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Abstract 

Spirometra is a genus of zoonotic cestodes with an ambiguous species–level taxonomic history. 

Previously, Spirometra mansonoides was considered the only species present in North America. 

However, recent molecular data revealed the presence of at least three distinct species in the 

United States of America (USA): Spirometra sp. 2 and 3, and Spirometra mansoni. This study 

aimed to elucidate the diversity and potential host associations of Spirometra species among 

companion animals in the USA. Samples (N=302) were examined from at least 13 host species, 

including mammals, amphibians, and reptiles. Sample types included eggs isolated from faeces 

(n=222), adult specimens (n=71), and plerocercoids (n=9) from 18 different states and 2 
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territories across the USA. Extracted genomic DNA was subjected to PCR targeting a fragment 

of the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene. Generated sequences (n=136) 

were included in a phylogenetic analysis. Spirometra mansoni was detected in domestic cats 

(n=76), dogs (n=12), a White’s tree frog (n=1), a Cuban knight anole (n=1), a green iguana 

(n=1), and a serval (n=1) across 15 states and Puerto Rico. Spirometra sp. 2 was found only in 

dogs (n=3) from Florida, and Spirometra sp. 3 was found only in cats (n=41) from 17 states. All 

plerocercoid samples were consistent with S. mansoni. The results confirm that at least three 

distinct Spirometra species are present and established in companion animals, such as dogs and 

cats, and likely are using various native and exotic species as paratenic hosts within the USA. 

Keywords: Genetic diversity, Diphyllobothriidea, North America, sparganosis, species complex, 

Spirometra mansoni, Spirometra mansonoides, Zoonotic diseases 

 

Introduction  

Broad tapeworms within the genus Spirometra (Cestoda: Diphyllobothriidea) are known to cause 

sparganosis (i.e., larval infection), a potentially life–threatening zoonotic disease, and 

spirometrosis (i.e., adult infection), with reports from every continent except Antarctica (Scholz 

et al., 2019; Kuchta et al., 2024). Spirometra species are known to parasitize mammals, 

amphibians, reptiles, birds, and rarely fish (Kuchta et al., 2024; Vettorazzi et al., 2023). The 

lifecycle begins when an infected definitive host defecates faeces containing eggs. The egg must 

reach freshwater where it hatches and releases a coracidium. The lifecycle requires two 

intermediate hosts, the first intermediate of which is a freshwater cyclopoid copepod which 

becomes infected upon the ingestion of a coracidium. The coracidium develops into the first 

metacestode larval stage, known as the procercoid, within the copepod. The second intermediate 
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host, typically an amphibian or reptile but occasionally mammals such as humans, become 

infected upon ingestion of the copepod-containing procercoids; however, experimental studies 

have shown that infection through direct penetration by the procercoid is also possible (Li et al., 

1929; Mueller et al., 1938). The procercoid develops into the final metacestode larval stage, the 

plerocercoid, within the second intermediate host; and this plerocercoid can establish itself in 

various organs or tissues for several years (Mueller, 1974). Plerocercoids, also termed spargana, 

can elicit a serious clinical manifestation known as sparganosis within the second intermediate 

host and a wide range of paratenic hosts. Typically, plerocercoids are located within the 

subcutaneous tissue, but they can migrate to the viscera, muscles, eyes, and central nervous 

system (Kuchta et al., 2021). The definitive host, typically a carnivoran mammal, becomes 

infected by ingesting tissues of a paratenic or second intermediate host containing the 

plerocercoid. The plerocercoid may also infect an individual if exposed to an open wound, for 

instance, in cases where amphibians such as frogs are used as poultices and placed on the wound 

(Liu et al., 2015). The plerocercoid develops into an adult cestode within the host’s small 

intestine and releases eggs into the faeces. In the environment, these eggs embryonate and hatch 

in freshwater, releasing a coracidium that then completes the life cycle through infection of and 

development in a freshwater cyclopoid copepod (Mueller, 1974). The prepatent period of this 

cestode is relatively short with eggs being passed in faeces as early as two weeks in cats (Kuchta 

et al., 2024).  

Adult Spirometra is generally nonpathogenic within the carnivoran definitive host; however, 

in some cases, it can cause gastrointestinal disease resulting in vomiting, diarrhoea, and weight 

loss (Conboy, 2009). Infection with the plerocercoid may result in more serious disease and even 

death depending on the degree of pathology and the tissues involved (Conboy, 2009). In humans, 
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there have been approximately 70 reported cases of sparganosis in North America with the most 

recent case of a 12-year-old child from Florida in 2024 who presented with a painful 

subcutaneous mass from which a plerocercoid was surgically excised (Griffin et al., 1996; 

Hawkins et al., 2024; Kuchta et al., 2015; Mueller al., 1963; Taylor et al., 1976). In extreme and 

rare cases, the plerocercoid asexually reproduces in multiple organs causing a fatal condition 

known as proliferative sparganosis (Buergelt et al., 1984; Conboy, 2009; Tokiwa et al., 2024; 

Woldemeskel, 2014).  

Advancements in molecular diagnostic methods have contributed to the recent 

reclassification of Spirometra species; and, while still controversial, species or lineages are 

generally confined to specific geographic regions. Kuchta et al. (2024) proposed a new 

classification scheme based on molecular data and geographic location in which there are seven 

distinct lineages: Spirometra erinaceieuropaei in Europe, Spirometra theileri in Africa, 

Spirometra asiana in Korea and Japan, Spirometra decipiens in South America, Spirometra sp. 2 

in both North and South America, Spirometra sp. 3 in North America, and Spirometra mansoni 

found worldwide (Kuchta et al., 2024; Yamasaki et al., 2024). Prior to this new classification 

scheme, Spirometra sp. 2 was denoted as S. decipiens complex 1 and Spirometra sp. 3 was 

within the S. decipiens complex 2. Both species complexes have been molecularly confirmed in 

North and South America. Kuchta et al. (2024) proposed the S. decipiens complex 2 be divided 

into North and South American lineages with what is now the free-standing S. decipiens in South 

America and Spirometra sp. 3 in North America. Additionally, specimens within S. decipiens 

complex 1 are referred to as Spirometra sp. 2. This newly proposed naming schematic by Kuchta 

et al. (2024) is used henceforth.  
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In North America, the first species to be formally described was named Diphyllobothrium 

(Spirometra) mansonoides, based on specimens from a domestic cat in the northeastern USA 

(Mueller, 1935). At the time, Spirometra was classified as a subgenus of Diphyllobothrium, but it 

was later elevated to genus (Mueller, 1938). In fact, the first reports of Spirometra in the USA 

pre-date the 1935 description of S. mansonoides; in 1927, a cestode was collected from a cat in 

Louisiana and was morphologically identified as belonging to the genus Dibothriocephalus, 

previously Diphyllobothrium, subgenus Spirometra. Additionally, tapeworms collected from a 

cat in Puerto Rico, also in 1927, were classified as Diphyllobothrium mansoni (Dikmans, 1931). 

Spirometra mansonoides was originally described based on the morphology of the terminal loops 

of the uterus. However, this morphological feature is also found within the S. decipiens complex 

and with no supporting molecular data of S. mansonoides, it is currently not recognized as a valid 

species (Kuchta et al., 2024). Nevertheless, Spirometra eggs have been routinely observed 

through faecal examinations of dogs and cats mainly from the eastern USA across decades, and 

often diagnosed either to genus level or as S. mansonoides (Conboy, 2009, Wyrosdick et al. 

2017, Hoggard et al., 2019, Nagamori et al., 2020; Sobotyk et al. 2021). Currently, molecular 

evidence suggests that the Spirometra species present in the USA include: S. mansoni from a 

captive Samar cobra (Naja samarensis) in Texas, S. mansoni from an unknown host in Nebraska, 

Spirometra sp. 2 from a bobcat (Lynx rufus) in Illinois, and Spirometra sp. 3 from captive 

meerkats (Suricata suricatta) in South Carolina, a black rat snake (Pantherophis obsoletus) in 

Louisiana, an eastern racer snake (Coluber constrictor), and a western ribbon snake (Thamnophis 

proximus) both from Mississippi (Jeon et al., 2016; Kuchta et al., 2024; McHale et al., 2020; 

Verocai et al., 2023; Waeschenbach et al., 2017; Yamasaki et al., 2021). 
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This study aimed to elucidate the genetic diversity and potential host associations of 

Spirometra cestodes in the USA and its territories through molecular analysis of specimens 

collected from naturally infected animals and submitted to veterinary diagnostic laboratories 

nationwide. 

 

Materials and Methods 

Sample acquisition 

Samples were requested utilizing the VetPDx (Veterinary Parasitology Diagnostic Network), a 

listserv founded in 2017 to connect parasitology diagnostic laboratories across North America. A 

total of 302 samples were received from various locations across the USA, including 25 states 

and 2 territories (Puerto Rico and the US Virgin Islands). The specimens represented adults 

(n=71), plerocercoids (n=9), and faecal samples from which Spirometra eggs were isolated 

(n=222). Of the adult specimens, 16 were collected from domestic dogs (Canis lupus familiaris), 

52 from domestic cats (Felis silvestris catus), one from an ocelot (Leopardus pardalis), one from 

a serval (Leptailurus serval), and one from an unspecified host. The faecal samples consisted of 

29 from domestic dogs, 188 from domestic cats, and five from unspecified hosts. Finally, of the 

plerocercoids, one was obtained from a green iguana (Iguana iguana), one from a rattlesnake of 

unknown species, one from a wild boar (Sus scrofa), one from an opossum (Didelphis 

virginiana), one from a White’s tree frog (Litoria caerulea), one from a Cuban knight anole 

(Anolis equestris), and three from New England cottontail rabbits (Sylvilagus transitionalis). 

Overall, samples included both fresh and archival samples from teaching and diagnostic 

laboratory collections in which samples were collected from 1993–2024 in various preservatives 

such as formalin and ethanol. 
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Sample preparation 

The different sample types were prepared as follows for DNA extraction: 1) Faecal samples 

(n=222): The faecal samples were processed by double centrifugation sugar flotation using 2 

grams of faeces (Hoggard et al. 2019, Zajac et al. 2021). After centrifugation, the top 2 mL of 

the faecal mixture was siphoned from the 15 mL centrifuge tube and added to a 50 mL conical 

centrifuge tube. Next, 40 mL of water was added to the tube, vortexed, centrifuged at 400 rcf for 

10 minutes, and the supernatant was discarded. This step was repeated. Most of the supernatant 

was removed, leaving the pellet in approximately 2 mL of water. The pellet and water were then 

vortexed and strained through a 100 µM ÜberStrainer® (PluriSelect, Leipzig, Germany), 

followed by straining through a 30 µM ÜberStrainer®. The eggs were then collected from the 

mesh of the 30 µM ÜberStrainer® and stored in 50 mL conical centrifuge tubes. 2) Adults 

(n=71) and plerocercoids (n=9): Approximately 1–2 cm of each specimen was placed in a 1.5 

mL Eppendorf microtube. The preservative in which each specimen had been kept was then 

evaporated using a Vacufuge® plus centrifuge concentrator (Eppendorf, Hamburg, Germany) for 

6 minutes.  

 

Genomic DNA extraction 

Genomic DNA was extracted using different methods and kits for the sample types listed. 1) 

Eggs: For 68 of the 222 samples from which eggs were isolated, an Omni International Bead 

Ruptor Elite Bead Mill Homogenizer®
 
(Thermo Fisher Scientific, Waltham, MA, USA) was 

used to break apart the eggs before DNA extraction. To do this, the faecal sediment was added to 

a 2 mL tube with 1.4 mm ceramic beads and processed with the following settings: 2-minute 

cycle, 10-second dwell, 5.00 m/s, and run for 2 cycles. DNA was then extracted from the 
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samples using the Maxwell® RSC Tissue DNA kit (Promega, Madison, WI, USA) according to 

the manufacturer’s instructions. The remaining 154 samples containing egg samples were 

extracted using the Maxwell® RSC Faecal Microbiome DNA kit (Promega, Madison, WI, USA) 

according to the manufacturer’s instructions. 2) Adult worms and plerocercoids: These were 

initially beaten with beads in a 2 mL tube with 2.8 mm ceramic beads and processed with the 

following settings: 2-minute cycle, 10-second dwell, 5.65 m/s, and run for 2 cycles. DNA was 

then extracted using the Maxwell® RSC Tissue DNA kit (Promega, Madison, WI, USA) 

according to the manufacturer’s instructions.  

 

Molecular analysis 

All samples were subjected to polymerase chain reaction (PCR) using primers (forward primer 

PlatCOI F (5’-TTT TTT GGG CAT CCT GAG GTT TAT-3’) and reverse primer PlatCOI R (5’-

TAA AGA AAG AAC ATA ATG AAA ATG-3')) that targeted a portion of the cytochrome c 

oxidase subunit 1 (cox1) gene in the mitochondrial DNA (mtDNA). A modified protocol from 

Bowles et al. (1995) was utilized to amplify a fragment of the cox1 gene region in a 25 μL 

reaction that included Go™ TaqGreen Master Mix (Promega, Madison, WI, USA), 2.5 μL of 

DNA template, and 10 μM of each of primer. Cycling conditions were as follows: denaturation at 

95°C for 2 minutes, followed by 35 cycles of 95°C for 30 seconds, 52°C for 1 minute, and 72°C 

for 1 minute, followed by a final extension of 72°C for 5 minutes. DNA extracted from a 

fragment of an adult Spirometra sp. was used as a positive control, and nuclease-free water was 

used as the negative control. The PCR products were run on a 1.5% agarose gel and visualized 

using an ultraviolet transilluminator. The expected size of the amplified products was 

approximately 400 bp in size. Samples that amplified were purified using the E.Z.N.A.® Cycle 
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Pure Kit (Omega Bio–tek, Norcross, GA, USA) and were sequenced in both directions in a 

3730xl DNA Analyser at Eurofins Genomics (Louisville, KY, USA).  

 

Phylogenetic and haplotype analysis 

For phylogenetic analysis, sequences were aligned and trimmed using MEGA X version 10.0.5 

(Kumar et al., 2018) and were compared to related sequences from NCBI. The phylogenetic tree 

was constructed from the generated cox1 gene sequences using the maximum–likelihood method 

with 1000 bootstrap support and the Tamura-Nei with gamma-distribution (TN93+G) best–fit 

substitution model (Tamura and Nei, 1993). Schistocephalus solidus (AP017669) was used as an 

outgroup.  

For the haplotype network analysis, sequences of S. mansoni were analysed. This 

included 83 sequences (330bp) and 41 reference sequences available in GenBank from Vietnam 

(n=1), India (n=1), Australia (n=4), Korea (n=2), China (n=3), Iran (n=2), Japan (n=7), Romania 

(n=1), Indonesia (n=3), New Zealand (n=1), Colombia (n=1), Thailand (n=3), Myanmar (n=2), 

Tanzania (n=1), Cambodia (n=4), USA (n=1), and Laos (n=4). Nine of the S. mansoni sequences 

generated in our study were removed due to their shorter length. The sequences were prepared in 

Mega X version 10.0.05 (Kumar et al., 2018) and DnaSP (v6) (Rozas et al., 2017). The prepared 

sequences were imported into PopART (v1.7) and the median-joining network method was 

utilized to construct the haplotype network (Bandelt et al., 1999).  

 

Results 

Of the 302 samples received, quality sequences were obtained from 45% (n=136) of them and 

were included in the phylogenetic analysis (Table 1) and submitted to GenBank (Supplementary 
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Table 1). Of these 136 samples, 83.1% (n=113) came from isolated eggs, 14.7% (n=20) from 

adult worms, and 2.2% (n=3) from plerocercoids. The phylogenetic analysis indicated three 

distinct clades among the samples that grouped with previously submitted sequences of 

Spirometra mansoni and Spirometra spp. 2 and 3 (Figure 1). Of the 136 sequences, 67.6% 

(n=92) were most similar to S. mansoni, 2.2% (n=3) were similar to Spirometra sp. 2, and 30.1% 

(n=41) were similar to Spirometra sp. 3 (Table 1). Within each sample type, the species 

breakdown is as follows: 1) Of the 113 egg samples, 67.3% (n=76) were identified as S. 

mansoni, Spirometra sp. 3 comprised 32.7% (n=37), and Spirometra sp. 2 was not identified in 

any of the egg samples. 2) Of the 20 adult specimens, 65% (n=13) were identified as S. mansoni, 

15% (n=3) were identified as Spirometra sp. 2, and 20% (n=4) were identified as Spirometra sp. 

3. 3) Of the plerocercoids, 100% (n=3) were identified as S. mansoni. Regarding host 

association, samples that grouped with Spirometra sp. 3 were found only in domestic cats, 

whereas samples grouping with Spirometra sp. 2 were only found in domestic dogs (Table 1). 

No host association was observed for S. mansoni. Geographically, S. mansoni was identified in 

15 different states and Puerto Rico. Whereas, Spirometra sp. 3 was found in 17 different states, 

and Spirometra sp. 2 was restricted to Florida (Figure 2). Spirometra mansoni and Spirometra 

sp. 3 had a geographic overlap and were found in 14 of the same states. Additionally, all three 

lineages were found in Florida.  

 Regarding the haplotype network of S. mansoni, overall, there were 26 different 

haplotypes identified from the 124 cox1 gene sequences (Figure 3). The network analysis 

indicated two predominant haplotypes to which most of the samples aligned Haplotype 2 

(Hap_2) and Haplotype 4 (Hap_4). Hap_2 had a haplotype frequency of 33.9% (n=42) among 

samples, including samples from Connecticut, Florida, Georgia, Indiana, Louisiana, Maryland, 
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New Hampshire, New Jersey, Pennsylvania, and South Carolina and sequences from Oceania 

(e.g., Australia) and Asia (e.g., China, Japan, Iran, and Thailand). Hap_4 had a frequency of 

30.6% (n=38) among samples, including samples from Connecticut, Florida, Illinois, 

Massachusetts, New Hampshire, Pennsylvania, and Texas, and sequences from Oceania (e.g., 

Australia and New Zealand), Asia (e.g., Japan, and Indonesia) and South America (e.g., 

Colombia). A summary of the geographic origins and haplotype frequencies can be found in 

Supplementary Table 2.   

 

Discussion 

The genus Spirometra is likely the oldest lineage of diphyllobothriidean cestodes; and, since its 

original description over 200 years ago, the genus has undergone multiple reclassifications 

(Kuchta et al., 2024). Before this study, the molecular characterization of Spirometra isolates 

from the USA was limited with few studies having been done leading to a significant knowledge 

gap in species diversity and distribution (Kuchta et al., 2021; McHale et al., 2020; Verocai et al., 

2023; Waeschenbach et al., 2017). Despite S. mansoni being found worldwide, reports of 

molecular characterization from cases occurring in the Americas have only been recently 

described (Brabec et al., 2022; Verocai et al., 2023; Alvarado–Hidalgo et al., 2024; Wu et al., 

2024); however, it has not been determined if S. mansoni is established and circulating in the 

Americas, specifically the USA. The first molecular report of S. mansoni in the Americas was 

from a crab-eating fox (Cerdocyon thous) in 2022 from Colombia (Brabec et al., 2022), followed 

by a Samar cobra in 2023 from the USA (Verocai et al., 2023). In 2024, there were 3 published 

reports that included four dogs, three cats, and one coyote (Canis latrans) from Costa Rica 

(Alvarado–Hidalgo et al., 2024), and two Puerto Rican crested anoles (Anolis cristatellus) from 
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Puerto Rico (Wu et al., 2024). These cases confirm the presence of S. mansoni in the Americas. 

In the case of the Samar cobra from the USA, which was imported from the Philippines, it was 

suspected that the snake was infected prior to importation to the USA (Verocai et al., 2023). 

Additionally, another specimen from an unknown host in Nebraska, USA that was originally 

labelled as Spirometra mansonoides based on morphology was molecularly misidentified as S. 

decipiens and later reclassified as S. mansoni (Jeon et al., 2016; Yamasaki et al., 2021; Yamasaki 

et al., 2024). The results now confirm that S. mansoni is likely well established, across the USA, 

using dogs and cats as definitive hosts, and has had multiple introductions over time, followed by 

some events of within-country expansion through animal movement. The latter claim is 

supported by the results of the haplotype network analysis, which indicates intraspecific genetic 

diversity within S. mansoni (Figure3). While various haplotypes comprised sequences from the 

USA and other continents, their specific origin cannot be determined. 

Regarding Spirometra sp. 2, previously named S. decipiens complex 1, there has been 

only a single molecular report from the USA in a bobcat (L. rufus), whereas all other reports 

have originated primarily from both wild and domestic canid and felid hosts in South America 

(Waeschenbach et al., 2017; Fredes et al., 2022; Petrigh et al., 2015; Almeida et al., 2016; 

Arrabal et al., 2020; Kuchta et al., 2024). In contrast, samples from this study included only 

three cases that grouped with Spirometra sp. 2, all originating from domestic dogs from Florida 

(Figure 1). It is plausible that the importation of domestic dogs and cats from South America has 

led to the establishment of Spirometra sp. 2 in North America as well (Jeon et al., 2016). 

However, Spirometra has been reported from a grey fox (Urocyon cinereoargenteus) and Florida 

panthers (Puma concolor coryi) (Conti, 1984; Foster et al., 2006), bobcats from Arkansas (Heidt 

et al., 1988), and coyotes and raccoons (Procyon lotor) from various states (Harkema and Miller, 
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1964; Schaffer et al., 1981; Gompper et al., 2003) without molecular characterization therefore, 

it is plausible that Spirometra sp. 2 was already established and circulating within the USA. 

Considering the variety of both wildlife and domestic animal host species that Spirometra sp. 2 

infects across North and South America, determining any host association within this complex 

remains challenging. This highlights the need for broader sampling and molecular 

characterization of specimens from the USA, as well as Central and South America, to better 

understand the species composition and host associations among different genetic lineages.  

Molecular confirmation of Spirometra sp. 3, previously within S. decipiens complex 2, 

infections have been reported prior to this study in the USA in reptiles and exotic mammals 

(Waeschenbach et al., 2017; McHale et al., 2020; Kuchta et al., 2024). In South America, S. 

decipiens, previously within S. decipiens complex 2, has been found in a maned wolf 

(Chrysocyon brachyurus) in Bolivia, a Patagonian green racer (Philodryas patagoniensis) in 

Uruguay, and a Geoffroy’s cat (Leopardus geoffroyi) and an ocelot (Leopardus pardalis) in 

Brazil (Kuchta et al., 2024). The samples that grouped with Spirometra sp. 3 were exclusively 

detected in domestic cats, suggesting a potential host association within the USA. The sequences 

from this study represent the first molecular characterization of Spirometra isolates from the 

geographic region in which S. mansonoides was first described by Mueller (1935), supporting 

the idea that S. mansonoides belongs in the Spirometra sp. 3. Complex. According to Kuchta et 

al. (2024), isolates within S. decipiens complex 2, should be separated into a North and a South 

American lineage, with those from South America being referred to as S. decipiens and those 

from North America as Spirometra sp. 3. The results of this study further support the hypothesis 

of S. mansonoides to be a valid species, possibly represented by Spirometra sp. 3 (i.e., Kuchta et 

al. 2024). Nevertheless, integrated molecular and morphological evidence would be required for 
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resurrecting the species. This could be accomplished by reassessing the type-material of the 

original S. mansonoides description by Mueller (1935), in addition to an attempt of molecular 

characterization of the material, which may not be fruitful given preservation methods, DNA 

quality, and destructive use.  Alternatively, adult specimens could be collected from the type-

host and the type-locality (i.e., Syracuse, New York) to provide a robust molecular 

characterization followed by phylogenetic analysis for comparison with the data generated by 

our study. 

There are many challenges associated with determining a species based solely on 

morphology. Historically, the reproductive system of adults was used for identification, 

specifically the number of uterine coils; however, this can vary as the worm develops and is 

considered unreliable (Yamasaki et al., 2021; Iwata, 1972). Additionally, the morphology of 

museum or archival specimens may be distorted, depending on the fixation technique used, and 

result in misidentification. Furthermore, the opportunistic nature of our sampling limited the 

ability for morphology to be assessed as the amount of specimen provided was enough only for 

molecular analysis. Another challenge when working with archival samples, such as the ones 

obtained in this study, that had an unknown preservation history, is that preservatives such as 

formalin can greatly inhibit molecular analysis (Zimmermann et al., 2008). Furthermore, most 

samples included in our study were eggs isolated from faeces, a biological sample known to 

contain PCR inhibitors such as complex polysaccharides, bilirubin, and metabolites from 

digestion that may have contributed to the reduced number of high–quality sequences suitable 

for inclusion in the phylogenetic analysis (Roncancio–Duque et al., 2024). To have a complete 

taxonomic description, future studies should focus on both molecular and morphologic 
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characterization of larval and adult stages using standardized fixation techniques that are 

compatible with molecular techniques, (Chávez-González et al., 2022; Chervy, 2024). 

This study identified patent infections in both dogs and cats, which may increase the risk 

of transmission in companion animals and pose an additional threat to public health due to the 

zoonotic potential of this parasite. Infections with Spirometra adults in the small intestine of cats 

and dogs are typically subclinical, but there are rare instances in which a fatal proliferative 

sparganosis can occur in companion animals and humans. Proliferative sparganosis develops 

when the plerocercoids asexually reproduce and migrate into multiple tissues and organs as 

opposed to non–proliferative infections in which only a few plerocercoids migrate in a confined 

area within connective tissue (Kikuchi et al., 2020). Historically, reported cases of symptomatic 

or fatal proliferative sparganosis in humans or animals, thought to be caused almost exclusively 

by an isolate phylogenetically closely related to Spirometra isolates from South America 

belonging to Spirometra species 2, therefore within the S. decipiens complex 1, incorrectly 

referred to as Sparganum proliferum (Fredes et al., 2022; Kikuchi et al., 2020; Miyadera et al., 

2001); however, a recent case of proliferative sparganosis in a cat in Japan was due to S. mansoni 

(Tokiwa et al., 2024). The Japanese case highlights the importance of determining the taxonomic 

status and distribution of Spirometra, as different species may be associated with a higher degree 

of pathogenicity. Furthermore, feral cats and other wild carnivoran mammals such as raccoons, 

may act as reservoirs for Spirometra species and potentiate their spread to vulnerable or 

endangered species in zoological facilities, as was demonstrated by McHale et al. (2020) in 

which three cases of sparganosis in captive meerkats at a zoological facility was reported. 

Although Spirometra infections have been reported in Oklahoma, Hawaii, North 

Carolina, and West Virginia, no samples from these areas were available for inclusion in the 
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analysis (Nagamori et al., 2020; Little et al., 2000). Due to the opportunistic and voluntary 

nature of the sampling strategy employed in the present study, we were unable to confirm the 

absence of Spirometra spp. in states without sample representation. Notwithstanding the 

limitation of sampling bias, the results still demonstrated an extensive geographic overlap of S. 

mansoni and Spirometra sp. 3 with both in 14 of the same states (Figure 2). It is plausible that 

cats in these states are at an increased risk for co–infection with both lineages. These findings 

raise the question of how both lineages became established in the same geographic area in the 

USA. To answer this, we must consider the origins of both the parasite and its host. Spirometra 

isolates within Spirometra sp. 3 may have already been present in North America with the bobcat 

(L. rufus), a felid native to North America, serving as the definitive host, and native amphibian 

and reptile species acting as the second intermediate host (Mueller, 1974). With the colonization 

of North America by European settlers in the early 16
th

 century, various domestic animals were 

introduced, including domestic cats. It can be speculated that these animals preyed upon the 

second intermediate hosts, which led to their infection and integration into the Spirometra life 

cycle (Serpell, 2014).  

In contrast, the results indicate that S. mansoni is currently well established throughout 

the USA, and while it is speculated that S. mansoni currently has a cosmopolitan distribution 

with potential origins in Asia, prior to this study there was little molecular evidence to confirm 

its presence and establishment in North America. Our haplotype analysis further supports the 

hypothesis of multiple introduction events throughout modern times resulted in the establishment 

and expansion in the USA. Another explanation, especially pertinent in the last few decades, is 

the increased travel and rehoming efforts of companion animals such as dogs and cats both 

domestically and internationally may have further contributed to the introduction of S. mansoni 
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into new geographic areas within the USA (Wright et al. 2020, Giannelli et al., 2024). 

Additionally, the legal and illegal importation of exotic animals to the United States may play an 

extensive role in modern times in the introduction and spread of zoonotic pathogens such as 

species of Spirometra (Rush et al., 2021, Verocai et al., 2023). 

Regarding treatment and prevention, there are currently no FDA–approved products 

labelled for the treatment of Spirometra in companion animals. However, treatment 

recommendations consist of oral or subcutaneous administration of praziquantel at 25 mg/kg 

once a day for two consecutive days for both cats and dogs (Conboy, 2009). In cases of 

proliferative sparganosis, one of the only known successful treatments was of a dog, 

administered 3 weeks of mebendazole at 20 mg/kg orally once a day followed by 3 weeks of 

praziquantel at 5 mg/kg orally or subcutaneously once a day, and alternating this regimen for 

three months (Beveridge et al., 1998). Effective prevention strategies must consider the various 

transmission routes the parasite utilizes to complete the life cycle. A vertebrate host may become 

infected by i) ingestion of an infected copepod first intermediate host with a procercoid through 

contaminated water or food; ii) ingestion of a second intermediate or paratenic host infected with 

a plerocercoid; or iii) migration of a plerocercoid into an open wound of a potential host 

(Mueller, 1974; Li et al., 2011). Infections in humans primarily occur due to poor food safety 

and hygiene practices, such as the ingestion of raw or undercooked second intermediate or 

paratenic hosts, or the use of amphibian poultices on open wounds to facilitate healing in certain 

cultures (Li et al., 2011; Liu et al., 2015). Education is likely the most vital tool in prevention of 

human sparganosis and should focus on educating people about how infections occur, 

emphasizing food safety, (i.e. thoroughly cooking meat, especially wildlife), and filtering 

potentially contaminated drinking water. In regions where the use of frog and snake poultices is 
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common, discouraging this practice and educating about the risk of infection is warranted (Li et 

al., 2011; Liu et al., 2015). In companion animals, prevention could consist of restricting pets’ 

access to areas which wildlife inhabit and may contaminate the environment, and monitoring 

pets to prevent ingestion of potential second intermediate or paratenic hosts. Zoological facilities 

should consider similar mitigation strategies by implementing surveillance of potential reservoir 

hosts such as feral cats and raccoons that may contribute to contaminating the environment 

(McHale et al., 2020).  

 

Conclusion  

Spirometra mansoni is well established in the USA and likely has had multiple introductions 

throughout history. There are two other distinct species of Spirometra present within the United 

States that correspond to Spirometra species 2 and 3. Two lineages within Spirometra sp. 3 

should be considered, one which represents the North American lineage and the other the South 

American lineage of Spirometra. Pending additional integrated classical and molecular 

assessment, S. mansonoides may be resurrected as the taxon shown to infect domestic cats in 

North America.  Overall, this study reinforces the need for further molecular characterization of 

different Spirometra life stages in domestic animals, animals housed in zoological facilities, and 

wildlife. 
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Figure 1. Maximum likelihood tree inferred from partial cox1 gene sequences of Spirometra 

samples from this study and related taxa. Sequences from this study are denoted by a solid black 

circle (•). The best substitution model used was Tamura-Nei + Gamma distribution. 

Schistocephalus solidus was used as outgroup. (AUS – Australia; ARG – Argentina; BO – 

Bolivia; BRA – Brazil; CHL – Chile; CHI – China; COL – Colombia; CR – Costa Rica; ETH – 

Ethiopia; FIN – Finland; INDO – Indonesia; IND – India; IRA – Iran; KOR – Korea; JPN – 

Japan; NZE – New Zealand; PR – Puerto Rico; POL – Poland; RUS – Russia; SSU – South 

Sudan; TZN – Tanzania; UKR – Ukraine; USA – United States of America; VEN – Venezuela; 

VNM – Vietnam; CT – Connecticut; FL – Florida; GA – Georgia;  IL – Illinois; ID – Idaho; IN – 

Indiana; KS – Kansas; LA – Louisiana; MA – Massachusetts; MD – Maryland; MN – 

Minnesota; NJ – New Jersey; NH – New Hampshire; NY – New York; PA – Pennsylvania; SC – 

South Carolina; TN – Tennessee; TX – Texas;  WI – Wisconsin). 

 

Figure 2. Distribution of Spirometra species in the United States of America. A. Distribution of 

Spirometra sp. 2. B. Distribution of Spirometra sp. 3. C. Distribution of Spirometra mansoni. D. 

Historical distribution of molecularly confirmed cases in the USA with pictograms of host 

species. 

 

Figure 3. Median-joining haplotype network of Spirometra mansoni isolates. A total of 124 

sequences, 83 from this study and 41 from GenBank, were included for analysis. The size of the 

circle corresponds to the number of sequences belonging to each haplotype. The network is 

color-coded to represent the geographical origins of samples within each haplotype. 
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Table 1. Geographic distribution and species identity of samples (n=136) included in the 

phylogenetic analysis. Percentages are defined as the proportion of samples from a particular 

state belonging to dog, cat, and other* hosts and the Spirometra spp. identified. Other* includes 

samples from a serval (Leptailurus serval), a green iguana (Iguana iguana), a White’s tree frog 

(Litoria caerulea), and a Cuban knight anole (Anolis equestris).   

 

Origin Total (n 

of 

samples) 

S. mansoni Spirometra 

sp. 2 

Spirometra 

sp. 3 

Dog Cat Other* Dog Cat 

Connecticut 5 80% (n=4) NA NA NA 20% (n=1) 

Florida 59 12% (n=7) 64% (n=38) 5% (n=3)  5% (n=3) 13% (n=8) 

Georgia 2 NA NA 50% (n=1) NA 50% (n=1) 

Idaho 3 NA 33% (n=1) NA NA 67% (n=2) 

Illinois 3 NA 33% (n=1) NA NA 67% (n=2) 

Indiana 3 NA 67% (n=2) NA NA 33% (n=1) 

Louisiana 2 NA 50% (n=1) NA NA 50% (n=1) 

Massachusetts 8 NA 25% (n=2) NA NA 75% (n=6) 

Maryland 4 NA 100% (n=4) NA NA NA 

Minnesota 4 NA 50% (n=2) NA NA 50% (n=2) 

New 

Hampshire 

6 17% (n=1) 67% (n=4) NA NA 17% (n=1) 

New Jersey 4 NA 50% (n=2) NA NA 50% (n=2) 

New York 1 NA NA NA NA 100% (n=1) 
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Pennsylvania 5 40% (n=2) 40% (n=2) NA NA 20% (n=1) 

South Carolina 7 NA 43% (n=3) NA NA 57% (n=4) 

Tennessee 3 NA NA NA NA 100% (n=3) 

Texas 12 17% (n=2) 75% (n=9) NA NA 8% (n=1) 

Wisconsin 4 NA NA NA NA 100% (n=4) 

Puerto Rico 1 NA 100% (n=1) NA NA NA 
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