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1. Introduction and Preliminaries. In this paper, we study the following semilinear
operator equation

Lx − Nx = f, x ∈ X, f ∈ Y,

where X, Y are Banach spaces, and L : D(L) ⊂ X → Y is a linear Fredholm type
mapping with dim(Ker(L)) = +∞, and N : � ∩ D(L) → Y is a nonlinear mapping.
This type of map equation has been extensively studied by Mawhin, Petryshyn and
others for the case when dim(Ker(L)) < +∞, see [8], [12] for references. By imposing
some suitable conditions on X, L and Y , we can apply Browder-Petryshyn’s degree
and Petryshyn’s generalized degree theory to study such an equation. A generalized
degree theory for L − N is defined in three ways by following Browder-Petryshyn and
Petryshyn’s method or combining them with Mawhin’s method. First we recall some
definitions.

DEFINITION 1.1. [12] Let X be a real separable Banach space, (Xn)∞n=1 a sequence
of finite dimensional subspaces of X , and Pn : X → Xn a projecton for n = 1, 2, . . . .
If Pnx → x as n → ∞, for all x ∈ X , then {Xn, Pn} is called a projectionally complete
scheme for X .

DEFINITION 1.2. [12] Let X, Y be two real separable Banach spaces, (Xn ⊂
X)∞n=1, (Yn ⊂ Y )∞n=1 two sequences of oriented finite dimensional subspaces such that
dim(Xn) = dim(Yn), and let Qn : Y → Yn be a linear mapping of Y onto Yn for
n = 1, 2 . . . . If limn→∞ d(x, Xn) = 0, and (Qn) is uniformly bounded, then we call
�A = {Xn, Yn, Qn} an admissible scheme for (X, Y ); if Qn is the projection such that
Qny → y for all y ∈ Y , then we say �0 = {Xn, Yn, Qn} is a projectionally complete
scheme for (X, Y ).
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DEFINITION 1.3. [12] Let X, Y be real separable Banach spaces with a projectionally
complete scheme �0 = {Xn, Yn, Qn}, D ⊂ X , and T : D → Y . Suppose that the
following conditions are satisfied:

(1) QnT : D ∩ Xn → Yn is continuous for n = 1, 2 . . . ;
(2) for any bounded sequence (xnj ∈ Xnj ∩ D)∞j=1 such that Qnj Txnj → y, there exists

a subsequence (x′
nj

) such that x′
nj

→ x ∈ D and Tx = y;
then T is said to be A-proper with respect to �0; if (2) is replaced by the following

(3) for any bounded sequence (xnj ∈ Xnj ∩ D)∞j=1 such that Qnj Txnj → y, there exists
x ∈ D such that Tx = y
then T is said to be pseudo A-proper with respect to �0.

DEFINITION 1.4. Let X, Y be two real Banach spaces, L : D(L) ⊆ X → Y is a
linear mapping, and we say L is a Fredholm mapping of index zero type if

(1) Ker(L) = {x ∈ X : Lx = 0}, Im(L) = {Lx : x ∈ D(L)} are closed in H;
(2) X = Ker(L) ⊕ X1 for some subspace X1 of X , Y = Y1 ⊕ Im(L) for some

subspace Y1 of Y ;
(3) Ker(L) is linearly homeomorphic to Coker(L) = Y/Im(L).

REMARK 1. Obviously, if X is linearly homeomorphic to Y , L = 0 is a Fredholm
mapping of index zero type, but not a Fredholm mapping of index zero. If L is a
Fredholm mapping of index zero, then dim(Ker(L)) = dim(Coker(L)) < +∞, and so
Ker(L) is linearly homeomorphic to Coker(L); thus L is a Fredholm mapping of index
zero type.

Now, assume that L : D(L) ⊂ X → Y is a Fredholm mapping of index zero type.
Then there exist linear projections P : X → X and Q : Y → Y such that Im(P) =
Ker(L) and Im(Q) = Y1.

Obviously, the restriction of LP of L to D(L) ∩ Ker(P) is one to one and onto
Im(L), so its inverse KP : Im(L) → D(L) ∩ Ker(P) is defined. Let J : Ker(L) → Y1 be
a linear homeomorphism, and set KPQ = KP(I − Q).

PROPOSITION 1.5. L + λJP : X → Y is a bijective mapping for each λ 
= 0.

Proof. For each λ 
= 0, if Lx + λJPx = 0, then JPx = 0, Lx = 0, so x ∈ Ker(L),
thus x = 0. On the other hand, for y = y1 + y2 ∈ Y , y1 ∈ Y1, y2 ∈ Im(L), put x =
λ−1J−1y1 + KPy2, then Lx + λJPx = y. Therefore L + λJP is bijective. �

PROPOSITION 1.6. Let X, Y be real separable Banach spaces, and (Yn, Qn) a
projectionally complete scheme for Y, and let L : D(L) ⊂ X → Y be a Fredholm mapping
of zero index type. Then for each λ 
= 0, there exists a projectionally complete scheme
�λ,L for (X, Y ).

Proof. For each λ 
= 0, put Kλ = L + λJP. By Proposition 1.5, Kλ is bijiective. Set
Xn = K−1

λ Yn for n = 1, 2 . . . . Obviously, we have dim(Xn) = dim(Yn), and X = ∪∞
n=1Xn.

Thus �L = {Xn, Yn, Qn} is a projectionally complete scheme for (X, Y ). �

Petryshyn showed that if L is a Fredhom mapping of index zero, then L is A-proper
with respect to �1,L, see [12]. Here we have a similar result.

PROPOSITION 1.7. Let L : D(L) ⊂ X → Y be a Fredholm mapping of zero index type,
and assume that X is reflexive. If G ⊂ X is bounded closed convex, then L : G ∩ D(L) →
Y is pseudo A-proper with respect to �λ,L for each λ 
= 0.
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Proof. For any sequence xnk ∈ G ∩ D(L) ∩ Xnk with Qnk Lxnk → y, we may assume
that xnk ⇀ x0 ∈ G by taking a subsequence.

Notice that Qnk (Lxnk + λJPxnk ) = Lxnk + λJPxnk , and JPxnk ⇀ JPx0, so we have

xnk = (L + JP)−1(Qnk (Lxnk + JPxnk )) ⇀ (L + JP)−1(y + JPx0) = x0.

Thus x0 ∈ D(L), and Lx0 = y, so therefore L is pseudo A-proper with respect
to �λ,L. �

DEFINITION 1.8. Let X be a real separable Banach space and �0 = (Xn, Pn) a
projectionally complete scheme for X , Y a real Banach space, L : D(L) ⊂ X → Y a
Fredholm mapping of zero index type, and let N : D ⊂ X → Y be a mapping.

(1) If I − P − (J−1Q + KPQ)N is A-proper with respect to �0, then we say N is
L-A-proper with respect to �0;

(2) If I − P − (J−1Q + KPQ)N is pseudo A-proper with respect to �0, then we say
N is pseudo L-A-proper with respect to �0;

(3) A family of mappings H(t, x) : [0, 1] × D → Y is called a homotopy of L-A-
proper mappings with respect to �0 if H(t, ·) is an L-A-proper mapping with respect to
�0 for each t ∈ [0, 1].

PROPOSITION 1.9. Let L : D(L) ⊆ X → Y be a linear mapping with Ker(L) = {0},
and Im(L) = Y. Then the following conclusions hold

(1) if �0 = (Xn, Pn) is a projectionally complete scheme for X, then 0 is L-A-proper
with respect to �0;

(2) if (Yn, Qn) is a projectionally complete scheme for Y, and L−1 is continuous, then
L is A-proper with respect to �1,L, where �1,L is constructed as in Proposition 1.6.

Proof. (1) We have P = 0, and Q = 0, and the identity mapping I : X → X is
obviously A-proper with respect to �0. Thus 0 is L-A-proper with respect to �0.

(2) Since Ker(L) = {0}, the mapping K in the proof of Proposition 1.6 is just
the mapping L, so Xn = L−1Yn. If xnk ∈ Xnk such that Qnk Lxnk → y, then Lxnk =
Qnk Lxnk → y. Therefore we have xnk → L−1y. The conclusion holds. �

PROPOSITION 1.10. Let L : D(L) ⊂ X → Y be a Fredholm mapping of zero index
type, �0 = (Xn, Pn) a projectionally complete scheme for X, G ⊂ X a bounded closed
convex subset, and T : G → Y a weakly continuous mapping, with X reflexive. Then T
is L-pseudo A-proper with respect to �0.

Proof. For any subsequence xnk ∈ Xnk such that Pnk (I − P − J−1QT −
KPQT)xnk → y, we may assume that xnk ⇀ x0 ∈ G by taking a subsequence, and
so (I − P)xnk ⇀ x0, J−1QTxnk ⇀ J−1QTx0, and KPQTxnk ⇀ KPQTx0. Consequently,
(I − P − J−1QT − KPQT)x0 = y, so T is L-pseudo A-proper with respect to �0. �

PROPOSITION 1.11. Let X, Y be real separable Banach spaces, and (Yn, Qn) a
projectionally complete scheme for Y. Let L : D(L) ⊂ X → Y be a Fredholm mapping of
zero index type, G ⊂ X a bounded closed subset, and N : G → Y a continuous compact
mapping. Then L + λJP − N is A-proper with respect to �λ,L for each λ > 0.

Proof. For any sequence xnk ∈ G ∩ D(L) ∩ Xnk with Qnk (L + λJP − N)xnk → y,
in view of the compactness of N, we may assume that Nxnk → y0 ∈ Y by taking a
subsequence.
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Notice that Qnk (Lxnk + λJPxnk ) = Lxnk + λJPxnk , so we have

xnk = (L + JP)−1[Qnk (L + λJP − N)xnk + Qnk Nxnk ] → (L + λJP)−1(y + y0) = x0.

Thus x0 ∈ D(L), and Nx0 = y0, (L + λJP − N)x0 = y, and therefore L is A-proper
with respect to �λ,L. �

2. Generalized degree theory for L-N. In this section, X, Y are real separable
Banach spaces, L : D(L) ⊆ X → Y is a Fredholm mapping of index zero type with
D(L) dense in X , and N : � ⊂ X → Y is a nonlinear mapping, and we consider the
semilinear operator equation Lx − Nx = 0. We will apply Browder-Petryshyn and
Petryshyn’s generalized degree theory to study such an equation in three different
ways.

LEMMA 2.1. Let L : D(L) ⊆ X → Y be a Fredholm mapping of index zero type, and
� ⊂ X an open bounded subset, and let N : � → Y be a mapping. If 0 /∈ (L − N)(∂� ∩
D(L)), then 0 /∈ [I − P − (J−1Q + KPQ)N](∂�).

Proof. Suppose the contrary i.e. suppose there exists x0 ∈ ∂� such that 0 ∈ x0 −
Px0 − (J−1Q + KPQ)Nx0. Since J−1QTx0 ∈ Ker(L) = Im(P), x0 − Px0 ∈ Ker(P), and
KpQTx0 ∈ D(L) ∩ Ker(P), we must have

J−1QNx0 = 0, x0 − Px0 − KPQNx0 = 0.

Therefore we have

QNx0 = 0, x0 − Px0 − KPNx0 = 0, i.e. Lx0 − Nx0 = 0,

which is a contradiction to 0 /∈ (L − N)(∂� ∩ D(L)). �
Now, let L : D(L) ⊆ X → Y be a Fredholm mapping of index zero type, �0 =

(Xn, Pn) a projectionally complete scheme for X and � ⊂ X an open bounded
subset, and let N : � → Y be an L-A-proper mapping with respect to �0. Suppose
0 /∈ (L − T)(∂� ∩ D(L)). By Lemma 2.1, 0 /∈ [I − P − (J−1Q + KPQ)N](∂�). Since
I − P − (J−1Q + KPQ)N is an A-proper mapping with respect to �0, the generalized
degree deg(I − P − (J−1Q + KPQ)N,�, 0) is well defined, see [3], and we define

deg�0,J(L − N,�, 0) = deg(I − P − (J−1Q + KPQ)N,�, 0), (2.1)

which is called the generalized coincidence degree of L and N on �.

THEOREM 2.2. The generalized coincidence degree of L and N defined by (2.1) on
� has the following properties.

(1) If �1 and �2 are disjoint open subsets of � such that 0 does not belong to
(L − N)(D(L) ∩ � \ (�1 ∪ �2)), then

deg�0,J(L − N,�, 0) ⊆ deg�0,J(L − N,�1) + deg�0,J(L − N,�2, 0).

(2) If H(t, x) : [0, 1] × � → Y is a homotopy of L-A-proper mappings with
respect to �0, and if 0 
= Lx − H(t, x) for all (t, x) ∈ [0, 1] × ∂� ∩ D(L), then
deg�0,J (L − H(t, ·),�, 0) does not depend on t ∈ [0, 1].
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(3) If deg�0
(L − N,�, 0) 
= {0}, then 0 ∈ (L − N)(D(L) ∩ �).

(4) If L : D(L) ⊆ X → Y is a linear mapping such that L−1 : Y → D(L) is
continuous, then deg�0,J(L,�, 0) = {1} if 0 ∈ �.

(5) If � is a symmetric neighbourhood of 0, and N : � → Y is an odd L-A-proper
mapping with respect to �0 with 0 /∈ (L − N)(∂� ∩ D(L)), then deg�0,J(L − N,�, 0)
does not contain even numbers.

Proof. (1)–(3) follow directly from the definition and the properties of generalized
degree.

(4) Since Ker(L) = {0}, P = 0, Q = 0, the zero mapping is L-A-proper with respect
to �0. Thus deg�0,J(L,�, 0) = deg(I,�, 0) = {1}.

(5) Since N is odd, the mapping I − P − (J−1Q + KPQ)N is odd. Thus deg(I −
P − (J−1Q + KPQ)N,�, 0) does not contain even numbers, and the conclusion follows
by definition. �

COROLLARY 2.3. Let L : D(L) ⊆ X → Y be a linear mapping such that L−1 : Y →
D(L) is continuous, � ⊂ X an open bounded subset with 0 ∈ �, and N : � → Y a
mapping such that {L − tN}t∈[0,1] is a homotopy of L-A-proper mappings with respect to
�0. If Lx /∈ tNx for all (t, x) ∈ [0, 1] × ∂� ∩ D(L), then deg(L − N,�, 0) = 1.

In the following, let L : D(L) ⊂ X → Y be a densely defined Fredholm mapping
of zero index type. We assume that �0 = (Yn, Qn) is a projectionally complete scheme
for Y , �λ,L is as defined in Proposition 1.6, and L + λJP − N is an A-proper map
with respect to �λ,L for λ ∈ (0, λ0), where λ0 > 0 is a constant. Suppose that 0 /∈
(L − N)(D(L) ∩ ∂�). Then there exists λ1 < λ0 such that 0 /∈ (L + λJP − N)(D(L) ∩
∂�) for all λ ∈ (0, λ1). We define a generalized degree

deg(L − N,�, 0) = ∩0<λ<λ1 ∪0<ε≤λ deg(L + εJP − N,�, 0), (2.2)

where deg(L + εJP − N,�, 0) is the generalized degree for A-proper maps with respect
to �λ,L, see [12].

Notice that if 0 /∈ (L + λJP − N)(D(L) ∩ ∂�) for all λ ∈ (0, λ2), then it is easy to
check that

∩0<λ<λ1 ∪0<ε≤λ deg(L + εJP − N,�, 0) = ∩0<λ<λ2 ∪0<ε≤λ deg(L + εJP − N,�, 0).

Thus (2.2) is well defined.

REMARK. A degree theory for uniform limits of A-proper maps has been defined
by P. M. Fitzpatrick [5]. Since �λ,L depends on λ, and L + λJP − N is an A-proper
map with respect to �λ,L, L − N is slightly different to the uniform limits of A-proper
maps. Of course, a slight generalization of the ideas in [5] could be applied here also.

THEOREM 2.4. The generalized degree defined by (2.2) has the following properties.
(1) If �1 and �2 are two open subsets of � such that �1 ∩ �2 = ∅, and 0 /∈

(L − N)(D(L) ∩ � \ (�1 ∪ �2)), then

deg(L − N,�, 0) ⊆ deg(L − N,�1) + deg(L − N,�2, 0).

(2) If H(t, x) : [0, 1] × � → Y satisfies 0 /∈ ∪t∈[0,1](L − H(t, ·))(D(L) ∩ ∂�), and
{L + λJP − H(t, ·)}t∈[0,1] is a homotopy of A-proper maps with respect to �λ,L for each
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λ ∈ (0, λ0), where λ0 > 0 is a constant, then deg(L − H(t, ·),�, 0) does not depend on
t ∈ [0, 1].

(3) If deg�0
(L − N,�, 0) 
= {0}, then 0 ∈ (L − N)(D(L) ∩ �).

(4) If � is a symmetric neighbourhood of 0, and N : � → Y is an odd mapping such
that L + λJP − N is A-proper with respect to �λ,L for each λ ∈ (0, λ0), where λ0 > 0 is
a constant, and 0 /∈ (L − N)(∂� ∩ D(L)), then deg(L − N,�, 0) does not contain even
numbers.

(5) deg(L,�, 0) ⊆ {±1} if 0 ∈ �.

Proof. (1). By assumption, there exists λ0 > 0 such that

0 /∈ (L + λJP − N)(D(L) ∩ � \ (�1 ∪ �2))

for all λ ∈ (0, λ0). If m ∈ deg(L − N,�, 0), then there exist λj → 0+, λj < λ0, j =
1, 2, . . . , such that m ∈ deg(L + λjJP − N,�, 0). By Theorem 2.1 of [11], we have

deg(L + λjJP − N,�, 0) ⊆ deg(L + λjJP − N,�1, 0) + deg(L + λjJP − N,�2, 0)

for j = 1, 2, . . . . Thus (1) follows from (2.2).
(2). Since 0 /∈ ∪t∈[0,1](L − H(t, ·))(D(L) ∩ ∂�), there exists λ1 > 0 such that 0 /∈

∪t∈[0,1](L + λJP − H(t, ·))(∂� ∩ D(L)) for λ ∈ (0, λ1). By Theorem 2.1 of [11], deg(L +
λJP − H(t, ·),�, 0) does not depend on t ∈ [0, 1] for λ ∈ (0, min{λ0, λ1}). So (2) follows
from (2.2).

(3). If deg�0
(L − N,�, 0) 
= {0}, then there exists 0 
= m ∈ deg�0

(L − N,�, 0), so
there exists λj → 0+ such that m ∈ deg(L + λjJP − N,�, 0). Therefore (L + λjJP −
N)x has a solution in � ∩ D(L), j = 1, 2, . . . . By letting j → ∞, we obtain 0 ∈
(L − N)(D(L) ∩ �).

(4). We leave the proof to the reader.
(5). L + λJP is A-proper with respect to �λ,L, and 0 /∈ (L + λJP)(∂� ∩ D(L)) for

all λ > 0. Since L + λJP is bijective, deg(L + λJP,�, 0) ⊆ {±1} for all λ > 0. Thus we
have

deg(L − N,�, 0) ⊆ {±1}. �
THEOREM 2.5. Let X, Y be real separable Banach spaces, and (Yn, Qn) a

projectionally complete scheme for Y, and let L : D(L) ⊂ X → Y be a Fredholm mapping
of zero index type, 0 ∈ � ⊂ X a bounded subset, and N : � → Y a continuous compact
mapping. Suppose the following conditions are satisfied

(1) 0 /∈ (L − N)(∂� ∩ D(L));
(2) 0 /∈ QN(∂� ∩ D(L)).

Then deg(L − N,�, 0) = deg(L − QN,�, 0).

Proof. For each λ ∈ (0, λ0), a similar proof to Proposition 1.11 shows that {L +
λJP − tN − (1 − t)QN}t∈[0,1] is a homotopy of A-proper maps with respect to �λ,L.

Now we claim that 0 /∈ ∪t∈[0,1](L − tN − (1 − t)QN)(D(L) ∩ ∂�).
If this is not true, then there exist tj ∈ [0, 1] with tj → t0, xj ∈ ∂� ∩ D(L), such that

Lxj − tjNxj − (1 − tj)QNxj → 0.

Case (1): if t0 = 1, then Lxj − Nxj → 0, which is a contradiction to assumption (1).
Case (2): if t0 
= 1, then QLxj − QNxj → 0, thus we have QNxj → 0 and xj ∈ D(L),

which is a contradiction to assumption (2).
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By (2) of Theorem 2.4, we obtain deg(L − N,�, 0) = deg(L − QN,�, 0). �
Finally, let L : D(L) ⊆ X → Y be a Fredholm mapping of index zero type, �0 =

(Xn, Pn) a projectionally complete scheme for X , and � ⊂ X an open bounded subset,
and let N : � → Y be a mapping such that I − (L + λJP)−1(N + λJP) is an A-proper
map with respect to �0 for some λ > 0. One can easily see that 0 ∈ Lx − Nx iff 0 ∈
(I − (L + λJP)−1(N + λJP))x. Assume that 0 /∈ (L − N)(∂� ∩ D(L)). Then 0 /∈ (I −
(L + λJP)−1(N + λJP))(∂�) for all λ > 0, and we define a generalized degree

deg�0
(L − N,�, 0) = ∪0<λ deg(I − (L + λJP)−1(N + λJP),�, 0), (2.3)

where deg(I − (L + λJP)−1(N + λJP),�, 0) is the generalized degree for A-proper
maps if I − (L + λJP)−1(N + λJP) is A-proper with respect to �0, otherwise deg(I −
(L + λJP)−1(N + λJP),�, 0) = ∅.

THEOREM 2.6. The generalized degree defined by (2.3) has the following properties.
(1) If �1 and �2 are disjoint open subsets of � such that 0 /∈ (L − N)(D(L) ∩

� \ (�1 ∪ �2)), then

deg�0
(L − N,�, 0) ⊆ deg�0

(L − N,�1) + deg�0
(L − N,�2, 0).

(2) If H(t, x) : [0, 1] × � → Y satisfies 0 /∈ ∪t∈[0,1](L − H(t, ·))(D(L) ∩ ∂�), and
{I − (L + λJP)−1(H(t, ·) + λJP)}t∈[0,1] is a homotopy of A-proper maps with respect
to �0 for all λ > 0, then deg�0

(L − H(t, ·),�, 0) does not depend on t ∈ [0, 1].
(3) If deg�0

(L − N,�, 0) 
= {0}, then 0 ∈ (L − N)(D(L) ∩ �).
(4) If � is a symmetric neighbourhood of 0, and N : � → Y is an odd mapping

such that I − (L + λJP)−1(N + λJP) is A-proper with respect to �0 for some λ > 0, and
0 /∈ (L − N)(∂� ∩ D(L)), then deg�0

(L − N,�, 0) does not contain even numbers.

Proof. The proof is standard. We prove (2) and omit the others. Since 0 /∈
∪t∈[0,1](L − H(t, ·))(D(L) ∩ ∂�), it follows that 0 /∈ ∪t∈[0,1](I − (L + λJP)−1(H(t, ·) +
λJP))(∂�) for all λ > 0. By Theorem 2.1 of [12], we know that

deg(I − (L + λJP)−1(H(t, ·) + λJP),�, 0)

does not depend on t ∈ [0, 1] for each λ > 0. Thus (2) follows from (2.3). �
THEOREM 2.7. Suppose that (L + λJP)−1 : Y → X is a continuous compact mapping

for each λ > 0, and 0 ∈ � ⊂ X is an open bounded subset, N : � → Y is a continuous
bounded mapping such that Lx 
= Nx, and QNx 
= ηJPx for all x ∈ ∂� ∩ D(L), η > 0,
where P, Q are projections as in section 1. Then deg(L − N,�, 0) = {1}.

Proof. Let �0 = (Xn, Pn) be a projectionally complete scheme for X . Since (L +
λJP)−1 : Y → X is continuous and compact for each λ > 0, it follows that {I − (L +
λJP)−1t(N + λJP)}t∈[0,1] is a homotopy of A-proper maps with respect to �0. We
claim that x 
= (L + λJP)−1t(N + λJP)x for all (t, x) ∈ [0, 1] × (∂� ∩ D(L)), λ > 0.
If this is not true, then there exist λ0 > 0, (t0, x0) ∈ [0, 1) × ∂� such that x0 = (L +
λ0JP)−1t0(Nx0 + λJPx0). Thus we have x0 ∈ D(L), and

Lx0 + λ0JPx0 = t0(Nx0 + λ0JPx0).

Obviously, t0 
= 1, therefore (1 − t0)λ0JPx0 = t0QNx0, which is a contradiction to
one of our assumptions. Consequently, the A-proper degree deg(I − (L + λJP)−1(N +
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λJP),�, 0) = deg(I,�, 0) = {1}. By (2.3), we obtain

deg�0
(L − T,�, 0) = {1}. �

COROLLARY 2.8. Suppose that H is a separable Hilbert space, and (L + λJP)−1 :
H → X is a continuous compact mapping for each λ > 0, and 0 ∈ � ⊂ X is an open
bounded subset, N : � → H is a continuous bounded mapping such that Lx 
= Nx
for all x ∈ ∂� ∩ D(L), QNx 
= 0 for x ∈ ∂� ∩ D(L) ∩ Ker(P), (QNx, JPx) < 0 for
all x ∈ ∂� ∩ D(L) ∩ (Ker(P))c, where P, Q are projections as in section 1. Then
deg(L − N,�, 0) = {1}.

Proof. From our assumptions, we have QNx 
= ηJPx for all x ∈ ∂� ∩ D(L), η > 0.
Thus the conclusion follows from Theorem 2.7. �

3. An Example. Consider the following wave equation




utt(t, x) − uxx(t, x) − h(u(t, x)) = f (t, x), t ∈ (0, 2π ), x ∈ (0, π ),
u(t, 0) = u(t, π ) = 0, t ∈ (0, 2π ),
u(0, x) = u(2π, x), x ∈ (0, π ),

(E 3.1)

where h : R → R is a continuous function satisfying

|h(u)| ≤ δ|u| + γ, (3.1)

and f (·) ∈ L2((0, 2π ) × (0, π )), where δ > 0, γ > 0 are constants.
We say u ∈ L2((0, 2π ) × (0, π )) is a weak solution of (E 3.1) if

(u, vtt − vxx) − (h(u(t, x)), v) = (f (t, x), v)

for all v ∈ C2([0, 2π ] × [0, π ]) with v(t, 0) = v(t, π ) = 0 for t ∈ [0, 2π ], and v(2π, x) =
v(0, x) for x ∈ [0, π ].

Let L : D(L) ⊂ L2((0, 2π ) × (0, π )) → L2((0, 2π ) × (0, π )) be the wave operator
Lu = utt − uxx. Then it is well known that L is self-adjoint, densely defined, closed,
and Ker(L) is infinite dimensional with Ker(L)⊥ = Im(L). Thus L is a Fredholm
mapping of zero index type. Let P : L2((0, 2π ) × (0, π )) → Ker(L) be the projection,
then (L + λP)−1 : L2((0, 2π ) × (0, π )) → D(L) is compact for all λ > 0.

Let N : L2((0, 2π ) × (0, π )) → L2((0, 2π ) × (0, π )) be defined by Nu(t, x) =
h(u(t, x)) + f (t, x) for u(t, x) ∈ L2((0, 2π ) × (0, π )). By (3.1), N is a bounded
continuous mapping. For each η > 0, consider the following equation




utt(t, x) − uxx(t, x) + ηu(t, x) − h(u(t, x)) = f (t, x), t ∈ (0, 2π ), x ∈ (0, π ),
u(t, 0) = u(t, π ) = 0, t ∈ (0, 2π ),
u(0, x) = u(2π, x), x ∈ (0, π ),

(E 3.2)

where h, f are as in (E 3.1). Let uη be the weak solution of (E 3.2) if it exists, and we
set S = {uη : η > 0}. Now we have the following alternative result.

THEOREM 3.1. S is unbounded in L2((0, 2π ) × (0, π )) or (E 3.1) has a weak solution.
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Proof. We may assume that S is bounded in L2((0, 2π ) × (0, π )). So there exists
r0 > 0 such that

‖uη‖L2 < r0, for all uη ∈ S. (3.2)

Let � = {u(t, x) ∈ L2((0, 2π ) × (0, π )) : ‖u‖L2 < r0}. By (3.2), we know PNu 
= ηPu
for all u ∈ C2([0, 2π ] × [0, π ]) ∩ ∂�, and η > 0. We may assume that Lu 
= Nu for all
u ∈ C2([0, 2π ] × [0, π ]) ∩ ∂�.

By Theorem 2.7, we have deg(L − N,�, 0) = {1}, thus (E 3.1) has a weak solution.
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