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JeSmanowicz” Conjecture with
Congruence Relations. I

Yasutsugu Fujita and Takafumi Miyazaki

Abstract. Let a, b, and c be primitive Pythagorean numbers such that a? + b*> = ¢ with b even. In this
paper, we show that if by = € (mod a) with e € {£1} for certain positive divisors by of b, then the
Diophantine equation a* + b’ = ¢* has only the positive solution (x, y,z) = (2,2,2).

1 Introduction

Let a, b, and ¢ be relatively prime integers with min{a, b, c} > 1. Then we consider
the exponential Diophantine equation

(L.1) a+b =

where x, y, and z are positive integers. There are many works on equation (1.1)
in the literature. Almost all of them concern the case where a, b, and c also satisfy
af + b1 = (" for some other positive integers p, g, and r; in particular, the case p =
q = r = 2 has interested many researchers. In 1956, Sierpinski [10] considered the
case of (a,b,c) = (3,4,5), and he showed that equation (1.1) has only the solution
(x,7,2) = (2,2,2). In the same year, JeSmanowicz [5] studied some of the cases
where a, b, and ¢ are primitive Pythagorean numbers; that is, a, b and c are relatively
prime with a> + b = ¢, and he obtained the same conclusion as Sierpifiski. Also,
Jesmanowicz proposed the following problem.

Conjecture 1.1 Let a,b, and ¢ be primitive Pythagorean numbers such that
a*> + b* = ¢*. Then Diophantine equation (1.1) has only the solution (x, y,z) =
(2,2,2).

This is an unsolved problem in spite of many studies. It is known that if a, b, and
c are primitive Pythagorean numbers such that a> + b> = ¢ with b even, then a, b,
and c are parameterized as follows:

a=m?—n*, b=2mn c=m+n,

where m and # are relatively prime positive integers of different parities with m > n.
In what follows, we consider the above expressions.
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After the work of JeSmanowicz, Lu [7] proved that Conjecture 1.1 is true if n = 1.
Dem’janenko [1] showed that Conjecture 1.1 is true if c = b + 1, which is equivalent
to m = n + 1. Their results play important roles in other known results. The second
author [9] generalized their results by proving the conjecture to be true if a = +1
(mod b) or c =1 (mod b). Recently, the authors [4] generalized a result of [9] and
obtained related results. The aim of this paper is to give further related results in this
direction.

Throughout this paper, we assume that

(1.2) by = € (mod a),

where by > 1is a divisor of b and € € {£1}. We write by := b/by. The first main
result is the following theorem.

Theorem 1.2  If by has no prime factors congruent to 1 modulo 4, then Conjecture 1.1
is true.

This is a generalization of [4, Theorem 1.2] concerning the case where b is even,
corresponding to b; = 2" with nonnegative integer r. We remark that the condition
in the statement of Theorem 1.2 is similar to those due to Deng and Cohen [2]. We
also prove the following result.

Theorem 1.3  Conjecture 1.1 is true if one of the following holds:

(i)  m — n has a divisor congruent to 3 or 5 modulo 8;
(ii) m + n has a divisor congruent to 5 or 7 modulo 8.

In particular, if a has a prime factor congruent to 5 modulo 8, then Conjecture 1.1 is
true.

Some examples of the theorems are given as follows.
e=1; m=2b}, n=2b —2b +1,
e=1; m=4b} +4b? +3b, +1, n = 4b] + by,
e=—1; m=2b}+2b +1, n=2b2,
e=—1; m=4b] +b, n=4b} — 4b{ +3b; — 1,
where we can take b; as any positive integer such that b; has no prime factors con-
gruent to 1 modulo 4, or b = 2 (mod 4), or by = —e (mod 4). More generally,

one can construct various parametric families of m and # satisfying the assumptions
in Theorems 1.2 or 1.3 (see Section 5).

2 Preliminary Considerations

From (1.2) we can write

(2.1) b= eby + byat
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with some nonnegative integer t. Since by > 1, we find that b; < b, sot > 1. Putting
M =m+nand N = m — n, we see from (2.1) that

(2.2) (M = biNt)* — ((b1t)* + 1) N = 2eb,.

Ift > 2, then the Pell equation U? — ((b;t)? + 1)V = 2¢b; has no primitive solution
(¢f., e.g, [3, Lemma 2.3]), and Diophantine equation (2.2) has no solution, since
gcd(M, N) = 1. Hence, t = 1 and by = € + a. Since by is even, we can write

(2.3) m? — n* = 2mony — e,

where mg and n are the positive divisors of m and n, respectively, such that myny =
b0/2

We can assume that # > 2 by [7] and n < m — 3 by [1]. Suppose that
min{my,ny} < 2. Then mony < 2max{mg,ny} < 2m. Since m*> — n* > m?> —
(m — 3)* = 6m—9, we find from (2.3) that 6m—9 < m?> —n? = 2mgnyg—e < 4m+1,
which implies that m < 5, hence (m,n) = (5,2), particularly, a = b + 1, where
Conjecture 1.1 is known to be true by [9, Corollary 1]. Thus, we can assume that
o, tip > 3. By (2.3) we have the congruences

(2.4) m? = —e (mod ny) and #n? =e (mod my).

Lemma 2.1 Let (x,y,z) be a solution of (1.1). If e = 1, then x and z are even. If
€ = —1, then z is even.

Proof Equation (1.1) implies that
(—n?)* = n®)? (mod m) and (m?)* = (m?)* (mod n).

The assertion now follows from (2.4) and mg, ny > 3. [ |

In the following sections, we consider the cases of ¢ = 1 and € = —1 separately.

3 TheCasee=1

Let us consider the case € = 1. Let (x, y, z) be a solution of (1.1). By Lemma 2.1, we
can write x = 2X and z = 2Z with positive integers X and Z. By [8, Theorem 1.5],
we know that both X and Z are odd. We write (2mn)” = DE, where

D= (m*+n*)? + (m* —n?)*, E=m*+n*)? — (m* —n*)~.

It is easy to see that gcd(D, E) = 2 and y > 1. Observe that D = 0 (mod 4) if m is
even, and E = 0 (mod 4) if m is odd.
We prepare several lemmas.

Lemma 3.1 The following congruences hold:

ifmiseven,then D=0 (mod 2’ 'm]) and E=0 (mod 2n]),

ifmisodd, then D=0 (mod 2m] and E=0 (mod 2" 'n})).
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Moreover, if by has no prime factors congruent to 1 modulo 4, then

(D.E) — (2 tm?, 20)  if mis even,
Ul @w, 27 'w)  ifmis odd.

Proof We assume that m is even. By (2.4), we see that

E =2 (mod my), = —2 (mod ny).

Since 1y is odd, the second congruence implies that 1, is prime to D. Hence n{
divides E. Also, the first congruence tells us that mg divides D if mq is odd. If my is
even, then, since 22~ !(m/2)"nd b = D(E/2) and E/2 is prime to 11,/2 by the first
congruence, we observe that (m/2)” divides D/2. This proves the first part of the
lemma. Similarly, we can obtain the desired congruences in the case where m is odd.

From now on, we assume that b; has no prime factors congruent to 1 modulo 4.
By [4] we can assume that b; is not a power of 2. Take any odd prime factor of by, say
p- Then p divides m or n. It suffices to show that D = 0 (mod p) if p | m, and that
E =0 (mod p) if p | n. Consider the case of p | m. Suppose that D £ 0 (mod p).

Then E=0 (mod p). Since E = n*? + n** (mod p) and gcd(p, n) = 1, we see that
n?X=2l = _1 (mod p).

This tells us that —1 is a quadratic residue modulo p, which contradicts our assump-
tion that p = 3 (mod 4). Hence the claim is proved. Similarly, we can show that
E=0 (mod p)ifp | n. [ |
Lemma 3.2  The following congruences hold:

if miseven, then X =Z (mod by/4),

ifmisodd, then X =Z (mod by/2).
In particular, if X # Z, then |X — Z| > (a+1)/4.

Proof Since y > 1 and X is odd, we see from Lemma 3.1 that
D=n* - =0 (mod my),
E=m* —m*™* =0 (mod n).

The first congruence together with (2.3) yields (1 — bp)* = (1 — bp)? (mod mg).
Hence,
boX = byZ (mod moz).
Also, the second congruence together with (2.3) yields
boX = byZ (mod noz .
Since ged(my, ny) = 1 and mony = by/2, we have
boX = byZ (mod b /4).

From (2.3) we see that by is divisible by 4 if m is even, and that b, is exactly divisible by
2if mis odd. It follows that X = Z (mod by/4) if miseven,and X = Z (mod by/2)
if m is odd. The second assertion follows from (2.3). [ |
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The following lemma holds under the condition of Theorem 1.3 (¢f. [2]). From
now on, we assume the condition of Theorem 1.2 that b; has no prime factors con-
gruent to 1 modulo 4.

Lemma 3.3 Under the preceding assumption, y is even.

Proof First, we assume that m is even. By Lemma 3.1, we see that
(3.1) (m* +n*)> = (D+E)/2=2""m" + .
Taking (3.1) modulo m¢, we see from (2.4) that

(3.2) n’ =1 (mod my).

Suppose that y is odd. We will observe that this leads to a contradiction. Congruences
(2.4) and (3.2) together imply that n = 1 (mod my). Putting n = 1 + mph with a
positive integer h, we see from (2.3) that

(m + moh)(m/my — h) = 2h + 2ny.

From this we see that the first factor in the left-hand side is a positive divisor of the
right-hand side. Since m > n > ny and my > 3, we find that the second factor in the
left-hand side has to be 1; that is,

(3.3) m + moh = 2h + 2ny,
(3.4) m/my—h=1.

If ny < n,then m > n > moh > 3h and ny < n/3, which contradicts equation (3.3).
Hence ny = n. Since by = m/my = h+1by (3.4) and ny = n = 1+ mgyh, we observe
that

moby = m = 2h + 2(1 + mgh) — moh = 2(h + 1) + mgh = 2b; + my(b; — 1)7

so mg = 2b;. Therefore, we find that (m, n) = (2b2, 2b% — 2b; +1). We will consider
the cases where b; is even and b, is odd separately.

Suppose that b; is even. Then, m = 0 (mod 2my), which together with (2.3)
yields n* = 1 (mod 2my). By (3.1) we have n”’ = 1 (mod 2my). Since y is odd, we
obtain n = 1 (mod 2my). It follows from my = 2b; and n = 2b? — 2b; + 1 that
by =1 (mod 2), which contradicts the evenness of b;.

Suppose that by is odd. Then m = 2 (mod 4), so ¢ = m> + n> = 5 (mod 8).
Taking Z = 22w + w’ modulo 8, we find that n = 5 (mod 8), since both y(>3)
and Z are odd. This implies that b; = 3 (mod 4). Thenm +n =4b? —2b; +1 =7
(mod 8). Taking (1.1) modulo m+n, we find that (—2m?)” = (2m?)** (mod m+n).
This tells us that —2 is a quadratic residue modulo m+n, which contradicts m+n = 7
(mod 8). Therefore, y is even.

Second, we assume that # is even. Taking (m? + n?)? = m” + 2’ ~2n” modulo ny,

we see from (2.4) that m” = —1 (mod ng). If y is odd, then m = +1 (mod ny),
and hence m?> = 1 (mod ng), which contradicts m> = —1 (mod ny) and ny > 3.
Therefore, y is even. n
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By Lemma 3.3, we can write y = 2Y with a positive integer Y. Now we are ready
to prove the theorems. Since {aX,b",c?} forms a primitive Pythagorean triple, we
can write

a =K P, b =2k =K+
where k and [ are relatively prime positive integers of different parities with k > I
Since b < ¢ < a? and a* < ¢ < b¥, we find that

(3.5) X —-Z| <Z<2Y.
Since (k + I)(k — I) = a* and ged(k + I, k — I) = 1, we can write
k+1=u", k—1=+5

for some relatively prime positive odd integers u and v satisfying # > v and uv = a.

Then we see that o ax .,
X —y W —v
b =2kl = = w,
2 2
where w = (u?* — v*)/(u* — v*) is an odd integer, since u, v, and X are odd. It

follows from the above equation that
Yu,(b) =1, =) =1 =1p(utv)

holds for the proper sign for which u £ v = 0 (mod 4), where v, is the 2-adic
valuation normalized by 1,(2) = 1. Sinceu v < u+v < uv+1 = a+ 1, we find

that
vutv) logla+1)
Y = <
1, (b) 2log2
It follows from (3.5) that
1 1
X — Z| Szy_zgw_z

log2

Since the right-most number is less than (a + 1) /4, we can conclude that X = Z by
Lemma 3.2. Since X is odd, we see that

sz — DE = CZX _azx — bZW/7

where w' = (¢** — a?X) /(c* — a?) is an odd integer, since a, ¢, and X are odd. Hence,
vy(b*) = 1, (b?). This implies that Y = 1, s0 X = Z = 1 by (3.5). This completes
the proof of the theorems for the case of € = 1.

4 The Case e = —1

Let (x, ¥, z) be a solution of (1.1). By Lemma 2.1, we know that z is even. It suffices to
show that both x and y are even. Indeed, if so, then we can prove thatx = y =z =2
in a similar manner to the preceding section. We will consider the cases where m is
even and where m is odd separately.

First, we assume that m is even. Reducing equation (1.1) modulo 4, we find that
(—=1)* =1 (mod 4); that is, x is even. Then we define D and E as in the preceding
section, and we can show the same assumptions as Lemma 3.1. Hence Theorem
1.3 follows from this. We assume the condition of Theorem 1.2. Since (D, E) =
(27~ 'm?, 2n7), taking (m? + n*)? = 2~*m” + n” modulo my, we see from (2.4) that
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n = —1 (mod my). If y is odd, then n = 41 (mod my) by (2.4), and hence n* = 1
(mod my), which contradicts (2.4) and my > 3. Therefore, y is even.
Second, we assume that m is odd. We write

m:Zﬂj+e7 n=2%,

where a, 5,1, j are positive integers with i, j odd, and with & > 1, § > 2 and
e € {£1}. In order to show the evenness of x, we use the following lemma (cf. [9,
Lemma 2.1]).

Lemma 4.1 With the above notation, we assume that 2cc # 3 + 1. Let (x, y,z) be a
solution of (1.1). If y > 1, then x = z (mod 2).

We claim that 2a # 3 + 1. We can assume that o > 2. By equation (2.3), we have
>
B+1= v(m? = 1) = v (n? + 2mgny ) = 1,(2ny) + Vz(z— + mo)
o
=un)+1<mrn)+l=a+1<2a.

Hence the claim is proved. Next, we show that y > 1. Suppose that y = 1. We will
show that this leads to a contradiction. Equation (1.1) is now

(4.1) a+b=~72

This is a Pillai equation. We can easily show that x > 4and x > z > 1. Also,xand z
are relatively prime. Indeed, if 4 is a common divisor of them, then we see from (4.1)
that b is divisible by (¢#/#)*~1 + a¥/4(¢/4)4=2 4 ... + (a/4)4~1, which is greater than
c(>b)ifd > 1.

Since
. b b
zlogc =log(a® +b) = xloga+log<1 + ;) < xloga+ -
we see that
b
(4.2) zlogc — xloga < =

The left-hand side of (4.2) is a nonzero linear form in two logarithms with x =
max{x, z}. Baker’s theory gives us lower estimates of its absolute value such as 1/x%,
where € is a positive constant depending only on a and c. In order to observe this we
prepare some notation as follows.

For an algebraic number « of degree d over the field of rational numbers Q, we
define as usual the absolute logarithmic height of a by

1 d .
h(a) = = (logco + 3 logmax{ 1, \04(1)\}) )
d iz

where ¢y (> 0) is the leading coefficient of the minimal polynomial of o over the
ring of rational integers, and o, a/? ... a(? are the conjugates of « in the field of
complex numbers.

Let oy and «; be two nonzero algebraic numbers with |«;| > 1 and |o,| > 1, and
letlog iy and log «v; be any determination of their logarithms. We consider the linear
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form in two logarithms
A = prloga; — Bilogay,
where /3 and 3, are positive integers. Put
D = [Q(a1,02):Q]/[R(c1, ) :R],
where we denote by R the field of real numbers. Define

(- Bl + 52
DlogA, DlogA;’

where A; > 1and A, > 1 are real numbers such that
logA; > max{ h(), |loges|/D, 1/D} (i =1,2).
We choose to use a result due to Laurent [6, Corollary 2; (m,C,) = (10, 25.2)].

Proposition 4.2  With the above notation, suppose that ., oz, log i, log v, are real
and positive. If a; and o, are multiplicatively independent, then we have the lower
estimate

log| 4] > —25.2 D* (max{logh’ +0.38, 10})” log A, log A,.

In order to apply Proposition 4.2 to the case of A = zlogc — xloga (> 0), we set
(a1, ) = (a,c) and (Bq, B2) = (x,2z). Then D = 1, h(a) = loga, and h(c) = logc.
We can take A; = aand A, = c. Proposition 4.2 tells us that

X z 2
log A > —25.2(max{ log( Toge + @> +0.38, 10}) loga logec.
Combining this with (4.2), we find that
2

logb — xloga > 725.2(max{ log( & + @) +0.38, 10} ) loga logc,

or

X logb X z 2
< + 25.2(max{ log(— + —) +0.38, 10}) .
loge  logalogc loge loga

Sincea >3, b < cand & = a* + b < a* + a*> < 2a%, we see that

X 2x  log2 2
X c1+252 mu{log(— + —) +0.38, 10}) .

logc loge  logc
This implies that
(4.3) x < 2521logc.
Then, since
1
v z<x_ Joga _ log(c/a)x
logc log ¢
we have
(4.4) x —z < 2521log(c/a).

On the other hand, by taking equation (4.1) modulo m¢, we find that (—n?)* +
b = n** (mod mg), which together with (2.3) yields box + b = byz (mod mg).
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Also, taking equation (4.1) modulo n¢, we have bpx + b = byz (mod ng). Since
ged(mp, ng) = 1 and mony = by /2, we have
box + b = byz (mod b /4).
Since x > zand by = a — 1, it follows from the above congruence that
by b a-1 b
4 b 4 a-—-1
Here, we can assume that m > n+7. Since, by [2],if m —n > 1 (by [1]) has a divisor
congruent to =3 modulo 8, then y is even. Since
b 2mn < 2m(m — 7)
2—n2 = 14m—49’

a m

we see that (4.4) gives

7m — 25 -1
m=—s 4 < 25211log(c/a) +

2 -4 a—1
2521 b/a
= log(1+ (b/a)?) +
y log(1+ (b/a)’) 1—1/a
— 7)N\2 _
S25211 (1+(2m(m 7)))+m(m 7)'
14m — 49 7m — 25
This implies that m < 4926. On the other hand, since
b b 2m(m — 7) 1
< <

— R— < s
a* — a* — (14m — 49)* ~ 5042
we see from (4.2) and (4.3) that

loga =z b 2521(b/a*) 1
—= f‘ < < —.
loge x xa*logc x2 2x?
Therefore, £ is a convergent in the simple continued fraction expansion of llzg”.
g

Hence we can write £ = %, which is the s-th such convergent. Since gcd(x,z) = 1,
we see that x = ¢; and z = p,. Remark that g, > 4. By a well-known fact on the
continued fraction expansion, we find that

loga  ps 1
loge g5 (as1 +2)q2’
loga

where a4 is the (s + 1)-th partial quotient to It follows that

logc*

xa*loge  a%logc

Qg1 +2 > =
s+1 bqsz bqs
For each of the pairs (m, n) under consideration, we can numerically check that the
inequality
atlogc
Oey1 + 2>
by

does not hold for any s satisfying 4 < g, < 2521logc. This is a contradiction.
Therefore, y > 1.

It follows from Lemma 4.1 that x is even. It remains for us to show the evenness
of y. We assume the condition of Theorem 1.2. As in the preceding section, we
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define D and E, and we can show that (D, E) = (2m”, 27~ 'n”). Taking (m? + n*)? =
m”’ + 2772 modulo 1y, we see from (2.4) that m” = 1 (mod n,). Suppose that y
is odd. We will show that this leads to a contradiction. Congruences (2.4) and (3.2)
together imply that m = 1 (mod np). Putting m = 1 + noh with a positive integer #,
we see from (2.3) that

(noh + n)(h — n/ng) = 2(my — h).

If my = h, then h = n/ny, so my = n/ny, which is absurd, since ged(m, n) = 1 and
my > 1. Hence the value of the right-hand side is nonzero. Since h < n/n, implies
m =1+ noh < 1+ n, we have h < n/ny and my > h. Hence we see that the second
factor in the left-hand side has to be 1; that is,

(4.5) noh +n = 2(my — h),
(4.6) h—nfmy = 1.

If my < m, then my < m/3, so equation (4.5) implies m < 2(my — h) < 2my <
(2/3)m, which is a contradiction. Hence, my = m. Using this together with (4.6),
similarly to Lemma 3.3, we can observe that (m,n) = (2bZ + 2b, + 1,2b32), which
yields a contradiction. To sum up, we have completed the proof of the theorems for
the case e = —1. [ |

5 Examples

In this final section, we will explain how to find examples of m and # satisfying the
assumptions of our results. As we observed in Section 2, m and n satisfy Pell equation
(2.2) with t = 1; that is,

(5.1) U? — (b +1)V? = 2¢by,

where U = m+n — by(m —n) and V = m — n. It is clear that (5.1) has the two
classes of solutions

(5.2) U+Vy/bi+1= (U0+Vm/b12+1) <2b12+1+2b”/b12+1>l

with nonnegative integer I, where

(b +1,+1)  ife=1,

(5.3) (Uo, Vo) = {(i(bl -1),1) ife=—1.

Now Theorems 1.2 and 1.3 immediately imply the following.

Corollary 5.1 Conjecture 1.1 is true if one of the following holds:

(i) by has no prime factors congruent to 1 modulo 4, and U, V satisfy (5.2) with a
positive integer | and with (Uy, Vy) satisfying (5.3).

(ii) Either by = 2 (mod 4) or by = —e (mod 4), and U, V satisfy (5.2) with a
positive odd integer | and with (U, V) satisfying (5.3).
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Proof It is obvious from Theorem 1.2 that if (i) holds, then Conjecture 1.1 is true.
Consider the case of (ii). By (5.2), we have V = v;, where

Vo = Vo, V1 = (2b12 + l)Vo + ZbIUQ, Viyp = 2(2b12 + 1)Vl+1 — V.

Equation (5.3) shows thatif b; = 2 (mod 4) and /is odd, then v; = V;+4 (mod 8),
in other words, m —n =V = v; = £5 (mod 8). Similarly, if b, = —e (mod 4) and
l'is odd, then we see that m — n = v; = 3Vy = £3 (mod 8). In any case, one can
conclude from Theorem 1.3 that Conjecture 1.1 is true. ]

The examples in the first section are given by setting
(67 U()a VO7 Z) = (17 bl + 17 _17 1)7 (17 bl + 1, 17 1)7 (_1, - b17 la 1)7 (_17 bl - 17 la 1)
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