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1. Introduction and statement of results. Let k be an even integer greater than or
equal to 12 and f an nonzero cusp form of weight k on SL(2, Z). We assume, further, that
f is an eigenfunction for all Hecke-Operators and has the Fourier expansion

-]

f(z)= Y a(n)e*™™, where a(1)=1.

n=1

For every Dirichlet character x mod q we define

L(s, x)= i x(mya(n)n™. (1.1)

Then the series in (1.1) is absolutely convergent for Re s> (k+1)/2. Li(s, x) can be
analytically continued as an entire function. For a primitive character x, L;(s, x) satisfies
the following functional equation (cf. [2])

() T (2{)—(“}& ~5)e(0Ly(k s, %), (12)

where |e(x)|=1. For a nonprimitive character x the analytical continuation for L;(s, x)
will be given later (Lemma 2).

We note, that throughout the paper A, a denote positive constants but not always the
same, whereas a,, a,,..., by, b,,...,c,, Ca, ... are the same positive constants. £(s) is
Riemann’s zeta-function and p always denotes a prime.

Rankin [7] proved that L(s, xo) #0 for s =(k+1)/2+it, except possibly for t =0,
where X, is the principal character mod 1. Ogg [4] later proved that L¢((k +1)/2, x,) #0, if
the Petersson conjecture holds. This conjecture has meanwhile been proved by Deligne
[1]. We shall first generalize this result in the following way:

THEOREM 1. Let z =2 and L(s, x) as above. Then there is a c, independent of z, such
that, for
Cy

k-1
=G+ )’ “(S”“T’X)*O

for all x mod q with q =z, with the possible exception of those Li(s+(k—1)/2, x) with
character x equivalent to a unique primitive real character x™* mod q*(x*=x*(z),q* =
q*(z)). These exceptional L(s+(k—1)/2, x), if they exist, all have the same zero 6. This
zero & is real, simple and different from 1.
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Theorem 1 also holds for Dirichlet L-series (cf. [5], TV). The exceptional zero for the
Dirichlet -L-series is usually called the Siegel zero. Let us call & the Siegel zero for the
cusp form f. It is not known whether the Siegel zero exists or not, nor whether the Siegel
zero for the cusp form f exists or not. The following theorem shows that both can not
exist.

THEOREM 2. Let z =2, L(s, x) be as before and L(s, x) a Dirichlet L-series. Then there
is a ¢, independent of z, such that, for

Ca
Y og+ )

c=

L(s,x)#0 and Lf<s+ ,X>%O

for all x mod q with q = z with the following possible exception: for primitive characters x at
most one of the excepted functions Li(s+(k—1)/2, x) of Theorem 1 and the excepted
functions L(s, x) of [5], IV, Satz 6.9 can have a zero in

S
~ " logz(if+2)

As a special case of Theorem 2 we have the following result:
There is a ¢, independent of z such that either

[

k-1 2
Lf<S+———,X)7éO for G:l—m

5 for all ¥ mod q with q = z,
or

C

=1 —"2_
Lisx)#0 for o=11200o

for all x mod q with g=z.

The zero-free domains of L(s, x) and L¢(s, x) allov s to prove the following results:

TaEOREM 3. Let x=2, (I, q) =1 and B some constant. Then there is a constant ¢y such
that either

6) péx log p —@—E‘CB = O(x exp{~csviog x})

p=Iimodq

uniformly for 1=q=exp{BVlog x}, or
@ Y app *logp=0(x exp{—c;sVlog x})

pP=Ex
p=Imodq

uniformly for 1=q=exp{Bvlog x}, or both (i) and (ii) hold true.

REMARKS.

(1) The particular alternative occurring in Theorem 3 may depend on the choice of x,
because the exceptional character in Theorem 2 depends on z.

(2) Note that in both (i) and (ii) the conditions q =exp{B log x} may be dropped since
otherwise the results become trivial.
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THEOREM 4. There is a constant c, such that

2 a(p)p * "V log p = O(x exp{—c.vlog x}).

P=x
p=imodq

A proof for Theorem 4 in the case g =1 was given by Moreno [3]. In §2 we prove several
Lemmas from which we deduce the truth of Theorems 1 and 2. Theorems 3 and 4 are
proved in §3. The paper contains part of the author’s dissertation. He takes this
opportunity to thank Professor Dr. H.-E. Richert for his advice and encouragement.

2. Proofs of Theorem 1 and Theorem 2.
LemMma 1. Let x be a Dirichlet character mod q. Then

+1
Li(s, x)#0 for o>kT.

Proof. We have a(p)<R and |a(p)|=2p®*~"" for all primes p (cf. [1]). Hence 6,(a) is
uniquely defined by

cos 8,(a) =3a(p)p~ < V" 0=6,(a)=m).
For L(s, x) the following Euler product representation holds:
X( )eiep(a) ( )efiep(a) -1 k +1
Lf(ss X) :].—I {(1 - pse(k_l)/z 1 _pr)—(k~1)/2 ) (O‘>—‘2_ . (21)
p

Rankin proved this formula for x = xo mod 1 in [7]. For arbitrary character x mod q the
proof proceeds similarly, using the fact that yx(n)yx(m)= x(nm) for all n, meN. That
Li(s, x) #0 for o> (k+1)/2 now follows from (2.1).

Lemma 2. Let x be mod q, g™ the conductor of x and x* mod g* the primitive character
inducing x. Then

5.0 =Lt TH{ (1 - X B0 (1-X B 20} 2

L(s, x) and Li(s, x*) have the same zeros for o >(k —1)/2.

Proof. For o>(k+1)/2 (2.2) follows from (2.1) and for o>(k—1)/2 by analytical
continuation. Since the finite product in (2.2) is different from zero for o> (k—1)/2,
L(s, x) and L(s, x™) have the same zeros for o >(k—1)/2.

In order to prove zero-free regions for L(s, x) it is now sufficient from now on to
take x primitive mod q.

LeMMA 3. Let 0<n <3, (k—1)2—n=0c=(k+1)2+mn, t,=|t|+2. Then

|Ls(s, )l = AL(L+m)(q |1+ s[) K+ D2 (2.3)
k+1 a k+3
= — =g= =
|Le(s, I = A log(qt;) for > Tostat) so=—-, a=4. 2.4
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Proof. We take Q=(k—1)/2 and s =w—(k—1)/2 in Lemma 3 of [6]. This gives

_ k
F(lic(w)»v) =|lw+1< for g—léRew=u§§. (2.5)
For n>0
k+1 . & a*(nN'? 12
n=1

In the last step we used a result due to Rankin [8]. Then, by (1.2), (2.5) and (2.6),

1+2m

1
ud {(1+m).

—-m+it

e

Choosing now a=(k—1){2—m, b=(k+1)/2+m, Q=1 in Theorem 2 of [6] we obtain
(2.3). We now take
1 k+1 a

>

- (=), ozZ—-
log(qt|+7)( ) 2 log(qty)

n

in (2.3). Then (2.4) follows for o=(k+1)/2+1/log(qt,+7). For (k+1)2zc>
(k +1)/2—1/log(qt; +7) (2.4) follows by (2.6) since {(1+n)=(2/n) for 0<n=3.

LemMA 4. There is an a =1, such that

k+1 a
Li(s,x)#0 for GET—m, |t|=3, and all x mod g. 2.7

Proof. Taking the logarithms and differentiating (2.1), we obtain

L 2x(p™)cos(m8,(a)) k+1
zﬁ&m=— élxﬁikéwg logp for o>~ 2.8)
b.m
Defining
X(p)eZi()n(a) X(p)e-—2i90(a) —1
(s, X)=H((1—?R—:—) 1—?:‘1— (e>k),
p

we obtain

L (s Jkot x) = _ y 2x(pMcos@mby(a)), (0>%) X

(s—(k—=1)/2)
l\lff 2 pmz1 Pm ¥

For Dirichlet L-series we have

L k—1 x(p™) k+1
Z(S—T,X)Z— Z ;mlogp (0‘>—-). (2.10)

pmzl 2
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If xo is the principal character mod q then (2.8), (2.9) and (2.10) give

L'( k-1 > 1¢;< k-1 )
Re{-2=(o-"——,x0 )~z L (o +—
ef2 2 (- x 2y Tt X
LI

L, k1 P A }
L(a' 3 +2ttx) Lf(0+"’X)

lo .
) p—m(q—_%:[_)Tm{2xO(p"‘)+xU(p"‘)COS(2m0,,(a))+Re(e'2'"‘"°g"x2(p"‘))

+4 Re(e "™ *Px (p™))cos(m,(a))} =0 (o> (h+1)/2), (2.11)

for the expression in brackets on the right of (2.11) is not negative. Let now p =8+ iy be
a zero of L(s, x) and put

k+1 a,
2 loglqy)’
where a, =1, y=3 and s,=o,+iy. Then we have (cf. [5])

L k-1 ' k-1 5
-1 (=557 x0)= =5 (0= 55 ) =70 Toxtan 212

Oy =

and

L k—1 1
~Re - (0'0 =52, x2> < A{log(qv) +log a—} (2.13)
1

Let further u,(n) be a multiplicative function defined by
—a(p) (n=p),
pa(n)=1p*""  (n=p?,

0 (n=p",v=3).
for all primes p. Then we have

Zea)=lo (o

and
e (M) =dm)n®~Y2 where d(n)= Z 1.
tin

Hence

- o “»a(n)\ ( L)<i 2( )

ILf(So, X ws Z log(qy) qy

This together with the results of Lemma 3 then gives

Li(s, x) | -

L;(s i vt for ls—sis

0
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If now p=B+iy is a zero for Li(s, x) with |p —so| = 0, — B =3 we have ([5] Anhang)

Lt . ( 1 > 1
—Re — (o +iv, x) = Allog(qy) +log— ) — . (2.14)
Lf(o Y, X) glqy)+log =)= =3
If x, is the principal character mod q we further obtain
k _ l k _ 1 eZiep(a) e—2i6n(a)
‘l’f(o' +T > Xo) = ll’f(“*‘T) l—‘[ {(1 - pc—(k—l)IZ)(l - pd—(k—l)/Z)}
pla
where
k - 1) {( e2i9p(a) )( e—2i6n(a) >}—1
ot+t——|= 1———— 1-——== .
‘l’f( 2 l-p[ po (k—1)/2 p (k—1)/2
Taking logarithms and differentiating we deduce that
Ut k-1 Y k-1 2 cos{2mé,(a)}
Ef‘ (0“'_—2 » Xo —Jf o+ ) + g:; pm(cr—(k—ll))/z) lo
me1
Using results of Rankin [9] concerning y4(s) and the inequality
2 cos(2m8, (a)) k+1
% —p—m(aT_T)/z)—‘IOg p =A loglog(q+2) for 02—‘2_
mz1
we obtain
1([1;( k+1 ) C’( k—l) 5
- +— == - + , 2.15
24 Jo ) » Xo z To ) ( k—l) ( )
8log——
2
for a, sufficiently small. Take o = g, t =y in (2.11); then (2.12), (2.13), (2.14) and (2.15)
give
15 ( 1 ) 2
0=—1Io + All +log—)— .
8a, g(qy) og(qy) +log 0 op
Hence )
k+1 a,
B=——- for y=3
2 logla)
and a, sufficiently small. The inequality
k+1 as
BE=—————— for y=-3
2 log(qlyD Y
follows since L;(5, x) = L¢(s, X).
LEMMA S. Let x*# xo. Then we have
k+1 a
0 z———, t|=3. 2.16
L(sX)#0 for oz-—, I 2.16)
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Proof. The proof runs as the proof of Lemma 4, taking now

k+1 a,
oy =——t+——
2 logq
instead of oy.
We have for x, mod q
k+1 a,
Li(s, x0) #0 for o > g+ 3) eR (2.17)
from (2.2) and
- k+1 a,
= z——- t
Cf(s) L'f(s, XO) % 0 for o 2 log(|t| + 3) s eR
where xo(n) =1 for all n (cf. [3]).
LeMMA 6. Let x2= xo, X7+ Xo. Then we have
k+1 a
=z—- , 0<lt|=3. 2.18
Li(s,x)#0 for oz o2 4 I¢l (2.18)

Proof. We follow the proof of Lemma 4, taking o, = (k +1)/2 + as/log q instead of o,
Then the estimates (2.12), (2.14) and (2.15) still hold with &, instead of o, as instead of
a, and q instead of qvy. If p = B + iy is a zero of Ly(s, x) with a/log g= v =3, then we have

L' k-1 _.

—Ref (02——2—+2ry, X0>§A log q.

As in the proof of Lemma 4 we finally obtain
+
gkl _a 2 _<ly|=3. (2.19)
2 logq log q
If p=pB+iy is a zero of Ly(s, x) with
Ag k+1 - k+1 _ a;
0<y<logq and = éB=—2 ogq’

p =B —iv is also a zero of L(s, x), since Ly(5, x) = Ls(s, x) and both zeros are in |s — s3] =}
for s;=(k +1)/2+ agflog q + iv, if a¢, a;, ag are sufficiently small. Then we obtain (cf. [5])
1 ) 1 o= B

L . (
—Re — (o3 +ivy, x) <Allog q+log— - .
Lf( 3+ iy, X) £q gag 03— B (05— B)+4ay°

(2.20)

On the other hand we have

L , 4 cos*(mé,(a)) 12
Re—L (05 +iv, x)= { 2 m(o_,—(k—pl)/z) lo p}

L

p.mz=1 p

logp }”2 5 5
X = =1
{p.n}.‘;l pri T 4( k+ 1) da, °1
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for ag sufficiently small (cf. [9]). This together with (2.20) gives
k +1

1 a 1
(208+;1—Z,g){(a7+ ag)*+4al} o (2.21)

log q

If ag and a, are small enough, the right-side of (2.21) is smaller than ag/log q. Hence
B> (k+1)/2, which contradicts Lemma 1. Hence

k+1 k+1 a
7 =P “iog

This together with (2.19) proves (2.18).

v

L(s, x) has no zero for

H

2 loggq

LemMMA 7. Let x*>= xo, X# Xo- Then Li(o, x) has at most a simple zero in
k+1 a

>

2 logq

Proof. Let B, B’ be two zeros of L;(o, x) with 8'= B. Following the proof of Lemma 6
with o, =(k +1)/2+ as/log q instead of a5, vy =0, we obtain for a, sufficiently small

2 <§logq.
-B 2 a
Hence

B<k+1_ a .

2 logq

Lemma 8. We have
k+1
Lf( ;r ,x)#O forall x modgq. (2.22)

Proof. We use an idea due to Ogg [4]. In view of Lemma 5 and (2.17) we have to
prove (2.22) only for x*= xo, X# Xo. Let

-1
h(s)= C(S)L?(s +kT , x)tlff(s +k—1, xo)L*(s, Xo)-

Now (s +k~1, xo)Z(s)L(s, xo) is a holomorphic function except at s =1 (cf. [9]). If we
suppose L;((k +1)/2, x) =0, then h(s) is holomorphic in the whole plane. For o > 1 we have

logh(s)= ¥ Lre@ra®” ¢ clw

: (c>1),
pral vp n=2
where a(p) = x(p)e’™® and c(n) is non-negative. If log h(s) were holomorphic in [0y, 1),
o<1, then
log h(s)= Z __(r:_) for o>oy.
n=2 N
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Let o, be the largest real zero of h(s). If it exists, —o<o,=1. In particular we have
log lh(a)|=log h(0)=0 for o>a,, which contradicts h(a,)=0. Hence h(c)#0. The
functional equation (1.2) gives L(0, x) =0. Hence s =—(k—1)/2 is a zero of h(s), which
contradicts h(o) # 0. This proves Li((k+1)/2, x) #0.

LemMA 9. Let x% and x3 be two real primitive characters mod q%F and q3% respectively
with xt # x%. Then there is a b, such that at most one of the functions Li(s, x¥), L(s, x3)
has a simple zero for

k+1_ a
2 log(giq3)’

v

(e t=0.

Proof. First we may assume x*% and x% to be different from x, mod 1. Let x, and x,
be the characters mod q¥q% induced by x* mod q% and x% mod g%, respectively. Then

X1 F Xo» X2 7 Xo» X1 F X2» X1X2 F Xo- We prove Lemma 9 with Ly(s, x,), Ly(s, x2) instead of
L(s, x1), L¢(s, x3), which is sufficient by Lemma 2. We have

L, _- ! — ’ — 1 LI
—21‘ (G—H,Xo)_ﬂ (0+k_l>_2£_ <0'_k—l)—2&(0', X1)_2‘_f(0, X2)

2 w\7 2 )T\ L
L'( k-1 1
27 (U—T , xm) = m;_pﬁl—vz—){ZxO(p"‘)+4 cos*(mé,(a)) +4[x(p™)
k+1
+xalp™eos(ml (@) + 2xxap™HZ0  (0>521), (223

since the expression in brackets is non-negative. Let

k+1 ay k+1 ay,
= =— = :————+_
p1=5 5 log q s B>.=8B> ) log q
be zeros of L:(s, x,), L;(s, x2), respectively and
k+1 ayy
O5=— .
> 2 loggqg
Then
‘ 1
L (e, X1)>—A(log q+log —1—>+
L a2/ 05— B (2.24)
L} 1 1 '
— (o, )>—A(logq+lo —)+ :
L, X2 ga12 os— B2

We now take o instead of g in (2.12) and (2.15) and use the fact that

L k—1 1
—T s T <A logq+loga—12 .
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This together with (2.23) and (2.24) gives for sufficiently small a,,

15 4 1
Oé{ - }lo +A(lo +lo. —) (2.25)
4a,; a+max(a, ary) &4 &4 & a

But for aq, a;;, a;, sufficiently small (2.25) cannot hold. Hence Lemma 9 follows.

LemMMa 10. Let x* and x* be two real primitive characters mod qF and q%, respec-
tively, where q1q% > 1. Then there is a b,, such that at most one of the functions L(s, x%),
L(s—(k—1)/2, x%) has a zero in

k+1 b,
2 log(q7q3)’
Proof. We may assume x¥# x¥, x3# x& (mod 1). Let x, and x; be the characters
mod q = q%q% induced by x* mod q% and x% mod q¥% respectively. We prove Lemma 10

with Li(s, x1), L(s—(k—1)/2, x5) instead of Li(s, xT), L(s—(k—1)/2, x%) which is suffi-
cient by Lemma 2 and the analogue for L-series. Let

v

o t=0.

k+1
p3= 33:——2—+1Zﬁ be a zero of L(s, x1),
k+1 -1
Pa= ﬁ}‘,z——+—ai be a zero of L(s —k—— ) Xs)
2 loggqg 2
and
k+1
T¢ = _—+'ﬂ‘5— .
2 loggq
Then
L; 1
—— (06, X1x3) <Allog g +log—) for all x;xs.
Ly Qs
Taking 0 =g, x2= x1x3 in (2.23) we obtain as in the proof of Lemma 9 for sufficiently
small a,;
15 4 1
0 é{ - }lo +A(lo +lo —) (2.26)
4a;5s a;s+max(a,s, a4) &4 &4 ¢ as

But for a,3, a,4, a;5 small enough, (2.26) cannot hold. Hence Lemma 10 follows. We now
turn to the proofs of Theorem 1 and Theorem 2.

Proof of Theorem 1. In view of the above lemmas it is sufficient to prove the
following: for z=2 there is a ¢, independent of z, such that Li(s, x)#0 for o=
(k+1)/2~cy/log z, t =0, for all real primitive x* mod q* where q* =z with at most one
exception. If x¥ mod gF and x% mod g% were two such characters, then Lemma 9 shows
that at most one of the functions Li(s, x¥), Li(s, x3) has a zero for

k+1 b _k+1 b,
2 2logz_ 2 log(q%a?)’

v

o t=0.
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Proof of Theorem 2. In view of Theorem 1 and [5], IV, Satz 6.9, it is sufficient, to
prove the following: for z =2 there is a ¢, independent of z, such that at most one of the
functions Ly(s, x*) and L(s—(k—1)/2, ¥*) with real primitive characters x* mod gq*,
x* mod §* with q*=z, §*=z has a zero in o= (k+1)/2—aflog z, t =0. But this follows
from Lemma 10.

3. Proofs of Theorem 3 and Theorem 4.

Proof of Theorem 3. We may assume that the Siegel zero exists, otherwise part (i) of
Theorem 3 holds (cf. [5]). Let

Ao(n)=

{2 cos(m8,(a)log p (n=p™, meN)
(otherwise),

Ya(x, x)= Y x(n)A.(n),

nax

Ya(x,q. D= X Au(n) for (g D=1

i)
Then
1
)=—— v(l . 3.1
Ya(x, q, 1) <p(q>x,§dq"( Y (x, X) (3.1)

and by Perron’s formula

1 c+iTL/ s __ k_l 2
_Z_J _f(s’x)x_(_l
mJe

X 2
s Lo X 5= ds“’(?‘% x), (3.2)

¥ x(m)AL(n)=—
where

1
c=3k+1)+—— for T=2 and x=[x]+3i
log x

Let '), I';, I'; be the following curves in the complex plane.

es= g by <oz
S=E—7T0 s - =0 = .
! 2 ' 3log(q(T+2)) g log x
k+1 bs
I:s= - —it, T=t=T.
772 3log(+2)
k+1 bs 1
s=—+o—1i - =o= .
Fyis=—5—+o-iT, 3log(q(T+2)~ 0 ~log x
Applying Satz 4.6 (Anhang) of [§] with
2b, _k+1 b,

r=

D=

m— = - +it
© T 3lg@+2)’ T2 3log(q(d+2)
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for sufficiently small b;, we obtain

i—; (s, x) = O(log(q(|t] +2)))

k+1 bs okt b
2 3log(q(t|+2) 2 logl(q(lt|+2))’

for

IIA
A

For
k+1 b,

2 logqi]+2)

Tg>

(3.3) follows since

v Aol __ Q( _k‘1)< 4
S e A (e

n=

LI
—L (s, x)

L

(3.2) and Cauchy’s theorem now gives

5 xs—(k—l)/Z .)
Ir,-.~2_r3 LS R ®

T x(mq(m) = 0

nsx

Then, by (3.3),

s—(k—1)/2

L} X X
=t e ds=0l=1 T
L‘_r} 7 (s, x) il T loglaD)

2

s—(k—1)/2

teR.

+ O(:;— log® x)

J‘r2 % (s, x) f@ ds = O(exp{(l —m%_z—)))log x} . logz(qT))

2

Here now take log T=+log x, (3.4) and the inequality log q = Bvlog x give

Y. x(n)A.(n) = O(x exp{—csvlog x}).

nsx

Hence, by (3.1),

Yalx, g, 1) = O(x exp{—c,Vlog x}, for gq=exp{Bvlogx} and x=2.

We note that

pEx
p=l(q) p=x
v2

This completes the proofs.
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Y a)p ™ logp =y,(x,q D+ O( Y log p) = O(x exp{—c,Vlog x}).

(3.3)

(3.9
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Proof of Theorem 4. The proof proceeds as in the proof of Theorem 3. The condition

k+1_ a
2 log(q(lt|+2))

(which in the proof of Theorem 3 follows from Theorem 2) holds now for fixed q by
Lemmas 1, 4, 5, 6 and 8.

L.(s,x)#0 for o=

REFERENCES

1. P. Deligne, La Conjecture de Weil 1. Inst. Hautes Etudes Sci. Publ. Math. 43 (1973),
273-307.

2. C. G. Lekkerkerker, On the zeros of a class of Dirichlet series (Van Gorcum & Comp.,
Assen, 1955).

3. C. J. Moreno, Prime number theorems for the coefficients of modular forms, Bull. Amer.
Math. Soc. 18 (1972), 796-798.

4. A. P. Ogg, On a convolution of L-series Invent. Math. 7 (1969), 297-312.

5. K. Pracher, Primzahlverteilung (Springer, 1957).

6. H. Rademacher, On the Phragmen-Lindeldf theorem and some applications. Math. Z. 72
(1959), 192-204.

7. R. A. Rankin, Contributions to the theory of Ramanujan’s function 7(n) and similar

arithmetical functions. 1. The zeros of the function ¥ 7(n)/n® on the line Re s =2, Proc. Cambridge

Phil. Soc. 35 (1939), 351-356. n=1

8. R. A. Rankin, Contributions to the theory of Ramanujan’s function 7(n) and similar
arithmetical functions. II The order of the Fourier coefficients of integral modular forms, Proc.
Cambridge Phil. Soc. 35 (1939), 357-372.

9. R. A. Rankin, An Q-Result for the coefficients of cusp forms. Math. Ann. 203 (1973),
239-250.

UNIVERSITAT ULM
ABTEILUNG FUR MATHEMATIK
OBERER ESELSBERG

D-7900 Urm

https://doi.org/10.1017/50017089500005498 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500005498

