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Abstract

We prove the Hausdorff measure version of the matrix form of Gallagher’s theorem in the inhomogeneous
setting, thereby proving a conjecture posed by Hussain and Simmons [‘The Hausdorff measure version
of Gallagher’s theorem—closing the gap and beyond’, J. Number Theory 186 (2018), 211–225].

2010 Mathematics subject classification: primary 11K55; secondary 11J83.

Keywords and phrases: multiplicative Diophantine approximation, Hausdorff measure.

1. Introduction

Throughout, let m ≥ 1 be an integer, Im the unit cube [0, 1]m and ‖ · ‖ the distance to
the nearest integer in Z. Let ψ : N→ [0,∞) be a monotonically decreasing function,
which we call an approximating function, and let y = (y1, y2, . . . , ym) be a given point
in Rm. Denote byMy

m(ψ) the set of x = (x1, x2, . . . , xm) ∈ Rm for which

‖qx1 − y1‖ · ‖qx2 − y2‖ · · · ‖qxm − ym‖ < ψ(q)

holds for infinitely many q ∈ N, that is, the set of multiplicatively ψ-approximable
points.

Multiplicative Diophantine approximation deals with the properties of the sets
M

y
m(ψ) and is an active area of research. In particular, the long-standing conjecture of

Littlewood that M0
2(q 7→ ε · q−1) = R2 for any ε > 0 has attracted much attention. A

natural problem is to determine the ‘size’ of the set of multiplicatively ψ-approximable
points.

Throughout the paper, f denotes a dimension function, that is, a continuous function
f : R→ R such that f (r)→ 0 as r→ 0, andH f denotes the f -dimensional Hausdorff
measure. When f (r) = rm for an integer m, then we use the notationHm to denote the
normalised Lebesgue measure such thatHm(Im) = 1.

In the homogeneous multiplicative case, that is, y = 0, Gallagher [5] proved the
following result for the Lebesgue measure.
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Theorem 1.1 (Gallagher [5]). Let ψ : N→ [0,∞) be an approximating function. Then,
for any m ≥ 1,

Hm(M0
m(ψ) ∩ Im) =


0 if

∞∑
q=1

ψ(q)log(q)m−1 <∞,

1 if
∞∑

q=1

ψ(q)log(q)m−1 =∞.

For the inhomogeneous setup, there is the following result for the convergence part:

Hm(My
m(ψ) ∩ Im) = 0 if

∞∑
q=1

ψ(q)log(q)m−1 <∞.

This is an easy consequence of the Borel–Cantelli lemma. However, the result for the
divergence part is still open. Partial results can be found in Beresnevich et al. [2] and
Chow [4].

For the s-Hausdorff measure, with s not an integer, Beresnevich and Velani [3]
for m = 2 and Hussain and Simmons [6] for m ≥ 2 proved a 0–∞ law depending
upon the convergence or divergence of a certain series. In [6], the authors also
considered the case of linear forms where ψ is replaced by a multivariable function
Ψ : Zn \ {0} → [0,∞). More precisely, they considered the set

M
y
n,m(Ψ) =

{
x ∈ Rnm :

m∏
i=1

‖qx(i) − yi‖ < Ψ(q) for i.m. q ∈ Zn \ {0}
}
,

where ‘i.m.’ is the abbreviation for ‘infinitely many’. They presented a convergence
result by showing that

H f (My
n,m(Ψ) ∩ Inm) = 0 if

∑
q∈Zn

|q|nmΨ(q)−nm+1 f
(
Ψ(q)
|q|

)
<∞, (1.1)

where f is a dimension function satisfying f (y) ≤ C(x/y)s · f (x) for 0 < x < y and
x−nm+1 f (x) is monotonically increasing. For the divergence part, they asked whether
the divergence of the series in (1.1) will yield the fullH f measure.

Conjecture 1.2 (Hussain and Simmons [6]). Let Ψ(q) = ψ(|q|), where ψ : N→ [0,∞)
is a monotonically decreasing function. Let f be a dimension function such that
x 7→ x−nm+1 f (x) is monotonically increasing. Then

H f (My
n,m(Ψ) ∩ Inm) =∞ if

∑
q∈Zn

|q|nmΨ(q)−nm+1 f
(
Ψ(q)
|q|

)
=∞,

where | · | denotes the sup norm.

We prove this conjecture, which completes the Hausdorff measure theory for
M

y
n,m(Ψ).
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Theorem 1.3. Under the conditions given in the above conjecture,

H f (My
n,m(Ψ) ∩ Inm) =∞ if

∑
q∈Zn

|q|nmΨ(q)−nm+1 f
(
Ψ(q)
|q|

)
=∞.

2. Proof of Theorem 1.3

2.1. Preliminaries. The proof is a combination of the mass transference principle
for linear forms [1] and the slicing lemma [7, Proposition 7.9].

Let k and l be two nonnegative integers with k ≥ l. Let R = (R j) j∈N be a family of
planes in Rk of common dimension l. Let d = k − l be the codimension of R j. For
every j ∈ N and δ ≥ 0, define

5(R j, δ) = {x ∈ Rk : dist(x,R j) < δ},

where dist(x, R j) = inf{‖x − y‖ : y ∈ R j}. Let Υ = {γ j} be a countable sequence of
nonnegative real numbers such that γ j → 0 as j→∞. Consider

5(Υ) = {x ∈ Rk : x ∈ 5(R j, γ j) for infinitely many j ∈ N}.

Theorem 2.1 (Mass transference principle for systems of linear forms [1]). Let R and
Υ be as defined above. Let h and g : r 7→ g(r) = r−lh(r) be dimension functions such
that r−kh(r) is monotonic and let Ω be a ball in Rk. Suppose that, for any ball B in Ω,

Hk(B ∩ 5(g(Υ)1/d)) =Hk(B).

Then, for any ball B in Ω,

Hh(B ∩ 5(Υ)) =Hh(B).

Lemma 2.2 (Slicing lemma [7]). Fix k, l ∈ N with l < k. Let g be a dimension function
and f (r) = rlg(r) (so that f is necessarily a dimension function). Let A be a Borel
subset of Rk and suppose that the set

{x ∈ Rl :Hg({y ∈ Rk−l : (x, y) ∈ A}) =∞}

has positiveH l-measure. ThenH f (A) =∞.

2.2. Proofs. The convergence part can be proved by exactly the same methods as
in [6]. We focus on the divergence part.

It is clear thatMy
n,m(Ψ) ∩ Inm contains certain slices of the formMy

n,1(Ψ) × In(m−1).
By the slicing lemma, we only need to prove the following result.

Proposition 2.3. Let Ψ(q) = ψ(|q|), where ψ : N → [0,∞) is a monotonically
decreasing function. Let h and g : r → g(r) = r−n+1h(r) be two dimension functions
such that r−nh(r) is monotonic. Then

Hh(My
n,1(Ψ) ∩ In) =∞ if

∑
q∈Zn

|q|nΨ(q)−n+1h
(
Ψ(q)
|q|

)
=∞.
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First we introduce some notation. For any (p,q) ∈ Z × Zn \ {0} and y ∈ I, let

Rp,q = {x ∈ In : q1x1 + q2x2 + · · · + qnxn − y − p = 0},

which is a plane of dimension l = n − 1 and codimension d = 1. For δ ≥ 0, define

5(Rp,q, δ) = {x ∈ In : dist(x,Rp,q) < δ},

where

dist(x,Rp,q) = inf
z∈Rp,q

‖x − z‖ =
√

n
|q1x1 + · · · + qnxn − y − p|

|q|2
.

Note that if Ψ(q) ≥ 1 for infinitely many q ∈ Zn \ {0}, then My
n,1(Ψ) = In and the

divergence part of Theorem 1.3 is trivial. Hence, without loss of generality, we may
assume that Ψ(q) < 1 for all q ∈ Zn \ {0}.

Proof of Proposition 2.3. Define

R = {(p,q) ∈ Z × Zn \ {0} : |p| ≤ C|q|}, Υ =

{
rp,q =

Ψ(q)
|q|

: (p,q) ∈ R
}
,

where

C = max
{
2n, sup

q∈Zn
h
(
Ψ(q)
|q|

)}
.

Note that, since h is increasing and Ψ(q) ≤ 1, the constant C is finite. Now, for each
(p,q) ∈ R,

5(Rp,q, rp,q) ∩ In =

{
x ∈ In :

√
n
|qx − y − p|
|q|2

<
Ψ(q)
|q|

}
=

{
x ∈ In : |qx − y − p| <

|q|2Ψ(q)
|q|

}
⊂ {x ∈ In : |qx − y − p| < Ψ(q)}

since |q|2 ≤
√

n|q|. It follows that

5(Υ) ∩ In ⊂My
n,1(Ψ) ∩ In ⊂ In,

where
5(Υ) = lim sup

|q|→∞, (p,q)∈R
5(Rp,q, rp,q).

Therefore, it suffices to show thatHh(5(Υ) ∩ In) =Hh(In).
Next, let θ : N→ R+ be defined by

θ(|q|) =
|q|
√

n
· g

(
Ψ(q)
|q|

)
.
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Note that

5(Rp,q, g(rp,q)) ∩ In =

{
x ∈ In :

√
n|qx − y − p|
|q|2

< g
(
Ψ(q)
|q|

)}
=

{
x ∈ In : |qx − y − p| <

|q|2
√

n
· g

(
Ψ(q)
|q|

)}
⊃

{
x ∈ In : |qx − y − p| <

|q|
√

n
· g

(
Ψ(q)
|q|

)}
,

where the last inclusion follows from the fact that |q| ≤ |q|2.
Observe that if {x ∈ In : |qx − y − p| < θ(|q|)} , ∅, then |p| ≤ C|q|. This is why we

define R as above. It follows that

5 (g(Υ)) ∩ In ⊃My
n,1(θ) ∩ In. (2.1)

The required divergence condition ensures that
∞∑
|q|=1

|q|n−1 · θ(|q|) =

∞∑
|q|=1

|q|2n−1

√
n
· g

(
ψ(q)
|q|

)
=

∑
q∈Zn

|q|n
√

n
· Ψ(q)−n+1h

(
Ψ(q)
|q|

)
=∞.

Thus, by the inhomogeneous Khintchine–Groshev theorem [8],

Hn(My
n,1(θ) ∩ In) = 1 and so Hn(5(g(Υ)) ∩ In) = 1.

Finally, we apply the mass transference principle for systems of linear forms
(Theorem 2.1). For any ball B ⊂ In,

Hh(B ∩ 5(Υ)) =Hh(B).

In particular,

Hh(5(Υ) ∩ In) =∞ and so Hh(My
n,1(Ψ)) =∞,

by the inclusion (2.1). This proves Proposition 2.3. �

Let f (r) = rn(m−1)h(r), which is clearly a dimension function. Note that∑
q∈Zn

|q|nm · Ψ(q)−nm+1 · f
(
Ψ(q)
|q|

)
=

∑
q∈Zn

|q|n · Ψ(q)−n+1 · h
(
Ψ(q)
|q|

)
=∞.

So, by Proposition 2.3,
Hh(My

n,1(Ψ)) =∞.

On the other hand, by using the slicing lemma (Lemma 2.2) and the fact that

M
y
n,1(Ψ) × In(m−1) ⊂M

y
n,m(Ψ) ∩ Inm,

H f (My
n,m(Ψ) ∩ Imn) ≥ H f (My

n,1(Ψ) × In(m−1)) =Hh(My
n,1(Ψ)) =∞.

Thus, the proof of Theorem 1.3 is complete.
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