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ABSTRACT Nonlinear effects determining the amplitudes of unsta­
ble modes of oscillations in stellar modes, are reviewed. The two basic 
processes - saturation of the driving mechanism and resonant mode cou­
pling - are discussed within the framework of the amplitude equation 
formalism. There are difficult problems in the theory of multiple mode 
interaction that must be solved to make a prediction of amplitude spectra 
possible. The observed spectra for 6 Scu stars and other multiperiodic 
variables, exhibit no simple pattern that would suggest a solution of the 
theoretical problems. 

1 .INTRODUCTION 

Linear stability analyses of stellar models reveal that pulsational instability, if 
present, occurs most often in a large number of oscillation modes simultane­
ously. Consequences of the instability are therefore difficult to predict. Satis­
factory numerical models are available only for the radial monomode pulsation 
in Cepheid-type stars. We understand selection between fundamental and first 
overtone pulsation, but we do not understand the role of nonradial modes of high 
degree, which are unstable under the same condition. A sustained double-mode 
pulsation has not yet been reproduced in realistic models, and the cause of such 
behavior in stars remains controversial. 

In stars in the Main Sequence (MS) and early post-MS evolutionary phases, 
multiperiodic variability is a common phenomenon. Up to seven modes of low de­
gree have been tentatively identified in individual objects. The identified modes 
are among those which are found to be unstable in corresponding stellar models. 
We do not understand, however, how the mode amplitudes are determined. We 
do not know which of the undiscovered modes have finite amplitudes, but just 
too low for the detection with the present-day techniques. Thus, for instance, 
we cannot yet assess the reward in terms of detected modes from the planned 
asteroseismological observation from the space. 

In this review of the status of the nonlinear theory of stellar oscillations, 
I focus on the mode selection problem. This is certainly the most important 
aspect of the theory for the main stream problems of this meeting. It would be 
indeed very helpful to have an a priori assessment of the number and kind of 
modes that are likely to be discovered once the amplitude resolution is greatly 
improved. This is not yet possible. I will, thus, present here only elements of the 
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theory that may lead in the future to a prediction of the amplitudes. I believe 
that this will be an interesting and useful exercise, even though the needed theory 
may not be developed before the launch of first asteroseismological satellite. 

We will start, however, with a different aspect of the theory. In the next 
section I will briefly review nonlinear effects in amplitude spectra. We will see 
how, with the help of the nonlinear theory, one can recover useful asteroseismo­
logical observables from such spectra. Impact of the linear nonadiabatic theory 
on the modal selection problem will be discussed in Section 3. Subsequently, I 
will outline the amplitude equation formalism which is the only practical tool for 
handling the nonlinear theory of nonradial oscillation and discuss two distinct 
amplitude limiting effects. Specific roles of resonances in mode selection will be 
reviewed in two consecutive sections. At the end we will discuss existing data 
on multiperiodic objects. 

2. NONLINEAR OBSERVABLES 

Oscillation frequencies, u>, are by far the most important observables for astero-
seismology. They are not only most accurately measured but, more importantly, 
the easiest to interpret in terms of parameters describing stellar interiors. How­
ever, one should try to try to extract all information contained in amplitude 
spectra of variable stars. This is particularly important in dealing with the 
sparse spectra such as all (with one exception) currently available for stars. 

A complete model of a pulsating star allow us to represent any observable 
parameter, 0, in the form of the following expansion 

O = Oo + YlA&(Y(k)<*pi("kt + i>k)) + 
k 

+ J2 Xkj±AkA&{Y(k)Y(j) exp i[{u>k ± uj)t + 4>kj±}) + ..., (1) 
k,j,± 

where amplitudes A and frequencies u may vary with time, but on the time 
scale much longer than 1/w, and 

y(fc) = y(
m(e,^) for l = lk and m = mh. (2) 

The parameters occurring in this expansion may be directly compared with those 
occurring in the Fourier decomposition of the observed light or radial velocity 
curve. Linear adiabatic theory yields only w. The amplitude ratios, Ak/A

b
k, and 

the phase differences, rpl - ipb
k, (superscripts a and 6 refer to various observables) 

may be evaluated within the framework of linear nonadiabatic theory. These 
quantities depend on stellar parameters, but they are also sensitive to the mode 
spherical harmonic degree so that they are useful for mode identification (Balona 
& Stobie, 1980) 

Evaluation of the remaining parameters - Ak, \kj±, ^>jy±, and correspond­
ing higher order quantities - lies in the domain of nonlinear theory. In general, a 
connection between these parameters and those descrbing stellar internal struc­
ture is, rather complicated. However, in the case of the "bump" Cepheids, for 
instance, the phase difference, ipkj± - (ipk ± ty), may be translated into infor­
mation about the second overtone period (Simon & Lee, 1981; Buchler et al., 
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1990). Furthermore, secular changes in amplitudes and phases, other than those 
caused by stellar evolution, may be interpret only with use of nonlinear theory. 

3. GROWTH RATES 

The first step toward understanding modal selection in pulsating stars, which 
is the determination of mode stability, belongs to the linear theory domain. 
Qualitatively, solution of the linear nonadiabatic problem yields growth rate, 
7 = — 5a)c, where uc is the complex eigenfrequency. Since the linear theory is 
relatively easy and credible, it is natural to ask whether 7-values could be used 
as a predictors of mode amplitudes. 

To get an insight to the meaning of these values it is useful to consider the 
following well-known expression. 

- iL 
7 " 2w/' 

where W denotes the net rate of mode energy gain due to nonadiabatic effects 
and / mode inertia. Although W is a measure of driving efficiency, the order-of-
magnitude differences in 7's between various modes are caused by the differences 
in J (the usual normalization of eigenfunctions at the surface is assumed). 

In Figure 1 we show the behavior of the integrand of W and a chosen 
eigenfunction for unstable radial modes in a (3 Cep star model. The instability 
results from dominance of the driving occurring in the region of the metal opacity 
bump at r « 0.97J2 over the damping occurring below (see e.g. Dziembowski 
& Pamyatnykh, in this volume). The values of 7 for these as well as nonradial 
modes of / = 1 and 2 degrees are shown in Figure 2 are plotted against mode 
frequency. In the same figure also shown are normalized growth rates defined 
by Stellingwerf (1978), as follows 

W 

0 

This parameter is a good measure of the instability robustness and it is inde­
pendent of the mode inertia 

Both 7 and rj depend primarily on frequency. Difference in the behavior of 
this two quantities follows mainly from the rapid decrease of / with increasing 
frequency. The pattern seen in this figure are not unlike ones found in less 
luminous Cepheid and RR Lyrae star models, in which also first three radial 
modes are found unstable with the P2 having the largest 7 and P3 being only 
marginally unstable. 

Figure 3 shows the behavior of the growth rates in two 6 Scu star models. 
These two models are more evolved than the /? Cep model used in the previous 
figures. In these more evolved models all unstable nonradial modes are of dual, 
gravity and acoustic, character which causes that their spectra are denser than 
those of radial modes. The complicated behavior of 7, which for the nonradial 
modes exhibit local minima and maxima reflects effect of a partial mode trap­
ping. Modes trapped in the acoustic cavity are characterized by lower / and 

(3) 

(4) 
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FIGURE I The differential work integral dW/dr (in arbitrary units) and 
the eigenfunction, SP/P, for the three first radial modes in a 0 Cephei star 
model, characterized by the following parameters M/MQ = 12, logTeff = 
4.376, log L/LQ = 4.208, Z = 0.03, XQ = 0.7, Xc = 0.222. 
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FIGURE II The growth rate, 7, and normalized growth rate, 77, plotted 
against cyclic frequency, / = w/2r, for unstable modes of low spherical 
harmonic degree, /, in the same model as used in Figure I 
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FIGURE III The growth rate, 7, and normalized growth rate, 77, plotted 
against cyclic frequency, / = w/27r, for unstable modes of low spherical 
harmonic degree, /, in two models of 6 Scu stars. The model used in the 
upper plots has the following parameters: M/MQ = 2, logTe({ = 3.878, 
log L/LQ = 1.343, Z = 0.02, A'0 = 0.7, Xc = 0.0G0 The model used in 
the lower plots has the following parameters: M/MQ = 2, logTe/r = 3.890, 
log L/LQ = 1.490, Z = 0.02, X0 = 0.7, Xc = 0 
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consequently higher 7. Possibility that the trapping in the outer cavity is a cru­
cial factor in mode selection, was first suggested by Winget et a/.(1981) in the 
context of ZZ Ceti stars, a similar effect in 8 Scu was discussed by Dziembowski 
& Krolikowska (1990). The dual character modes appear also more evolved /3 
Cep star. The frequencies of such modes in both types of variable stars depends 
on the details of the convective core evolution. 

The instability in S Scu and f3 Cep star models continues to higher /-values. 
There is indeed a very large number of modes which are simultaneously unstable. 
This gives a ground to the hope that, some day, many of them will be detected. 
Measurement of their frequencies would then enable us to make a detailed seismic 
sounding of the evolving stellar interiors. This is not certain, however. Complex 
nonlinear processes determine whether an unstable mode will be present in the 
terminal development of the instabilities, what will be its amplitude and whether 
it will be constant or subject, rather, to modulation. Only after considering 
specific nonlinear effects it may be possible to decide which, if any, of the two 
growth rates is a useful proxy for the amplitude. 

4. AMPLITUDE EQUATION FORMALISM 

Nonlinear equations for stellar oscillations are very difficult to solve. Fortunately, 
in many important applications the amplitude equation formalism applies, which 
reduces the problem from a partial differential equation system in time and three 
spatial variables to a system of ordinary differential equations in time. Basic 
assumptions underlying this simplification are, validity of the power expansion 
in the oscillation amplitudes, and |-y| < u> for all involved modes. It is remarkable 
that even for Cepheid models, the solutions of the amplitude equations agree 
quite well with exact nonlinear models (Buchler and Kovacs 1986), in spite of 
relatively large amplitudes and 7's. The details of the derivation may be found 
for instance in papers by Vandakurov (1981) and Buchler and Goupil(1984). 

4.1 Modal selection in the absence of resonances 
The coupling between modes in the absence of resonances occurs only through 
a collective saturation of the driving mechanism. The amplitude equations have 
an exceptionally simple form in this case . 

IT = lkAk' (5) 

where 
7fc = 7fc(l + I > * A 2 ) (6) 

i 
We assume 7 > 0 and a < 0 for each j and k. Monomode solutions 

"• • ?=b (7) 

always exists in such conditions, but they are stable only if 

Xkn = — > 1 (8) 
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for each k. There may be more than one stable monomode solution, like in the 
EO domain of the Cepheid instability strip where either the fundamental mode 
or the first overtone pulsation is possible (Stellingwerf, 1975). Choice of the 
mode depends in such a situation on the direction of stellar evolution. 

Double mode pulsation occur represent a stable solution of Eq.(4) if 

Xl,2 < 1, X2,l < 1 (9) 

and 
Xk i.iC1 - Xi,2) + Xfc,2(l - X2,i) + Xi,2X2,i > 1 (10) 

Ishida (1990) considered the case of three-mode coupling, which is the largest 
number of modes considered so far. He found a domain in the parameter space, 
where no stable fixed point solution exists and shown that chaotic solutions are 
possible there. 

Investigation of the collective saturation involving much larger number of 
modes is a needed research project. It should be stressed that even in the case 
of classical pulsating stars there is a large number of high-/ modes that are 
unstable (Dziembowski, 1977; Osaki, 1977). Presence of such modes cannot be 
directly detected, but they may play a role in the final amplitude development 
of instability. One difficulty in treating the multiple mode saturation is the fact 
that coefficients a involve up to third derivatives of opacity, K(P,T). Standard 
opacity tables are not suitable for evaluation derivatives of this high order. 

4.2 Resonant mode coupling 
Coupling to a stable mode is an alternative way of amplitude limitation. Here, 
we shall limit ourselves to considering the simplest and most important case of 
two-mode resonance case, assuming that for the two modes, we have 

w2 = 2wi + Aw, (11) 

where Aw is a small quantity. The amplitude equations for this case are 

- ^ = lxAx^CxA-1Axco^, (12) 

^ = 72^2 -C2A\ cos *, (13) 

^ = Aw + (Q^--2C1A2)siix*, (14) 

where $ = Awt + $2 - 2$i . The coupling coefficients, C are integrals involving 
triple products of the eigenfunctions, two for mode 1 and one for mode 2. In 
particular, both coefficients 

Cx J YfaYfa sin 6d<t>d6. (15) 

There are two clearly distinct situations. One describing the case of unstable 
lower frequency mode, 71 > 0,72 < 0, is refered to as the 2:1 resonance. The 
opposite one, 72 > 0,71 < 0, is called the 1 : | or parametric resonance. The 
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latter is much more likely to occur. Note, for instance, that in this case an 
unstable may be coupled to modes of various /, while in the 2:1 resonance case 
only to another / = 0 mode. 

Equations (11)—(13) admit the following constant-amplitude solution 

Ax = yl-Wfr1 + *)> (16) 

7? A2 = ^ ( l + <?2), (17) 

t a n $ = - g , (18) 

where q = Aw/(72 + 271). 
Nonlinear correction to frequencies are given by 

^ • = C i A a s i a * and ^ = C 2 4 1 s i n $ . (19) 
at at Ai 

They imply that frequency synchronization occurs, so that even if Aw ^ 0 the 
2:1 resonance manifest itself only through an enhancement of A1J+. Information 
about Aw is contained in the phase difference 4>\\+ — 2<f>i (conf. Equation (1)). 

These fixed point solutions are not always stable. The necessary stability 
condition is 271 + 72 < 0. In the case of the 2:1 resonance this also the sufficient 
condition. In the case of the 1 : | resonance there is an additional condition that 
sets a lower bound on |Aw|. In the unstable cases, amplitude limitation may still 
occur, but in a time-dependent form. The amplitudes and frequencies are then 
subject to periodic or chaotic modulation occurring on much shorter time scale 
than the evolutionary one. Regardless its form, the resonant amplitude limita­
tion, by preventing saturation of the driving mechanism, resonances promotes 
multimode pulsation. 

5. THE ROLE OF RESONANCE IN CLASSICAL PULSATING VARIABLES 

In most cases only one mode is observed in these stars. Rapid changes in pul­
sation characteristics are only seldom observed. Numerical models of radially 
pulsating stars reproduce light and radial velocity curves for Cepheids and RR 
Lyr stars, in a satisfactory way. This agreement points out to the saturation of 
driving mechanism as the most important nonlinear effect. Effect of resonances 
has been invoked only to account for anomalous behaviors. 

The 2:1 resonance between the fundamental mode and a higher mode has 
been proposed by Woltjer (1935) as the cause for the occurrence of a secondary 
bump in light curves of certain Cepheid. This idea was fully confirmed in modern 
times (Simon & Schmidt, 1976; Klapp et ai, 1985). 

It has been suggested (Dziembowski & Kovacs, 1984; Buchler k Kovacs, 
1988) that the same resonance may be responsible for the occurrence of double 
mode pulsation in certain Cepheids and RR Lyr. This could happen if the mode, 
that would have been the only one present in the final amplitude state, is in the 
2:1 resonance with a stable mode and therefore cannot attain its full amplitude 
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needed to saturate the driving mechanism. In such a situation, another unstable 
mode may grow. Moskalik (1986) proposed that a periodic modulation of light 
curves, observed in some RR Lyrae and known as the Blazhko effect may be 
caused by a similar resonance if the constant amplitude solution is unstable. 

Chaotic behavior in models of luminous pulsating stars associated with 
occurrence of higher-order resonance was discovered by Kovacs and Buchler 
(1988). The relevant resonances are of half-integer type viz., 3u>i ss 2w2- These 
authors propose that the deterministic chaos they found in the models is the 
cause of the irregular variability of the W Vir and RV Tau stars. 

6. EFFECTS OF THE PARAMETRIC RESONANCE 

It has been shown (Dziembowski & Krolikowska, 1985) that, in Main Sequence 
stars, a parametric g-mode excitation occurs at very low (mmag) amplitudes of 
the unstable acoustic modes. The general case of three mode resonance of the 
type 

w„ = wsi + w52 + Aw, (20) 

was considered in that paper. However, the two-mode formalism developed in 
Section 4 may be used here, because in most important cases we have 

hi ~ hz > 'a, (21) 

and w 

wsi a u)g2 « y . (22) 

Excitation occurs at amplitude, Aa, which is nearly equal to the equilibrium 
amplitude. Thus, we get from Equation (18) 

Aa = ^ [ l + ( 7 T ^ r - ) 2 ] - (23) \C*1 v ( 7 « + 2 7 / 

This amplitude may be very small indeed, because the large number of potential 
resonant pairs allows a fine tuning of the resonance, | Au>| < u, and because the 
g-mode are very nearly adiabatic, |7fl| -C ug . In such a situation, only evaluation 
of a probability distribution for Aa is feasible. 

Star rotation further reduces the acoustic mode amplitude at the onset 
of parametric instability. Lifting the m-degeneracy of frequencies results in 
increasing chances of close resonances and consequently in reducing expected 
Aa. The effect becomes significant already at equatorial velocities of some 40 
km/s (Dziembowski et al., 1988). 

In stars near ZAMS, for p l t p2 and p3 radial modes and corresponding 
low-/ nonradial modes, the constant amplitude solutions are most probable. In 
this situation, -fg > j a and Aa is virtually independent of fa- There is a fair 
probability of periodic limit cycle and as well as chaotic solutions. The time 
scale of the amplitude and period variations is of the order of 7J"1. 

For higher order modes and for all acoustic modes in more evolved objects, 
there is an increasing probability of coupling to g-modes trapped in the inner 
cavity. In such situations we have - 2 7 s < -)a, which implies not only that the 
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constant amplitude solutions are unstable but that the interaction does not halt 
the amplitude growth. It may be expected that the amplitude is ultimately 
limited as a result of interaction with next generation of parametrically excited 
g-modes, but a theory of such multi-mode interactions remains to be developed. 
If this effect indeed governs nonlinear development of acoustic mode instability 
then, at this stage, we can only predict that modes which have relatively low 
amplitudes in the inner g-mode propagation zone have the best chances to attain 
large surface amplitudes. These are radial modes and nonradial modes that are 
partially trapped in the acoustic cavity. 

7. NONLINEAR. PHENOMENA IN MULTIPERIODIC VARIABLES 

7.1 S Scu stars 
Most of these stars are low amplitude variables. Furthermore, there are many 
objects in the 6 Scu domain of the H-R diagram which variability was searched 
for and was not detected. There is an evidence for period and amplitude changes 
occurring on the time scale of years (Breger, 1992) in several objects of this type. 

Part of 6 Scu stars are well studied multimode pulsators. In Table I I 
compiled information about amplitude spectra for few such objects. Mode iden­
tification given in this table, in most cases must, be regarded as tentative. The 
exception is GX Peg, in which case the identification is based on comprehensive 
model calculations (Goupil et al., 1992). Results of that work, as pointed out by 
its authors, give certain support for the idea of preferential excitation of modes 
trapped in the envelope. 

Spectra of the remaining objects are much harder to understand. In par­
ticular, in 4 CnV, the only pair of modes that on the basis of the period ratio 
could be identified with radial modes are the two of the highest frequencies. 
Presence of only two, at most, radial modes in this broad-frequency spectrum 
cannot easily be explain in terms of nonlinear effects discussed in previous sec­
tions. It is also difficult to understand absence of / = 1 modes in the 44 Tau 
oscillation spectrum. I suppose, however, that an alternative interpretation of 
this spectrum might be possible. 

Discovery of three small amplitude modes, in addition to the fundamental 
and first overtone pulsations, in the spectrum of AI Vel (Walraven & Balona, 
1992) is a surprise. I used to believe, that the two radial modes, owing their 
large amplitudes, fully saturated the opacity mechanism. This discovery is a 
good news for asteroseismology, though, interpretation of the present spectrum 
is not easy. 

0 Cephei stars 
There are many multimode objects of this type. With possible exception is 12 
Lac, in all 0 Cep frequencies of the detected modes in individual stars occur 
in ranges that are significantly narrower than the distance between consecutive 
radial modes. Observational identification of the spherical harmonic degrees, 
do not reveal any obvious preference to / = 0 values. These properties seem to 
favor the saturation as the dominant nonlinear effect. 

Amplitude are most often small and their rapid changes have been reported. 
The best known example is Spica (a Vir), observed as a pulsating star in 1960's 
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TABLE I Amplitude spectra for some S Scu stars 

star 
4 C n V 

logT.ff = 3.839 
reference: 

Breger et al. 
(1990) 

44 Tau 
log Tcn = 3.833 

reference: 
Mantegazza et al. 

(1992) 

AlVel 
log Teff = 3.875 

reference: 
Walraven & Balona 

(1992) 
d1 Tau 

logT.ff = 3 . 9 0 3 
reference: 

Breger et al. 
(1989) 

GXPeg 
log Te(r = 3 . 8 9 2 

reference: 
Michel et al. 

(1992) 

/ k / d a y | 
S.0475 
5.8508 
6.9763 
7.3778 
8.5950 
6.898 
7.006 
7.304 
8.960 
9.116 
9.562 
11.520 
8.9627 
9.1376 
11.5998 
15.9725 
22.5218 
13.2300 
13.4807 
13.6956 
14.4176 
14.6165 

16.17 
19.66 
19.91 
26.52 
20.78 

P|hours] 
4.755 
4.102 
3.440 
3.253 
2.792 
3.479 
3.426 
3.286 
3.678 
2.633 
2.510 
2.083 
2.678 
2.626 
2.069 
1.503 
1.066 

1.8141 
1.7803 
1.7524 
1.6646 
1.6420 
1.484 
1.221 
1.20$ 
1.170 
1.155 

/t|mmag] 
7.7 
9.1 
5.1 
5.2 
12.8 
27.8 
21.2 
5.9 
8.6 
14.7 
6.1 
6.8 

195.0 
6.5 

144.0 
8.9 
10.8 
6.6 
2.6 
4.5 
2.7 
1.2 

1.62 
1.78 
2.08 
1.80 
2.18 

identification 

/ *o 
1*0 
1*0 

1 = 0, p« 
I = 0, p5 
/ = 0, pi 
I = 2, pi 
1 = 3 , p 2 

/ = 0, p 3 

I = 2, P2 
; = 3 , P i 
1 - 0, P3 
' = 0, pi 

1*6 
I = 0, p 2 

l*b 
I = 0, P6 

' = 0, P2 or P3 
1 = 2 
1 = 1 
/ = 1 

7 
' = o, p 2 

; = 1, m = 1, P3 
I = 0. P3 

/ = 1, 771 = 0 , P3 

l = l , m s —1, p3 

and showing no detectable pulsation in 70's and early 80's (Sterken et al., 1986. 
The occurrence of an amplitude modulation on the time scale of years cannot 
be used as an evidence for the role of resonances. As discussed in Section 4.1, 
the amplitude changes may occur if more than two modes is involved in the 
saturation of the driving mechanism. 

Rapidly oscillating Ap stars 
Kurtz (1982) demonstrated that variability in these stars is due to excitation 
of high-order p-modes of / = 1 which are symmetric about magnetic field axis. 
Recently, Kurtz et al. (1992) showed that in the case of Ap star HR3831, there 
is a significant contamination with harmonic of other degrees. 

The driving mechanism is not yet understood. A peculiarity of the nonlinear 
behavior of Ap star oscillations is the occurrence of harmonics in their power 
spectra already at millimagnitude amplitudes. This is in stark contrast to S 
Scu stars where such nonlinearities are seen only at amplitudes of tenths of a 
magnitude. We ido not know why it is so, but it seems likely that this property 
of Ap star oscillations might be the clue to finding the excitation mechanism. 

Variable white dwarfs 
These are best studied multiperiodic variable stars. An unprecedented amplitude 
resolution was reached in observations made with the Whole Earth Telescope. 

In the power spectrum of PG 1159-035 Winget et al. (1991) identified 101 
peaks as consecutive modes in / = 1 and 2 multiplets. The period- spacing 
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clearly reveals the existence of at least two trapping cavities (a consequence of 
the element stratification). The lack of correlation between the spacing and the 
amplitudes seems to disprove, in this case, the hypothesis of the preferential 
excitation of the modes trapped in the outer cavity. There is now a a firm 
evidence for amplitude changes in this star, occurring on the time scale of years. 

Power spectra for some oscillating white dwarfs such as G117-B15A (Kepler 
et al, 1992) or BPM31594 (O'Donoghue et al, 1992) are dominated by nonlinear 
effects - harmonics, amplitude modulation. Such objects are less rewarding from 
the point of view of asteroseismology but they are source of valuable information 
about nonlinear effects in stellar oscillations that we still have to learn to use it. 
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