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THE MAXIMAL SPECTRAL TYPE 
OF A RANK ONE TRANSFORMATION 

J. R. CHOKSI AND M. G. NADKARNI 

ABSTRACT. In this paper it is shown that the maximal spectral type of a general 
rank one transformation is given by a kind of generalized Riesz product, with possibly 
some discrete measure. 

1. Introduction. The purpose of this note is to show that the maximal spectral 
type of a general rank one transformation is given by a kind of generalized Riesz prod­
uct, with possibly some discrete measure. For weakly mixing rank one transformations 
our description of the maximal spectral type is exact. It is known that spectra of cer­
tain transformations can be written as Riesz products or variants of them (see B. Host, 
J.-F. Mela, and F. Parreau [5] and references therein), but it does not seem to be suffi­
ciently well known that the maximal spectral type of a general rank one transformation 
can be written this way, although this fact is mentioned without proof in S. Ferenczi's the­
sis (Paris 1991). The necessary ingredients for the proof are contained in J. R. Baxter [1] 
and B. Host, J.-F. Mela, and F. Parreau [5]. One can view a rank one transformation as a 
suitable tower over a general adding machine and calculate the maximal spectral type as 
in [5], but it is easier to do the calculations directly with reference to the stacks obtained 
by cutting and stacking. We denote the transformation by T. 

We thank Ivo Klernes for several helpful comments. 

2. Main calculations. We will assume that the reader is familiar with the method 
of cutting and stacking to construct a rank one transformation. A nice account is given 
in Friedman [3]. 

Divide the unit interval Qo into m\ equal parts, add spacers, and form a stack of a 
certain height (say h\)'m the usual fashion. This is the first stage of our construction. At 
the £-th stage, divide the stack obtained at the (k — l)-st stage into mk equal parts, add 
spacers, and obtain a new stack (say of height hk) in the usual fashion. If during the k-th 
stage of construction the number of spacers put above thej-th column of the (k — l)-st 
stack is a{k\ 0 < a(k) < oo, 1 <j< mky then we have 

mk 

hk = mkhk^x +Y,a) ]-
7 = 1 
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Proceeding thus we get a rank one transformation on a certain measure space (X, S, m) 
which may be finite or cr-finite depending on the number of spacers added. Since we 
are concerned with general rank one transformations, no control is necessary over the 
manner in which the spacers are added except that we add only finitely many spacers at 
each stage. 

For each k = 1,2,3,..., let Q* denote the base of the stack at the end of the k-th stage 
of construction. Note that m(Qk) = --• — -.ForA,B C X, write/?,(>, A, Z?) todenote 
the /-th entry time into B of the point* G Â, with the convention that R\ (x, A, B) > 0, even 
if je G AHB. We note that /?,-(jc,Qjt,Q*_i) is independent of x G Qk for/ = 1,2,... ,mk — 1. 
We therefore write /?,•(*, £lk, &h-1 ) = #/,*, * = 1,2,..., m* - 1. Note that 

Ru ihk^+af + • + a 
(k) 

< i < mk 

We have 

(1) 

where 

£ V , = Q.k U TR^Çlk U • • • U 7*'"* UQA. 

Pk(U) = I+U .+ U-Rm 

and U is the unitary operator on L2(X, $, ra) defined by Uf = /* o 7 , / G L2(X, $, m). 
Note that in terms of stack heights and spacer lengths 

pk(U) = i+ E u 
7=1 

-(./•/^ 1w 1
A ,+-+«;A ) ) 

Iterating (1) we get 

v=i y 

Let us write /A = (ra(Q*)) 
/o = W We have 

-1/2 
1( k = 0,1,2,3, 

/() = n(nk)y
/2UPj(U) 

7 = 1 

Note that m(Q0) so that 

If o> denotes the measure on S1 defined by 

(U"fkJk) = [si z"chh n G Z, /: = 0, 1,2,3,... 

then we see that 

don = IR(z> m(Q^) W/a, fc = 1,2,3,. 

(2) aero nn^fW * 1,2,3, . . . 
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SPECTRAL TYPE OF A RANK ONE MAP 31 

Since the coefficient of dak can vanish at only finitely many points (being a trigonometric 
polynomial) we see that the non-atomic parts of CTQ and cr̂  are mutually absolutely contin­
uous. Moreover Vj£i &k is the maximal spectral type of U, whence CJQ and the maximal 
spectral type o of U have their non-atomic parts mutually absolutely continuous, i.e. in 
the same measure class. 

Let us replace dak by dz in the right hand side of (2) above and let pk denote the 
resulting measure: 

dPk= (i\—\Pj{z)\2)dz, £ = 1 , 2 , 3 , . . . . 

We have: 

THEOREM, GQ is the weak limit of the pk. In other words, for each n G Z, we have 

Pk(n) —* ào(n) as k —> oo. 

PROOF. Let Nk denote the set of integers consisting of zero together with the entry 
times R\ (x, Q -̂, Qo), Riix, Qk, Qo) • • • which are less than the height hk of the k-i\\ stack. 
Note that under this constraint R-t(x, £lk, Qo) is independent of x G Q*. We further have 

Qo — (J rvQ*, a disjoint union, 
seNk 

•VGA/, 

/o = ( E ^ ' S / A ) H Q A ) ) 1 / 2 = Qk(U)fk 

where 

G * ( * / ) = ( £ ^/-v)(m(Q,))1/2. 

Clearly £,(z) = (nJL, /^z) ) (m(^) ) 1 / 2 and \Qk(z)\2 = ^ . 
Now fix n G Z and let k be so large that the first return time of any x G Q.k back to 

£lk (under T or T~l) is bigger than |«|; equivalently, let k be so large that hk > \n\. If 
r, 5 G Â . then s + n — r can never exceed or equal the second return time of any x G Qk 

back to Q.k (under T or T~l). Moreover there are at most n2 pairs (r, s) with (r, s) G Â  
such that s + n — r equals the first return time of an x G Qk back to £V For suppose n > 0 
and rv+,z_rQfc D Q# ^ 0 and ̂  + « - r 7̂  0. Then r — n + s — u where w is the first return 
time of some x G Q* back to £lk. Since each /?, r, s is less than /^, hk < w and r > 0, we 
see that 0 < r < n and s + n — r — u > hk, so s > hk — (n — r). Thus there can be at 
most n2 pairs with Ts+n~rQk f l U ^ I and 5 + « — r ^ 0. (But note that for each fixed 
w, there are at most n pairs with this property.) A similar argument holds for n < 0. So, 
if Ts+n~rQk n Q^ 7̂  0, then we must have s + n — r = 0 except for at most n2 pairs (r, s), 
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r,s €Nk.Nov/ 

(Unfo,fo)= £(tfw~y*,tf~y*)m(0*) 

r,s(ENk 

r,s<ENk 

= E ( ^ , _ r l i ^ l Q t ) + E ( ^ ' " r l i J j . l n t ) 
r,.vGA r,.vG# 

where A is the set of pairs (r, s) G Â  with s+n — r = 0 and 5 is the set of pairs (r, s) G Â  
with s + n — r equal to the first return time of an x G Qk back to Qk (under T or 7 ' ). 
Now 

£ (£/S+"'"1QA, V ) < n2m{£lk) - 0 as * - ^ oo, 
r,s£B 

whence 

(Unfo,fo)= \im Lk.m(Qk) 
k—^oo 

where Lk is the number of pairs (r, s) with s + n. — r = 0, r, 5 G A .̂ (By breaking up Q* 
into the disjoint sets corresponding to each first return time u we could even replace the 
term n2m(Qk) by \n\m(Qk).) On the other hand, it is easy to see that 

[^dpk= [zTmiSlA^z-fdz 

= m(Qk).Lk, 

so that pk(n) —• âo(n) as /: —> oo, for each n Ç Z , and so CTQ is the weak limit of p*. 

3. Examples, (a) Consider Chacon's transformation (see Friedman [3]), where at 
each stage we divide the stack into three equal parts and place a single spacer on the top 
of the middle column. We have 

h\ = 3+ 1 

h2 = 3 ( 3 + l ) + l 

2/Z+l 

hn = 3W + 3W-1 + • • • + ! = 

The p*'s take the form 

dPk = {jkT[\(\+z-h>+z-^)\2)dz 

or 

dpk = ( f l (l + I Re(z"*> + z-(*>+1) + z-(2*'+,,)j A. 
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Chacon showed that this transformation is weakly but not strongly mixing (see [3]). 
Further, it has singular spectrum; this was first shown by Baxter, ([1], Section 2.3). Ivo 
Klemes has shown us how to use the methods of this paper to prove the singularity of 
the spectrum. One shows that zhk dao tends weakly to ^(1 + z)dao, which implies that 
( 1 + z) dao and hence dao itself are both singular. 

(b) The Staircase transformation. Here at the k-th stage, we divide the (k — l)-st stack 
into k equal columns and putj spacers above they-th column, 1 <j<k, (hence the name 
'staircase') and then stack. Note that at the first stage we do not divide Qo at all, but only 
add a spacer equal to the length of Qo- We have 

hi =2 

/z2 = 2 x 2 + 1 + 2 = 7 

hk = khk_x + — - — 

dPk=(U\Pj(z)\2'm(ilk))dz 
7=1 J 

where 
p.(£ = J + z-(hj-i + \) + z-(2hM + \+2) + . . . + z-L0-l)A;-i + i (T*]. 

The staircase transformation is known to be weakly mixing, since it mixes along the 
sequence {hk} (see Friedman [41). However, it is an open problem whether it is mixing, 
and it is not known if its spectrum has absolutely continuous component (with respect 
to Lebesgue measure). It seems plausible that for any analytic trigonometric polynomial 
p(z), ||/?(£/)1Q,

 —
 1Q, II > al|lQi II f° r some a > 0. If this can be established, then clearly 

the staircase transformation has a Lebesgue component in its spectrum. It is to be noted 
that with p(z) = z~\ n < 10, ||/K£/)lQl - ln2|| > illlQ, ||. On the other hand, the 
considerations of Remark 6 in the next section suggest that the spectrum of the staircase 
transformation may well be singular. 

In case T is known to be weakly mixing (as in the case of Chacon's transformation) 
or if 7VS have no zeros on Sl or if m(X) — oo, then the weak limit of the p^'s is the 
maximal spectral type. 

4. Remarks. 1. In case m(X) is finite, oo has non-trivial mass at z = 1, so that 
EnGZ \âo(n)\2 = co. It is interesting to note that this fact, viz- Enez |^o(^)|2 = oo, always 
holds, whether m(X) is finite or not. Indeed, since the coefficients of powers of z in the 
formal expansion (without grouping terms) of the infinite product n ^ -^\Pk(z)\2 are 
all positive and since âo(ri) = sum of the coefficients of zn in this formal expansion, 
we see that ££L_oo |^(^)|2 ^ sum of the squares of the coefficients of powers of z in the 
formal expansion of the infinite product. This second sum of squares in turn is bigger than 
^oo ^ mk{mk-\)^ a s u m WJ1JCJ1 j s QQ̂  Moreover if (mk)™=x is bounded over a subsequence, 
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then (ao(rc)Y , is bounded away from zero over a suitable subsequence; hence in such 
a case CTQ can not be absolutely continuous with respect to Lebesgue measure. 

2. If (ao(ft)) decreases to zero as n —> oo (this is possible only in case m(X) = oo), 
then it follows from Zygmund ([9], Chapter V, p. 184, Theorem 1.8) that the cosine 
series 1 + 2 Y^L\ â(n) cosnx converges uniformly outside every neighbourhood of 0 to 
a continuous function/" which has improper Riemann integral on [0,2if\. Further, the 
series 1 + 2 Y%L\ à(n) cosnx is the Fourier-Riemann series off. However, the series also 
converges to the limit of the Cesàro sums of the series. The limit of the Cesàro sums 
is the Radon-Nikodym derivative of oo with respect to the Lebesgue measure, whence 
f > 0, and hence summable in view of being (improperly) Riemann integrable. Thus 
«To is absolutely continuous whenever (ôo(n)) decreases to zero as n —> oo. In case 
m(X) < oo and ôo(n) decreases to \/m(X) as n —> oo, then the spectrum of UT on 
LQ(X, <B,m) = {g : Sx 8 dm = 0,g G L2(X, (B,m)} is absolutely continuous with respect 
to Lebesgue measure. 

J. P. Thouvenot conjectures that there exists a measure preserving T such that Uj 
has simple absolutely continuous spectrum which is not Lebesgue on LQ(X, (B,m). The 
present remark makes this seem plausible since a cosine series 1 +2 Y^L \ ak c o s kx with a^ 
decreasing may vanish on a closed nowhere dense set of positive measure and at the same 
time be a generalized Riesz product of the kind appearing in this note. On the contrary, 
there are also good reasons for believing that all rank one transformations have singular 
spectrum; see Remarks 5 and 6 below! 

3. The infinite product Y\^=x(-^-\Pj( |
2) taken over a subsequence j \ < 72 < 73 • • • 

also represents the maximal spectral type (up to discrete measure) of some rank one 
transformation. If we represent this maximal spectral type by a\, then it is easy to see 
that for each n,ôo(n) > â\(n). Although we can choosey 1 < 72 < 7*3 • • • in such a way that 
the formal expansion of the product n ^ i Pj, (z) is sufficiently lacunary, it is not clear that 
one can do this for the product UfL\ —\Pj,\2. If one could do so then one could choose 
the subsequence so that o\ was singular to Lebesgue measure. Ivo Klemes has shown us 
that the methods used in Bourgain's preprint (see Remark 6) would then imply that GQ 
was itself singular to Lebesgue measure. 

4. One can consider non-singular T obtained by cutting and stacking. This means that 
at the k-th stage we divide the stack obtained at the (k — 1 )-st stage in the ratios 

mk-\ 

P0,k,P\.k, • • • ,A/»<-U> Pik > 0, J2 Pik = 1-

The spacers are added in the usual manner, by which we mean that the sizes of the spacers 
added on top of the7-th column are all the same and equal to that of the top piece of the 
7-th column. The extension of T to the spacers is done linearly as usual. Note that at the 
k-ih stage the resultant measure m is defined only for the algebra generated by the levels 
of the k-th stack. The resulting T after all the stages of construction are complete is a 
non-singular ergodic transformation for which ^ is constant on all but the top layer of 
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SPECTRAL TYPE OF A RANK ONE MAP 35 

every stack. On L2(X, $, m) we can now define 

- ^ j (x)f(Tx), feL\X,<B,m) 

where A is a function of absolute value one which is constant on all but the top layer of 
every stack and mT = m o T. It can be shown that the maximal spectral type of V (up to 
a discrete measure) is given by the weak limit of the measures pk defined as follows: 

dpk=(U\Pj(z)\2)'m(£tk)'dz 

where 

\poj' v
 POJ

 J 

m(Q.k) = po\ • P02 • • -Pok and where a\j, a2j, • •., am \j are constants of absolute value 
one determined by A. Suppose A = 1 so that all at/s are equal to 1. Then it can be seen 
after a calculation that £„e Z \â0(n)\2 > E j ^ p0j(\ - />q/), where a0(n) = (V'IQ,,, I Q J , 

A2 G Z. If E/7GZ |^oOO|2 is finite, then E£i Poji\ ~ Poj)ls finite so that by ergodicity of T 
the measure on Qo is discrete, whence the measure (X, *B, m) is discrete. 

5. For the classical Riesz product IT^i (l +2ck(z?k +z~"kj), \ck\ < 1 /2 , nk+x > 3nk, it 
is known that if E ^ j \ck\

2 = oo, then the product represents a singular measure, (Zyg-
mund [9]). Could a similar result be true for the general Riesz product appearing in this 
note where no lacunarity condition is satisfied, but the convergence of the Riesz product 
is known from the considerations of the theorem of Section 2? 

6. Classical Riesz products and some variants of them satisfy quasi-invariance and 
purity laws. (See Brown [2], Kilmer and Saeki [6], Parreau [7], J. Peyrière [8].) Similar 
results for the type of products appearing in this note may help resolve spectral questions 
associated with rank one transformations, such as whether a rank one transformation al­
ways has spectrum singular to Lebesgue measure. In this connection we mention that 
in a recent preprint entitled On the spectral type of Ornstein's class one transforma­
tions, J. Bourgain has suggested that the following conjecture on trigonometric poly­
nomials may imply the singularity of the spectrum of any rank one transformation. For 
n > 1, let /3„ = supk]<ki<...<ki -^| | £jLi e2mk<e\\L\; then it is conjectured that supn/3n < 1. 
Ivo Klemes has suggested that arguments similar to those used in Bourgain's preprint 
may show that the spectrum of the staircase transformation is singular. Klemes has also 
pointed out that if, in the notation of our Section 2 above, the trigonometric polynomi­
als Qk(z) tend to zero in (Lebesgue) measure, then the spectrum of the corresponding 
transformation T is singular. Of course, it is still an open question whether a measure 
preserving transformation can have simple Lebesgue spectrum, or even whether a trans­
formation with simple spectrum can have a Lebesgue component. 

7. We have recently shown that z is an eigenvalue of Uj if and only if the infinite 
product nSi ^\Pj{z)\2 converges. This will appear in another paper. 
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