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1. Introduction and statement of results. Let k be an even integer greater than or
equal to 12 and / an nonzero cusp form of weight fc on SL(2, Z). We assume, further, that
/ is an eigenfunction for all Hecke-Operators and has the Fourier expansion

oo

/(z) = Z a(n)e27Tinz, where o(l) = l.
n = i

For every Dirichlet character x mod Q w© define

i - s . (1.1)
Then the series in (1.1) is absolutely convergent for Res>(fc + l)/2. Lf(s,x) can be
analytically continued as an entire function. For a primitive character x, Lf(s, x) satisfies
the following functional equation (cf. [2])

(—) V(S)Lf(s, X) = (—) <k ')T(k-s)e{X)Lf(k - s, x\ (1.2)

where |e(x)| = l. For a nonprimitive character x the analytical continuation for Lf(s, x)
will be given later (Lemma 2).

We note, that throughout the paper A, a denote positive constants but not always the
same, whereas a,, a 2 , . . . , bx, b2,. •., cu c2, • • • are the same positive constants. £(s) is
Riemann's zeta-function and p always denotes a prime.

Rankin [7] proved that Lf(s, £0)^C) for s = {k +1)/2+it, except possibly for t = 0,
where £0 is the principal character mod 1. Ogg [4] later proved that Lf((k +1.)/2, Xn) ^ 0, if
the Petersson conjecture holds. This conjecture has meanwhile been proved by Deligne
[1]. We shall first generalize this result in the following way:

THEOREM 1. Let z § 2 and Lf(s, x) as above. Then there is a c( independent of z, such
that, for

" — log(z(|t| + 2))'

for all x mod q with q S z, with the possible exception of those Lf(s + (fc -1)/2, x) with
character x equivalent to a unique primitive real character x*modq*(x* = x*(z), q* =
q*(z)). These exceptional Lf(s + (fc-l)/2, x), if they exist, all have the same zero a. This
zero & is real, simple and different from 1.
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Theorem 1 also holds for Dirichlet L -series (cf. [5], IV). The exceptional zero for the
Dirichlet -L-series is usually called the Siegel zero. Let us call & the Siegel zero for the
cusp form /. It is not known whether the Siegel zero exists or not, nor whether the Siegel
zero for the cusp form / exists or not. The following theorem shows that both can not
exist.

THEOREM 2. Let z&2, Lf(s, x) be as before andL(s, x) a DirichletL-series. Then there
is a c2 independent of z, such that, for

log(z(|f|-
and

for all x mod q with q Si z with the following possible exception: for primitive characters x at
most one of the excepted functions Lf(s + (fc -1)/2, x) of Theorem 1 and the excepted
functions L(s, x) of [5], IV, Satz 6.9 can have a zero in

" - ' log(z(|t| + 2))-

As a special case of Theorem 2 we have the following result:
There is a c2 independent of z such that either

k — 1
for c r&l - -— "z. _x for all v mod q with q Sz,

log(z(|t| + 2)) 4

L(s, x)^0 for cr = 1
l o (Z(M + 2Y) f o r a11 ^ m o d ^ w i t h <? = z-

or

The zero-free domains of L(s, x) and Lf(s, x) allo\ L.S to prove the following results:

THEOREM 3. Let xS2 , (I, q) = 1 and B some constant. Then there is a constant c3 such
that either

(0 Z lo§P
p=[ mod q

uniformly for l^q^exp{BVlogx}, or

(ii) I a(P)p-(fc

pSx
p=lmodq

uniformly for lgqgexpjBVlogx}, or both (i) and (ii) hold true.

REMARKS.
(1) The particular alternative occurring in Theorem 3 may depend on the choice of x,

because the exceptional character in Theorem 2 depends on z.
(2) Note that in both (i) and (ii) the conditions q S exp{B log x} may be dropped since

otherwise the results become trivial.
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THEOREM 4. There is a constant c4 such that

X a(p)p-(k-1)/2 log p = O(x exp{-c4Vlog x}).
pSx

p=I modq

A proof for Theorem 4 in the case q = 1 was given by Moreno [3]. In §2 we prove several
Lemmas from which we deduce the truth of Theorems 1 and 2. Theorems 3 and 4 are
proved in §3. The paper contains part of the author's dissertation. He takes this
opportunity to thank Professor Dr. H.-E. Richert for his advice and encouragement.

2. Proofs of Theorem 1 and Theorem 2.

LEMMA 1. Let x be a Dirichlet character mod q. Then

for ^

Proof. We have a(p)elR and |a(p)|S2p(lt~1V2 for all primes p (cf. [1]). Hence 6p(a) is
uniquely denned by

cos 6p(a) = \a{p)p~{k-lV2 (0S 6p(a) SIT).

For Lf(s, x) the following Euler product representation holds:

x(p)eie°'

Rankin proved this formula for x = Xo mod 1 in [7]. For arbitrary character x mod q the
proof proceeds similarly, using the fact that x(n)x(™) = x(nm) for all n, meN. That
Lf(s, x) + 0 for a > (k +1)/2 now follows from (2.1).

LEMMA 2. Let x be mod q, q* the conductor of x and x* mod q* the primitive character
inducing x- Then

Lf(s, x) and Lf(s, x*) have the same zeros for a>(k~ l)/2.

Proof. For a>(fc + l)/2 (2.2) follows from (2.1) and for cr>(fc-l)/2 by analytical
continuation. Since the finite product in (2.2) is different from zero for cr > (fc -1)/2,
Lf(s, x) and Lf(s, x*) have the same zeros for cr>(k- l ) /2 .

In order to prove zero-free regions for Lf(s, x) it is now sufficient from now on to
take x primitive mod q.

LEMMA 3. Let 0 < T ] < ^ (k-l)/2-TjSo-S(fc + l)/2+T|, t, = |t| + 2. Then

\Lf(s, x)\ ^ AC(1 + r,)(q |1 + s\)(k+^-^ (2.3)

for ^ - ^ j — ^ a ^ ^ , aS4. (2.4)
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Proof. We take Q = (fc -1)/2 and s = w - (k -1)/2 in Lemma 3 of [6]. This gives

T(k-w) 2» for — I S !
,k

For TJ > 0

(2.5)

(2.6)

In the last step we used a result due to Rankin [8]. Then, by (1.2), (2.5) and (2.6),

1+2-n

Choosing now a = (k-l)/2-T), b = (fc + l)/2 + t], Q = l in Theorem 2 of [6] we obtain
(2.3). We now take

1 k + 1 a
1 log(q(, + 7 ) v - z / ' ~ 2 log(qt,)

in (2.3). Then (2.4) follows for a^(fc + l)/2 + l/log(qt, + 7). For (k + l)/2Scr>
(k + l)/2-l/log(qt, + 7) (2.4) follows by (2.6) since £(1 + T))^(2/TJ) for

LEMMA 4. TTiere is an a S I , such that

Lf(s,X)±0 for a^- | § 3 , and all x mod q.
2 log(q |f | ) '

Proof. Taking the logarithms and differentiating (2.1), we obtain

2x(pm)cos(m0p(a))
f o r

k + 1
2 '

(2.7)

(2.8)

Defining

we obtain

y 2y(P'")cos(2mep(a))
p.mBl P

For Dirichlet L-series we have

p.mBl P
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If Xo is the principal character modq then (2.8), (2.9) and (2.10) give

p,ms=l P

+ 4Re(e-iImIOEP
Ar(P

m))cos(m0p(a))}gO (<r>(h + l)/2), (2.11)

for the expression in brackets on the right of (2.11) is not negative. Let now p = /3 +17 be
a zero of Lf (s, x) and put

.fc + 1 , a,
ff + lu 2 logto)'

where a , ^ l , 7 § 3 and so = ao + iy. Then we have (cf. [5])

~T {<T°~'Lr~• x°)- ~h ( C T °~^) -4^ ] o g i q y ) (212)

and
T ' 1 ir — 1 \ ( ^^

(2.13)

Let further tia{n) be a multiplicative function defined by

f
-a(p) (n = p),

P k - (« = P2),

0 (n = p > g 3 ) .
for all primes p. Then we have

and

|fi,a(n)|^d(n)n(k-1)/2, where d(n) = 5]
lln

Hence

This together with the results of Lemma 3 then gives

Lf(s,X)
o, X)

for |s-so | S i
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If now p = (i + iy is a zero for Lf(s, x) with \p - so\ = a0 — j3 ^ 5 we have ([5] Anhang)

o + iy, x)^A\og(qy) + \og—) l—•. (2.14)
\ aj cro-/3

If Xo >s the principal character mod q we further obtain

where

Taking logarithms and differentiating we deduce that

ij/'f I fc —1 \ \\i\ I k — \\ y 2cos{2m0p(a)}

Using results of Rankin [9] concerning i(if(s) and the inequality

r 2cos(2m0p(a)),

p|q P
mSl

^Aloglog(q + 2) for o" = ~^"
mSl

we obtain
5 . .

( 2 1 5 )

for a! sufficiently small. Take a = a0, t = y in (2.11); then (2.12), (2.13), (2.14) and (2.15)
give

_ 15

<*i

Hence

—) - .

r~ 2

and a2 sufficiently small. The inequality

2 log(qM)

f o r ^ =

for 7 g _

follows since Lf (s, x) - Lf (s> X)-

LEMMA 5. Let x2i=Xo- Then we have

for a ^ -
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Proof. The proof runs as the proof of Lemma 4, taking now

fc + 1 a3

instead of a0.
We have for xo mod q

for a S * ± l - 1 - ^ _ , teu (2.17)

from (2.2) and

for < r S

where Xo(«)= 1 for all n (cf. [3]).

LEMMA 6. Let x2 = Xo, xi1 Xo- Then we have

for < ^ ^ - j ^ > 0<|t|si3. (2.18)

Proof. We follow the proof of Lemma 4, taking cr2 = (k +1)/2 + a5/log q instead of cr0.
Then the estimates (2.12), (2.14) and (2.15) still hold with a2 instead of a0, as instead of
a, and q instead of qy.If p = (i + iy is a zero of Lf(s, x) with a/log q Si 7 Si 3, then we have

-Re — \a-2 — + 2i1> ^ ° ) -

As in the proof of Lemma 4 we finally obtain
k + 1 a

2 log q log q
If p = (3 + 17 is a zero of Lf(s, x) with

0 < 7 < - ^ and fc + 1 — k + 1 "7

where - ^ - s | 7 | g 3 . (2.19)
logq I r i

~ log q 2 2 log q '

p = j3 — i-y is also a zero of Lf(s, x), since Lf(s, x) = I-f(s, x) and both zeros are in \s - s3| ^i
for s3 = (fc +1)/2 + a8/log q +17, if a6, a7, a8 are sufficiently small. Then we obtain (cf. [5])

'a 8 / CT3-0

On the other hand we have

(2.20)

L'f, , f v 4cos2(mep(a)) 1
: — ((T3 + 17, X) = 1 2 J m(cr -(k-l)/2) ' °S P (

f v logp 11/2

X I nn.K-7lc-l)/2) ="
UmBl P J
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for a8 sufficiently small (cf. [9]). This together with (2.20) gives

(2.21)
2 " l o g q V2a8 a i r " ' " " l o g q "

If a6 and a7 are small enough, the right-side of (2.21) is smaller than a8/log q. Hence
/3>(fc + l)/2, which contradicts Lemma 1. Hence

. . fc + 1 fc + l a 7 _ . . <a6
Lf(s, x) has no zero for —-— ̂  /3 S — , 0<\y\ < .

2 2 logq logq

This together with (2.19) proves (2.18).

LEMMA 7. Let x2=zXo, X^Xo- Then Lf(a,x) has at most a simple zero in

^ k + 1 a_

2 logq'

Proof. Let (i, /3' be two zeros of Lf (<x, x) with |3' =£ |3. Following the proof of Lemma 6
with (T4 = (fc + l)/2 + a9/logq instead of a3, 7 = 0, we obtain for a9 sufficiently small

2 3 logq

cr4 — /3 2 a9

Hence
fc + 1 a_

2 log q '

LEMMA 8. We have

( 2 ' 2 2 )

Proof. We use an idea due to Ogg [4]. In view of Lemma 5 and (2.17) we have to
prove (2.22) only for x2 = Xo, X+Xo- Let

his) = C{s)L^(s + ̂  , ̂ ( s + fc - 1 ,

Now ijjf(s + k-l, Xo)C(s)L(s, xo) ' s a holomorphic function except at s = 1 (cf. [9]). If we
suppose Lf((k +1)/2, x) - 0, then h(s) is holomorphic in the whole plane. For cr > 1 we have

^(p~y y c(n)
log Ms) = 1 ^

p.vSl "P n=2 "

where a(p) = A'(p)e'e»(a) and c(n) is non-negative. If log h(s) were holomorphic in [a0,1),
o-0<l, then

logh(s)= 2. —T
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Let oy, be the largest real zero of h(s). If it exists, -°°<crnSl . Tn particular we have
log|h(a)| = log h(cr)so for a->cr0, which contradicts h(o-Q) = 0. Hence h(cr)^0. The
functional equation (1.2) gives 1^(0, x) = 0. Hence s = - ( k - l ) / 2 is a zero of h(s), which
contradicts h(a) + 0. This proves Lf((k + l)/2, x) + 0.

LEMMA 9. Let x* and x* be two real primitive characters mod q* and qf respectively
with x* i1 X*- Then there is a bl such that at most one of the functions Lf(s, x*), Lf(s, x*)
has a simple zero for

log(q?qf) "

Proof. First we may assume x* and X% to be different from x0 mod 1. Let X\ and X2
be the characters mod q*q% induced by x* mod a* and ^2 mod qf, respectively. Then
X\ i= Xo, X2 f Xo, X\ + X2, ^1^2 =h Xo- We prove Lemma 9 with Lf(s, Xi), Lf(s, Xz) instead of
Lf(s, x*), Lf(s, x*), which is sufficient by Lemma 2. We have

o(P
m) + 4 coS

2(mflp(a)) + 4[v,(p-)

since the expression in brackets is non-negative. Let

2 l o g q ' H2 H2 2 logq

be zeros of Lf(s, X\), Lf(s, x-i), respectively and

k + \+ a12
3 2 logq

Then
L' / 1 \ 1
,(<*> Xi)>-A(logq + log — ) + —

J1 (o-, *2) > -AUog q + log — ) + — .
L, \ a12/ cr5-)32

We now take a5 instead of a0 in (2.12) and (2.15) and use the fact that

L'
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This together with (2.23) and (2.24) gives for sufficiently small a12

f 15 4 1 / 1 \ ,
0 = 1 ; r flog q + Al log q+ log— . (2.25)

I4a12 a12 + max(a10, an)i \ al2J

But for a]0, an, «i2 sufficiently small (2.25) cannot hold. Hence Lemma 9 follows.

LEMMA 10. Let x* <*nd X* be two real primitive characters mod q* and q*, respec-
tively, where qfqf > 1. Then there is a b2, such that at most one of the functions Lf(s, xt),
L(s-(k-l)/2,xf) has a zero in

Proof. We may assume x*i"Xo, Xii'X* (modi). Let xi ar>d X3 be the characters
mod q = q*qt induced by x* mod q* and x* mod q* respectively. We prove Lemma 10
with 1,(8, xi), L(s-(k-l)i2,x3) instead of L,(s,xt), L(s-(k-l)/2,x$) which is suffi-
cient by Lemma 2 and the analogue for L-series. Let

3 J 2 b e a zero of L,(s, xi),

P4=/34=-^—+rJ ±~ b e a z e r o o f L ( s —T~>X3)
2 logq \ 2 /

and
_fc + l a15

a6 2 log q '
Then

Li.
1 \

— )
al5/

) for all

Taking a = a6, x-i ~ X\X^ in (2.23) we obtain as in the proof of Lemma 9 for sufficiently
small a15

) (2.26))logq + A(logq + log
4a15 a15 + max(a13, a14)J \ al5

But for a13, a14, a15 small enough, (2.26) cannot hold. Hence Lemma 10 follows. We now
turn to the proofs of Theorem 1 and Theorem 2.

Proof of Theorem 1. In view of the above lemmas it is sufficient to prove the
following: for z § 2 there is a ct independent of z, such that Lf(s,x)i=0 for <r§
(k + i)l2~cj\ogz, t = 0, for all real primitive x*modq* where q*^z with at most one
exception. If x* mod q* and x* mod q* were two such characters, then Lemma 9 shows
that at most one of the functions Lf(s, x*), Lf(s, X*) n a s a zero for

21ogz
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Proof of Theorem 2. In view of Theorem 1 and [5], IV, Satz 6.9, it is sufficient, to
prove the following: for z g 2 there is a c2 independent of z, such that at most one of the
functions Lf(s, x*) and L(s — (k — l)/2, x*) with real primitive characters x* mod q*,
£*modq* with q*^z, q*^z has a zero in a ^ (k +1)/2 - a/log z, t = 0. But this follows
from Lemma 10.

3. Proofs of Theorem 3 and Theorem 4.

Proof of Theorem 3. We may assume that the Siegel zero exists, otherwise part (i) of
Theorem 3 holds (cf. [5]). Let

{2cos(m0p(a))logp (n = pm, meN)

0 (otherwise),

>Pa(x,x)= Z x(n)Aa(n),
nSx

«fc(x,q,0= I A » for (q,l) = l.

n-Kq)

Then

I (0/(x,x). (3.1)

and by Perron's formula

^ P'Tff (s,LJc_iT H s-(fc-l)/2
where

for T ^ 2 and x =
logx

Let F u r2, F3 be the following curves in the complex plane.

*3 _ 1

31og(<,(T+2)) logx

fc+1
r3:s = —

Applying Satz 4.6 (Anhang) of [5] with

_ , 2b3
r r 2 31og(q(|t|
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for sufficiently small b3, we obtain

for

For

b3

2 31og(q(|t
11

2 log(q(|t

2 log(q(|t
(3.3) follows since

*-

(3.2) and Cauchy's theorem now gives

Then, by (3.3),

f T r *,s— (fc —1)/2

J r , ^ ' „ fc-1

Here now take logT = Vlogx, (3.4) and the inequality logqgBVlogx give

Z x(»)K(n) = O(x exp{-c3Vlog x}).

Hence, by (3.1),

q,l) = O(xexp{-c4\/\ogx}, for qg and x § 2 .

We note that

(3.3)

X a(p)p-(fc-1)/2 log p = «fc(x, q, 0 + o ( X log p) = O(x exp{-c4Vlog x}).

paH((q) pgx

This completes the proofs.
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Proof of Theorem 4. The proof proceeds as in the proof of Theorem 3. The condition

k + 1 a
La(s,x)t0 for crg- log(q(|r| + 2))

(which in the proof of Theorem 3 follows from Theorem 2) holds now for fixed q by
Lemmas 1, 4, 5, 6 and 8.
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