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ABSTRACT. By introducing a coordinate stretching, the governing field equations of the creep flow of a 
non-Newtonian viscous medium down a uniform slope are solved to determine the differential equation 
describing the propagation of long surface waves caused by initia l disturbances and /or time-dependent 
accumulation-rate. The differential equation for the surface wave depends on the flow law of the non­
Newtonian fluid , the boundary condition at the ice- bedrock interface, the bedrock topography, and the 
thickness- wavelength ratio. For moderately long waves and small elevation above the mean thickness the 
results agree in their essentials with those of the kinematic wave theory and the forward wave equation 
with a diffusion term is derived, but when improving this by allowing higher elevations the Burger's equa tion 
and even m ore complex equations are obtained. To derive these results Glen's flow law must be generalized 
to avoid infinitely fast changes in stress deviators close to zero stra in-ra tes. The range of applicability of the 
various equations is discussed. 

RESUME. Altitude enfonction du temps d'llIze pente de glace. En introduisant une coordo nnee de tension , on a 
resolu les equations qui regissent le glissem ent d'un milieu visqueux non-Newtonien le long d 'une pente 
uniforme afin de determiner l'equation differentielle de la propagation des longues ondulations de surface 
causees par les irregularites initiales et/ou le taux d 'accumulation en fonction du temps. L'equation 
differentielle pour l'ondulation de surface depend de la loi d'ecoulement du fluide non-Newtonien, des 
conditions aux limites a l'interface glace- lit rocheux, de la topographie du lit rocheux et du rapport entre 
la longueur d'onde de l'ondulation et l'epa isseur. Pour des ondulations mod6'ement longues et une faible 
denivellee a u-dessus d e l'epaisseur moyenne, les resultats concordent dans l'ensemble avec ceux de la theorie 
des ondes cinematiques et on en deduit l'eq uation de la propagation de l'onde avec un terme de diffusion, 
mais si on veut poursuivre en admettant des d enivellees plus impo rtantes, on obtient l'equation de Burger et 
meme des eq uations plus complexes. Pour retrouver ces resultats, il faut generaliser les lois d'ecoulement 
de G len d e maniere a eviter des varia tions infiniment rapides d es deviateurs des con trai ntes au voisinage des 
taux d e deformation nuls. On discute des domaines d 'appli cabilite des differen tes eq uations. 

ZUSAMMENFASSUNG. :(eitabhangige Oberjlachenerhebungel1 in einer Eisschicht. Durch EinfUhrung einer 
Koordina tenstreckung werden die Feldgleichungen der Kriechbewegung eines nicht-Newtonschen Mediums 
fUr eine planparallele Schicht geliist; dadurch erhalt man die Differen tialsgleichung fur lange Oberflach en­
wellen, welche durch anfangliche Stiirungen und zeitabhangige Akkumulationsraten erzeugt werden. Die 
Differentialgleichung d ieser Oberflachenwellen hangt vom Fliessgesetz der nicht-Newtonschen FIUssigkeit, 
von d el' R andbedingung am G letscherbett, del' Untergrundtopographie und vom Verhaltnis Gletscherd icke/ 
Wellenla nge ab. FUr mass ig lange WeJlen und kleine Oberflachenerhebungen stimmen die Resultate 
grundsatzlich mit der Theorie kinematischer W ellen Uberein. Man erhalt d ie Gleichung einer vorwa rts 
schreitenden Welle mit einem zusatzlichen Diffusionsterm . W enn die Theorie durch MitberUcksichtigung 
grosser Oberflachenerhebungen verbessert wird, so erhait man j edoch die Gleichung von Burgers, oder noch 
kompliziertere Wellengleichungen, welch e die Dispersion mitberUcksichtigen. Urn diese R esultate 
herzuleiten, muss das Glen'sche Fliessgesetz vera llgemeinert werden, urn unendlich schnelle Anderungen im 
Spannungsdeviator bei kleinen Verzerrungsgeschwindigkeiten zu vermeiden. Der Berlllch der Anwend­
barkeit der verschied enen Gleichungen wird diskutiert und es wird gezeigt, dass die kinematische Well en­
theorie i.a . nicht genugt, urn Oberfl achenwellen in Gletschern zu behandeln. 

I . INTRODUCTION 

Undulations on the surface of ice sheets with a predominant wavelength of the order of 
several times the ice thickness have been studied by many authors in the past, notably by 
Budd (197o[a] , [b] , 1971) who also gives an account of the relevant literature. For steady­
state conditions he was able to relate the frequency spectrum of the bedrock topography to 
that of the surface and could explain, for instance, under what circumstances the basal shear 
stress fluctuates in sympathy with the surface slope. Budd considered the non-Newtonian 

• Dedicated to Professor Dr H. Park us on the occas ion of his seventieth birthday, 3 1 J a nuary 1979. 
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viscous flow ofa medium down a uniform slope with small harmonic undulations superimposed 
on it, but resorted to an approximate solution technique. A clear separation of the solution 
for bedrock undulations and steady-state accumulation-rate was not attempted, nor was there 
any systematic treatment of the transient response. Moreover, some of his boundary conditions 
were derived using an integrated mass-balance law,. an unnecessary and doubtful procedure. 

For these reasons, Hutter and others (in press) re-investigated the entire matter anew, first 
aiming at a clear and systematic formulation of the governing equations, secondly separating 
the steady-state and the transient response; and, thirdly, attempting to use a perturbation 
technique to answer various questions concerning the state of stress and velocity in a nearly 
parallel-sided slab. In this paper the analysis of Hutter and others is continued insofar as we 
investigate the time-dependent response. Our interest is, in particular, in the variation of the 
surface undulations as a result of initial disturbances and /or time-dependent accumulation 
rate. This must, under certain circumstances produce surface waves travelling down the 
glacier. Such waves were treated by Nye (1960, Ig63[a], [b] ) using kinematic wave theory. In 
that theory the ice slope is regarded as a whole. Balance of mass forms the only significant 
field equation, and balance of momentum is virtually abandoned, except, perhaps, as it enters 
the continuity equation through a phenomenological equation connecting discharge with 
depth and surface inclination. 

Contrary to kinematic wave theory, the present approach makes full use of the momentum 
equation, in which, however, acceleration terms are discarded. The mathematical complexi­
ties introduced thereby are overcome by a stretching of coordinates. This restricts the 
disturbances to surface waves with wavelengths which are long compared to the mean 
thickness of the ice sheet, but short compared to its length; however, the method has the 
advantage that it delivers the wave speeds and the diffu~ivities as functions of the geometry of 
the ice slope and the boundary conditions at the ice-bedrock interface in a much more 
systematic way than is possible with the kinematic wave theory. Two features are new when 
compared with kinematic wave theory. First, the governing equation for the surface elevation 
depends on the ratio of ice thickness to a typical wavelength. Secondly, Glen's flow law must 
be generalized, because otherwise our proposed solution technique fails . The reason for this 
failure is natural, because in Glen's flow law stress deviators grow infinitely fast at low strain­
rates, a singular behaviour that leads to singular integrals in the solutions. 

2. GOVERNING EQUATIONS 

Consider slow flow of a viscous medium of uniform thickness down a uniform slope. Let 
(x,y) be a Cartesian coordinate system; x is down andy normal to the plane. Further, let 
(u, v) be the components of the velocity vector v in the x- and y-directions respectively, and 
denote by D = H Vv + vV) the stretching tensor. The governing equations for the two­
dimensional motion ofa medium are the balance of mass and momentum and the constitutive 
relationship for stress. For a broad class of non-Newtonian incompressible fluids the latter 
may be written as 

where tit' is the stress deviator (the stress tensor will be denoted by tif ) and tn'2 its second 
invariant, A is temperature dependent in general, but will henceforth be assumed constant; 
this is only a qualitative limitation which does not affect the essential conclusions of the 
calculations. B is an as yet unspecified function; for Glen's flow law B(x) = x(n-I) /2. 

In what follows it is advantageous to non-dimensionalize lengths, stresses, and time with 
the mean thickness of the undisturbed, strictly parallel-sided slab, D, ao = pgD where p is the 
ice density and g the gravitational constant, and't" = A-I [pgDB (p2g2D2)]-I. Thus 
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(X,y)dim = D (x,y), 

D 
(u, D)dlm = - (u, D), 

-r 

tdim = -rt. 

For ice and Glen's flow law -r is in the order of I to 3 d*. 
In non-dimensional variables, the governing field equations are: 

au aD 
- + - -0 ax ay - , 

acrx aT {au au au} 
- + - + sin y = ~ - + - u+- D , ax ay at ax ily 

il r acry { aD aD ilD } 
ilx + ay - cos y = ~ at + ax u + ily D , 

au aD - +- = 2:JS ( TU'Z) r. ay ax 
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where y is the slope angle, and u, D are the dimensionless velocity components in the x andy 
directions, respectively, and 

D 
~=-

g-rz ' 

TII '2 = Hcrx-cry)2+r2. 

For ice obeying Glen's flow law, :m is smaller than 10- 7, for D = I 000 m, -r = 10S s, 
:m = 10- 8. Acceleration terms may therefore safely be neglected. Equations (3) are to be 
solved subject to the boundary conditions: 

at the base, i.e. aty = 0, 

u = rprm,} 

D = 0, 

(5) 

in which rp is a constant whose value may substantially vary from glacier to glacier, and 
at the surface, i.e. aty = 'Y(x, t ), 

il Y ar 
-+-U-D= ~ 
ilt ax ' 

crx sin2 oc + cry cos2 OC+T sin 20c = - p, 

* D = 103 rn, n = 3, and A = 5 X 10-24 m 6/ N3 s yields or = 1 0 5 s, but glacier thicknesses vary. 

(6) 
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In these equations ~ denotes the non-dimensional accumulation-rate, Itldi m = ~D j'T: ; for 
real glaciers and ice sheets ~ is smaller than 10-2 to 10- 4, and thus very small; p is the 
dimensionless atmospheric pressure and - a the inclination to the x-axis, 

ar 
tan a = --. ax 

The first of Equations (5) is a non-linear sliding law accounting for a possible regelation 
mechanism. For 4> = 0 it includes the no-slip condition. As a first approximation we have 
neglected a thorough treatment of bedrock undulations. Very roughly, they are incorporated 
in Equations (5), however, and can be taken into account by adjusting <p accordingly. 

A steady solution of Equations (3), (5), and (6), henceforth denoted by a circumflex and 
valid for vanishing steady accumulation rate ~ = 0, is 

f = sin y ( I -y), 

ax = ay = -cos y (r-y)-p, 

y 

u = 2 J ~ (sin2 y ( I -y')2) sin y ( r -y') dy' + 4> sinmy, 
(8) 

o 

(; = 0, f = r, & = o. 

Here a comment regarding the choice ~ = 0 is in order. In actual glaciers this condition 
is satisfied only at the snow-line, but not throughout the entire glacier. As a consequence the 
formulae of the parallel-sided slab as expressed by Equations (8) cannot form a real solution 
in glaciers. Steady-state solutions of real glaciers must instead lead to nearly parallel-sided 
slabs with slowly varying top surfaces. The subsequent analysis could indeed be based on 
such a weaker postulate, but calculations would become unwieldy and transparancy in the 
physical interpretation would probably be lost. (Incidentally, I use this more general approach 
in an article dealing with the influence of longitudinal strain on basal shear, see Hutter 
(in press).) The restriction to the case ~ = 0 is not a serious drawback, however, as the 
major conclusions do not depend on it. 

Consider fluctuations on the motion given by Equations (8) ; denote these by tildes so that 
u = u+ il. The governing equations can now be separated for the two parts. We shall perform 
this separation under the assumption that the steady-state stresses are large in comparison to 
the stresses set up by the transient motion. The perturbation equations can then be linearized 
with respect to the stresses so that the following perturbation equations are obtained: 

oUx Or 
Tx+ ay = 0, 

or oay 
ox +ay = 0, 

ail oiJ 
ox +oy = 0, (9) 
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fU'Z = i(ax- ay)Z+ f2, } 

fn'z = 2[!(ax-ay)(ux - ay)+ fT] , 

~' (x) = d~ (x)/dx. 

( 10) 

In this paper we shall consider long surface waves ; in other words, wavelengths of the 
time-dependent surface undulations will be assumed to be large in comparison to the mean 
glacier thickness. Needless to say the total length of the glacier is also assumed to be large 
compared to these wavelengths. Based on this we introduce the stretchings 

x -+ g/J-L, y -+ -ry, t ~ T/J-L, } (I I) 
il ~ il, if -+ J-LiJ, 

where J-L may be interpreted as the ratio of the mean thickness to a characteristic wavelength. 
Incorporating Equations (I I) in Equations (9) gives (deleting tildes) 

oO"x OT 
J-L -ag + (7) = 0, 

OU ov 
og+(7) = 0, 

OU I I 
J-L og = ; ~ ( fn'Z)( O"x -O"y) +; :1" ( fn'z) (ax - ay) Tn'z, 

OU OV 
o-ry + J-L z og = 2~(fn'2) T+ 2:1" (fn'Z) TTn'2. 

In these equations quantities with a circumflex are known from the solution of the steady-state 
problem, and fn'z is given in Equations (10) . Equations (12) must be solved subject to the 
boundary conditions, at the base (y = 0) 

U = mc!>fm-1T, } 

v = 0, 

( 13) 

at the top surface (y = Y( g, T)) 

oy or ~ 
- +(z1 + u) --v = -, 
aT ag J-L 

(14) 

oY 
T-J-L (O"x-O"y) -ag+f+ O(J-L 3) = o. 

It is about at this point that we should comment on the introduction of the stretchings, 
Equations ( I I) . Time was stretched to balance all members on the left-hand side of the first 
of Equations ( 14) . Only in this case does it admit possible wave-like solutions. We shall see 
corroboration for this in the following section, because the emerging equation for surface 
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elevation will essentially be a forward wave equation. The stretchings were further such that 
the kinematic boundary condition in Equations (14) was preserved; this was not so with all 
other stretchings we tried. Incidentally it is well known in fluid mechanics (see, e.g. Stoker, 
1957; Benney, 1966) and may, for instance, be used to derive the shallow-water equations. 
But what have we gained? The stretching parameter has explicitly entered the governing 
equations, and since it is small this suggests a perturbation solution technique which carries 
the advantage that surface-wave and velocity field have been mathematically decoupled: the 
solution of the former can be used in the determination of the latter. This will become clear 
below. 

Our aim is to develop asymptotic solutions of the non-linear problem for fL small. The 
physical interest is in waves induced by the accumulation/ablation rate %(. 

We emphasize that Equations (12)-( 14) are for long waves of small amplitudes even 
though they are formally written for finite amplitudes. Solutions must therefore be sought 
in the form 

00 Cv) Cv) (v) Cv) Cv) 

(crx, cry, T, U, v) = I fL" (crx, cry, T, U, v). 
v= o 

These will be restricted to the steady-state results of Equations (8), which themselves are 
based on Equations (5) that neglect bedrock topography. Small undulations of the latter 
could be introduced by means of a second perturbation parameter. This will not be attempted 
in this paper. 

3. ON GLEN'S FLOW LAW 

Despite its general acceptance in glaciology, Glen's flow law has its shortcomings. The 
most serious one is its singular behaviour at small stress deviators and strain-rates: for very 
small strain-rates the stresses grow infinitely fast. To avoid such pathological behaviour 
Glen's flow law can, for instance, be altered by introducing a polynomial law instead. This 
was suggested by Lliboutry (1969). By simply fitting experimental data he obtained 

B (x) = a+ bx!+cx, ( 16) 
where a, b, and c are temperature dependent at most. Unlike Glen's law, B(x) = x(n-I) /z, 

the constitutive relationship for the stress deviator based on Equation (16) no longer shows the 
singular behaviour at zero stresses. 

There have been other proposals to change Glen's flow law. Barnes and others (1971) 
and Ramseier and Dickins (1972), for instance, suggest instead of Equation (16) a hyperbolic 
Slne 

B (x) = sinhn(f3x i ) /x, 
where nand f3 are constants, but such a law still leads to infinite viscosities and thus does not 
remove the mathematical singularities mentioned above. For that purpose a finite-viscosity 
law must be developed. Col beck and Evans (1973) give a form similar to that of Lliboutry. 
On the other hand, using a model of statistical mechanics, in which rate-process theory is 
used, the law 

B (x) = sinh (fh/ x)) 

where f (·) is a polynomial, can be derived (a paper on this is in preparation). A power-series 
expansion for small x reduces this to a polynomial similar to Equation (15). 

For most computational purposes the odd behaviour of Glen's· law does not matter. This 
paper is an exception, because the mathematical approach used here will become singular 
when based on a Glen-type power law. In order to avoid unnecessary complications, we shall, 
henceforth, use the simplest extension avoiding this singularity, namely 

B (x) = x(n-Il/z+ a, (18) 
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so that in view of the definition of ~ 

x(n- II /2+ a 
Jil (x) = I +a ' where a = a/( pgD )n- I. 

253 

a is, clearly, dimensionless, and for a = 0 Glen's flow law is obtained. A similar extension is 
also used by Thompson ( 1979). 

When introducing Equation (19) three constants, namely A, a, n must be adjusted to the 
experiments. To this end, denote the numerical values of these constants in Glen's flow law 
by AG and nG. Requiring agreement of Equation (19) with Glen's law at large stresses gives 

A = AG, n = nG. (20) 

Knowing these, a or a follows by matching Equation (19) as x -+ 0 with low-stress experiments 
as performed, e.g. by Jellinek and Brill (1956) or Frankenstein (1968) ; an order of magnitude 
IS 

n = 2, n = 3, 

Before we present the solution technique a warning is in order which puts the mathematical 
approach into the proper perspectives. I t is true that the difficulty with the use of Glen's flow 
law is a mathematical one connected to the proposed perturbation approach. (It has also 
arisen in finite-difference and other solution techniques of the respective equations, see Hutter 
and others (1979) .) As a -+ 0 the solution technique fails. It would, therefore, be appropriate 
to search for a mathematical procedure which remains regular as a --+ o. Such a technique 
would have to be sought using a multiple-variable expansion procedure (see Cole, 1968; 
Nayfeh, 1973; Van Dyke, 1975)' We are less ambitious here and are satisfied with a solution 
technique that is valid for a bounded away from zero. The risk in such a procedure is that 
singularities occur in higher order terms as a --+ o. This is true and a disadvantage, but we 
find support for our approach in the experimental literature mentioned above, which seems 
to prove that a is bounded away from zero. 

4. LONG WAVES ON AN INFINITE ICE SLAB 

In this section we present the method of solution for the flow of a viscous medium of 
uniform thickness down a uniform slope. When the perturbation expansions (15) are substi­
tuted into Equations (12)-( 14) a hierarchy of initial-boundary-value problems is obtained. 
The zeroth-order equations are 

(0) (0) 
aT OO'y (0 ) (0) 

art = 0, ~ = 0, O'x = O'y, 

(0) (0) 

ou ov 
og+ Ort = 0, 

(0) 

~ ~ 
Cl = 2 [Jil (sin2 y( l-rt)2) + 2Jil' (sin2 y( l-rt)2) sin2 y(l - rt ) 2] r, urt . 

subject to the boundary conditions 
(0) (0) 

u = mr/> sinm- I yr, 
(0) 

v = 0, 

* A justification for these is given in Hutter and others (in press). 

at'Y/ = 0, 
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(0) 

cry = COS y( r -Y), 

(0) 

T = -sin y(r- r), 

ay ay{ f . . 
~+ ag 2 1S(sm2 y ( r -y)2) sm y( r -y) dy 

o 

(O) } (0) %l 
+ </> sinm y+ u - v = --;;. . 

When using the generalized Glen's law of Equation ( r9) straightforward integration yields 
(0) 

T = -sin y ( r-Y) , 

(0) 

cry = cos y (1 -r), 

(0) (0) 

crx = cry, 

(0) {2 sin y [ J'1] } U = (Y-r) r+a a1] + n f (y) dy +m</> sinm y , 
o 

(~) = - ~~ {2IS~/ [; 1]2+ n J I f (y) dy d1] l] + m</> sinm y1] } , 
o 0 

where 

f (y) = [sin y ( l_y)] n-I, 

'1 

f 1 . 
f (y) dy = ;; smn- I y(r- (I _ 1] )n), 

o 

'1 '1' 

f J sinn-I y 
f (y) dydy' = n(n+r) ((n+ r) 1] +( r - 1])n+ I-r ) . 

o 0 

There remains the determination of the surface topography. It may be derived from the 
third of Equations (24) and the resulting Equations (25). One obtains 

ay ay %l 
aT + QC (r) ag = --;;.' (2 7) 

with 

2 sin n y 2a sin y 
QC = + [( I _r)n+I+ (2Y - 1)] + -- Y2+m</>sinm y(2Y - 1 + r im). (28) 

r a r + a 

Equation (27) is the desired result. For %l = 0 it represents a forward-breaking wave. F or 
any initial disturbance Y(g, 0) = ~ ( g) its solution is 
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which determines Y(g, T) implicitly. The resulting Equation (29) implies that a given distur­
bance will deform with progressing time; the solution must eventually fail as the profile 
steepens and fL becomes finite . * The above results do not yet give indications on the un­
suitability of Glen's flow law. Indeed we may set n = 0 without encountering any formal 
difficulties. Yet these will arise as soon as terms 0 (fL2 ) are considered. 

The perturbation procedure outlined above yields a sequence of linear non-homogeneous 
differential equations subject to boundary conditions some of which are non-linear. The 
zeroth order approxima tion resulted in the forward-wave equation (29) . It can be improved 
by constructing higher-order approximations. To second order one then obtains 

ay ay [ 02Y ( OY) 2] 
OT+ <!l:ag- fL jl) og2 + QE ag -

[
02Y 02y oY ( OY) 3] ~ 

_fL2 jf ~+~ a[z o g+~ ag + 0 (fL 3) = -;;.. 

The functions"il , (!E, jf, ~, and *' are quite complicated expressions and are determined in the 
Appendix. The corresponding algebra is unwieldy and becomes unjustifiably involved if 
terms 0 (fL3) are also considered.t But with the adjusted constitutive relationship for the 
stress deviator none of the integrals occurring becomes singular, so that all coefficient functions 
in Equation (30) are bounded. 

Ana lytical solutions to Equation (30) are probably hard to find, yet some insight can be 
gained for special cases. To this end let us write Y = 1+ 87) (since 7) no longer appears we 
may use this symbol with this new meaning). Then 

( 7) ( 7) [ ( 27) ( (7)) 2] 
aT + <!l: (1+ 87) ) og-fL "il (1+ 87)) og2 + 8QE (I + 87) ) og -

[ 
(37) (27) ( 7) ( 07))2] ~ 

_fL2 jf( I + 87)) og3+ 8~ ( 1 + 87) ) ag2 og+ 82~ ( 1 + 87)) og - 8fL . 

Here, the parameter 8 represents a typical surface elevation above the undisturbed level 
Y = I. According to the perturbation procedure it cannot be larger than O(fL ) but could be 
smaller. Furthermore, Equation (31 ) gives indications on the size of~ for which the equation 
makes sense. Clearly, ~ should not be larger than 0 (fL8 ). For real glaciers and ice sheets this 
condition is well satisfied. In what follows we shall set ~ = fL8~ with ~ = 0 (1). With such 
limitations Equation (3 I ) may be expressed in powers of 8. To zeroth order the linear long­
wave theory emerges for which 

(7) ( 7) (27) (37) 
aT + <!l: ( I) og-fLjl) ( I) og2-fL2jf( l ) ag3 = ~. (32 ) 

To first order in 8 we find 

(7) (7) (27) ( 37) 
aT + <!l: ( I) ag- fLjl) ( I ) og2 - fL2.:1f( I ) og3+ 

{
, ( 7) [ , (

2
7) , ( a7)) 2] + 8 <!l: ( I) 7) og- fL :m (I) 7) og2 + (!E ( I ) og -

[
, ( 37) (27) ( 7)] } 

_fL2 .:If ( I ) 7) og3 +~ ( I ) og2 og = ~. 

* Tha t this must be so for QI;'s which a re m onotonically increasing with r (and this can be shown to be the 
case here, see Appendix) can be seen as follows: QI; is a disturbance velocity which grows with growing r. A 
disturba nce of sinusoida l sh a pe will therefore steepen as wave heights travel faster than points of zero elevation. 
Small wavelengths of a Fourier transform of this new wave form will grow in significance changing thereby the 
magnitude of,... which eventually will become finite. 

t Since equations have been linearized with regard to stresses, we do not believe that terms 0 (,...3 ) would give 
any physical improvement. 
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Nothing can be inferred about the size of the various coefficients involved. In particular they 
need not be 0 ( I ) , because they follow from the integrations performed in the Appendix. 
The remaining simplifications therefore depend on the order of magnitude of the various 
terms considered. 

(i) IfjlB ( l) = 0 (1) and 8 = O(f-L ) the leading terms are 

01] 01] 021], 01] 
aT +<!C (I) og-f-LjlB ( l) og2+ 8QJ: ( I) 1] og = 'ijJi. 

(ii) IfjlB ( l) = 0 (1) and 8 = 0 (f-L2) then 

01] 01] 021] 031], O'Y} 
OT+ QJ: ( I) og-f-L1lB ( I) og2-f-L2jf( l ) og3+ 8<!C ( I ) 1] og = 'ijJi. 

(iii) IfjlB ( l) = O(f-L- J) , jlB'(I) = O(f-L- J) the leading terms are 

01] 01] 021] [, 01] , 021]] 
aT + QJ: ( I) og-f-L1lB ( I) og2 + S <!C ( I) 1] og-f-LjlB ( I) 1] og2 =~. 

Clarity about which of these equations should apply is obtained if the magnitude of the 
various coefficient functions is determined. First indications follow, if we assume no slip, 
rp = 0, and use Glen's flow law, a = 0, for which <!C and 1lB are still well defined. The Appendix 
then shows that 

QJ: ( I) 
-.-=2, 
sm y 

QJ:' ( I) 
QJ: ( I ) = 2, 

1lB( I) d 
QJ: ( I) = "2 cot y, 

with d = (t, t, ! ) for n = ( I, 2, 3) . Thus, as long as y = 0 ( I) and as long as wavelengths 
are sufficiently large the simple forward-wave equation (27) is a reasonable approximation. 
It can be improved by allowing moderately long wavelengths. Dependent on the magnitude 
of surface elevation, Equations (32), (34), or (35) apply. For small inclinations, on the other 
hand, cot y becomes large and diffusion is no longer negligible. The perturbation procedure 
still remains valid in this case, because the steady-state solution (8) does not depend on it. In 
contrast to steep valley glaciers, diffusion is therefore never negligible in ice sheets, because in 
these y ~ I. A model equation for these is either Equation (32) of the linear long-wave 
theory or Equations (34) and (36) if first-order corrections to surface elevations are taken into 
account. 

5. SOLUTIONS OF THE GOVERNING EQUATIONS 

When compared with the kinematic wave theory as presented by Nye, none of the above 
equations matches fully with his own which is 

01] , 01] 021] , 
aT +(Co-Do ) og-Do og2+ CO 1] = ~. 

Here, Co, Co' = dCo/dg, Do, and Do' = dDo/dg are known functions of r Differences between 
Equations (32) and (37) evolve because Equation (37) is valid for a slope of ice with variable 
thickness, whereas Equation (32) was derived for a slab of constant thickness, and, clearly, 
because Equation (32) contains o (f-L2) terms. For steep slopes their neglect is justified. 
Solutions for this case are oflimited interest, but follow most easily if Equation (32) is subject 
to the Galilean transformation 

T= T . 
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We then obtain the heat equation, 

aT} a 2T} ~ 
aT- aX2 = W(X-QC(I) T, T) = llJi(X, T), 

with the general solution 

-00 

in which T}o ( 0 is the initial disturbance. 
When applying Equation (38) to the non-linear Equation (34) what obtains IS the 

inhomogeneous Burger equation (see, e.g. Leibowich and Seebass, 1974) 

where 

a QC' (I) 
K = fL! jJB(I)! . 

Construction of solutions to Equation (41) depends on the magnitude of K. If K is large, small 
perturbation solutions are suggested. If K = O ( I) and, more generally, for a ll K, solutions 
are determined by utilizing the Hopf- Cole transformation 

00 

.jJ = exp {~ J T}(X', T) dX' } -+ T} = 

x 

which reduces Equation (41) to the linear equation 
x 

2 a.jJ/ax 
-~ -.jJ-

:~-:.i2+ (~ J @(X', T) dX') tP = o. 
o 

For arbitrary accumulation-rate it must be integrated numerically. For impulsive 
accumulation-rate 

it can, however, be treated exactly, because then Equation (43) reduces to the heat equation. 
Thus we can solve the initial-value problem to find 

00 

J X-;-X' exp [~ J d(X" ) dX" 

(X T ) = .: - 00 x' 

(X-X')2] dX' 
4 T 

T}, 00 00 

K J exp [;: f d(X") dX" 
-00 x' 

(X _ XII)2] 
dX" 

4 T 

which provides the detailed structure of the wave for all time; a(X ) is identical with the 
initial disturbance of the surface elevation above its mean. 
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If K is small, multiple time scales are suggested, but these are not needed , because when 
solutions to Equation (4 I) are constructed by the regula r p er turbation expansion 

ex) (j) 

7] = '2>' 7] , 
j = o 

no secular terms arise. What obtains is a sequence of heat equations 

{ 

@(X, T) , 
(j) ( j) 

07] OZ1] j - I ( ,,) 

oT- oXZ = _ "'" (j- I -")~ 
~ 1] oX ' 

,.,, = 0 

J = 0, 

J ;): I, 

of which solutions again have the form of Equation (40) and will not be repeated here. If 
O(fLZ) terms are included in an exploitation of Equa tion (32) the solution may again be written 
in convolution form 

To= T ro 

7](X, T) = f d To f C§(X - Xo, T - T o) @(Xo, To) dXo+ 
To= o -00 00 

+ f C§(X - Xo, T ) 1]o(X o) dXo, (47) 
- ro 

where the Green's function C§ is given by 
ex) 

C§(X , T) = .2...f exp {isX- [SZ -(fL i..:lf( I ) /1B ( r)t) is] T } ds 
27T 

- ex) 

(X+(fLi..:lf ( r) /1il ( r)t) T)Z } , 

4 T 

which for fL = 0 reduces to Equation (40) . When 

r/E = J1-ijf(r)/1B (r)i ~ I , 

a perturbation solution is suggested. If boundaries a re a t infinity this yields a hierarchy of 
heat equations, namely, if 

ex) 

"'" (r)v (v) 
7] = ~ ~ 7] , 

v = 0 

U ) ZU) {@ (X' T), 
o-r; 0 1] _ (j_I ) 

oT- oXz - 031] 
OX3 ' 

J = 0, 

of which the solutions have again the form of Equa tion (40). 
For any other more complica ted equation, say Equa tions (35) or (36) direct numerical 

methods must be suggested for their solution . 

6. DISCUSSION AND CONCLUSION 

The calculations performed above rem ain rather theoretical and are of li t tle help for real 
glaciological problem s a s long as no numerical values for the various coefficients of the 
surface-wave equation a re available. Since our mo"del treats surface waves on a plane para llel­
sided slab, it will be of value for a glacier in the regions far from its head or its snou t. 
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Several effects are built into the model: 

(i) finite inclination of the ice slab, 
(ii) sliding of the ice over its bed, 

(iii) generalization of Glen's flow law. 

259 

It is interesting to see how these effects influence the coefficients in the basic governing 
equations. All these can be summarized in the equation 

OT} 02T} 8 ([' (I) OT} ! $ ( I) 03 T} :19' (I) 02T} } 
oT-oX 2+ jL! 1ll ( I )i T} ox -jL jB ( l )ioX3-8 19 (I ) T} Ox2 = 'C!Ii, 

OT} 02T} OT} 1 03T} 02T} 
oT- OX 2+ K T} ox-~ OX3-~T} OX2 = ijjl. 

or (50) 

The first two terms on the left-hand side represent essentially the kinematic wave theory 
including diffusion. In the original coordinates g and T the corresponding equation contains 
two constants, ([ (I) and 19 (1), which are now incorporated in the variable X. In Figures 1 
and 2 these two coefficients are plotted against the inclination angle y. Curves are shown [or 
two values, namely n = 2 and n = 3, of the exponent in Glen's flow law; they are, further­
more, parameterized for different values of the coefficient a in the generalized Glen law 
introduced in Equation ( 19) . Figures la and on hold for an ice slope adhering to its bed; 
in Figures Ib and 2b two sliding velocities have been introduced, namely Ub = 0.005 and 
Ub = 0.01. (Notice that this corresponds to a sliding parameter 4> = ub /sinm y; hence, 
keeping Ub fixed means that </> changes with y. Calculations were performed for m = 2.) 
It is seen that the generalization of Glen's flow law has little effect on the numerical values of 

a 

b 

1.0 

0 .1 -

1O-2L 

o 

IC 111 

0 .1 

IC 111 

10-6<,1 <10-2 

0.2 
- ;' -

a <:: 10 -4 

1' '' 10-3 

,' - 10 -2 

0.3 

~: : : 
-I 

0 .1 0.2 0.3 
- ;' -

Fig. 1. 

(a) Surface-wave velocity <!C ( r ) as aJunction oJthe inclination angle y parameteri zedJor n = 2,3 and various values oJa in 
the generalized Glen flow law. No slip oJ the glacier at the bed. 

(b) Same as Figure Ta, butlor the case when sliding occurs. The sliding law is Ub = ~Tm, and has been usedJor m = 2. 

The thick lines are Jor Ub = 0.005, the thin lines Jor Ub = 0.01. 
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~ and:llB. This is no surprise, because the expressions for ~ and :lIB show no singularity when 
a = o. The dependence on the inclination angle y, the exponent n, and the sliding velocity 
are more important. To find the range of importance of diffusion we write Equation (32) 
with respect to the variables 

t = g/~ ( I), r, 

and then find to first order in 11-

01] 01] :lIB ( I) 021] 
or +ot-fL ~( I) ot2+ O(fL2) = m. 

For Glen's flow law and when the ice adheres to the bed it was shown that1J9 ( I )/~( I ) oc cot y. 
For small angles (in reality for most glaciers) diffusion is therefore important. Whether this 
persists also when sliding over the bed is allowed for, can easily be inferred from Figures I b 
and 2b. Accordingly, J) ( I) /~ ( I ) grows mono tonically with decreasing y. Numerical calcula­
tions indicate that with sufficient accuracy one may set :m ( I ) /([ ( I) = 0.6 cot y. Hence, 
even when sliding occurs, diffusion remains significant at all inclination angles which occur. 

Diffusion being significant we shall henceforth and irrespective of what value the wave­
length parameter may have, use X and T as independent variables. With their use a possible 
extension of kinematic wave theory follows from numerical values of ~' ( I )/tD ( I )~, 

jf( I) (1D ( I)t, and tD' ( I)/:lIB ( I), see Equation (50) . 
In Figure g I have plotted the first of these parameters as a function of y, parameterized 

for different values of a. In Figure ga the no-slip condition has been applied, whereas Figure 
3b shows the corresponding results including sliding. Generally, sliding enhances the value 
of~' ( I) /:lIB ( I )! at small inclinations, but has practically no influence on it at larger inclinations 

D ll) 
10

1 

n - 2 

0.1 r 

a 

10-
3 f 

10-41 
0 0 .1 

- i' -
D ll) 

b 

r~".-oo," ::l ._, ~~ , ".~oo, 
0_ 0.1 

- i' -

Fig. 2 . 

11 < 10+4 

,1 -10-3 

-- ,, _10+2 

0.2 

0.2 

0.3 

J 

(a) Diffusion parameter :liB ( 1) as a function of the inclination angle y parameteri zed for n = 2, 3 and for various values of !I 
in the generalized Glen flow law. No slip of the glacier at the bed. 

(b) Same as Figure 2a, but for the case when sliding occurs. The sliding law is Ub = q,Tm, m = 2_ 
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y. In view of the definition of K and since for most inclinations y occurring in practice 
1<!!:' ( I )/1JB ( I )! 1 = 0 ( 10- 1) I conclude that the non-linear term T/ oT/ loX in Equation (50) need not 
be taken into account except, perhaps, in steep and hanging glaciers for which K may be of the same order 
as usual diffusion parameters. This result can be strengthened if the steady-state Burgers' 
equation is looked at and the corresponding shock thickness is evaluated, see Lick (1970). 
One finds that the latter is 

2 I 
go = ---, 

K T/o- I 

where TJo is the thickness behind the shock. Generally it must be expected to be close to unity 
so that T/o-I ~ I. Hence, even with K = 0 (1), go is large and under usual circumstances 
greater than the length of the glacier. The non-linear term associated with K is therefore 
negligible. 

The significance of the coefficient E in Equation (50) can be estimated from Figure 4. 
(Effects due to this term are usually attributed to dispersion. ) Unlike the functions of the 
previous graphs, the value of :Jf ( I) 11JB ( I) I strongly depends on the parameter a in the 
generalized Glen law. The reason, clearly, is that :Jf( I) -+ 00 as!1 -+ o. For a glacier adhering 
to its bed § ( 1)11» ( I F grows with growing y and is, except for very small angles y, of the order 
of 10L roO. When sliding takes place § (I )I1» (I )! increases also as y -+ o. Here we may 
uniformly say that :Jf( I )/iB (I )I is large. Its value depends also rather critically on the value 
of the coefficient n. We conclude that under no circumstances is it allowable to neglect in Equation 
(50) the term involving E, because under usual situations E is of the order of roO and larger. 
Furthermore, E may exceed the value roO by several orders of magnitude. Consequently, 
dispersion may very well be of greater significance in glaciers than is diffusion. 

ICIII / D l l l '" 
1.0 --l 

0 .1 f-

a 
Ub- O 

it < 10 .4 

10-'" 
- <1 - 10 " 

10" ~--L 

0 0 .1 0 .2 0.3 

(' ll I/ D 111'12 
- i' -

la 
n - 2 

0.1 l n - 3 

b 
ub - 0.005 

ub - 0.0 1 

10 ' 
0 0 .1 0.2 0.3 

- i' -

Fig.J. 

(a) J;B '( I )/([ ( I )I as afunction of the inclination angle y parameterizedfor n = 2 , J and various values ofa in the generalized 
Glen flow law. No slip of the glacier at the bed. 

(b) Same as Figure Ja, butfor the case when sliding occurs. The sliding law is Ub = q,Tm, m = 2. 
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(a) Dispersion parameter jf(I) (IiB (I )312 plotted against the inclination angle y parameterized for n = 2,3 and various 
values of n. No slip of the glacier at the bed. 

(b) Same as Figure 4a, but for a sliding velocity Ub = 0.005. The sliding law is Ub = ",,,m, m = 2. 

(c) Same as Figure 4a, but for a sliding veloci~y Ub = o.o!. The sliding law is Ub = ",,,m, m = 2. 
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(a) 31B'(I)/:/!ll (I ) plotted against the inclination angle y for n = 2 and various values oln and several sliding conditions. 
(b) Same as Figure 50, but for n = 3. 
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Finally, in order to obtain information about the magnitude ofll' ( I) /1JB ( I), I have plotted 
in Figure 5 this ratio as a function of y and parameterized for various values of nand /1. It is 
seen that, uniformly, 100 < ll' (I)/ll (l ) < 10 1 so that ~ is small of order 10- 2 or smaller. 

In conclusion we may say that the surface-wave equation appropriate for ice slopes must 
have the form 

OT} 02T} I 03T} OT} 02T} 
oT- oX 2+-; aX3+ K T} ax-~T} aX2= 'ijl{, 

where for ice I lE is the dominant coefficient and where I ~ I is generally larger than I K I, but 
smaller than unity. The non-linear terms in Equation (50) can safely be regarded as small 
corrections of the linear reduced equation, in which dispersion and diffusion are taken into 
account. The non-linear terms can safely be neglected so that the zeroth order equation reads 

:~-aa~T}2+~ :~T}3 =~. 
Of the diffusion and dispersion effects contained in this equation the second is more important 
than the former but this is a materially dependent property for which dependence on the 
parameter a is evidenced (see Fig. 4). For materials with a sufficiently pronounced linear 
behaviour of the stress- strain-rate relationship (that is for n = 3 and /1 > IQ ':"' I), E becomes 
large; in this instance diffusion overrides dispersion and may perhaps, even be negligible. 
For ice this does not appear to be the case, since for n = 3, a < c. 10- 3. Consequently, 
kinematic wave theory is inappropriate for modelling surface-wave phenomena on ice. 

MS. received [2 December [978 and in revised form [7 May [979 

APPENDIX 

Here we briefly summarize the derivation of Equation (30). To this end the Equations (12)-(14) are written 
for the O(fL) terms. The differ ential equations for the stresses are 

(r) (0) (r) 
ih oUx or OUy 
aT) = -ar = cos Yat' a;;-

and must satisfy the boundary conditions (see Equation (14» 

( r) ( r) 

(0) 
aT 

- at 

T = 0, Uy = 0, 

andy = r(x, t ) . Straightforward integration thus reveals 

. or 
-sm Yag' 

( r) or ( r ) or 
T = cos Yag (T) - Y), Uy = sin Y iJt (r-T). 

( r) 
The longitudinal stresses Ux follow from the fourth of Equations (12) and Equation (A.3) 

(0) 
all I . (I) (I) 
~ = 2" JliI (sm2 Y(I-T)2)(u",-ay), 

so that 

(A.I) 

(A.2) 

It is now evident that a non-vanishing coefficient a prevents the first-order longitudinal stresses becoming infinite 
at T) = I. This demonstrates that the generalization of G len's flow law is important. 

To obtain the first-order velocity field the fifth and third of Equations (12) must be integrated. From the 
former and the first of Equations (A.3) we obtain 

( r ) 
OU 2. iJr 
" = - {a + n[sm Y(I _ T)]n-I} cos Y -iJl: (T)- Y). (A·5) . 
uT) I + a s 
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Integrating this and using the boundary condition 

(I) . aY 
un_o = -.pm smm-I y cos y Yag' 

gives as first-order longitudinal velocities 

with 

+ sinn- I y (n~ 1 - y)]-.pm sinm- I y Y). (A.6) 

(I) (I) (I) 
The first-order velocities v follow from the continuity equation ou/ot = - aV/ aT] and a subsequent integration. 

( I) 
Using Equation (A.6) and the boundary condition that V vanishes at T] = 0 yields 

(I ) (I) 02y (I) (OY)2 
v = - V,, (7), y) aF+ VI2 (T], Y) ag , 

where 

and 

This completes the first-order solution; the results determine the wave equation (20) as far as O(p. ) terms go. 
To determine also the O(p.2) terms, second-order shear stresses and velocities must be determined. The former 
follow from the first of Equations (12), or 

(2) (I) 

aT 0<1" . (o!"V 02y ( . aT] = ----ar = -sm y ag) - ot2 sm y(Y-7) + 

4siny. 2(I + a) . } + --- [a7) + smn - 1 Y(I-(I-7)n )]+--.pm smm Y 
f(T])+a f (T])+a . ' 

so that after an integration 

is obtained, in which 

g{ = 4(sinn- 1 y a(·-n) / (n-I) + a I/ (n-I» + 2 ( 1 + a) .pm sin m-I ya(·-n)/(n-I), 

x = sin y/aI/(n-I), } 

J
x dx' {In (x + I ) , for n = 2, 

Gn(x) = -;;;::,- = 
o X + I tan-I (x), for n = 3. 

The boundary condition for or at 7) = Y implies that 

(2) aY (I) (I ) 
T ( T] = Y) = -ag (<1,,-Oy) 

_ 2 (1 + a) (0!,\2{2 sin y [aY + sinn-I y ( 1- (1- Y)n )] + .pm sin m y) . 
f (Y)+a at) I + a 

(A.g) 

(A. IQ) 

(A.II) 

(A.12) 
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Equations (A.JO) and (A.12) together allow the determination of the constant of integration kl(t, 7). 
(2) 

determined, 7 may be written in the form 

(2) (2) (iJ~V (2) iJ'Y 
'T = - TII ("" Y) at) - T 12 ("" Y) iJ~" 

Once it is 

(A.13) 

(A.14) 

Beyond this point calculations are very involved. For this reason we shall restrict ourselves henceforth to the 
(2) 

necessary minimum. Substituting (A. I 3) and the fifth of Equations (25) into the differential equation for u, 
(2) (0) 

iJu iJv 2 . (2) 
iJ", = -iJ~+ I + a (a + n(sm y(I_",)n-l) 'T, (A.15) 

and using the boundary condition 

(2) . [(2) (iJry (2) iJ>T] 
Un _o = -q,m smm-I y TII(o, Y) ag) + T 12 (o, Y) a[z , 

it is straightforward to show that 

(2) (2 ) iJ.y (2) (iJY)2 
U = UII ("" Y) iJ~' - U12 (T), Y) at . 

Alternatively, the continuity equation 

determines v as follows 
(2) 
V = 

with 

o 

(2) (2) 
iJu iJv 
iJ~+iJ", = 0, 

(A.16) 

(A.17) 

(A.IS) 

(A.Ig) 

These results now enable us to corroborate Equation (4.9). Indeed, with Equations (A.6), (A.7), (A.I7), and 
(A. IS) the surface-wave equation, the first of Equations (14), assumes the form of Equation (30), in which 

(I) 
Jl(Y) := - VII(Y, y), 

(I) (I) 
QE(Y) := V12 (Y, y)-UII(Y, y), 

(2) (A.20) jf(Y) := - VII(Y, y), 
(2) (2) 

~(Y) := - UII(Y, Y)- V12(Y, y), 
(2) (2) 

~(Y) := U I2 (Y, Y)- V13 (Y, Y). 
(2) (2) 

Evaluation of the above functions hinges on explicit expressions for the functions UII and U 12 • Since in the main 
(2) 

body of this article only Jl and jf need explicitly be known, it suffices to determine UII . We leave it to the reader 
to prove that Equations (A.14)-(A.Ig) lead to the following expressions for jf(I): 
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--- - +-- - - -+ 2 sin y [a sinn- ' y (n + I I I 
1+ 11 24 n+ I 6 2 n + I 

2 1 2 
+ -- [a~12 ( 1 )+~12 ( I ) ] + cf>m sinm -

, yEt sin y + %I (Gn (o )- Gn (x» ], 
1+ 11 

where 

~12 ( I ) = 28 sin y + )!( (.: Gn(o)-Ln (x) +~ (Rn (x )-Rn (O» ), 
2 X Xl 

~ (I ) = sinn-, (9 sin [ 2 (': __ 1_+ 1)+ I J + 
12 y y 6 2(n+ l ) (n + 1)(n + 2) (n+ 1)(n + 2 )(n+ 3) 

+ %1 \ (I + n~ I) Gn(o )- xln [On (x)- ~ (Pn (x )- Pn (o) ] )) , 

{ ( I + X) In ( I + X)-X, n = 2, 
Ln (X) 

x arc tan x - ! In (I + X2 ), 11 = 3, 
{H(I + X)2(ln (I + X) - ! )-x2], n = 2, 

R,, (x ) 
t[ (X' - I) arc tan x + x-x In ( I + X2 )], n = 3, 

{ (X2_1 ) In ( I + x ) + X- !X2, Il = 2, 
O,, (x ) 

X3 arc tan X- !X2 + ! In (I + X2 ), n = 3, 
{H(X3- 3X- 2 ) In (I + x )-iX3+ 2X2+ 2X], n = 2, 

P,, (x ) 
t[ (x4 + 3) arc tan x + 21n ( I+ X2 ) _X3 _ 3x], 11 = 3· 
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