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Abstract

We prove that if f : I = [0, 1] → I is a C3-map with negative Schwarzian derivative, nonflat critical
points and without wild attractors, then exactly one of the following alternatives must occur: (i) R( f ) has
full Lebesgue measure λ; (ii) both S( f ) and Scramb( f ) have positive measure. Here R( f ), S( f ), and
Scramb( f ) respectively stand for the set of approximately periodic points of f , the set of sensitive points
to the initial conditions of f , and the two-dimensional set of points (x, y) such that {x, y} is a scrambled
set for f . Also, we show that if f is piecewise monotone and has no wandering intervals, then either
λ(R( f ))= 1 or λ(S( f )) > 0, and provide examples of maps g, h of this type satisfying S(g)= S(h)= I
such that, on the one hand, λ(R(g))= 0 and λ2(Scramb(g))= 0, and, on the other hand, λ(R(h))= 1.
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1. Introduction and main results

This paper deals with the dynamics of continuous maps f from a compact interval I
into itself (written f ∈ C(I )). For simplicity we always assume I = [0, 1]. A
relevant issue in this setting is to find clear-cut and informative criteria allowing us
to decompose C(I ) into ‘dynamically well-behaved’ (regular) and ‘dynamically badly
behaved’ (chaotic) maps. Needless to say, no such decomposition can be meaningful
unless it is complete (every map must be either regular or chaotic) and consistent (no
map can be both regular and chaotic). In the 1980s J. Smı́tal, in collaboration with
several authors, solved this problem in a very elegant way.
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30 A. Barrio Blaya and V. Jiménez López [2]

In order to discuss Smı́tal’s result we must recall a number of notions naturally
related to the ideas of regular and chaotic dynamics. To begin with, the simplest
dynamical behaviour of the orbit ( f n(x))∞n=0 of a point x ∈ I is periodicity: we say
that x is periodic (for f ) when f r (x)= x for some r ≥ 1 (the period of x being
the minimal number r with this property). Since only long-time behaviour is really
important to us, if x is asymptotically periodic, that is, there is a periodic point p
such that

lim
n→∞

| f n(x)− f n(p)| = 0

(or, equivalently, the limit set ω f (x) of its orbit is finite), then its dynamics are
still pretty trivial. Even allowing small round-off errors should not be of particular
significance. In this way we arrive at the notion of approximate periodicity.

DEFINITION 1.1. Let f ∈ C(I ) and x ∈ I . We say that x is approximately periodic if
for every ε > 0 there is a periodic point p such that

lim sup
n→∞

| f n(x)− f n(p)|< ε.

We denote by R( f ) the set of approximately periodic points of f .

While we can agree that R( f ) collects all points of I having reasonably simple
dynamics for f , as Akin and Kolyada wrote in [1], ‘the definitions associated with
the term chaos have proliferated so much that the word threatens to introduce the sort
of confusion it is intended to describe’. Anyway, sensitivity to initial conditions, as
introduced by Guckenheimer in [18], and the definition inspired by the famous paper
by Li and Yorke [26], are by far the most popular approaches.

DEFINITION 1.2. Let f ∈ C(I ), x ∈ I , and δ > 0. We say that x is δ-sensitive (or just
sensitive if we do not need to put an emphasis on δ) if for every neighbourhood U of
x there is some k such that the diameter of f k(U ) is at least δ.

We denote by S( f ) the set of sensitive points of f .

DEFINITION 1.3. Let f ∈ C(I ), let A ⊂ I contain at least two elements, and let δ ≥ 0.
We say that A is δ-scrambled (or simply scrambled if δ = 0) if for every x, y ∈ A,
x 6= y,

lim sup
n→∞

| f n(x)− f n(y)|> δ,

lim inf
n→∞

| f n(x)− f n(y)| = 0.

We denote by Scramb( f ) the set of pairs (x, y) ∈ I 2 such that {x, y} is a
scrambled set.

In Li–Yorke’s paper a map is said to be chaotic if it possesses an uncountable
scrambled set (with the additional redundant condition that neither of its points is
asymptotically periodic, see Proposition 1.5 below); in Guckenheimer’s paper chaos
is linked to the idea of S( f ) having positive Lebesgue measure.
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[3] Almost everywhere order-chaos dichotomy 31

REMARK. We emphasize that R( f ), S( f ), and Scramb( f ) are Borel, hence Lebesgue
measurable sets, for every f ∈ C(I ): see Section 5.

Let f ∈ C(I ). We say that x ∈ I is nonwandering if for every neighbourhood
U of x there is some k such that U ∩ f k(U ) 6= ∅. We denote by �( f ) the set of
nonwandering points of f . Clearly, �( f ) is compact and f (�( f ))⊂�( f ), so it
makes sense to consider the set S( f |�( f )) of sensitive points of the restricted map
f |�( f ) :�( f )→�( f ) (if X is a compact metric space and g : X→ X is continuous,
then we can define S(g) in exactly the same way as in Definition 1.2). Now we are
ready to state Smı́tal’s theorem.

THEOREM 1.4 (Smı́tal et al. [15, 16, 19, 38]). Let f ∈ C(I ). Then exactly one of the
following alternatives must occur:
(i) all points of I are approximately periodic;
(ii) f has a Cantor δ-scrambled set for some δ > 0 and S( f |�( f )) 6= ∅.

It is worth emphasizing that the original statement of the theorem does not include
the word ‘exactly’. That (i) and (ii) are incompatible properties follows from the fact
that no scrambled set can have more than one approximately periodic point, which
in turn is an immediate consequence of the following useful result, first noticed in
[20, pp. 117–118] (a proof can also be found in [4, pp. 144–145]). Observe in passing
that Theorem 1.4 together with Proposition 1.5 immediately imply that if f ∈ C(I )
has a two-point scrambled set, then it is Li–Yorke chaotic, see also [25].

PROPOSITION 1.5. Let f ∈ C(I ) and let x, y ∈ I be approximately periodic. If

lim inf
n→∞

| f n(x)− f n(y)| = 0,

then

lim
n→∞

| f n(x)− f n(y)| = 0.

Theorem 1.4 is very much related to the famous Sharkovsky theorem [35] which,
among other things, decomposes C(I ) into maps of type less than 2∞ (those having
periodic orbits of periods 1, 2, . . . , 2k for some k ≥ 0 and no other periods), maps
of type 2∞ (those having periodic orbits of periods 2s for every s ≥ 0 and no other
periods), and maps of type greater than 2∞ (those having a periodic orbit of period
not a power of 2). It turns out that if f is of type less than 2∞, then all points are
asymptotically periodic so it satisfies (i) (see, for example, [4, Proposition 1, p. 121]).
On the other hand, all maps of type greater than 2∞ are Li–Yorke chaotic (this is an
easy consequence of the main result in [26]), so they satisfy (ii). There are examples
of maps of type 2∞ such that all points are asymptotically periodic, and also maps of
this type that are chaotic in the sense of Li and Yorke: see [38].
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According to Theorem 1.4, either R( f )= I or f features both types of chaos
(although concerning sensitivity this chaos is ‘qualitative’ rather than ‘quantitative’).
Actually, from the measure-theoretical point of view, things may not be that clear. For
instance, if α = 3.83187 . . . , then the point 1/2 is periodic of period three for the map
f (x)= αx(1− x) so (ii) occurs for f . On the other hand, in [18] is proved that almost
all points of I are asymptotically periodic, hence every scrambled set S of f must have
measure zero.

Proposition 1.5 implies that the family AP(I ) of maps f for which R( f ) has full
measure, and that of maps possessing scrambled sets of positive measure, have empty
intersection. If the union of both families were the whole class C(I ), then we would
obtain a nice ‘almost everywhere’ version of Theorem 1.4, which is the main aim of
the present paper. Unfortunately this is far from true. A particularly enlightening
example is the full quadratic map f (x)= 4x(1− x). It can be proved that R( f )
has zero measure. (A possible way to do this is proceeding in two steps. First we
show S( f )= I using the analogous result for the tent map T (y)= 1− |2y − 1| and
taking into account that f and T are conjugated via the map ϕ(y)= sin2(πy/2);
then we apply Corollary C below.) On the other hand, f cannot have measurable
scrambled sets of positive measure, see [21] or use Theorem D below. It is worth
emphasizing that f possesses a nonmeasurable scrambled set of exterior full Lebesgue
measure (to prove it use [37], where a similar result is stated for the tent map, and the
above-mentioned smooth conjugacy ϕ). We see that scrambled sets may be rather
problematic from the point of view of measure, which suggests that the set Scramb( f )
should be considered instead. Actually, it is known that λ2(Scramb( f ))= 1 (see [21]);
throughout the paper λ and λ2 respectively denote the one-dimensional and two-
dimensional Lebesgue measure. Moreover, if LY (I ) denotes the family of maps
f for which λ2(Scramb( f )) > 0, then Proposition 1.5 still ensures AP(I ) ∩ LY (I )
= ∅. Unfortunately, as we will see later, AP(I ) ∪ LY (I ) is also strictly included
in C(I ).

The alternative way of formulating an almost everywhere version of Smı́tal’s
theorem is using sensitivity. For instance, recall that for the full quadratic map f
we have S( f )= I . Thus, we could consider the class ST (I ) of maps f for which
λ(S( f )) > 0 and investigate how AP(I ) and ST (I ) relate to each other. The bad news
is that neither AP(I ) ∩ ST (I )= ∅ (in [3] a map f was constructed simultaneously
satisfying R( f )= I and λ(S( f ))= 1), nor AP(I ) ∪ ST (I )= C(I ) (after blowing
up a dense orbit for the tent map so that the corresponding orbit of intervals have full
measure, we receive a map f such that λ(R( f ))= 0 and λ(S( f ))= 0). The good news
is that these are fairly sophisticated counterexamples, far from being ‘natural’ maps.

At this point, in order to proceed further, the nature of the sets R( f ) and S( f )must
be understood better. Here the notion of an adding machine plays a pivotal role.

For a sequence of integers α = (pm)
∞

m=1 such that pm ≥ 2 for every m, the α-adic
adding machine 1α is the set of sequences (xm) such that xi ∈ {0, 1, . . . , pm − 1}
for every m. We use the product topology in 1α and define the adding machine map
fα :1α→1α by writing
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[5] Almost everywhere order-chaos dichotomy 33

fα((xm))=


(0, . . . , 0, xm + 1, xm+1, . . .) if xm < pm − 1 and x j = p j − 1

for every j < m;

(0, 0, . . .) if xm = pm − 1 for every m.

Let X be an infinite compact metric space and g ∈ C(X). It is well known that g is
topologically conjugate to an adding machine map if and only if, for every ε > 0, X
can be decomposed into finitely many pairwise disjoint compact sets with diameters
less than ε which are cyclically permuted by g (see [5]). If f ∈ C(I ), X ⊂ I is an
invariant set for f , and such is the case for the restricted map g = f |X , then we simply
refer to X as an adding machine (for f ). In this particular situation it may even happen
that the convex hulls of the sets from the above-mentioned partitions are still pairwise
disjoint and cyclically permuted by f . If we are in such a case, then we call X a
solenoid. More exactly we have the following definition.

DEFINITION 1.6. Let f ∈ C(I ) and X ⊂ I . We say that X is a solenoid if there
are a decreasing sequence of compact intervals (Im)

∞

m=1 and a strictly increasing
sequence of positive integers (rm)

∞

m=1 such that f rm (Im)⊂ Im for every m, the

intervals { f i (Im)}
rm−1
i=0 are pairwise disjoint and their lengths tend uniformly to zero

as m goes to∞, and

X =
∞⋂

m=1

rm−1⋃
i=0

f i (Im).

If f ∈ C(I ) and x ∈ I , then x ∈ R( f ) if and only if ω f (x) is either finite or an
adding machine (Proposition 5.1). Concerning S( f ) things are not that clear-cut. For
instance, if ω f (x) is a solenoid, then x ∈ I \ S( f ) (because if with the notation of
Definition 1.6 m is given, then there is a small neighbourhood U of x that is mapped
by some iterate of f into Im , hence the lengths of the iterates of U are bounded by
those of the intervals f i (Im), 0≤ i < rm).

Nevertheless an asymptotically periodic point very well may be sensitive: just think
of a repelling fixed point. The first main result of this paper (Theorem A) shows that
the last possibility is rather exceptional for the family P(I ) of piecewise monotone
maps without wandering intervals: in this setting, sensitivity and having an ω-limit
set different from a periodic orbit and a solenoid essentially amount to the same
thing. In particular, this implies P(I )⊂ AP(I ) ∪ ST (I ). (We say that f in C(I )
is piecewise monotone if there is a partition 0= a0 < a1 < · · ·< ak = 1 of I such that
f |[ai ,ai+1] is—not necessarily strictly—monotone for each i . We say that an interval J
is wandering for a map f ∈ C(I ) if all iterates f n(J ), n ≥ 0, are pairwise disjoint and
J contains no asymptotically periodic point.)

THEOREM A. Let f be in the class P(I ) of piecewise monotone continuous maps of
I without wandering intervals. Then the following is true except for countably many
points x ∈ I : x is not sensitive if and only if ω f (x) is either a periodic orbit or a
solenoid.

In particular, if f ∈ P(I ), then either λ(R( f ))= 1 or λ(S( f )) > 0.
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It must be stressed that P(I ) is a pretty natural choice. Actually it provides an
optimal work setting from the purely topological point of view. For instance, maps of
type 2∞ in P(I ) always satisfy (i) in Theorem 1.4 and possess some solenoid [23, 38],
thus becoming a kind of boundary between maps of types less than and greater than
2∞ in P(I ).

Further, ‘relevant’ ω-limit sets for maps from P(I ) can be classified as follows. Let
f ∈ C(I ). We say that f is transitive if there is a point x ∈ I such that ω f (x)= I .
We say that f is totally transitive if f n is transitive for all n ≥ 1. If f ∈ C(I ) is
totally transitive, then if features a rather strong type of sensitivity. Namely, for every
subinterval J of I and every ε > 0 there is a number k such that f n(K )⊃ [ε, 1− ε]
whenever n ≥ k (see [2, 10]). Note that in the particular case when f ∈ P(I ), this
implies that f is topologically exact, that is, for every subinterval J of I there is a
number k such that f k(J )= I .

If {Ki }
r−1
i=0 is a periodic orbit of intervals (that is, the intervals Ki are pairwise

disjoint, f (Ki )= Ki+1 for any i with Kr := K0) with the property that f r
|K0 is totally

transitive when seen as a map from C(K0), then we call each of the intervals Ki
and the whole orbit {Ki }

r−1
i=0 totally transitive (or topologically exact in the piecewise

monotone setting) as well. We call a set A ⊂ I a topological attractor if the set
{x ∈ I : ω f (x)= A} is of the second Baire category and A is minimal with this
property. It turns out that if f ∈ P(I ) (or, more generally, if f ∈ C(I ) has no
wandering intervals), then for a residual set of points x we have that ω f (x) is finite, a
solenoid, or a totally transitive periodic orbit of intervals (a totally transitive interval
orbit—or a topologically exact interval orbit in the piecewise monotone setting—for
short). This is the well-known Blokh’s spectral theorem [7, Theorem 6.2] (see also
[34, Theorem 2.4, p. 25]). In particular, it implies that there are no other topological
attractors than those of these three types.

We have seen that P(I )⊂ AP(I ) ∪ ST (I ) and we already know that AP(I ) and
LY (I ) do not intersect. Unfortunately, as our next theorem shows, neither AP(I ) and
ST (I ) are disjoint in P(I ), nor the union of AP(I ) and LY (I ) covers P(I ). Both
counterexamples are provided by topologically exact maps, hence satisfying that their
sets of sensitive points are the whole interval I .

THEOREM B. There are topologically exact unimodal maps g, h in the class P(I ) of
piecewise monotone continuous maps of [0, 1] without wandering intervals such that:
(a) λ(R(g))= 0 and λ2(Scramb(g))= 0;
(b) λ(R(h))= 1.

We see that to obtain the analogous result to Theorem 1.4 we are looking for, the
family of maps under consideration must be restricted further. We say that c is a
critical point of a map f if f is differentiable at c and f ′(c)= 0. We say that a critical
point c of a map f is nonflat if it has a neighbourhood U such that f |U is of class
Cn+1 for some n ≥ 2 and f (n)(c) 6= 0. We denote by N 2(I ) the family of C2-maps
having only nonflat critical points.
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Note that if f ∈ N 2(I ), then it has finitely many critical points, so f is piecewise
(strictly) monotone. A celebrated result, following from the sequence of pa-
pers [8, 18, 27, 31, 32], states that maps from N 2(I ) have no wandering intervals, that
is, N 2(I )⊂ P(I ). Actually, the smoothness properties of maps from N 2(I ) allow us to
obtain a lot of information about their almost everywhere dynamics that is not available
for general maps from P(I ), particularly as far as their ω-limit sets are concerned.

We say that a set A ⊂ I is a metric attractor if {x ∈ I : ω f (x)= A} has positive
measure and A is minimal with this property. Combining results from [30] and [31]
one can prove that solenoids are both topological and metric attractors for maps from
N 2(I ). Further, it is a simple exercise to show that, even for just continuous maps,
every totally transitive interval orbit contains a residual set of points whose orbits are
dense in the intervals from the family, hence a totally transitive interval orbit is always
a topological attractor. Surprisingly, in [12] a topologically exact polynomial map
was constructed for which there is a Cantor set attracting the orbit of almost every
point of I . Such a set is usually called a wild attractor. More precisely we define it
as follows.

DEFINITION 1.7. Let f ∈ C(I ) and let A ⊂ I be a Cantor set. We say that A is a wild
attractor if it is a metric attractor, but not a solenoid, for f .

In [28] is shown that if f ∈ N 2(I ), then ω f (x) is finite, a solenoid, a wild attractor,
or a metrically exact interval orbit (with this we refer to a topologically exact interval
orbit such that the union of the intervals from the family is the ω-limit set of almost all
of its points) for almost every x ∈ I .

Wild attractors may represent un unsurmountable obstacle for our purposes even
in the optimal setting N 2(I ). In fact, we conjecture that there are polynomial maps
with similar properties to those of g and h in Theorem B. For such maps appropriate
wild attractors should play the leading role instead of the Cantor sets C and D from the
proof of the theorem. A feasible candidate for g may be the map from [13, Theorem 7],
whose wild attractor, similarly to C , is semiconjugate to the dyadic adding machine.
Note that here things are further complicated by the fact that wild attractors have zero
measure [39]. In the second case the situation should be simpler: we just need a map
h possessing a wild attractor which is also an adding machine for h. In this regard [11]
may be helpful.

If there are maps in N 2(I ) with similar properties to those of h in Theorem B,
then they have an intriguing, kind of ‘boundary’ behaviour. On the one hand almost
all points are approximately periodic, being attracted by a wild attractor consisting
also of approximately periodic points; on the other hand, they are topologically exact.
Thus, such maps would become, in some sense, the measure-theoretic counterpart to
maps of type 2∞ in the topological setting.

Then we are bound to assume that f ∈ N 2(I ) has no wild attractors. While
admittedly this is a strong restriction, it is nevertheless satisfied in the important case
when f has exactly one critical point c and f ′′(c) 6= 0, see [17, 29, 36]. Now the nature
of R( f ) and S( f ) can be completely unravelled. In fact, if x ∈ R( f ), then ω f (x) is
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either finite or an adding machine and, hence, except for a zero measure set of points
x , ω f (x) must be either a periodic orbit or a solenoid and x cannot belong to S( f )
(due to Theorem A). Thus, we have shown the following result.

COROLLARY C. Let f ∈ N 2(I ) and assume that it has no wild attractors. Then the
following statements are equivalent except for a zero measure set of points x ∈ I :
(a) x is not sensitive;
(b) ω f (x) is either a periodic orbit or a solenoid;
(c) x is approximately periodic.
In particular, for such a map f , exactly one of the following alternatives must occur:
either λ(R( f ))= 1 or λ(S( f )) > 0.

If, in addition, f has negative Schwarzian derivative, then we can successfully
deal with the set Scramb( f ) (Theorem D below). This last theorem, together with
Corollary C, provide the almost everywhere version of Theorem 1.4 we are looking for.
Moreover, as a byproduct we get that neither of these maps can possess a scrambled
set of positive measure. We recall that if f is a C3-map and x is not a critical point of
f , then the Schwarzian derivative of f at x , S f (x), is defined by

S f (x)=
f ′′′(x)

f ′(x)
−

3
2

(
f ′′(x)

f ′(x)

)2

.

We denote by S3(I ) the family of maps from N 2(I ) having negative Schwarzian
derivative outside its critical points.

THEOREM D. Let f ∈ S3(I ) and assume that it has no wild attractors. Then it has no
scrambled sets of positive measure. Moreover, exactly one of the following alternatives
must occur:
(i) λ(R( f ))= 1;
(ii) λ2(Scramb( f )) > 0.

It is fortunate that a lot of relevant maps in applied dynamics have negative
Schwarzian derivative: the typical example is the quadratic family fα(x)= αx(1− x),
α ∈ [0, 4]. Moreover, in view of a number of recently published and remarkable
papers, notably [17, 24, 39], we conjecture that this hypothesis is not essential
in Theorem D so could be disposed of. Indeed Graczyk and Sand have recently
announced that every C3 map with nonflat critical points and whose periodic points are
hyperbolic repelling is analytically conjugate to a map from S3(I ). (A periodic point
p of f is said to be hyperbolic (respectively, hyperbolic repelling) if |( f r )′(p)| 6= 1
(respectively, |( f r )′(p)|> 1), with r the period of p.) Using this result it is easy
to see that one can drop the negative Schwarzian condition from Theorem D at the
cost of adding the restriction that all periodic points are hyperbolic. Note that this
alternative formulation, while apparently much stronger, has a fundamental drawback:
the hyperbolicity condition cannot be checked in advance for a given, concrete map.

The structure of the paper is pretty simple. The next three sections provide proofs
for, respectively, Theorems A, B, and D. We have added a last complementary section
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providing further information on approximate periodicity and where is shown that
R( f ), S( f ), and Scramb( f ) are Borel sets for every continuous map f .

2. Proof of Theorem A

Let f ∈ C(I ) and x ∈ I . Recall that if ω f (x) is a solenoid, then x cannot be
sensitive. If x is asymptotically periodic, then it is still possible that x ∈ S( f ), but if, in
addition, f is piecewise monotone, then some strong restrictions arise. Indeed, if the
periodic orbit attracting that of x has period r , then f k(x) must belong to the periodic
orbit for some k and, moreover, f k(x) must be a one-sided or two-sided isolated fixed
point of f r . Further, neither of the iterates of x can fall into an open interval of
constancy of f . Hence, S( f ) can contain at most countably many asymptotically
periodic points.

Thus, in order to complete the proof of Theorem A, it suffices to show that the
following is true.

LEMMA 2.1. Let f ∈ C(I ) have no wandering intervals. If x ∈ I is not sensitive, then
ω f (x) is either a periodic orbit or a solenoid.

The next simple lemma will be used in the proof.

LEMMA 2.2. Let f ∈ C(I ), let J be a compact subinterval of I , and assume that
f k(J )= J for some (minimal) positive integer k. Then either J is periodic of period
k or k is even and J ∪ f k/2(J ) is periodic of period k/2.

PROOF. It clearly suffices to show that if 1≤ r < k satisfies f r (J ) ∩ J 6= ∅, then
r = k/2. Suppose not. Then we can assume that r < k/2, which in view of the
minimality of k implies (after rewriting g = f r ) that the intervals J , g(J ) and g2(J )
are pairwise different. As neither g(J ) can be strictly contained in J nor it can strictly
contain J (because gk(J )= J ) we can, for example, assume that g(J ) is to the right
of J , that is, there are points of g(J ) to the right of J , and J is to the left of g(J ), that
is, there are points of J to the left of g(J ).

We claim that g2(J ) is then to the right of g(J ). Actually, if g2(J ) is to the left of
g(J ), then either g2(J ) is to the right of J and so gk(J ∪ g(J )) is strictly contained in
J ∪ g(J ), or g2(J ) is to the left of J and then gk(J ∪ g(J )) strictly contains J ∪ g(J );
in both cases we arrive at a contradiction.

Repeating the argument we find that g j+1(J ) is to the right of g j (J ) for every j ,
which is impossible because gk(J )= J . 2

PROOF OF LEMMA 2.1. Fix ε > 0. Since x is not sensitive, there is an interval
K neighbouring x such that supn≥0 λ( f n(K )) < ε. Moreover, there are numbers
k ≥ 0, r ≥ 1 such that f k(K ) ∩ f r+k(K ) 6= ∅ (otherwise we have that either K is a
wandering interval, which is impossible, or x is asymptotically periodic and we are
done). We can also exclude the trivial case when some of the sets f n(K ) degenerates
to a point. Then every pair of intervals f ri+k(K ), f r(i+1)+k(K ) intersect and the
closure L of

⋃
∞

i=0 f ri+k(K ) is also an interval.
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We claim that λ( f ri (L)) < 11ε for every i large enough. Namely, let y be an
accumulation point of the middle points of the intervals f ri+k(K ) and find some i0
such that dist( f ri0+k(K ), y) < ε. It suffices to show λ( f ri0(L)) < 11ε.

Suppose not. Then

dist( f ri0+k(K ), f rs+k(K )) > 4ε for some s > i0.

Let i0 < t < s be the last number satisfying dist( f ri0+k(K ), f r t+k(K )) < ε. Use the
definition of y and the property dist( f ri0+k(K ), y) < ε to find a minimal number u > s
such that

0< dist( f ri0+k(K ), f ru+k(K )) < 2ε

(thus, in fact, u > s + 1). Then the interval

M =
u−1⋃

i=t+1

f ri+k(K )

satisfies dist(M, y) > 0. Note that

dist( f ri0+k(K ), f r(t+1)+k(K )) < 2ε and

2ε ≤ dist( f ri0+k(K ), f r(u−1)+k(K )) < 3ε.

This means that f r(u−1)+k(K ) is contained in the smallest interval including
f r(t+1)+k(K ) and f rs+k(K ), that is,

M =
u−2⋃

i=t+1

f ri+k(K ).

Hence, f r (M)⊂ M , which contradicts the definition of y. Note that the same
argument, applied to each of the intervals f j (L), 1≤ j < r , proves in fact that
λ( f n(L)) < 11ε for every n large enough.

Write N j =
⋂
∞

i=0 f ri+ j (L) for every 0≤ j < r . Note that λ(N j ) < 11ε for every
j and N j 6= ∅ because it is a decreasing intersection of compact intervals. It is easy to
check that f (N j )= N j+1 for every j (mod r). Then we either have that each set N j
degenerates to one point, or each set N j is a nondegenerate interval. In the first case
we have λ( f n(L))→ 0 as n→∞. Since f k(x) ∈ L , ω f (x)=

⋃
j N j is finite and x

is asymptotically periodic, which finishes the proof.
Thus, we can assume that the intervals N j are nondegenerate. Now, in view of

Lemma 2.2, there is a periodic interval Jε with all intervals f n(Jε) having length less
than 22ε and with the property that dist( f n(x), f n(Jε))→ 0 as n→∞.

We have shown that either Lemma 2.1 holds or for every ε > 0 there is a periodic
interval Jε with the properties described above. In the latter case there is clearly a
sequence εm→ 0 as m→∞ so that, after rewriting Jm = Jεm and denoting by rm the
period of Jm , one of the following alternatives holds:
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(a) there is an r such that rm = r for every m; moreover, for every 0≤ j < r there is
a point p j such that dist( f j (Jm), p j )→ 0 as m→∞;

(b) rm+1 > 2rm for every m.
If (a) occurs, then we have ω f (x)= {p0, . . . , pr−1} and x is asymptotically periodic.
Assume now that (b) occurs. Fix m and let z j ∈ ω f (x) be an accumulation point of
( f rm+1i+rm j (x))i , j = 0, 1, 2. Hence, z j ∈ Jm ∩ f rm j (Jm+1) and, since the intervals
f rm j (Jm+1) have pairwise disjoint interiors (because rm+1 > 2rm), one of them must
be contained in the interior of Jm . This implies that rm+1 divides rm so we also have
Jm+1 ⊂ Jm . We see that either Jm+1 is a periodic interval of period rm+1 contained in
Jm , or Jm+1 ∪ f rm+1/2(Jm+1) is a periodic interval of period rm+1/2 contained in Jm
(use Lemma 2.2). Then

ω f (x)=
∞⋂

m=1

rm−1⋃
i=0

f i (Jm)

is a solenoid. 2

3. Proof of Theorem B

To construct the desired maps g and h we just have to devise topologically exact
unimodal maps g̃, h̃ ∈ P(I ) for which there are corresponding Cantor sets C and D
having the following properties:

g̃(C)⊂ C ⊂ I \ R(g̃) and C2
⊂ I 2
\ Scramb(g̃); (1)

D ⊂ R(h̃). (2)

Indeed, since g̃ is topologically exact, we can easily find a family {C j } of pairwise
disjoint Cantor sets such that Ã =

⋃
j C j is dense in I and, for every j , there

is some k j such that f k j (C j )⊂ C . Note that Ã also satisfies Ã ⊂ I \ R(g̃) and
Ã2
⊂ I 2
\ Scramb(g̃). Moreover, there is a homeomorphism ϕ : I → I mapping Ã

onto a set A of full measure. Now, for the conjugated map g = ϕ ◦ g̃ ◦ ϕ−1, we have
that A ⊂ I \ R(g) and A2

⊂ I 2
\ Scramb(g). Then λ(R(g))= 0 y λ2(Scramb(g))

= 0, so g is one of the maps we are looking for. Likewise, using (2), we can construct
a dense union of pairwise disjoint Cantor sets B̃ contained in R(h̃). Thus, if ψ is a
homeomorphism mapping B̃ to a full measure set B, then B ⊂ R(h) for the conjugated
map h = ψ ◦ h̃ ◦ ψ−1, which thus becomes the other map we are looking for. Note
in passing that to guarantee the existence of a set D as in (2) it suffices to produce an
approximately (but not asymptotically) periodic point, see Proposition 5.1.

The map g̃ we need is the tent map g̃(x)= 1− |2x − 1|, but to find C satisfying (1)
we also use a truncated map f (x)=max{κ, g̃(x)}. It turns out that if κ is appropriately
chosen (its approximate value being κ = 0.824 908 . . .), then f becomes a map of
type 2∞ whose dynamics were extensively analyzed in [33] and [22]. What we
need to know about f is the following. There is a decreasing sequence of compact
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intervals (Jm)
∞

m=1, intersecting exactly at the interval J of constancy of f , such

that, for every m, the intervals { f i (Jm)}
2m
−1

i=0 form a periodic orbit of intervals of

period 2m . The intersection K =
⋂
∞

m=1
⋃2m

−1
i=0 f i (Jm) is not a Cantor set, but each

of the nondegenerate connected components of K is monotonically mapped onto J
by some iterate of f . Now, after taking off K the interiors of its nondegenerate
components, we receive an invariant Cantor set C . The set C has the property that if
x, y ∈ C , then either f k(x)= f k(y) for some k (which happens when x and y are the
endpoints of some nondegenerate component of K ) or lim infn→∞ | f n(x)− f n(y)|
> 0; moreover, we have ω f (x)= C for every x ∈ C . Since the orbits of points from C
never visit the interior of J , we see that C still has these properties when f is replaced
by g̃. In particular, ωg̃(x)= C for every x ∈ C and the fact that g̃|C is not one-to-one
imply that no point of C is approximately periodic for g̃ (use Proposition 5.1). We see
that C has the required properties in (1).

The map h̃ we need is just a topologically exact unimodal map having an adding
machine. After a first version of this paper was written we learned of [6], where it
was proved that the family of quadratic maps attaining 1 as its maximum value and
mapping 1 to 0 contains such maps. The approach of [6] is mainly topological in
nature. Thus, we have decided to include our combinatorially-based proof.

Since we desire h̃ to belong to the family { fµ}µ∈(1,4] given by

fµ(x)=−µx2
+ 2(µ− µ1/2)x + 2µ1/2

− µ

we must explain how to choose µ. To do this some standard facts from kneading
theory will be used. Proofs of the statements below can be found, for example, in [14].

Let {0, c, 1}∞ denote the set of infinite sequences α = α0α1 · · · of symbols 0, c
and 1. We put 0< c < 1 and introduce a total ordering ‘<’ in {0, c, 1}∞ by writing
α < β whenever α 6= β, αk < βk (respectively, βk < αk) and α0 · · · αk−1
= β0 · · · βk−1 contains an even number of 1’s (respectively, an odd number of 1’s).
The shift map σ : {0, c, 1}∞→ {0, c, 1}∞ is defined by σ(α)= β with βn = αn+1 for
every nonnegative integer n.

Let f ∈ { fµ}. We assign to every point x its itinerary

α = K (x)= K f (x) ∈ {0, c, 1}∞

by putting αn = 0, αn = c or αn = 1 according to whether f n(x) < c, f n(x)= c
or f n(x) > c, where we also use c to denote the turning point of f . Note that
K ( f n(x))= σ n(K (x)) for every n ≥ 0. The itinerary θ = θ f = K (1) of the right
endpoint of the interval I is called the kneading sequence of the map f . It can be
proved that if σ n(θ) < θ for every n ≥ 1 for some sequence θ , then there is a map f
in { fµ} having θ as its kneading sequence.

In what follows we assume θ ∈ {0, 1}∞, which is known to have a number
of important consequences. For instance, if x, y ∈ I , then x < y if and only if
K (x) < K (y). Moreover, if α ∈ {0, 1}∞ satisfies σ(θ)≤ α and σ n(α) < θ for every
n ≥ 0, then there is exactly one point x ∈ [0, 1) such that K (x)= α.
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The reason behind the properties described above is that, in this case, f has no
homtervals. Here, by a homterval, we mean an interval J with that property that f n

|J
is monotone for every n. Then, for every ε > 0, there are a positive integer l and
a number δ > 0 such that, if x, y ∈ I and α = K (x), β = K (y), then the following
statements hold:
• if αn = βn for every n ≤ l, then |x − y|< ε;
• if there is a number m such that | f m(x)− f m(y)|< δ and αn = βn for every

n ≤ m, then |x − y|< ε.
As a consequence of these two facts we get that if ε is given, then there is an integer k
such that, if x, y ∈ I , α = K (x), β = K (y), and

αni+ j = βni+ j = θ j−1, 1≤ j ≤ k,

for the sequence (ni ) of indexes n with the property αn 6= βn , then

lim sup
n→∞

| f n(x)− f n(y)|< ε.

Another consequence of the absence of homtervals for f is that every subinterval
of I has some iterate containing c, and then 1. Hence to prove that f is topologically
exact it would suffice to find a sequence (l j )

∞

j=1 of positive integers with l1 = 1 and

( f l j (1)) converging to 1, such that every interval [ f l j (1), 1] ( j ≥ 2) has some iterate
covering [ f l j−1(1), 1]. A possible way to guarantee that a sequence (l j ) has these
properties is by finding sequences (r j )

∞

j=2 and (m j )
∞

j=2 of positive integers satisfying
r j →∞ as j→∞, θl j+r = θr whenever 0≤ r < r j , and

θl j+m j 6= θm j , θl j+m j+l j−1 6= θm j+l j−1

(because then both f m j ([ f l j (1), 1]) and f m j+l j−1([ f l j (1), 1]) contain c, hence
f m j+l j−1+1([ f l j (x), 1]) contains both f l j−1(1) and 1). Note that in this case c cannot
be asymptotically periodic, as this would imply that c is in fact periodic and this is
impossible because θ ∈ {0, 1}∞.

In short, to obtain a topologically exact map h̃ = f ∈ { fµ} whose turning point
is approximately but not asymptotically periodic, it is sufficient to find a sequence
θ ∈ {0, 1}∞ having the following properties:
(i) σ n(θ) < θ for every n ≥ 1;
(ii) for every positive integer k there is a periodic sequence π ∈ {0, 1}∞ satisfying

σ(θ) < π , σ n(π) < σ for every n, and such that πn+ j = θn+ j = θ j−1 for every
1≤ j ≤ k and every n with the property θn 6= πn;

(iii) there are sequences (l j )
∞

j=1, (r j )
∞

j=2 and (m j )
∞

j=2 of positive integers such that
l1 = 1, r j →∞ as j→∞, and satisfying
(a) θl j+r = θr whenever 0≤ r < r j ,
(b) θl j+m j 6= θm j , θl j+m j+l j−1 6= θm j+l j−1 ,
for every j ≥ 2.
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To find such a sequence we proceed constructively. We start from an ‘almost
periodic’ sequence with some gaps and then fill them in an appropriate way. Namely,
let Bk and Sk be the (finite) sequences defined by

B1 = 100101010110101011011100101

S1 = 1001010101101

and

Bk+1 = BkuSkvBkvSkvBkvSku BkuSk

Sk+1 = BkuSkvBkvSk

where u + v = 1 and u = 0 (respectively, u = 1) if k is odd (respectively, k is
even). Then we define θ as the sequence in {0, 1}∞ matching all of the patterns
Bk?Sk?Bk?Sk? . . . (where ? indistinctly means 0 or 1). Clearly θ is unambiguously
defined.

In what follows, bk and sk denote respectively the lengths of the sequences Bk? and
Sk?. We also write dk = bk + sk . Note that if k is odd (respectively, k is even) then
both Bk and Sk have an odd (respectively, even) number of 1’s.

Before proving that θ satisfies the properties (i), (ii) and (iii) listed above we need a
preliminary result: if α, β ∈ {0, 1}∞ admit decompositions Bk?Sk?Bk?Sk? . . . for the
same number k, then

σ n(α) < β whenever n does not divide dk . (3)

We prove (3) inductively. The statement follows for k = 1 by direct inspection.
Next assume that the statement is true for a given number k = l, and let α, β admit
decompositions Bl+1?Sl+1?Bl+1?Sl+1? . . . . Assume that n does not divide dl+1. If
n does not divide dl , then the induction hypothesis applies and σ n(α) < β. Since
dl+1 = 6dl , we are left to analyze the cases n = rdl+1 + sdl , where r is a nonnegative
integer and s ∈ {1, 2, 3, 4, 5}. We have

β = BluSlvBlvSlvBlvSlu BluSl?BluSlvBlvSl? . . .
σ n(α) = BlvSlvBlvSlu BluSl?BluSlvBlvSl?BluSlv . . . (s = 1)
σ n(α) = BlvSlu BluSl?BluSlvBlvSl?BluSlv . . . (s = 2)
σ n(α) = BluSl?BluSlvBlvSl?BluSlv . . . (s = 3)
σ n(α) = BluSlvBlvSl?BluSlv . . . (s = 4)
σ n(α) = BlvSl?BluSlv . . . (s = 5)

and it is easy again to check that σ n(α) < β in all cases. For instance, assume
that l is even and say s = 4. Since both Bl and Sl have an even number of
1’s and u = 1, v = 0, the sequence BluSlvBlvSl has an odd number of 1′s, so
BluSlvBlvSlu < BluSlvBlvSlv. Similarly, BluSlvBlvSlvBl has an odd number
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of 1′s, so BluSlvBlvSlvBlu < BluSlvBlvSlvBlv. We see that σ n(α) < β regardless
of what the symbol ? represents in σ n(α). We have shown that (3) is true for k = l + 1.

From (3) property (i) follows immediately. Concerning (ii), fix k and put
π = BkvSkvBkvSkv . . . . The inequalities σ(θ) < π < θ are obvious, and σ n(π) < θ

for every 1≤ n < dk due to (3). Since σ dk (π)= π , we obtain σ n(π) < θ for every n.
The last statement in (ii) is clear as well: as a matter of fact, if n is such that πn 6= θn ,
then πn+ j = θn+ j = θ j−1 for every 1≤ j < sk .

It only remains to prove (iii). To this aim we define l2 = 3, l3 = 14 and lk = sk−2
for every k ≥ 3, and also m2 = r2 = r3 = 2, m3 = 6, and mk = rk = bk−3 − 1 for every
k ≥ 4. Then

θ = 10 0 1 01010110101011011100101010010101011011 . . .

σ l2(θ) = 10 1 0 10110101011011100101010010101011011 . . . ,

θ = 100101 0 10 1 10101011011100101010010101011011 . . .

σ l3(θ) = 101101 1 10 0 101010010101011011 . . .

(we have used bold type to mark the first coefficients after the blocks B1 and S1 of θ
and boxed the key coefficients), and

θ = Bk−3 u Sk−3 v Bk−3vSk−3vBk−3vSk−3u Bk−3uSk−3v

Bk−3uSk−3vBk−3vSk−3u . . .

σ lk (θ) = Bk−3 v Sk−3 u Bk−3uSk−3vBk−3uSk−3vBk−3vSk−3u . . .

for every k ≥ 4 (now bold type indicates the first coefficients after the blocks Bk−2 and
Sk−2 of θ ). It is easy to check that (iii) holds. We are done.

4. Proof of Theorem D

The proof of Theorem D virtually follows after the next sequence of lemmas. The
first two of them only require f to be a C1-map.

LEMMA 4.1. Assume that f ∈ C1(I ) is not monotone. Then there exists ε > 0 such
that if A ⊂ I is a measurable set and λ(A) > 1− ε, then f is not one-to-one in A.

PROOF. Since f is not monotone, we can easily find two points a, b interior to I such
that f (a)= f (b) and f ′(a) 6= 0 6= f ′(b). Then there are closed intervals a ∈U , b ∈ V
such that f |U and f |V are diffeomorphisms onto their common image f (U )= f (V ).
Let

mU =min
x∈U
| f ′(x)| and MU =max

x∈U
| f ′(x)|

and define mV and MV accordingly. We assume that the intervals U and V are small
enough so that mU > MU/2 and mV > MV /2.
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Let

ε =min
{
λ(U )

mU

(
mU −

MU

2

)
,
λ(V )

mV

(
mV −

MV

2

)}
and assume λ(A) > 1− ε for some measurable set A. Then

λ( f (A ∩U )) ≥ mUλ(A ∩U )= mU (λ(U )+ λ(A)− λ(A ∪U ))

> mU (λ(U )− ε)≥ mU

(
λ(U )−

1
mU

(
mU −

MU

2

)
λ(U )

)
=

MU

2
λ(U )

and similarly λ( f (A ∩ V )) > MVλ(V )/2. Since

λ( f (U ))≤min{MUλ(U ), MVλ(V )},

we have

λ( f (A ∩U ) ∩ f (A ∩ V )) = λ( f (A ∩U ))+ λ( f (A ∩ V ))

− λ( f (A ∩U ) ∪ f (A ∩ V ))

> 1
2 MUλ(U )+ 1

2 MVλ(V )− λ( f (U ))

≥ 0,

so f is not one-to-one in A. 2

LEMMA 4.2. Let f ∈ C1(I ) and J ⊂ I , and assume that f k(J )= I for some k. Let
ε > 0. Then there exists δ = δε > 0 such that if A ⊂ J and λ(A)/λ(J ) > 1− δ, then
λ( f k(A)) > 1− ε.

PROOF. Take M =maxx∈I |( f k)′(x)| and define δ = ε/(Mλ(J )). For every subset A
of J satisfying λ(A)/λ(J ) > 1− δ

λ(I \ f k(A)) ≤ λ( f k(J \ A))≤ Mλ(J \ A)= M(λ(J )− λ(A))

< M(λ(J )− (1− δ)λ(J ))= δMλ(J )= ε,

and hence λ( f k(A)) > 1− ε. 2

In the ensuing lemma the following notion will be used. If δ > 0 and K is a
subinterval of an interval J with the property that both components of J \ K have
at least length δλ(J ), then we call J a δ-scaled neighbourhood of K .

LEMMA 4.3. Assume that f ∈ S3(I ) is topologically exact and has no wild attractors.
Then there exists an interval J such that, for every subset A of I of positive
measure, every ε > 0 and almost every x ∈ A, there are an arbitrarily large integer
l and a subset B of A containing x such that f l(B)⊂ J , f l

|B is one-to-one, and
λ( f l(B))/λ(J ) > 1− ε.
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PROOF. Since f is topologically exact and has no wild attractors, its only metric
attractor is the whole interval I . Now we can use [9, Theorem 5.3] to find a finite
set Y ⊂ I with the property that if J and K are subintervals of I not intersecting
Y , and J is contained in the interior of K , then for almost every x ∈ I there
are an arbitrarily large number l and intervals W ′ ⊂W ′′ neighbouring x such that
f l(W ′)= J , f l(W ′′)= K , and f l

|W ′′ is diffeomorphic. In what follows we fix J and
K just additionally assuming that K is a 1/2-scaled neighbourhood of J .

Let ε > 0 and assume that A ⊂ I has positive measure. Then for almost every
density point x of A (hence for almost every x ∈ A) we can find an arbitrarily large
number l and intervals W ′, W ′′ with the properties described above. Actually, if l
is large enough, then W ′′ must be very small, otherwise one could find arbitrarily
large numbers lm and corresponding intervals Wm such that f lm (Wm)= K 6= I , in
contradiction with the total transitivity of f . Since x is a density point of A, we can
then assume that λ(A ∩W ′)/λ(W ′) > 1− ε/9.

Recall that K is a 1/2-scaled neighbourhood of J . Then we can use the Koebe
inequality as stated in [9, Lemma 3.4] to obtain

λ(C)/λ(W ′)≥ λ( f l(C))/(9λ(J ))

for every measurable subset C of W ′. In particular,

λ( f l(W ′ \ A))

λ(J )
≤ 9

λ(W ′ \ A)

λ(W ′)
= 9

(
1−

λ(A ∩W ′)

λ(W ′)

)
< ε.

Since f l
|W ′ is a homeomorphism, B = A ∩W ′ does the job. 2

Combining Lemmas 4.2 and 4.3 we immediately obtain the following.

LEMMA 4.4. Assume that f ∈ S3(I ) is topologically exact and has no wild attractors.
Let A ⊂ I have positive measure and let ε > 0. Then there is an arbitrarily large
integer m such that λ( f m(A)) > 1− ε.

Theorem D will follow easily from the next two lemmas.

LEMMA 4.5. Assume that f ∈ S3(I ) is topologically exact and has no wild attractors.
Let A ⊂ I be a measurable set such that f n

|A is one-to-one for every nonnegative
integer n. Then λ(A)= 0.

PROOF. Otherwise we use Lemmas 4.1 and 4.4 to arrive at a contradiction. 2

LEMMA 4.6. If f ∈ S3(I ) is topologically exact and has no wild attractors, then
λ2(Scramb( f ))= 1.

PROOF. Let x ∈ I and consider the sets

Ax =

{
y ∈ I : lim sup

n→∞
| f n(x)− f n(y)|> 0

}
,

Bx =

{
y ∈ I : lim inf

n→∞
| f n(x)− f n(y)| = 0

}
.

It suffices to show that λ(Ax )= λ(Bx )= 1.
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Suppose λ(Ax ) < 1. Then the set{
y ∈ I : lim

n→∞
| f n(x)− f n(y)| = 0

}
has positive measure and there are 0< ε < 1/3 and k ∈N such that

C = {y ∈ I : | f n(x)− f n(y)| ≤ ε for every n ≥ k}

has positive measure as well. By Lemma 4.4, there exists m > k such that

λ( f m(C)) > 1− ε.

In particular, C contains two points y, z such that

| f m(y)− f m(z)|> 1− ε > 2/3

but also satisfying, due to the definition of C ,

| f m(y)− f m(z)| ≤ | f m(y)− f m(x)| + | f m(x)− f m(z)| ≤ 2ε < 2/3,

which is impossible.
Similarly, suppose now λ(Bx ) < 1 to find ε > 0 and k such that

D = {y ∈ I : | f n(x)− f n(y)| ≥ ε for every n ≥ k}

has positive measure, and take m > k with the property λ( f m(D)) > 1− ε, which
also implies that the interval {z ∈ I : | f m(x)− z|< ε} has measure less than ε, a
contradiction. 2

PROOF OF THEOREM D. Let A be a measurable scrambled set of f . Then f n(A)
is scrambled for f and A is scrambled for f n for every n ≥ 1. In addition, A can
contain at most one approximately periodic point by Proposition 1.5, hence almost
every point of A must be attracted by some metrically exact interval orbit. Note also
that the number of topologically exact intervals of f is finite because each pair of them
have pairwise disjoint interiors and the orbit of every topologically exact interval must
contain some critical point of f .

Thus, to prove that λ(A)= 0, we can assume without loss of generality that f
is topologically exact. Since A is scrambled, f n

|A is one-to-one for every n and
λ(A)= 0 follows from Lemma 4.5.

It only remains to shows that if f has some metrically exact interval orbit, then
λ2(Scramb( f )) > 0, which immediately follows from Lemma 4.6. 2

5. Complements on approximate periodicity and measurability

First we provide a simple characterization of approximate periodicity.
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PROPOSITION 5.1. Let f ∈ C(I ) and x ∈ I . Then x is approximately periodic if and
only if ω f (x) is either finite or an adding machine.

PROOF. We can assume that ω f (x) is infinite.
Proving the ‘if’ part of the statement is easy, because if ε > 0 is given,

{C, f (C), . . . , f r−1(C)} is a partition of ω f (x) such that f r (C)= C and all sets
f i (C) have diameters less than ε, and we denote by Ji the smallest connected
sets containing f i (C), then we have f (Ji )⊃ Ji+1 for every i . Hence, there is a
fixed point p of f r such that f i (p)⊂ Ji , 0≤ i < r . Moreover, the properties of C
force C = ω f r ( f i (x)) for some 0≤ i < r , and it is not restrictive to assume i = 0.
Therefore,

lim sup
n→∞

| f n(x)− f n(p)|< ε.

We prove the ‘only if’ part of the statement. Assume that x ∈ I is approximately
periodic. Let A = ω f (x) and let (Pj )

∞

j=1 be a sequence of periodic orbits of respective
periods r j satisfying

lim sup
n→∞

| f n(x)− f n(p j )| ≤
1
j

for some p j ∈ Pj and every j . Clearly, A is the limit set of the union P =
⋃

j Pj .
Let y ∈ A and fix j . Then there is 0≤ k < r j such that y is a limit point

of the sequence ( f mr j+k(x))m . Hence, if we put q j = f k(p j ), we see that
| f n(y)− f n(q j )| ≤ 1/j for every n. Now it is clear that ω f (y) is also the limit set of
P , that is, ω f (y)= A for every y ∈ A. We have shown that f |A is minimal.

Let ε > 0, fix j > 2/ε, rename s = r j , and let Ci = ω f s ( f i (x)), 0≤ i < s. Then
f (Ci )= Ci+1 for every i (we mean Cs = C0). Since each f i (x) is approximately
periodic for f s , we apply the previous reasoning to conclude that every map
f s
|Ci is minimal. Let 0≤ l, m < s, l 6= m, and assume that Cl ∩ Cm 6= ∅. Then

f s(Cl ∩ Cm)⊂ Cl ∩ Cm , so the minimality of f s
|Cl and f s

|Cm forces Cl = Cm .
Further, observe that if y ∈ Ci , then |y − f i (p j )| ≤ 1/j and therefore the diameter
of Ci is at most 2/j . If we define C = C0 and r is the minimal positive
number satisfying f r (C)= C , then the partition {C, f (C), . . . , f r−1(C)} satisfies
the required properties in the definition of an adding machine for the number ε. 2

We conclude the section and the paper proving that R( f ), S( f ) and Scramb( f )
are Borel sets. In the case of S( f ) this is clear because if Sδ( f ) denotes the set
of δ-sensitive points of f , then Sδ( f ) is closed and S( f )=

⋃
∞

j=1 S1/j ( f ). Also,

Scramb( f ) is a Borel set in the square I 2 because{
(x, y) ∈ I 2

: lim sup
n→∞

| f n(x)− f n(y)|> 0
}

=

∞⋃
j=1

∞⋂
l=0

∞⋃
n=l

{(x, y) ∈ I 2
: | f n(x)− f n(y)|> 1/j}
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and {
(x, y) ∈ I 2

: lim inf
n→∞

| f n(x)− f n(y)| = 0
}

=

∞⋂
j=1

∞⋂
l=0

∞⋃
n=l

{(x, y) ∈ I 2
: | f n(x)− f n(y)|< 1/j}.

To prove that R( f ) is a Borel set it suffices to show that

R( f )=
∞⋂
j=1

∞⋃
r=1

∞⋃
n=1

∞⋂
m=n

∞⋂
l=1

{x ∈ I : | f m+rl(x)− f m(x)|< 1/j}.

Clearly, R( f ) is contained in the right-hand side set. Conversely, suppose that x
belongs to the right-hand side set. We can assume that x is not asymptotically periodic,
since otherwise it trivially belongs to R( f ). Fix j . Then there are numbers r and n
such that | f m+rl(x)− f m(x)|< 1/j whenever m ≥ n and l ≥ 1. For every such m, let
Im denote the smallest closed interval containing the points { f m+rl(x)}∞l=0. We claim
that It = It+r for some t . Suppose not, write y = f n(x) and g = f r and consider the
sequence

( f n+rl(x))∞l=0 = (g
l(y))∞l=0.

Then gk+1(y) < gk(y) (respectively, gk+1(y) > gk(y)) implies gl(y) < gk(y)
(respectively, gl(y) > gk(y)) for every l > k. The sequence (gl(y)) cannot be
monotone because x is not asymptotically periodic (so neither is y). If, say, g(y) > y,
then

y < g(y) < · · ·< gl1−1(y) < gl2(y) < gl2+1(y) < · · ·< gl3−1(y) < gl4(y)

< · · ·< · · ·< gl4−1(y) < · · ·< gl3+1(y) < gl3(y) < gl2−1(y) < · · ·< gl1+1(y)

< gl1(y).

Now it is clear that (gl(y)) accumulates at most at two points, which implies that y is
asymptotically periodic, a contradiction.

We have shown that It = It+r for some t ≥ n. Since f (Im)⊃ Im+1 for every m,
we obtain that f r (It ) covers It and then there is a fixed point q of f r such that
f i (q) ∈ It+i for every 0≤ i < r . Since all intervals Im have diameter at most 1/j ,
we obtain that

lim sup
n→∞

| f n(x)− f n(p)| ≤ 1/j

for the point p of the orbit of q such that f t (p)= q . Since j was arbitrarily fixed, we
have shown that x ∈ R( f ).
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[30] R. Mañé, ‘Hyperbolicity, sinks and measure in one-dimensional dynamics’, Comm. Math. Phys.
100 (1985), 495–524 (Erratum Comm. Math. Phys. 112 (1987), 721–724).

[31] M. Martens, W. de Melo and S. van Strien, ‘Julia–Fatou–Sullivan theory for real one-dimensional
dynamics’, Acta Math. 168 (1992), 273–318.

[32] W. de Melo and S. van Strien, ‘A structure theorem in one-dimensional dynamics’, Ann. of
Math. (2) 129 (1989), 519–546.

[33] M. Misiurewicz and J. Smı́tal, ‘Smooth chaotic maps with zero topological entropy’, Ergod. Th.
& Dynam. Sys. 8 (1988), 421–424.

[34] C. Preston, Iterates of Piecewise Monotone Mappings on an Interval, Lecture Notes in
Mathematics, 1347 (Springer, Berlin, 1988).

[35] A. N. Sharkovsky, ‘Co-existence of cycles of a continuous mapping of the line into itself’, Ukrain.
Mat. Z̆. 16 (1964), 61–71 (in Russian).

[36] W. Shen, ‘Decay of geometry for unimodal maps: an elementary proof’, Ann. of Math. (2) 163
(2006), 383–404.

[37] J. Smı́tal, ‘A chaotic function with some extremal properties’, Proc. Amer. Math. Soc. 87 (1983),
54–56.

[38] , ‘Chaotic functions with zero topological entropy’, Trans. Amer. Math. Soc. 297 (1986),
269–282.

[39] S. van Strien and E. Vargas, ‘Real bounds, ergodicity and negative Schwarzian for multimodal
maps’, J. Amer. Math. Soc. 17 (2004), 749–782.

ALEJO BARRIO BLAYA, Departamento de Matemáticas, Universidad de Murcia,
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VÍCTOR JIMÉNEZ LÓPEZ, Departamento de Matemáticas, Universidad de Murcia,
Campus de Espinardo, 30100 Murcia, Spain
e-mail: vjimenez@um.es

https://doi.org/10.1017/S1446788708000645 Published online by Cambridge University Press

http://www.math.sunysb.edu/cgi-bin/preprint.pl?ims91-11
https://doi.org/10.1017/S1446788708000645

