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Convexity of the radial sum of a star body
and a ball
Shigehiro Sakata

Abstract. We investigate the convexity of the radial sum of two convex bodies containing the origin.
Generally, the radial sum of two convex bodies containing the origin is not convex. We show that the
radial sum of a star body (with respect to the origin) and any large centered ball is convex, which
produces a pair of convex bodies containing the origin whose radial sum is convex.

We also investigate the convexity of the intersection body of a convex body containing the origin.
Generally, the intersection body of a convex body containing the origin is not convex. Busemann’s
theorem states that the intersection body of any centered convex body is convex. We are interested in
how to construct convex intersection bodies from convex bodies without any symmetry (especially,
central symmetry). We show that the intersection body of the radial sum of a star body (with respect
to the origin) and any large centered ball is convex, which produces a convex body with no symmetries
whose intersection body is convex.

1 Introduction

The setting of this paper is in the Euclidean n-space Rn with n ≥ 2. For two vectors x1
and x2 in R

n , their radial sum is defined by

x1 +̃ x2 =
⎧⎪⎪⎨⎪⎪⎩

x1 + x2 , ∃(s1 , s2) ∈ R2 /{(0, 0)} ∶ s1x1 + s2x2 = 0,
0, otherwise.

Throughout this paper, we understand that every star-shaped subset of Rn is star-
shaped with respect to the origin. For two star-shaped subsets A1 and A2 of Rn , their
radial sum is defined by

A1 +̃A2 = {x1 +̃ x2 ∣ x1 ∈ A1 , x2 ∈ A2} .

A subset A of Rn is centered if −x ∈ A for any x ∈ A. A subset A of Rn is centrally
symmetric if there exists a point y ∈ Rn such that A− y = {x − y ∣ x ∈ A} is centered.
We denote by rBn the centered ball of radius r. Let Sn−1 be the boundary of Bn = 1Bn .
For a star-shaped subset A of Rn , the radial function of A is defined by

ρA(u) = max{λ ∈ [0,+∞) ∣ λu ∈ A}, u ∈ Sn−1 .
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A body in R
n is the closure of a bounded open subset of Rn . A star body in R

n is a
star-shaped body of Rn whose radial function is continuous.

It follows from the definition that the radial sum of two star-shaped subsets is
star-shaped. For two star bodies A1 and A2 in R

n , the relation ρA1 +̃ A2 = ρA1 + ρA2

yields that A1 +̃A2 is a star body. However, the convex versions of these properties do
not always hold. Namely, there exist two convex subsets/bodies containing the origin
whose radial sum is not convex. Such two convex subsets are {(t, 0, 0, . . . , 0) ∣ t ∈
[−1, 1]} and {(0, t, 0, . . . , 0) ∣ t ∈ [−1, 1]}. Such two convex bodies are {(t, 0, . . . , 0) +
x ∣ t ∈ [−2

√
2, 2

√
2], x ∈ Bn} and rBn for any r ∈ (0,−1 +

√
6/2) (see Example 2.2 for

details).
In contrast to these examples, as a main investigation of this paper, we show the

following two results:
(1) Let γ ∈ [0,+∞), and let K be a convex body containing the origin whose radial

function is of class C2. If

(ρK (u1) + ρK (u2)) ρK ( u1 + u2

∣u1 + u2∣
) − ∣u1 + u2∣ ρK (u1) ρK (u2) ≥ γ∠(u1 , u2)2

for any (u1 , u2) ∈ Sn−1 × Sn−1 with u1 + u2 ≠ 0, then, for any “small enough”
f ∈ C2(Sn−1), the star body defined by ρK + f is convex (see Proposition 3.1 for
details).

(2) Let A be a star body whose radial function is of class C2. There exists a “large
enough” R ∈ (0,+∞) such that, for any r ∈ (0,+∞), if r ≥ R, then A +̃ rBn is
convex (see Theorem 3.3 and its corollaries for details).

Here, in the first assertion, if γ = 0, then the inequality for ρK means that K is convex
(see Lemma 2.1). If γ > 0, then the inequality means that K has a “stronger” convexity
associated with γ, which is precisely explained right after Lemma 2.1. Any centered
ball has this property. Thus, the first assertion yields that the radial sum of a “small
perturbation” of any centered ball and a centered ball is convex.

The technical key point of the proofs is to approximate C2-functions of two real
variables by polynomials. As we know, Taylor’s theorem yields that any C2-function
Φ of two real variables θ1 and θ2 has an approximation of the form

Φ (θ1 , θ2) ≈ c0 + c1θ1 + c2θ2 + c1,1θ2
1 + c1,2θ1θ2 + c2,2θ2

2 .

We improve this approximation for certain suitable Φ and obtain an approximation
of the form

Φ (θ1 , θ2) ≈ c0 + c1 (θ1 − θ2) + c2 (θ1 − θ2)2 .

Using this approximation, as another main investigation of this paper, we give
convex bodies with no symmetries whose intersection bodies are convex. We denote
by Vk the k-dimensional Lebesgue measure. For a unit vector u, we denote by u⊥ the
orthogonal complement of u. For a star body A in R

n , its intersection body is denoted
by IA and is the star body defined by

ρIA(u) = Vn−1 (A∩ u⊥) , u ∈ Sn−1 .
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A star body A is called an intersection body if there is a star body such that its
intersection body is A. The notion of intersection body was introduced in [10] and
played an important role in the solution of the Busemann–Petty problem.

In [3], Busemann and Petty posed the following question:

For any centered convex bodies K and L in R
n , if Vn−1(K ∩ u⊥) ≤ Vn−1

(L ∩ u⊥) for any u ∈ Sn−1, then is Vn(K) ≤ Vn(L) true?

This question is now referred to as the Busemann–Petty problem and appears often
in the literature about geometric tomography (see, for example, [6]), in which infor-
mation about a given geometric object is obtained from data concerning its sections
and/or projections.

In the history of the Busemann–Petty problem, Lutwak’s theorem [10, Theorem
10.1] is important as the first step toward the full solution. It states that, for any
intersection body K and any star body L, if Vn−1(K ∩ u⊥) ≤ Vn−1(L ∩ u⊥) for any
u ∈ Sn−1, then Vn(K) ≤ Vn(L). In particular, this theorem yields that if K is an
intersection body, then the answer to the Busemann–Petty problem is affirmative. It
was shown in [4, Theorem 3.1] with a regularity assumption and in [13, Theorem 2.22]
without any regularity assumption that the Busemann–Petty problem has a positive
answer in R

n if and only if each centered convex body in R
n is an intersection body.

This equivalence gives negative answers to the Busemann–Petty problem: Gardner
[4, Theorem 6.1] showed that if n ≥ 5, then a cylinder in R

n is not an intersection
body. Of course, this equivalence gives also positive answers: Gardner [5, Corollary
5.3] showed that every centered convex body in R

3 is an intersection body; Zhang [14,
Theorem 3] showed that every centered convex body inR

4 is an intersection body (see
also [7] for an analytic approach). We refer to [6, Chapter 8] for more information on
the Busemann–Petty problem (see also [8, Section 17] and [12, Section 15]).

From the point of view of the Busemann–Petty problem, it is important to obtain
a convex intersection body. Here, the term “a convex intersection body” means “an
intersection body which is convex” and is not used in the sense of [11]. By definition,
the intersection body of any star body is a centered star body. However, there exists
a convex body containing the origin whose intersection body is not convex. Let
us review some results on the convexity of intersection bodies. Gardner produced
nonconvex intersection bodies in his textbook [6, Section 8.1]. Precisely, [6, Theorem
8.1.8] states that, for any convex body K, there exists a translate of K such that
it contains the origin in its interior and its intersection body is not convex. Also,
[6, Theorem 8.1.9] remarks the following two examples:
(1) Let K be an equilateral triangle whose centroid is at the origin. For any y ∈ R2,

if the interior of K + y contains the origin, then I(K + y) is not convex.
(2) Let K be a square whose centroid is at the origin. For any y ∈ R2 /{0}, if the

interior of K + y contains the origin, then I(K + y) is not convex.
In contrast to Gardner’s indication, Busemann’s theorem [2] yields that the inter-
section body of any centered convex body is convex (see also [6, Theorem 8.1.10
and Corollary 8.1.11]). As a generalization of Busemann’s theorem, it was shown
in [9, Theorem 3] that, for any p ∈ (0, 1], the intersection body of any centered
p-convex body is 1/[(1/p − 1)(n − 1) + 1]-convex. Here, we recall that a subset K of
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R
n is p-convex if, for any (x0 , x1 , λ) ∈ K × K × [0, 1], (1 − λ)1/px0 + λ1/px1 ∈ K. We

emphasize that central symmetry essentially works for Busemann’s theorem and its
generalization. In [1], the local convexity of intersection bodies of symmetric convex
bodies of revolution was investigated. Namely, it is still open to concretely give convex
bodies with no symmetries whose intersection bodies are globally convex.

We produce convex bodies with no symmetries whose intersection bodies are
convex:
(1) Let γ ∈ [0,+∞), and let A be a star body whose radial function is of class C2. If

(ρIA (u1) + ρIA (u2)) ρIA (
u1 + u2

∣u1 + u2∣
) − ∣u1 + u2∣ ρIA (u1) ρIA (u2) ≥ γ∠(u1 , u2)2

for any (u1 , u2) ∈ Sn−1 × Sn−1 with u1 + u2 ≠ 0, then, for any “small enough” f ∈
C2(Sn−1), the intersection body of the star body defined by ρA + f is convex (see
Proposition 3.7 for details).

(2) Let A be a star body whose radial function is of class C2. There exists a
“large enough” R̃ ∈ (0,+∞) such that, for any r ∈ (0,+∞), if r ≥ R̃, then the
intersection body of A +̃ rBn is convex (see Theorem 3.9 and its corollaries for
details).

Here, in the first assertion, any centered ball has the property since the intersection
body of any centered ball is a centered ball. Thus, the first assertion yields that the
intersection body of a “small perturbation” of any centered ball is convex.

2 Preliminaries

2.1 Notation and terminology

Let us prepare necessary notation and terminology in addition to those stated in the
Introduction.

We denote by Sn the set of all star bodies (star-shaped bodies with respect to the
origin whose radial functions are continuous) in R

n . We denote by Kn the set of all
convex bodies in R

n , and let Kn
0 = {K ∈Kn ∣0 ∈ K}.

Let κk = Vk(Bk). The symbol σk denotes the k-dimensional spherical Lebesgue
measure. We denote by Cm(M) the set of all Cm-functions defined on a manifold M.
Let e i be the ith unit vector of Rn . Let SO(n) denote the special orthogonal group of
degree n.

For a star-shaped subset A of Rn , the extended radial function of A is denoted by
the same symbol as the usual radial function and is defined by

ρA(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∣x∣ρA (
x
∣x∣ ) , x ∈ Rn /{0},

∞, x = 0.

For a star-shaped subset A ofRn and a function f defined on Sn−1 such that ρA + f ≥ 0
on Sn−1, let A f be the star-shaped subset whose radial function is ρA + f . In particular,
for a star-shaped subset A of Rn and a nonnegative constant r, Ar = A +̃ rBn .
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For a function f defined on Sn−1 and a nonnegative integer i, let f i be the function
Sn−1 ∋ u ↦ f (u)i . For two functions f and g defined on Sn−1, let f + g and f g be
the functions Sn−1 ∋ u ↦ f (u) + g(u) and Sn−1 ∋ u ↦ f (u)g(u), respectively. For
a continuous function f defined on Sn−1, we denote by R[ f ] the spherical Radon
transform of f, that is,

R[ f ](u) = ∫
S n−1∩u⊥

f (v)dσn−2(v), u ∈ Sn−1 .

For two continuous functions f and g defined on Sn−1, put ⟨ f , g⟩ = R[ f g].
For two unit vectors u1 and u2, we use the following notation:

∠(u1 , u2) = arccos u1 ⋅ u2 , u3 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

u1 + u2

∣u1 + u2∣
, u1 + u2 ≠ 0,

0, u1 + u2 = 0.

For two functions f and g defined on Sn−1, we define Δ[ f , g] ∶ Sn−1 × Sn−1 → (−∞,∞]
as:
(i) If u1 + u2 ≠ 0, then

Δ[ f , g] (u1 , u2) = ( f (u1) + f (u2)) g (u3) + (g (u1) + g (u2)) f (u3)
− ∣u1 + u2∣ ( f (u1) g (u2) + f (u2) g (u1)) .

(ii) If u1 + u2 = 0, then Δ[ f , g](u1 , u2) = ∞.
For a function f defined on Sn−1, put

�[ f ] (u1 , u2) =
Δ[ f , f ] (u1 , u2)

2
, (u1 , u2) ∈ Sn−1 × Sn−1 .

We denote by ∥ ⋅ ∥∞ the sup-norm for bounded functions. For a function φ of k
real variables θ1 , . . . , θk with bounded partial derivatives, we write

φ′ = ( ∂φ
∂θ1

, . . . , ∂φ
∂θk

) , ∥φ′∥∞ = max{∥ ∂φ
∂θ i

∥
∞

∣ i ∈ {1, . . . , k}} ,

φ′′ = ( ∂2φ
∂θ i ∂θ j

) , ∥φ′′∥∞ = max{∥ ∂2φ
∂θ i ∂θ j

∥
∞

∣ i , j ∈ {1, . . . , k}} .

Put

ϕ (θ1 , . . . , θn−1) =

⎛
⎜⎜⎜⎜⎜
⎝

cos θ1
sin θ1 cos θ2

⋮
sin θ1⋯ sin θn−2 cos θn−1
sin θ1⋯ sin θn−2 sin θn−1

⎞
⎟⎟⎟⎟⎟
⎠

, (θ1 , . . . , θn−1) ∈ Rn−1 .

We define Φ0 ∶ C2(Sn−1) × C2(Sn−1) → [0,+∞) as:
(I) On the off-diagonal set,

(i) if f (u1)g(u2) + f (u2)g(u1) < 0 for some (u1 , u2) ∈ Sn−1 × Sn−1, then

Φ0( f , g) = 2 ∥( f ○ ϕ)′∥∞ ∥(g ○ ϕ)′∥∞ + ∥ f ○ ϕ∥∞ ∥(g ○ ϕ)′′∥∞
+∥ f ○ ϕ∥∞∥g ○ ϕ∥∞;
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(ii) if f (u1)g(u2) + f (u2)g(u1) ≥ 0 for every (u1 , u2) ∈ Sn−1 × Sn−1, then

Φ0( f , g) = 2 ∥( f ○ ϕ)′∥∞ ∥(g ○ ϕ)′∥∞ + ∥ f ○ ϕ∥∞ ∥(g ○ ϕ)′′∥∞ .

(II) On the diagonal set,
(i) if �[ f ](u1 , u2) < 0 for some (u1 , u2) ∈ Sn−1 × Sn−1, and if f (u1)

f (u2) < 0 for some (u1 , u2) ∈ Sn−1 × Sn−1, then

Φ0( f , f ) = 2 ∥( f ○ ϕ)′∥2
∞ + ∥ f ○ ϕ∥∞ ∥( f ○ ϕ)′′∥∞ + ∥ f ○ ϕ∥2

∞;

(ii) if �[ f ](u1 , u2) < 0 for some (u1 , u2) ∈ Sn−1 × Sn−1, and if f (u1)
f (u2) ≥ 0 for every (u1 , u2) ∈ Sn−1 × Sn−1, then

Φ0( f , f ) = 2 ∥( f ○ ϕ)′∥2
∞ + ∥ f ○ ϕ∥∞ ∥( f ○ ϕ)′′∥∞ ;

(iii) if �[ f ](u1 , u2) ≥ 0 for every (u1 , u2) ∈ Sn−1 × Sn−1, then Φ0( f , f ) = 0.
We define Φ1 ∶ C2(Sn−1) → [0,+∞) as:
(i) If f (u) < 0 for some u ∈ Sn−1, then Φ1( f ) = 2∥ f ○ ϕ∥∞ + ∥( f ○ ϕ)′′∥∞.
(ii) If f (u) ≥ 0 for every u ∈ Sn−1, then Φ1( f ) = ∥( f ○ ϕ)′′∥∞.

2.2 Examples of nonconvex radial sums of convex bodies

The following lemma is useful in investigating the convexity of a star body.

Lemma 2.1 [6, Lemma 5.1.4] Let A ∈ Sn . The following conditions are equivalent:
(i) A is convex.
(ii) For any (u1 , u2) ∈ Sn−1 × Sn−1, we have �[ρA](u1 , u2) ≥ 0.

For the condition (ii), we remark that if u1 + u2 = 0, then �[ρA](u1 , u2) = ∞. Thus,
the condition (ii) essentially works for the case where u1 + u2 ≠ 0. In order to under-
stand the philosophy of Lemma 2.1, assume u1 + u2 ≠ 0 and ρA(u1)ρA(u2)ρA(u3) ≠ 0.
Let us compute the unique point of the intersection

{ sρA (u3)u3 ∣ s ∈ [0,+∞)} ∩ {(1 − t)ρA (u1)u1 + tρA (u2)u2 ∣ t ∈ [0, 1]} .

There exists a pair (s, t) ∈ [0,+∞) × [0, 1] such that

sρA (u3)u3 = (1 − t)ρA (u1)u1 + tρA (u2)u2 ,

and we get

s = ρA (u1) ρA (u2)
ρA (u1) + ρA (u2)

∣u1 + u2∣
ρA (u3)

.

Since ρA(u1)u1, ρA(u2)u2, and ρA(u3)u3 are on the boundary of A, A is convex if
and only if s ≤ 1 which is equivalent to �[ρA](u1 , u2) ≥ 0. This finishes the proof of
Lemma 2.1.
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From this observation, if there is a positive function ε with ε(0+) = 0 such that, for
any (u1 , u2) ∈ Sn−1 × Sn−1,

ρA (u1) ρA (u2)
ρA (u1) + ρA (u2)

∣u1 + u2∣
ρA (u3)

≤ 1 − ε (∠(u1 , u2))

holds, then A has a “stronger” convexity associated with ε. This observation will be
used in Propositions 3.1 and 3.7 with ε(θ) = θ2 (up to constant multiple).

Using Lemma 2.1, let us concretely give a pair (K , r) ∈Kn
0 × (0,+∞) such that

K +̃ rBn is not convex.

Example 2.2 Let � ∈ (0,+∞). Put

K = {te1 + x ∣ t ∈ [−�, �], x ∈ Bn } , α(�) = arctan 1
�

,

r∗(�) = −
2 sin3 ( α(�)

2 + π
4 ) + sin2 ( α(�)

2 + π
4 ) − sin( α(�)

2 + π
4 ) − 1

sin α(�) sin ( α(�)
2 + π

4 )
,

s∗ =
(44 + 3

√
177)1/3 + (44 − 3

√
177)1/3 − 1

6
, �∗ =

2s∗
√

1 − s2
∗

2s2
∗ − 1

.

(1) s∗ is the unique real root of 2s3 + s2 − s − 1 = 0, and 0.829 < s∗ < 0.830.
(2) �∗ is the unique root of sin(α(�)/2 + π/4) = s∗, and 2.450 < �∗ < 2.476.
(3) If � > �∗, then r∗(�) > 0.
(4) If � > �∗, then, for any r ∈ (0, r∗(�)), K +̃ rBn is not convex.

Proof (4) Let us check that the condition (ii) in Lemma 2.1 does not hold. Put

u1 =

⎛
⎜⎜⎜⎜⎜
⎝

cos α(�)
sin α(�)

0
⋮
0

⎞
⎟⎟⎟⎟⎟
⎠

, u2 = e2 .

Then, we have

∣u1 + u2∣ = 2 cos(α(�)
2

− π
4
) , u3 =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

cos( α(�)
2 + π

4 )
sin ( α(�)

2 + π
4 )

0
⋮
0

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

,

ρK (u1) =
√
�2 + 1, ρK (u2) = 1, ρK (u3) =

1
sin ( α(�)

2 + π
4 )

,

r∗(�) = −2ρK (u3) + (1 − ∣u1 + u2∣) (ρK (u1) + ρK (u2))
2 − ∣u1 + u2∣

.
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Noting �[ρK](u1 , u2) = 0, we obtain

� [ρK + r] (u1 , u2) = (2 − ∣u1 + u2∣) r (r − r∗(�)) ,

which is negative for any r ∈ (0, r∗(�)). ∎

Example 2.3 Let A ∈ S2. By definition, we have

IA = 2( 0 −1
1 0 )A.

Combining this and Example 2.2 with n = 2, we have a star body of the form K +̃ rB2

whose intersection body is not convex.

2.3 Technical lemmas and remarks

Lemma 2.4 Let I ⊂ R be an open interval, and let φ and ψ ∈ C2(I). For any (θ1 , θ2) ∈
I × I, we have

∣(φ (θ1) + φ (θ2))ψ (θ1 + θ2

2
) − φ (θ1)ψ (θ2) − φ (θ2)ψ (θ1)∣

≤ (2 ∥φ′∥∞ ∥ψ′∥∞ + ∥φ∥∞ ∥ψ′′∥∞)
(θ1 − θ2)2

4
.

Proof By the fundamental theorem of calculus, we have

(φ (θ1) + φ (θ2))ψ (θ1 + θ2

2
) − φ (θ1)ψ (θ2) − φ (θ2)ψ (θ1)

= φ (θ1) (ψ (θ1 + θ2

2
) − ψ (θ2)) + φ (θ2)(ψ (θ1 + θ2

2
) − ψ (θ1))

= θ1 − θ2

2 ∫
1

0
(φ (θ1)ψ′ (s θ1 + θ2

2
+ (1 − s)θ2)

−φ (θ2)ψ′ (s θ1 + θ2

2
+ (1 − s)θ1))ds.

Using the fundamental theorem of calculus again, the integrand is

(θ1 − θ2)
⎡⎢⎢⎢⎢⎣
∫

1

0
φ′ (tθ1 + (1 − t)θ2)

× ψ′ (t (s θ1 + θ2

2
+ (1 − s)θ2) + (1 − t) (s θ1 + θ2

2
+ (1 − s)θ1))dt

− (1 − s)∫
1

0
φ (tθ1 + (1 − t)θ2)

× ψ′′ (t (s θ1 + θ2

2
+ (1 − s)θ2) + (1 − t) (s θ1 + θ2

2
+ (1 − s)θ1))dt

⎤⎥⎥⎥⎥⎦
.
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Estimating

∣∫
1

0
(∫

1

0
φ′ψ′ dt − (1 − s)∫

1

0
φψ′′ dt)ds∣ ≤ ∥φ′∥∞ ∥ψ′∥∞ + ∥φ∥∞ ∥ψ′′∥∞

2
,

we obtain the conclusion. ∎

Corollary 2.5 Let I ⊂ R be an open interval, and let φ and ψ ∈ C2(I). For any
(θ1 , θ2) ∈ I × I, we have

∣(φ (θ1) + φ (θ2))ψ (θ1 + θ2

2
) − cos θ1 − θ2

2
(φ (θ1)ψ (θ2) + φ (θ2)ψ (θ1))∣

≤ (2 ∥φ′∥∞ ∥ψ′∥∞ + ∥φ∥∞ ∥ψ′′∥∞ + ∥φ∥∞∥ψ∥∞)
(θ1 − θ2)2

4
.

Proof By Taylor’s theorem with integral remainder, we have

cos θ = 1 + ∫
θ

0
(ξ − θ) cos ξ dξ.

Thus, the left-hand side is

∣(φ (θ1) + φ (θ2))ψ (θ1 + θ2

2
) − φ (θ1)ψ (θ2) − φ (θ2)ψ (θ1)

− (φ (θ1)ψ (θ2) + φ (θ2)ψ (θ1))∫
θ1−θ2

2

0
(ξ − θ1 − θ2

2
) cos ξ dξ

CCCCCCCCCCC
.

Estimating
CCCCCCCCCCC
(φ (θ1)ψ (θ2) + φ (θ2)ψ (θ1))∫

θ1−θ2
2

0
(ξ − θ1 − θ2

2
) cos ξ dξ

CCCCCCCCCCC

≤ 2∥φ∥∞∥ψ∥∞∫
θ1−θ2

2

0
(θ1 − θ2

2
− ξ) dξ

= ∥φ∥∞∥ψ∥∞
(θ1 − θ2)2

4
,

Lemma 2.4 completes the proof. ∎

Lemma 2.6 Let f and g ∈ C2(Sn−1). For any (u1 , u2) ∈ Sn−1 × Sn−1, we have

( f (u1) + f (u2)) g (u3) − cos ∠(u1 , u2)
2

( f (u1) g (u2) + f (u2) g (u1))

≥ −Φ0( f , g)∠(u1 , u2)2

4
.

Proof If f = g, then the left-hand side is �[ f ](u1 , u2). Thus, in the case (II-iii) of
the definition of Φ0, the proof is completed. Let us consider the other cases.

There exists a triple (q, θ1 , θ2) ∈ SO(n) ×R ×R such that u j = qϕ(θ j , 0, . . . , 0).
Then, we have u3 = qϕ((θ1 + θ2)/2, 0, . . . , 0). Put φq(θ) = f (qϕ(θ , 0, . . . , 0)) and
ψq(θ) = g(qϕ(θ , 0, . . . , 0)). In the case (I-i) or (II-i), Corollary 2.5 with (φ, ψ) =
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(φq , ψq) completes the proof. In the case (I-ii) or (II-ii), the inequality cos ≤ 1 and
Lemma 2.4 with (φ, ψ) = (φq , ψq) complete the proof. ∎

Corollary 2.7 Let f and g ∈ C2(Sn−1). For any (u1 , u2) ∈ Sn−1 × Sn−1, we have

Δ[ f , g] (u1 , u2) ≥ −(Φ0( f , g) + Φ0(g , f )) ∠(u1 , u2)2

4
.

Corollary 2.8 Let f ∈ C2(Sn−1). For any (u1 , u2) ∈ Sn−1, we have

�[ f ] (u1 , u2) ≥ −Φ0( f , f )∠(u1 , u2)2

4
.

Lemma 2.9 Let I ⊂ R be an open interval, and let φ ∈ C2(I). For any (θ1 , θ2) ∈ I × I,
we have

∣2φ (θ1 + θ2

2
) − φ (θ1) − φ (θ2)∣ ≤ ∥φ′′∥∞

(θ1 − θ2)2

4
.

Proof Lemma 2.4 with (φ, ψ) = (1, φ) completes the proof. ∎

Corollary 2.10 Let I ⊂ R be an open interval, and let φ ∈ C2(I). For any (θ1 , θ2) ∈
I × I, we have

∣2φ (θ1 + θ2

2
) + (1 − 2 cos θ1 − θ2

2
)(φ (θ1) + φ (θ2))∣

≤ (2∥φ∥∞ + ∥φ′′∥∞)
(θ1 − θ2)2

4
.

Proof Applying Taylor’s theorem with integral remainder to cos, in the same
manner as in Corollary 2.5, Lemma 2.9 completes the proof. ∎

Remark 2.11 Let f be a function defined on Sn−1, and let c ∈ R. For any (u1 , u2) ∈
Sn−1 × Sn−1, we have

Δ[ f , c] (u1 , u2) = Δ[ f , 1] (u1 , u2) c
= Δ[c f , 1] (u1 , u2)
= (2 f (u3) + (1 − ∣u1 + u2∣) ( f (u1) + f (u2))) c

= (2 f (u3) + (1 − 2 cos ∠(u1 , u2)
2

)( f (u1) + f (u2))) c.

Lemma 2.12 Let f ∈ C2(Sn−1), and let c ∈ R. For any (u1 , u2) ∈ Sn−1 × Sn−1, we have

Δ[ f , c] (u1 , u2) ≥ −Φ1( f )∣c∣∠(u1 , u2)2

4
.

Proof Fix an arbitrary (u1 , u2) ∈ Sn−1 × Sn−1. There exists a triple (q, θ1 , θ2) ∈
SO(n) ×R ×R such that u j = qϕ(θ j , 0, . . . , 0). Then, we have u3 = qϕ((θ1 + θ2)/
2, 0, . . . , 0). Put φq(θ) = f (qϕ(θ , 0, . . . , 0)). If c f (u) < 0 for some u ∈ Sn−1, then
Remark 2.11 and Corollary 2.10 with φ = φq complete the proof. If c f (u) ≥ 0 for
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any u ∈ Sn−1, then the triangle inequality ∣u1 + u2∣ ≤ 2 and Lemma 2.9 with φ = φq
complete the proof. ∎

Remark 2.13 Let f and g be functions defined on Sn−1. We have �[ f + g] = �[ f ] +
Δ[ f , g] + �[g].

Remark 2.14 By Taylor’s theorem with integral remainder, for any θ ∈ R, we have

sin2 θ = 1 − cos 2θ
2

= θ2 + 1
12 ∫

2θ

0
(ξ − 2θ)3 cos ξ dξ ≥ θ2 − θ4

3
.

Remark 2.15 Let c ∈ R. By Remark 2.14, for any (u1 , u2) ∈ Sn−1 × Sn−1, we have

�[c] (u1 , u2) = 4c2 sin2 ∠(u1 , u2)
4

≥ (1 − π2

48
) c2 ∠(u1 , u2)2

4
.

Corollary 2.16 Let f ∈ C2(Sn−1), and let c ∈ R. For any (u1 , u2) ∈ Sn−1 × Sn−1, we
have

�[ f + c] (u1 , u2) ≥ ((1 − π2

48
) c2 − Φ1( f )∣c∣ − Φ0( f , f )) ∠(u1 , u2)2

4
.

Proof By Remarks 2.13 with g = c and 2.15, we have

�[ f + c] (u1 , u2) = �[ f ] (u1 , u2) + Δ[ f , c] (u1 , u2) + 4c2 sin2 ∠(u1 , u2)
4

.

Applying Corollary 2.8, Lemma 2.12, and the inequality in Remark 2.15 to the first,
second, and third terms, respectively, we obtain the conclusion. ∎

3 Main results

3.1 Construction of convex radial sums

We keep the notation from the Introduction and Section 2.1.

Proposition 3.1 Let γ ∈ [0,+∞), and let K ∈Kn
0 be such that ρK ∈ C2(Sn−1). Assume

that, for any (u1 , u2) ∈ Sn−1 × Sn−1, the inequality �[ρK](u1 , u2) ≥ γ∠(u1 , u2)2 holds.
Let f ∈ C2(Sn−1) be such that ρK + f ≥ 0. If the inequality

4γ ≥ Φ0( f , f ) + Φ0 ( f , ρK) + Φ0 (ρK , f )

holds, then K f is convex.

Proof Let us check the condition (ii) in Lemma 2.1. Let (u1 , u2) ∈ Sn−1 × Sn−1 be
such that u1 + u2 ≠ 0. By Remark 2.13 with g = ρK and the assumption, we have

� [ρK + f ] = � [ f + ρK] ≥ �[ f ] (u1 , u2) + Δ [ f , ρK] (u1 , u2) + γ∠(u1 , u2)2 .

Corollaries 2.7 with g = ρK and 2.8 complete the proof. ∎
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Remark 3.2 Proposition 3.1 essentially works for the case where γ > 0 (see Example
2.2).

Theorem 3.3 Let A ∈ Sn be such that ρA ∈ C2(Sn−1). Let γ ∈ [0,+∞), and put

RA(γ) = 24
48 − π2

⎛
⎝

Φ1 (ρA) +
√

Φ1 (ρA)2 + 48 − π2

12
(Φ0 (ρA, ρA) + 4γ)

⎞
⎠

.

If r ≥ RA(γ), then, for any (u1 , u2) ∈ Sn−1 × Sn−1, we have

� [ρA + r] (u1 , u2) ≥ γ∠(u1 , u2)2 .

Proof This follows from Corollary 2.16 with ( f , c) = (ρA, r). ∎

Corollary 3.4 Let A and RA be as in Theorem 3.3. If r ≥ RA(0), then A +̃ rBn is
convex.

Combining Theorem 3.3 and Proposition 3.1, for any A ∈ Sn with ρA ∈ C2(Sn−1),
there exists a “large enough” F ∈ C2(Sn−1) such that AF is convex. Precisely, we obtain
the following corollary.

Corollary 3.5 Let A, γ, and RA be as in Theorem 3.3. Let (r, f ) ∈ [RA(γ),+∞) ×
C2(Sn−1) be such that ρA + r + f ≥ 0. If the inequality

4γ ≥ Φ0( f , f ) + Φ0 ( f , ρA + r) + Φ0 (ρA + r, f )
holds, then Ar+ f is convex.

Proof Put K = A +̃ rBn . ρK = ρA + r is of class C2. Theorem 3.3 guarantees that,
for any (u1 , u2) ∈ Sn−1 × Sn−1, the inequality �[ρK](u1 , u2) ≥ γ∠(u1 , u2)2 holds. By
Proposition 3.1, Ar+ f = K f is convex. ∎

3.2 Construction of convex intersection bodies

We keep the notation from the Introduction and Section 2.1.

Remark 3.6 Let A ∈ Sn . Let f ∈ C0(Sn−1) be such that ρA + f ≥ 0. For any u ∈ Sn−1,
we have

Vn−1 (A f ∩ u⊥) = 1
n − 1

R [(ρA + f )n−1] (u)

= 1
n − 1

n−1
∑
i=0

(n − 1
i

) ⟨ρ i
A, f n−1−i⟩ (u)

= Vn−1 (A∩ u⊥) + 1
n − 1

n−2
∑
i=0

(n − 1
i

) ⟨ρ i
A, f n−1−i⟩ (u)

= 1
n − 1

R [ f n−1] (u) + 1
n − 1

n−1
∑
i=1

(n − 1
i

) ⟨ρ i
A, f n−1−i⟩ (u).
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In particular, if f is a constant c, then

Vn−1 (Ac ∩ u⊥) = Vn−1 (A∩ u⊥) + 1
n − 1

n−2
∑
i=0

(n − 1
i

)R [ρ i
A] (u)cn−1−i

= κn−1cn−1 + 1
n − 1

n−1
∑
i=1

(n − 1
i

)R [ρ i
A] (u)cn−1−i .

Proposition 3.7 Let γ ∈ [0,+∞), and let A ∈ Sn be such that ρA ∈ C2(Sn−1). Assume
that, for any (u1 , u2) ∈ Sn−1 × Sn−1, the inequality �[ρIA](u1 , u2) ≥ γ∠(u1 , u2)2 holds.
Let f ∈ C2(Sn−1) be such that ρA + f ≥ 0. If the inequality

4γ(n − 1)2 ≥ Φ0 (R [ρn−1
A ] ,

n−2
∑
i=0

⟨ρ i
A, f n−1−i⟩)

+ Φ0 (
n−2
∑
i=0

⟨ρ i
A, f n−1−i⟩ ,R [ρn−1

A ])

+ Φ0 (
n−2
∑
i=0

⟨ρ i
A, f n−1−i⟩ ,

n−2
∑
i=0

⟨ρ i
A, f n−1−i⟩)

holds, then IA f is convex.

Proof Let (u1 , u2) ∈ Sn−1 × Sn−1 be such that u1 + u2 ≠ 0. Let us check the condi-
tion (ii) in Lemma 2.1. By Remarks 3.6 and 2.13, we have

� [ρIA f ] = � [ρIA] + Δ [ 1
n − 1

R [ρn−1
A ] , 1

n − 1

n−2
∑
i=0

⟨ρ i
A, f n−1−i⟩]

+ � [ 1
n − 1

n−2
∑
i=0

⟨ρ i
A, f n−1−i⟩] .

By the assumption, we have �[ρIA](u1 , u2) ≥ γ∠(u1 , u2)2. Hence, Corollaries 2.7 and
2.8 complete the proof. ∎

Remark 3.8 Let A ∈ Sn be such that ρA ∈ C2(Sn−1), and let γ ∈ [0,+∞). The func-
tion of r ∈ [0,+∞),

(1 − π2

48
)κ2

n−1r2(n−1) − κn−1

n − 1
Φ1 (

n−1
∑
i=1

(n − 1
i

)R [ρ i
A] r2(n−1)−i)

− 1
(n − 1)2 Φ0 (

n−1
∑
i=1

(n − 1
i

)R [ρ i
A] rn−1−i ,

n−1
∑
i=1

(n − 1
i

)R [ρ i
A] rn−1−i) − 4γ,

has at least one real root, and the set of the real roots is bounded. In fact, we have the
following asymptotic behaviors as r goes to infinity:

Φ1 (
n−1
∑
i=1
(n − 1

i
)R [ρ i

A] r2(n−1)−i) ≤
n−1
∑
i=1
(n − 1

i
)∥(R [ρ i

A] ○ ϕ)
′′
∥
∞

r2(n−1)−i = O (r2n−3),

Φ0 (
n−1
∑
i=1
(n − 1

i
)R [ρ i

A] rn−1−i ,
n−1
∑
i=1
(n − 1

i
)R [ρ i

A] rn−1−i)
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≤
n−1
∑
i=1

n−1
∑
j=1
(n − 1

i
)(n − 1

j
)(2∥(R [ρ i

A] ○ ϕ)
′
∥
∞
∥(R [ρ j

A] ○ ϕ)
′
∥
∞

+∥R [ρ i
A] ○ ϕ∥

∞
∥(R [ρ j

A] ○ ϕ)
′′
∥
∞
) r2(n−1)−i− j

= O (r2n−4) .

Theorem 3.9 Let A ∈ Sn be such that ρA ∈ C2(Sn−1), and let γ ∈ [0,+∞). Let R̃A(γ)
be the maximum real root of the function of r,

(1 − π2

48
)κ2

n−1r2(n−1) − κn−1

n − 1
Φ1 (

n−1
∑
i=1

(n − 1
i

)R [ρ i
A] r2(n−1)−i)

− 1
(n − 1)2 Φ0 (

n−1
∑
i=1

(n − 1
i

)R [ρ i
A] rn−1−i ,

n−1
∑
i=1

(n − 1
i

)R [ρ i
A] rn−1−i) − 4γ.

If r ≥ R̃A(γ), then, for any (u1 , u2) ∈ Sn−1 × Sn−1, we have

� [ρI(A +̃ rBn)] (u1 , u2) ≥ γ∠(u1 , u2)2 .

Proof Remark 3.6 with c = r and Corollary 2.16 with

( f , c) = ( 1
n − 1

n−1
∑
i=1

(n − 1
i

)R [ρ i
A] rn−1−i ,κn−1rn−1)

complete the proof. ∎

Corollary 3.10 Let A and R̃A be as in Theorem 3.9. If r ≥ R̃A(0), then I(A +̃ rBn) is
convex.

Combining Theorem 3.9 and Proposition 3.7, for any A ∈ Sn with ρA ∈ C2(Sn−1),
there exists a “large enough” F ∈ C2(Sn−1) such that IAF is convex. Precisely, we
obtain the following corollary.

Corollary 3.11 Let A, γ, and R̃A be as in Theorem 3.9. Let (r, f ) ∈ [R̃A(γ),+∞) ×
C2(Sn−1) be such that ρA + r + f ≥ 0. If the inequality

4γ(n − 1)2 ≥ Φ0 (R [(ρA + r)n−1] ,
n−2
∑
i=0

⟨(ρA + r)i , f n−1−i⟩)

+ Φ0 (
n−2
∑
i=0

⟨(ρA + r)i , f n−1−i⟩ ,R [(ρA + r)n−1])

+ Φ0 (
n−2
∑
i=0

⟨(ρA + r)i , f n−1−i⟩ ,
n−2
∑
i=0

⟨(ρA + r)i , f n−1−i⟩)

holds, then IAr+ f is convex.
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