated estimators which are assumed
to be functionals of the trajectories of St and possibly of another adapted process Ft describing
important economic factors. The estimate for the long-term average of the process is denoted
by At(θ ) at time t. The upper and lower bandwith processes will be denoted by B+

t (θ ) and
B−

t (θ ); they are non-negative. All these estimates depend on a parameter θ to be tuned, where
θ ranges over a subset Q of Rd.

In practice, At(θ ) is some moving average (or exponential moving average) of previous val-
ues of S, but it may depend on the other indicators F (market indices, etc.). Here θ determines,
for instance, the weights of the moving average estimate. The quantities B±

t (θ ) are normally
based on standard deviation estimates for S but, again, may be more complex, with θ describ-
ing weighting of past information. If we peek from time t back to time t − p with some p ∈N,
then At(θ ), B±

t (θ ) are functionals of (St−p, Ft−p, . . . , St, Ft).
The price range

[
At − B−

t , At + B+
t
]

is considered to be ‘normal’ by the algorithm, while
quitting that interval suggests ‘extremal’ behavior that the market should soon correct. For
example, reaching the level At − B−

t means that the price is abnormally low for the present
circumstances; hence it is worth buying a quantity b(θ ) of the asset, where, again, the parameter
θ should be optimally found. When the price returns to At′ at some later time t′, the asset will
be sold and a profit realized. Similarly, when the price reaches At + B+

t , a quantity s(θ ) of the
asset is sold (the price being abnormally high), and it will be repurchased once the ‘normal’
level At′ is reached at some future t′ > t, with the aim of realizing a profit.
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The value of the parameter θ will be updated at times tN, t ∈N, where N ≥ 1 is fixed.
The (random) profit (or loss) resulting from trading on the interval [N(t − 1), Nt] is denoted
by u(θ, Xt) with Xt = (

SN(t−1)−p, FN(t−1)−p, . . . , SNt, FNt
)
. We could even write an explicit

expression for u based on the description of the trading mechanism in the previous paragraph,
but it would be very cumbersome without providing additional insight, so we omit it. We also
add that, in many cases, a fee must also be paid at every transaction. Such strategies being
‘threshold-type’, the function u is generically a discontinuous function of θ .

We furthermore argue that one cannot smooth out u and make it continuous without losing
essential features of the problem. At first sight it may look reasonable to approximate the
indicator function of the interval [0, ∞) by a function f which is 1 on [0, ∞), 0 on (−∞, −ε]
for some small ε > 0, and linear on (−ε, 0), but in this way we get a Lipschitz approximation
with a huge Lipschitz constant, hence with a poor convergence rate! This is just to stress that
although such simple tricks might work in certain practical situations, they only obscure the
real issues in the theoretical analysis (namely, there is a discontinuity to be handled).

The algorithm described above is very close to what actual investors do; see [22, 23, 24].
We also mention the related theoretical studies [3, 18], which, however, do not take an adaptive
view and calculate optimal strategies for concrete models.

Taking a more realistic, adaptive approach, the investor may seek to maximize Eu(θ, X0)
by dynamically updating θ at every instant tN, t ∈N. Our versions of the Kiefer–Wolfowitz
algorithm, presented in the previous sections, are tailor-made for such online optimization,
both the decreasing- and the fixed-gain version, depending on the circumstances. Theorems
2.1 and 2.2 provide solid theoretical convergence guarantees for such procedures.
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