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Abstract

For a reductive group G over a finite field, we show that the neutral block of its mixed Hecke
category with a fixed monodromy under the torus action is monoidally equivalent to the mixed
Hecke category of the corresponding endoscopic group H with trivial monodromy. We also
extend this equivalence to all blocks. We give two applications. One is a relationship between
character sheaves on G with a fixed semisimple parameter and unipotent character sheaves on
the endoscopic group H , after passing to asymptotic versions. The other is a similar relationship
between representations of G(Fq)with a fixed semisimple parameter and unipotent representations
of H(Fq).

2010 Mathematics Subject Classification: 20G40 (primary); 14F05, 14F43, 20C08, 20C33
(secondary)

1. Introduction

1.1. Hecke categories. Let G be a connected split reductive group over a
finite field Fq . Let B be a Borel subgroup of G. The (mixed) Hecke category
of G is the B-equivariant derived category of complexes of sheaves with Q`-
coefficients on the flag variety G/B of G whose cohomology sheaves are mixed
in the sense of [8, 1.2.2]. We denote this category by Db

m(B\G/B). The Hecke
category Db

m(B\G/B) carries a monoidal structure under convolution. It gives a
categorification of the Hecke algebra Hq(W ) attached to the Weyl group of G.
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The Hecke category and its variants play a central role in geometric
representation theory. On the one hand, when the base field is C, the category of
perverse sheaves Perv(BC\GC/BC) is equivalent to a version of category O for
the Lie algebra g of GC, by the Beilinson–Bernstein localization theorem. The
Kazhdan–Lusztig conjecture [11] relates the stalks of simple perverse sheaves
on BC\GC/BC to characters of simple modules in the category O. On the other
hand, by the work of Ben-Zvi–Nadler [2] (characteristic zero), Bezrukavnikov–
Finkelberg–Ostrik [5] (characteristic zero) and Lusztig [20] (characteristic
p > 0), the categorical center of the Hecke category is equivalent to the category
of unipotent character sheaves (the exact statement varies in different papers; in
particular, [5] and [20] contain statements about the asymptotic versions), which
in turn is closely related to irreducible characters of finite groups of Lie type
G(Fq).

1.2. Monodromic Hecke categories. In this paper, we consider the
monodromic version of the Hecke category. More precisely, let B = U T ,
where U is the unipotent radical of B and T a maximal torus. For two rank-one
character sheaves L,L′ on the torus T (which is the same as a rank-one local
system with finite monodromy together with a rigidification at the origin), we
consider the equivariant derived category L′DL of mixed Q`-complexes on
U\G/U under the left and right translation action of T with respect to the
character sheaves L′ and L, respectively. When L is the trivial local system,
LDL is the usual Hecke category Db

m(B\G/B).
In [13, Ch. 1], the first author proves that the stalks of the simple perverse

sheaves in the monodromic Hecke category L′DL are given by Kazhdan–Lusztig
polynomials for a smaller Weyl group inside W defined using L or L′. Our main
result is a categorical equivalence, which implies this numerical statement. To
state it, we need to introduce, on the one hand, blocks in L′DL and, on the other
hand, the endoscopic group attached to L.

For simplicity, let us restrict to the case L′ = L. The monoidal category LDL
can in general be decomposed into a direct sum of subcategories called blocks.
Let LD◦L ⊂ LDL be the block containing the monoidal unit. The simple perverse
sheaves in LD◦L up to Frobenius twists are parametrized by a normal subgroup
W ◦

L of the stabilizer of L under W . For details, see Definition 4.10. When the
center of G is connected (for example, G is of adjoint type), we have LD◦L =
LDL.

Let ΦL be the set of roots α of (G, T ) such that the pullback of L along its
coroot α∨ : Gm → T is a trivial local system on Gm . Then ΦL is a root system.
Let H be a connected reductive group over k with T as a maximal torus and ΦL
as its roots. This is the endoscopic group attached to L. The Weyl group WH of
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H is canonically identified with W ◦

L. The choice of the Borel B of G gives a
Borel BH of H . Let DH = Db

m(BH\H/BH ) be the usual mixed Hecke category
for H .

THEOREM 1.3 (For a more precise version, see Theorem 9.2). There is a
canonical monoidal equivalence of triangulated categories

Ψ ◦L : DH
∼

→ LD◦L

sending simple perverse sheaves to simple perverse sheaves.

At the level of Grothendieck groups, Theorem 1.3 implies an isomorphism
between the Hecke algebra for WH and a monodromic version of the Hecke
algebra defined using W and L (see Section 3.13) preserving the canonical bases
of the two Hecke algebras. Such a statement as well as its extension to all blocks
is proved by the first author in [24, 1.6] and implicitly in [17, Lemma 34.7].

In DH , there are simple perverse sheaves IC(w)H (normalized by a Tate twist
to be pure of weight zero) for w ∈ WH . In contrast, in LD◦L, we do not a priori
have canonical simple perverse sheaves indexed byw ∈ W ◦

L; it always involves a
choice of a lifting ẇ ofw to NG(T ). However, the above theorem gives canonical
simple perverse sheaves Ψ ◦L(IC(w)H ) ∈ LD◦L. These canonical objects, denoted
by IC(w)†L, are defined in Definition 6.7 using the constructions in Section 6.5.

As a consequence of our theorem, we prove that the stalks of IC(w)†L are
semisimple as Frobenius modules (Proposition 9.10), and similarly Frobenius
semisimplicity holds for the convolution (Proposition 9.11).

We also have a version of the theorem covering all blocks of L′DL for L and
L′ in the same W -orbit, but it is more complicated to state. See Theorem 10.12.
It involves a groupoid H whose components are torsors of endoscopic groups,
and a subtle modification of the convolution structure by a 3-cocycle of the finite
Abelian group ΩL = WL/W ◦

L (see Sections 10.9 and 5.6).

1.4. Remarks on the proof. The initial difficulty in proving Theorem 1.3
lies in the fact that there is no nontrivial homomorphism between H and G in
general. For example, when G = Sp2n and L of order 2 and fixed by the Weyl
group of G, we have H ∼= SO2n .

The strategy to prove Theorem 1.3 is to relate both categories to Soergel
bimodules for the Coxeter group W ◦

L = WH . For DH , this is by now well
known, following the insight of Soergel [27]: taking global sections of simple
perverse sheaves on BH\H/BH preserves the graded Hom spaces (see [27,
Erweiterungssatz]). In this paper, we develop an analogue of Soergel’s theory
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for the monodromic Hecke categories L′DL. To do this, we replace the global
sections functor in the nonmonodromic case by the functor corepresented by
the simple perverse sheaf with the largest support in each block of L′DL. We
show that the resulting functor carries a monoidal structure (Corollary 7.8) and
preserves graded Hom spaces between simple perverse sheaves (Theorem 7.9).
Using this, we show that LD◦L is equivalent to a certain derived category of
Soergel bimodules (Theorem 9.6).

The results in Sections 2–7 hold with the same proofs when the mixed category
L′DL is replaced with the constructible equivariant derived category for the
situation over an arbitrary algebraically closed field k. We expect Theorems 1.3
and 10.12 to hold as well over any algebraically closed base field. It is likely that
the argument in [4, Section 6.5] would allow one to deduce such results from our
main results over finite fields.

1.5. Application to representations. Let G1 be a form of Gk over Fq . Let us
recall a rough statement of the classification of irreducible characters of G1(Fq).
By [7, 10.1], one can assign to each irreducible G1(Fq)-representation over
Q` a semisimple geometric conjugacy class s in G∗1 defined over Fq (here G∗1
is a reductive group over Fq whose root system is dual to that of G), called
the semisimple parameter of the irreducible representation. This assignment
requires a choice of an isomorphism Homcont(lim

←−n
µn(Fq),Q

×

` )
∼

→ F×q . We may
alternatively think of a semisimple parameter of G1 as a W -orbit o of character
sheaves on Tk that are stable under the Frobenius map for G1.

Let Io(G(Fq)) be the set of irreducible representations of G1(Fq) with
semisimple parameter o. Let Iu(G1(Fq)) be the set of unipotent irreducible
representations of G1(Fq) (that is, the case o consists of the unit element
in Ch(Tk)). It is shown by the first author in [13, Theorem 4.23] that the
parametrization of Io(G(Fq)) is closely related to that of Iu(H1(Fq)), where H1

is the endoscopic group attached to o, under the assumption that the center of G
is connected. An extension of such a relationship to all reductive groups G1 is
announced in [12, 2.1] and proved in [16] and [18].

As an application of Theorem 1.3, using results from [21] and [23] relating
representations of G1(Fq) to twisted categorical centers of the Hecke categories,
we prove a relationship between representations of G1(Fq) with a fixed
semisimple parameter and unipotent representations of its endoscopic group,
without appealing to the classifications mentioned above. We state it under the
simplifying assumption that Gk has a connected center, and the general case is
in Corollary 12.7.
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THEOREM 1.6. Assume Gk has a connected center. Let G1 be a form Gk over
Fq and let o ⊂ Ch(Tk) be a W -orbit that is a semisimple parameter for G1. Let
L ∈ o and let Hk be the endoscopic group of Gk attached to L ∈ o. Then there is
a form H1 of the endoscopic group H over Fq and an equivalence of categories

Repc
o(G1(Fq)) ∼= Repc

u(H1(Fq))

for each two-sided cell c of (G1, o) (which determines a two-sided cell, also
denoted by c, for unipotent representations of H1).

1.7. Application to character sheaves. Character sheaves on Gk (k = Fq)
are certain simple perverse sheaves equivariant under the conjugation action of
Gk . Each character sheaf has a semisimple parameter, which is a W -orbit o ⊂
Ch(Tk). Unipotent character sheaves on Gk are those with a trivial semisimple
parameter. From the classification of character sheaves in [15, 23.1], there is a
close relationship between character sheaves on Gk with a semisimple parameter
o and unipotent character sheaves on Hk , the endoscopic group attached to some
L ∈ o.

As another application of Theorem 1.3, using results from [22], we derive a
relationship between the asymptotic versions of character sheaves on Gk with a
fixed semisimple parameter and unipotent character sheaves on its endoscopic
group. Again we state it under the simplifying assumption that Gk has a
connected center, and the general case is Theorem 11.10.

THEOREM 1.8. Assume Gk has a connected center. Let o ⊂ Ch(Tk) be a W -
orbit. Let L ∈ o and let Hk be the endoscopic group of Gk attached to L. Then
there is a canonical equivalence of braided monoidal categories

CSc
o(Gk) ∼= CSc

u(Hk)

for each two-sided cell c of WH = W ◦

L.

For definitions of CSc
u(Hk) and CSc

o(Gk), see Sections 11.2 and 11.5.
In Theorem 12.6, we also prove a generalization of the above equivalence for

character sheaves on disconnected groups.

1.9. Connection to Soergel’s work. In this subsection, the base field is C,
and we use the same notations G, B and T but now they are understood to
be algebraic groups over C. Let g, b and t be the Lie algebras of G, B and T .
In [27, Theorem 11], Soergel proves the following result. For a dominant but
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not necessarily integral character λ ∈ t∗, let O◦λ be the block of the category
Oλ (category O of g with infinitesimal character corresponding to λ under
the Harish-Chandra isomorphism) containing the simple module L(λ) with the
highest weight λ. Then up to equivalence, O◦λ only depends on the Coxeter
group (W (λ), S(λ)), which is the Weyl group attached to the based root system
Φλ = {α ∈ Φ(g, t)|〈α

∨, λ〉 ∈ Z} with positive roots Φ+λ = Φλ ∩Φ
+(g, t).

From λ, we get a character X∗(T )⊂ t
〈−,λ〉
−−→ C exp(2π i(−))

−−−−−−→ C×, giving a rank-one
character sheaf Lλ on T (C). By the localization theorem of Beilinson–Bernstein
and the Riemann–Hilbert correspondence, O◦λ can be identified with a block λP◦

in the category Perv(T,Lλ)(U\G/U ) (with the T -action on the left). Soergel’s
result can then be formulated as an equivalence of Abelian categories λP◦ ∼= PH ,
where H is the endoscopic group attached to Lλ and PH = Perv(BH\H/UH ).
We expect the method used in Soergel’s paper can be extended to prove the
Koszul dual version of the characteristic zero analogue of Theorem 1.3, with
equivariance replaced by weak equivariance (or monodromicity) as in [6].

1.10. Notation and conventions

1.10.1. Frobenius Throughout the article, let k = Fq be an algebraic closure
of Fq . Let ` be a prime different from p = char(k).

Let Fr ∈ Gal(Fq/Fq) be the geometric Frobenius. An Fr-module M is a Q`-
vector space with a Q`-linear automorphism FrM : M→ M such that each v ∈ M
is contained in a finite-dimensional subspace stable under FrM . The Fr-module
M is called pure of weight n if for any eigenvalue λ of FrM , λ is algebraic over
Q with all conjugates in C of absolute value qn/2.

Fix a square root q1/2 of q in Q`. We denote by Q`(1/2) the one-
dimensional Fr-module M = Q` equipped with the automorphism FrM by
scalar multiplication by q−1/2.

1.10.2. Geometry. We denote

pt := Spec Fq .

For a scheme X over Fq , let Db
m(X) be the derived category of étale Q`-

complexes on X whose cohomology sheaves are mixed; see [1, 5.1.5]. If X
is equipped with an action of an algebraic group H over Fq , one can follow
the method of [3] to define the H -equivariant derived category of mixed Q`-
complexes denoted by Db

H,m(X) or Db
m(H\X) (that is, working with Cartesian

complexes on the standard simplicial scheme resolving the stack H\X ).
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Similarly, we have the (constructible, Q`-coefficient) equivariant derived
category Db(Hk\Xk). We have a pullback functor ω : Db

m(H\X)→ Db(Hk\Xk).
For F ,F ′ ∈ Db

m(H\X), we define

Hom(F ,F ′) := HomDb(Hk\Xk )(ωF , ωF ′). (1.1)

In other words, the Hom space between two mixed complexes on H\X is
taken to be the Hom space of their pullback to Hk\Xk . Similarly, Exti(F ,
F ′) means Hom(F ,F ′[i]) calculated again in Db(Hk\Xk), and RHom(F ,F ′)
means RHom(ωF , ωF ′), which is an object in Db

m(pt). The actual morphisms
inside the category Db

m(H\X) will be denoted as

hom(F ,F ′) := HomDb
m (H\X)(F ,F

′).

A semisimple complex in Db(Hk\Xk) means an object isomorphic to a
finite direct sum of shifted simple perverse sheaves. A semisimple complex in
Db

m(H\X) is that whose image in Db(Hk\Xk) is semisimple.
For any mixed complex F ∈ Db

m(H\X) and n ∈ Z, we denote F(n/2) :=
F ⊗ π∗Q`(1/2)⊗n , where π : H\X → pt is the natural projection. Then F(1)
is the usual Tate twist. Also, we define

F〈n〉 := F [n](n/2), n ∈ Z. (1.2)

For an algebraic group H over Fq acting on a scheme X on the right and on

another scheme Y on the left, we denote by X
H
× Y the quotient stack (X×Y )/H ,

where h ∈ H acts by h · (x, y) = (xh−1, hy).

1.10.3. Group theory. Let G be a connected split reductive group over Fq . Fix a
Borel subgroup B of G with unipotent radical U and a maximal torus T ⊂ B. Let
Φ(G, T ) (respectively,Φ∨(G, T )) be the set of roots (respectively, coroots) of G
with respect to T . The choice of B gives the set of positive roots Φ+ := Φ+(G,
B, T ), negative roots Φ− := Φ−(G, B, T ), and a set of simple roots.

Let W = NG(T )/T be the Weyl group of G, with simple reflections coming
from simple roots. For a simple reflection s ∈ W , let αs and α∨s be the
corresponding simple root and simple coroot.

We use e to denote the identity element of W . We use ė to denote the identity
element of G.

For each w ∈ W , we use ẇ to denote a lifting of w in NG(T )(Fq). For w = e,
we always lift it to ė, the identity element of G. The equivalence in Theorem 1.3
will not depend on the choice of such liftings, while its extension Theorem 10.12
will depend on choices of liftings on a subset of W .
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1.10.4. Other. For a triangulated category D and {Xα}α∈I a collection of
objects in D, we denote by 〈Xα;α ∈ I 〉 the full subcategory of D whose objects
are successive extensions of objects that are isomorphic to Xα, α ∈ I .

Let S be a set with a left action of H1 and a right action of H2. We say S is
an (H1, H2)-bitorsor if S is a torsor under the H1-action and a torsor under the
H2-action. Similarly, we define the notion of bitorsors for schemes with left and
right actions of group schemes.

For a category C, let Ob(C) be the collection of objects in C, and |C| be the set
of isomorphism classes of objects in C.

2. Monodromic Hecke categories

In Sections 2–10, we work over a fixed finite field Fq . In this section, we
introduce the main players of the paper: the monodromic Hecke categories.

2.1. Rank-one character sheaves. For an algebraic group H over Fq , there
is the notion of rank-one character sheaves on H . These are rank-one Q`-local
systems L on H equipped with an isomorphism m∗L ∼= L � L over H × H
(where m : H × H → H is the multiplication map) and a trivialization of the
stalk Le (e ∈ H is the identity element) satisfying the associativity and unital
axioms. We refer to [31, Appendix A] for a systematic treatment of rank-one
character sheaves. Let Ch(H) denote the group of isomorphism classes of rank-
one character sheaves. When H is connected, the automorphisms of a rank-one
character sheaf reduce to identity.

Recall k = Fq . We define

Ch(Hk) = lim
−→

n

Ch(HFqn )

with transition maps given by the pullback.
Let ν : H̃ → H be a finite étale central isogeny (where H̃ is a connected

algebraic group) with discrete kernel ker(ν) (discrete as a group scheme over
Fq , that is, a finite Abelian group). Let χ : ker(ν) → Q×` be a homomorphism.
Then L := ν∗Q`[χ ], the sublocal system of ν∗Q` on which ker(ν) acts via χ , is
a rank-one character sheaf on H of finite order. It is shown in [31, A.2] that any
element in Ch(H) arises in this way.

2.2. The case of a torus. When H = T is a torus, the Lang map λT : T → T
given by t 7→ FrT/Fq (t)t

−1 is a finite étale isogeny with kernel T (Fq). The above
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construction gives a homomorphism

Hom(T (Fq),Q
×

` )→ Ch(T ). (2.1)

This is in fact a bijection with inverse given by taking the Frobenius trace
function of character sheaves; see [31, A.3.3].

LEMMA 2.3. Let H be a connected reductive group over Fq with maximal torus
T . Let L ∈ Ch(T ). Then L extends to a rank-one character sheaf L̃ ∈ Ch(H)
(necessarily unique) if and only if for every coroot α∨ : Gm,k → Tk of Hk , the
pullback (α∨)∗L is the trivial rank-one character sheaf on Gm,k .

Proof. First, suppose L extends to L̃ ∈ Ch(H), and denote its pullback to Hk

again by L̃. Let α∨ be a coroot of Hk and ϕα : SL2,k → Hk be the homomorphism
whose image is the rank-one subgroup of Hk containing the roots±α. Let Gm,k ⊂

SL2,k be the diagonal torus. Then ϕα|Gm,k = α
∨. Since SL2,k does not admit any

nontrivial finite central isogeny, ϕ∗αL̃ is trivial; hence (α∨)∗L = (ϕ∗αL̃)|Gm,k is
trivial.

Conversely, suppose L is trivial after pullback along each coroot. The
restriction map Ch(H) → Ch(T ) is injective by [31, A.2.2]. Let k ′/Fq be a
finite extension and σ ∈ Gal(k ′/Fq) be the Frobenius element. By [31, A.1.2(4)],
Ch(H) = Ch(Hk′)

σ , therefore Ch(H) = Ch(Hk′) ∩ Ch(T ) ⊂ Ch(Tk′). In
other words, it suffices to show that Lk′ ∈ Ch(Tk′) extends to Hk′ for some
finite extension k ′/Fq . Therefore we may base-change the situation by a finite
extension of Fq so that T is split. Below we assume T is split.

Let χ : T (Fq) = X∗(T ) ⊗Z F×q → Q×` be the character corresponding to L
under bijection (2.1). We view χ as a homomorphism χ̃ : X∗(T )→ Hom(F×q ,
Q×` ). Let Λ = ker(χ̃). The assumption on L implies that Λ contains the coroot
lattice of H . By the structure theory of reductive groups, there is a connected
split reductive group H̃ over Fq with maximal torus T̃ such that Λ = X∗(T̃ )
with coroots Φ∨(H, T ). The embedding Λ ⊂ X∗(T ) gives a homomorphism
ν : H̃ → H such that ν−1(T ) = T̃ . By construction, the Lang map λT : T → T

factors as T
β
−→ T̃

ν|T̃
−→ T such that ker(β) = ker(χ) and ker(ν) = ker(ν|T̃ ) =

T (Fq)/ ker(χ). Hence χ factors through a character χ : ker(ν) → Q×` . Let
L′ = ν∗Q`[χ ] ∈ Ch(H). Then L′T = (ν|T̃ )∗Q`[χ ], which is isomorphic to L
by construction. Therefore L extends to L′ ∈ Ch(H).

2.4. Root system attached to L. The action of W on T induces an action
of W on Ch(T ): for w ∈ W and L ∈ Ch(T ), define wL = (w−1)∗L. For a root

https://doi.org/10.1017/fmp.2020.9 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2020.9


G. Lusztig and Z. Yun 10

α ∈ Φ(G, T ), the action of rα on Ch(T ) is given by L 7→ L⊗ (α∨ ◦α)∗L−1 (the
map α∨ ◦ α : T → Gm → T ). For L ∈ Ch(T ), let WL be its stabilizer under W .

For L ∈ Ch(T ), we have a subset of the coroots

Φ∨L = {α
∨
∈ Φ∨(G, T )|(α∨)∗L is trivial on Gm , where α∨ : Gm → T }.

Let ΦL be the subset of Φ(G, T ) corresponding to Φ∨L; it is a subroot system of
Φ(G, T ). Let W ◦

L be the Weyl group of ΦL: it is the subgroup of W generated
by the reflections rα for α ∈ ΦL. Then W ◦

L is a normal subgroup of WL. (In [22]
and [24], W ◦

L and WL are denoted by Wλ and W ′

λ, respectively.) In fact, Φ∨L is
stable under WL; hence WL normalizes W ◦

L. We will see in Section 9.1 that if G
has a connected center, then W ◦

L = WL.
The subset Φ+L = Φ

+
∩ΦL (where Φ+ ⊂ Φ(G, T ) is the set of positive roots

defined by B) gives a notion of positive roots in ΦL. This defines a Coxeter
group structure on W ◦

L, where the simple reflections are the reflections given by
indecomposable roots inΦ+L . We denote the length function of the Coxeter group
W ◦

L by
`L : W ◦

L→ Z>0. (2.2)

For w ∈ W and L ∈ Ch(T ), we have

ΦwL = w(ΦL) ⊂ Φ(G, T ). (2.3)

For L,L′ ∈ Ch(T ), let L′WL = {w ∈ W |wL = L′}. This is nonempty only
when L and L′ are in the same W -orbit. When L and L′ are in the same W -orbit,
L′WL is a (WL′,WL)-bitorsor. Since W ◦

L is normal in WL, for any x ∈ L′WL, we
have W ◦

L′x = W ◦

L′xW ◦

L = xW ◦

L.

2.5. Monodromic complexes. Let H be a connected algebraic group over
Fq acting on a scheme X of finite type over Fq . Let L ∈ Ch(H). We will define
a triangulated category Db

(H,L),m(X) of mixed Q`-complexes on X equivariant
with respect to (H,L). The case where L is trivial corresponds to the usual
equivariant derived category Db

H,m(X) = Db
m(H\X) as defined by Bernstein–

Lunts in [3].
By the discussion in Section 2.1, there are a finite étale central isogeny ν :

H̃ → H and a character χ : ker(ν) → Q×` such that L appears as the direct
summand of ν∗Q`, where ker(ν) acts through χ . Consider the equivariant derived
category Db

m(H̃\X), where the action of H̃ is through H via ν. Since the finite
Abelian group ker(ν) acts trivially on X , it acts on the identity functor of the
Q`-linear category Db

m(H̃\X). This allows us to decompose Db
m(H̃\X) into a

direct sum of full triangulated subcategories according to characters of ker(ν).
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Let Db
(H,L),m(X) be the direct summand of Db

m(H̃\X) corresponding to χ . It can
be checked that, up to canonical equivalence, the category Db

(H,L),m(X) does not
depend on the choice of (H̃ , χ) attached to L (the essential point is that H∗A(ptk,

Q`) = Q` for a finite group A).
Similarly, one defines the constructible derived category Db

(Hk ,L)(Xk) for the
spaces base-changed to k = Fq . We use convention (1.1) for the Hom spaces in
Db

m(H̃\X).

2.6. Functoriality. Let ν : H ′ → H be a homomorphism of algebraic
groups and let H act on X . Let L ∈ Ch(H) and L′ = ν∗L ∈ Ch(H ′). Let
π : H ′\X → H\X be the natural map of quotient stacks. Then we have a pair
of adjoint functors

π∗ : Db
(H,L),m(X)

// Db
(H ′,L′),m(X) : π∗oo

defined as follows. For F ∈ Db
(H,L),m(X), π

∗F has the same underlying sheaf
on X as F , with the (H ′,L′)-equivariant structure obtained by pulling back the
(H,L)-equivariant structure on F .

For F ′ ∈ Db
(H ′,L′),m(X), consider the action map a : H

H ′

× X → X . The
complex L � F ′ on H × X carries a natural H ′-equivariant structure with
respect to the action h′(h, x) = (hh′−1, h′x) (because L is (H ′,L′)-equivariant
with respect to the right translation action of H ′). Let L �̃ F ′ be the descent of

L � F ′ to H
H ′

× X and define π∗F ′ = a∗(L �̃ F ′). Then π∗F ′ carries a natural
(H,L)-equivariant structure coming from the left (H,L)-equivariant structure
on L itself, and hence defines an object in Db

(H,L),m(X).

2.7. Monodromic Hecke categories. Let L,L′ ∈ Ch(T ). Applying the
construction in Section 2.5 to the T × T -action on U\G/U by (t1, t2) : g 7→
t1gt−1

2 , we get the category

L′DL = Db
(T×T,L′�L−1),m(U\G/U ).

Note that the inverse L−1 (dual local system) of L appears in the definition, but
we still write L in our notation L′DL.

We denote the nonmixed counterpart of L′DL by

L′DL = Db
(Tk×Tk ,L′�L−1)

(Uk\Gk/Uk).

We have the pullback functor

ω : L′DL→ L′DL.
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For variants of L′DL that we introduce later, we put an underline to denote the
corresponding nonmixed version.

Each object F ∈ L′DL is equipped with an isomorphism

a∗F ∼= L′ �F � L,

where a : T × [U\G/U ] × T → [U\G/U ] is the action map given by (t1, g,
t2) = t1gt2, together with compatibility data.

In particular, when L = Q` = L′, L′DL is the usual Hecke category
Db

m(B\G/B).

2.8. Basic operations. Let L′,L,K′,K ∈ Ch(T ). For F ∈ L′DL and G ∈
K′DK, the inner Hom RHomU\G/U (F ,G), viewed as a complex on U\G/U ,
defines an object in L′−1⊗KDL−1⊗K. This gives a bifunctor

RHom : (L′DL)
opp
× K′DK→L′−1⊗K′ DL−1⊗K.

In particular, when K = L and K′ = L′, RHomU\G/U (F ,G) descends to B\G/B
and defines an object in the usual Hecke category Db

m(B\G/B).
We define a renormalized version of the Verdier duality on L′DL. Let DG/B

be the dualizing complex of G/B, viewed as an object in Db
m(B\G/B). For

F ∈ L′DL, by the discussion on the inner Hom above, we define the object

D(F) = RHom(F ,DG/B) ∈ L′−1DL−1 .

This defines a functor

D : (L′DL)
opp
→ L′−1DL−1,

which is an involutive equivalence of categories. We refer to this functor as the
Verdier duality on L′DL.

We define the perverse t-structure on L′DL in the following way. We define
a full subcategory L′D60

L (respectively, L′D>0
L ) to consist of objects F ∈ L′DL

such that F [dim T ], as a complex on G/U , lies in p D60(G/U ) (respectively,
p D>0(G/U )). Then (L′D60

L , L′D>0
L ) defines a t-structure, which we shall call

the perverse t-structure on L′DL. With this definition, the Verdier duality functor
D sends perverse sheaves in L′DL to perverse sheaves in L′−1DL−1 .

2.9. Strata. For w ∈ W , let Gw ⊂ G be the B-double coset Gw = BwB.
(This is abuse of notation as we should have written BẇB for some ẇ ∈
NG(T )(Fq) lifting w. However, the resulting subscheme is independent of the
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choice of the lifting. In the sequel, we will use such abuse of notation freely.)
Let G6w be the closure of G6w and G<w = G6w − Gw.

Let L′D(w)L := Db
(T×T,L′�L−1),m(U\Gw/U ). Similarly, define L′D(6 w)L

and L′D(< w)L by replacing Gw with G6w and G<w.
The inclusion iw : U\Gw/U ↪→ U\G/U induces adjoint pairs

iw,! : L′D(w)L //
L′DL : i !woo

i∗w : L′DL
//
L′D(w)L : iw,∗oo .

Let Γ (w) ⊂ T×T be the graph consisting of (wt, t), t ∈ T . The T×T -action
on any point in U\Gw/U has stabilizer Γ (w). From the definitions, we have the
following lemma.

LEMMA 2.10. The category L′D(w)L is zero unless L′ = wL. When L′ = wL,
taking a stalk at the lifting ẇ ∈ NG(T )(Fq) of w induces an equivalence

i∗ẇ : wLD(w)L
∼

→ Db
Γ (w),m({ẇ}).

Here we are using that w∗L′ = w−1(L′) ∼= L so that L′ � L−1 restricts to the
trivial character sheaf on Γ (w).

2.11. Some objects. In view of Lemma 2.10, L′DL = 0 unless L and L′ are
in the same W -orbit of Ch(T ). In the remainder of the paper, we fix a W -orbit
o ⊂ Ch(T ).

For w ∈ W with lifting ẇ, and L ∈ o, let C(ẇ)L ∈ wLD(w)L be the object
that corresponds to the constant sheaf Q`〈`(w)〉 under the equivalence i∗ẇ in
Lemma 2.10. Note that the isomorphism class of C(ẇ)L is independent of the
lifting ẇ while for different liftings, the identifications between the C(ẇ)L’s are
only unique up to scalars.

Define the following perverse sheaves in wLDL:

∆(ẇ)L = iw,!C(ẇ)L, ∇(ẇ)L = iw,∗C(ẇ)L, (2.4)
IC(ẇ)L = iw,!∗C(ẇ)L := Im(∆(ẇ)L→ ∇(ẇ)L). (2.5)

REMARK 2.12. The isomorphism classes of ωC(ẇ)L, ω∆(ẇ)L, ω∇(ẇ)L and
ωIC(ẇ)L in L′DL are independent of the lifting ẇ. For this reason, we denote
these isomorphism classes in L′DL by

C(w)L ∈ wLD(w)L, ∆(w)L, ∇(w)L and IC(w)L ∈ wLDL.
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However, in the mixed category wLDL, if we change the lifting ẇ to another
lifting ẅ = ẇt−1 (t ∈ T (Fq)), then we have a canonical isomorphism in wLDL:

IC(ẇ)L ∼= IC(ẅ)L ⊗ Lt , (2.6)

where Lt (the stalk of L at t) is viewed as a one-dimensional Fr-module. Similar
isomorphisms hold for C(ẇ)L,∆(ẇ)L and ∇(ẇ)L.

3. Convolution

In this section, we define and study properties of the convolution functor on
the monodromic Hecke categories. We also use convolution to prove the parity
and purity properties of IC(ẇ)L in Proposition 3.11.

3.1. Convolution. Recall that we fix a W -orbit o ⊂ Ch(T ). Let L,L′,L′′ ∈ o.
Consider the diagram

U\G
U
× G/U

π

vv
��

U\G/U ×U\G/U U\G
B
× G/U m // U\G/U

For F ∈ L′′DL′ and G ∈ L′DL, π∗(F � G) carries an equivariant structure

under the T -action on U\G
U
× G/U given by T 3 t : (g1, g2) 7→ (g1t−1,

tg2) (using that F is (T,L′−1)-equivariant for the second T -action and G is
(T,L′)-equivariant for the first T -action). Therefore, it descends to a complex

F �̃ G ∈ Db
(T×T,L′′�L−1),m(U\G

B
× G/U ). Define

F ? G = m∗(F �̃ G) ∈ L′′DL.

This construction gives a convolution bifunctor

(−) ? (−) : L′′DL′ × L′DL→ L′′DL.

It is easy to see that convolution carries a natural associativity structure in the
obvious sense. Under convolution, LDL becomes a monoidal category with the
unit object

δL := ∆(ė)L ∼= IC(ė)L ∼= ∇(ė)L.

The properness of the multiplication map m : G
B
× G → G implies the

following.
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LEMMA 3.2. There is a natural isomorphism functorial in F ∈ L′′DL′ and G ∈
L′DL:

D(F ? G) ∼= D(F) ? D(G).

LEMMA 3.3. (1) If F ∈ L′′DL′ and G ∈ L′DL are semisimple complexes, so is
F ? G.

(2) If F ∈ L′′DL′ and G ∈ L′DL are pure of weight zero, so is F ? G.

Proof. (2) follows from the properness of the multiplication map m : G
B
× G→

G and Deligne’s weight estimates [1, 5.1.14]. (1) follows from the properness of

the multiplication map m : G
B
× G→ G and the decomposition theorem [1].

LEMMA 3.4. Suppose `(w1w2) = `(w1) + `(w2); then there are canonical
isomorphisms

∆(ẇ1)w2L ? ∆(ẇ2)L ∼= ∆(ẇ1ẇ2)L, ∇(ẇ1)w2L ? ∇(ẇ2)L ∼= ∇(ẇ1ẇ2)L.

Proof. Both isomorphisms follow directly from the fact that the multiplication

map Gw1

B
× Gw2 → Gw1w2 is an isomorphism if `(w1w2) = `(w1)+ `(w2).

LEMMA 3.5. Let w ∈ W . Then there are isomorphisms

∆(ẇ−1)wL ? ∇(ẇ)L ∼= ∆(e)L ∼= ∇(ẇ−1)wL ? ∆(ẇ)L.

In particular, the functor

(−) ? ∆(ẇ)L : L′DwL→ L′DL

is an equivalence of categories with inverse given by (−) ? ∇(ẇ−1)wL.

Proof. Writing w into a reduced word in simple reflections and using
Lemma 3.4, it is enough to prove the statements for w = s, a simple reflection.
When s is a simple reflection, we may replace G by its Levi subgroup L s with
roots ±αs . Therefore it suffices to treat the case where G has semisimple rank
one. In this case, from the definition of convolution, we have

i∗ṡ (∆(ṡ
−1)sL ? ∇(ṡ)L) = H∗((G/B)k,∆(ṡ−1)sL ⊗ inv∗R∗ṡ∇(ṡ)L).

Here Rṡ : U\G → U\G is the right translation by ṡ and inv : G/U → U\G
is given by inversion. Now ∆(ṡ−1)sL is (T, sL)-equivariant with respect to the
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right translation of T on G/U , and inv∗R∗ṡ∇(ṡ)L is (T, sL−1)-equivariant with
respect to the right translation. Their tensor product is T -equivariant on the right
and hence descends to G/B. We choose an identification G/B ∼= P1 such that
the unit coset B corresponds to 0 ∈ P1, and s B corresponds to ∞ ∈ P1. Let
Y0, Y∞ be the preimages of 0,∞ in Y = G/U , and let j0 : Y − Y0 ↪→ Y , j∞ :
Y − Y∞ ↪→ Y be open embeddings. Then ∆(ṡ−1)sL ∼= j0!K for some rank-one
tame local system K on Y − Y0, and inv∗R∗ṡ∇(ṡ)L ∼= j∞∗K′ for some rank-one
tame local system K′ on Y−Y∞ (tame means the corresponding representation of
the fundamental group factors through the tame fundamental group). The tensor
product j0!K⊗ j∞∗K′ descends to a complex G on P1, which is a rank-one tame
local system K′′ (descent of K⊗K′|Y−Y0−Y∞) on P1

−{0,∞} with !-extension at
0 and ∗-extension at∞. Therefore

i∗ṡ (∆(ṡ
−1)sL ? ∇(ṡ)L) ∼= H∗((G/B)k,G)

is the cone shifted by [−1] of the restriction map

H∗(P1
k − {0,∞},K′′)→ i∗

∞
j∗K′′,

where j : P1
− {0,∞} → P1 and i∞ : {∞} ↪→ P1 are the inclusions. Since

K′′ is a tame local system on P1
− {0,∞} ∼= Gm , the above restriction map is

an isomorphism. This shows that the stalk of ∆(ṡ−1)sL ? ∇(ṡ)L vanishes at any
lifting ṡ of s. Hence ∆(ṡ−1)sL ? ∇(ṡ)L is concentrated in the closed stratum
U\Ge/U .

We calculate the stalk of ∆(ṡ−1)sL ? ∇(ṡ)L at e by the same method

i∗e (∆(ṡ
−1)sL ? ∇(ṡ)L) ∼= H∗((G/B)k,∆(ṡ−1)sL ⊗ inv∗∇(ṡ)L).

Now ∆(ṡ−1)sL ⊗ inv∗∇(ṡ)L is the extension by zero of the trivial local
system on P1

− {0} whose stalk at ∞ (image of ṡ under G/U → P1) is
canonically identified with Q`〈2〉. Therefore its cohomology is canonically
isomorphic to H∗c(P1

k − {0},Q`〈2〉) ∼= Q`. This gives the canonical isomorphism
∆(ṡ−1)sL ? ∇(ṡ)L ∼= ∆(e)L. The second isomorphism follows from the first one
by applying the Verdier duality and Lemma 3.2.

LEMMA 3.6. Let s ∈ W be a simple reflection and s /∈ W ◦

L.

(1) The natural maps ∆(ṡ)L→ IC(ṡ)L→ ∇(ṡ)L are isomorphisms.

(2) The functor
(−) ? IC(ṡ)L : L′DsL→ L′DL

is an equivalence of categories with inverse given by (−) ? IC(ṡ−1)sL.
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(3) The equivalence (−) ? IC(ṡ)L sends ∆(ẇ)sL, ∇(ẇ)sL and IC(ẇ)sL ∈
wsLDsL to ∆(ẇṡ)L, ∇(ẇṡ)L and IC(ẇṡ)L ∈ wsLDL, respectively, for any
w ∈ L′WsL.

Proof. (1) We need to show that i∗e IC(ṡ)L = 0 and i !eIC(ṡ)L = 0. Replacing
G by its Levi subgroup L s containing T and with roots ±αs , we reduce to
the case where G has semisimple rank one. In this case, there is a central
isogeny ν : Z ◦ × SL2 → G, where Z ◦ is the neutral component of the center
of G. Let L1 = (α

∨)∗L ∈ Ch(Gm). The condition s /∈ W ◦

L is equivalent to L1

being nontrivial. Identifying Gm with the diagonal torus T1 ⊂ SL2, IC(ṡ)L1 ∈

Db
(Gm×Gm ,sL1�L−1

1 ),m
(U1\SL2/U1) is defined (U1 ⊂ SL2 is the unipotent upper

triangular subgroup). Let L0 = L|Z◦ . Then ν∗C(ṡ)L ∼= L0�C(ṡ)L1 on the open
stratum of Z ◦ × U1\SL2/U1. Since ν is finite, IC(ṡ)L is a direct summand of
ν∗(L0 � IC(ṡ)L1). By proper base change, it suffices to show that the stalks and
costalks of IC(ṡ)L1 vanish along the identity coset of U1\SL2/U1. We identify
SL2/U1 with A2

−{0} with SL2 acting as the standard representation on A2. The
right T1-translation on SL2/U1 is the scaling action of Gm on A2

−{0}. The open
stratum (SL2−B1)/U1 ⊂ SL2/U1 is j : A1

×Gm ↪→ A2
−{0}. A direct calculation

shows that C(ṡ)L1
∼= pr∗2L1, where pr2 : A1

×Gm → Gm is the projection to the
second factor. Since L1 is nontrivial, IC(ṡ)L1 = j!∗C(ṡ)L1 has a zero stalk and a
costalk along the closed stratum Gm × {0} ⊂ A2

− {0}. This proves (1).
(2) This follows from (1) and Lemma 3.5.
(3) If `(ws) > `(w), then by (1), ∆(ẇ)sL ? IC(ṡ)L ∼= ∆(ẇ)sL ? ∆(ṡ)L,

which is isomorphic to ∆(ẇṡ)L by Lemma 3.4. If `(ws) < `(w), then
by (1), ∆(ẇ)sL ? IC(ṡ)L ∼= ∆(ẇ)sL ? ∇(ṡ)L. By Lemma 3.4, we
have ∆(ẇ)sL ∼= ∆(ẇṡ)L ? ∆(ṡ−1)sL. Therefore ∆(ẇ)sL ? ∇(ṡ)L ∼=
∆(ẇṡ)L ? ∆(ṡ−1)sL ? ∇(ṡ)L ∼= ∆(ẇṡ)L ? ∆(ė)L ∼= ∆(ẇṡ)L by Lemma 3.5. In
any case, we have ∆(ẇ)sL ? IC(ṡ)L ∼= ∆(ẇṡ)L.

The proof of ∇(ẇ)sL ? IC(ṡ)L ∼= ∇(ẇṡ)L is similar.
The equivalence (−) ? IC(ṡ)L then preserves the standard objects and

costandard objects. Hence it is t-exact for the perverse t-structure, and
sends simple perverse sheaves to simple perverse sheaves. Now for w ∈ W ,
IC(ẇ)sL ? IC(ṡ)L is a simple perverse sheaf in L′DL. Since IC(ẇ)sL ? IC(ṡ)L
receives a nonzero map from∆(ẇ)sL ? IC(ṡ)L ∼=∆(ẇṡ)L, it must be isomorphic
to IC(ẇṡ)L.

3.7. The object IC(s)L when s ∈W ◦

L. Suppose s ∈ W ◦

L. Let αs be the simple
root corresponding to s. Let Ps be the standard parabolic subgroup whose Levi
subgroup L s has roots {±αs}. Let U s be the unipotent radical of Ps . Since (α∨s )

∗L
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is trivial, the local system L extends to a rank-one character sheaf L̃ on L s by
Lemma 2.3. In particular, the stalk of L̃ at e ∈ L s has a canonical trivialization.
We use the same notation L̃ to denote its pullback to Ps . The object L̃〈1〉 ∈
Db
(T×T,L�L−1),m(U\Ps/U ), extended by zero, can be viewed as an object of LDL,

and as such, it is isomorphic to IC(ṡ)L.
In other words, when s ∈ W ◦

L, we have a canonical object IC(s)L :=
i6s∗L̃〈1〉 ∈ LDL equipped with an isomorphism of its stalk at the identity e
with Q`〈1〉. We have ωIC(s)L ∼= ωIC(ṡ)L.

Let L′DL̃ = Db
(T×Ls ,L′�L̃−1),m

(U\G/U s), where the action of T × L s on
U\G/U s is given by (t, h) · g = tgh−1, t ∈ T, h ∈ L s, g ∈ G. Applying the
constructions in Section 2.6, we get an adjoint pair

π∗s : L′DL̃
//
L′DL : πs∗.oo

Since Ps/B is proper, πs∗ also admits a right adjoint

πs∗ : L′DL
//
L′DL̃ : π

!

soo

and π !s ∼= π
∗

s 〈2〉.

LEMMA 3.8. Let L,L′ ∈ o and s be a simple reflection in W such that s ∈ W ◦

L.
Then there is a canonical isomorphism of endofunctors

(−) ? IC(s)L ∼= π∗s πs∗(−)〈1〉 ∼= π !sπs∗(−)〈−1〉 ∈ End(L′DL).

Proof. Let a : U\G
B
× Ps → U\G be a map given by the right action of Ps on G.

By the definition of convolution and IC(s)L = i6s∗L̃〈1〉, we have for F ∈ L′DL

F ? IC(s)L ∼= a∗(F �̃ L̃〈1〉),

where F �̃ L̃〈1〉 is the descent of F � L̃〈1〉 to U\G
B
× Ps . Comparing with the

definition of πs∗, we see that a∗(F �̃ L̃) is exactly the underlying complex of
πs∗F . If we only remember the (T,L)-equivariance of a∗(F �̃ L̃〈1〉) (by right
translation), it is the same as π∗s πs∗F〈1〉.

COROLLARY 3.9. Let s ∈ W be a simple reflection such that s ∈ W ◦

L. Then the
functor

(−) ? IC(s)L : L′DL→ L′DL

has a right adjoint also given by (−) ? IC(s)L.
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Proof. Let F ∈ L′DsL and G ∈ L′DL. We have natural isomorphisms by
Lemma 3.8:

Hom(F ? IC(s)L,G) ∼= Hom(π∗s πs∗F〈1〉,G) ∼= Hom(πs∗F〈1〉, πs∗G)
∼= Hom(F , π !sπs∗G〈−1〉) ∼= Hom(F ,G ? IC(s)L).

Let s be a simple reflection in W and s ∈ W ◦

L. Recall the rank-one character
sheaf L̃ on L s , the category L′DL̃ and the functors (π∗s , πs∗) from Section 3.7.

The Bruhat decomposition gives G = tw∈W/〈s〉BwPs . For a lifting ẇ ∈ NG(T )
of w ∈ W/〈s〉, we have an isomorphism

U\BwPs/U s ∼= ẇ · (Ad(ẇ−1)U ∩ L s)\L s .

The left translation by t ∈ T on the left side becomes the left translation of
Ad(ẇ−1)t on (Ad(ẇ−1)U ∩ L s)\L s . From this, we get an equivalence

i∗ẇ : L′D(w)L̃ := Db
(T×Ls ,L′�L̃−1),m(U\BwPs/U s) ∼= Db

(T,L′⊗wL−1),m({ẇ}).

Therefore L′D(w)L̃ = 0 unless L′ = wL, in which case it is equivalent to
Db

T,m({ẇ}). Let C(ẇ)L̃ ∈ L′D(w)L̃ correspond to Q`〈`
′(w)〉 under i∗ẇ (here `′(w)

is the maximal length of elements in the coset w ∈ W/〈s〉). Let IC(ẇ)L̃ ∈ L′DL̃
be the middle extension of C(ẇ)L̃. The isomorphism classes of ωC(ẇ)L̃ and
ωIC(ẇ)L̃ depend only on w. Similarly, one defines the !- and ∗-extensions
∆(ẇ)L̃ and ∇(ẇ)L̃ of C(ẇ)L̃.

LEMMA 3.10. Let s be a simple reflection in W and s ∈ W ◦

L. Suppose `(w) >
`(ws); then

π∗s IC(ẇ)L̃ ∼= IC(ẇ)L.

Proof. Unwinding the definition of π∗s , it is the pullback along the smooth map
π̃s : G/B̃→ G/P̃s . Here we take a finite étale central isogeny ν : L̃ s → L s such
that L̃ is defined in terms of a character of ker(ν) as in Section 2.1; P̃s = Ps×Ls L̃ s

and B̃ = B ×Ls L̃ s . Since π̃s is a smooth P1-fibration, π̃∗s sends simple perverse
sheaves to simple perverse sheaves up to a shift. In particular, π̃∗s IC(ẇ)L̃ is the
middle extension of π̃∗s C(ẇ)L̃〈1〉, a shifted local system on π̃−1

s (BwPs/P̃s) =

(Gw ∪ Gws)/B̃. By looking at stalks at ẇ, we have π̃∗s C(ẇ)L̃|Gw/B̃
∼= C(ẇ)L.

Therefore their middle extensions agree, that is, π̃∗s IC(ẇ)L̃ ∼= IC(ẇ)L.

The next proposition shows that the stalks and costalks of IC(ẇ)L have the
same parity and purity properties as their nonmonodromic counterparts.
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PROPOSITION 3.11. Let w ∈ W , L ∈ o and v ∈ wLWL.

(1) The complexes i∗v IC(ẇ)L and i !vIC(ẇ)L are pure of weight zero as objects
in wLD(v)L.

(2) The (nonmixed) complexes i∗v IC(w)L and i !vIC(w)L are isomorphic to direct
sums of C(v)L[n] for n ≡ `(w)− `(v) mod 2.

Proof. (1) It is enough to show the statement for the stalks; the costalk statement
follows by the Verdier duality. We will prove the stalk statement in (1) together
with a weak version of the stalk statement in (2) simultaneously by induction on
`(w).

Denote by Fr-mod0 the category of finite-dimensional Fr-modules pure of
weight zero (see Section 1.10.1). We show by induction on `(w) that for any
x ∈ G, the stalk

i∗x IC(ẇ)L ∈ 〈Q`〈n〉 ⊗ V ; n ≡ `(w)− `(v) mod 2, V ∈ Fr-mod0〉. (3.1)

For notation 〈· · ·〉, see Section 1.10.4. The truth of this statement is independent
of the lifting ẇ of w.

For w = e, this is clear. Suppose it is proven for `(w) < N . For `(w) =
N , let s be a simple reflection such that `(w) = `(ws) + 1. Over k, by
Lemma 3.3, IC(ẇ)L is a direct summand of IC(ẇṡ−1)sL ? IC(ṡ)L. When the
situation is over Fq , although we do not know a priori that IC(ẇ)L is a direct
summand of IC(ẇṡ−1)sL ? IC(ṡ)L over Fq , its stalks are subquotients of stalks
of IC(ẇṡ−1)sL ? IC(ṡ)L as Fr-modules (as the perverse Leray spectral sequence
for IC(ẇṡ−1)sL ? IC(ṡ)L degenerates at E2 by the decomposition theorem).
Therefore it suffices to show that the stalks of IC(ẇṡ−1)sL ? IC(ṡ)L lie in
〈Q`〈n〉 ⊗ V ; n ≡ `(w)− `(v) mod 2, V ∈ Fr-mod0〉.

By inductive hypothesis for ws, IC(ẇṡ−1)sL lies in

∈ 〈∆(v̇)sL〈n〉 ⊗ V ; v ∈ wLWsL, n ≡ `(w)− `(v) mod 2, V ∈ Fr-mod0〉.

Therefore IC(ẇṡ−1)sL ? IC(ṡ)L lies in

〈∆(v̇)sL ? IC(ṡ)L〈n〉 ⊗ V, v ∈ wLWsL, n ≡ `(w)− `(v) mod 2, V ∈ Fr-mod0〉.

We will show that the stalks of ∆(v̇)sL ? IC(ṡ)L are either zero or of the form
Q`〈`(vs)〉 ⊗ V for some one-dimensional V ∈ Fr-mod0, which would finish the
induction step.

If s /∈ W ◦

L, by Lemma 3.6(3), we have ∆(v̇)sL ? IC(ṡ)L ∼= ∆(v̇ṡ)L and
obviously satisfies the desired stalk property.
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If s ∈ W ◦

L, by Lemma 3.8, we have ∆(v̇)L ? IC(s)L ∼= π∗s πs∗∆(v̇)L〈1〉. We
use the notation from Section 3.7. We first consider the case where `(vs) > `(v).
In this case, BvB/B maps isomorphically to BvPs/Ps ; therefore πs∗∆(v̇)L ∼=

∆(v̇)L̃〈−1〉, whose nonzero stalks are of the form Q`〈`(v)〉⊗V for V ∈ Fr-mod0

of dimensional one. Therefore, the nonzero stalks of π∗s πs∗∆(v̇)L〈1〉 are of the
form Q`〈`(v)+ 1〉 ⊗ V = Q`〈`(vs)〉 ⊗ V for one-dimensional V ∈ Fr-mod0.

Finally, we arrive at the case `(vs) < `(v). We have ∆(v̇)L ? IC(ṡ)L ∼=
∆(v̇ṡ−1)L ? ∆(ṡ)L ? IC(s)L. A calculation inside of L s gives ∆(ṡ)L ? IC(s)L ∼=
π∗s πs∗∆(ṡ)L〈1〉 ∼= IC(ṡ)L〈−1〉. Therefore ∆(v̇)L ? IC(s)L ∼= ∆(v̇ṡ−1)L ?

IC(ṡ)L〈−1〉. We are back to the previous case (applied to vs in place of v) to
conclude that the nonzero stalks of ∆(v̇ṡ−1)L ? IC(ṡ)L〈−1〉 are of the form
Q`〈`(v)〉〈−1〉 ⊗ V = Q`〈`(vs)〉 ⊗ V for one-dimensional V ∈ Fr-mod0. This
completes the induction step for proving (3.1).

(2) By (1), i∗v IC(w)L and i !vIC(w)L are successive extensions of C(v)L[n] for
n ≡ `(w) − `(v) mod 2. However, there are no nontrivial extensions between
C(v)L and C(v)L[2m] (m ∈ Z) in vLD(v)L ∼= Db

Γ (v)k
(ptk), because Hodd

Γ (v)k
(ptk)=

0. Therefore i∗v IC(w)L and i !vIC(w)L are direct sums of C(v)L[n] for n ≡ `(w)−
`(v) mod 2.

The above proposition will be strengthened in Proposition 9.10 to include
Frobenius semisimplicity of stalks and costalks of IC(ẇ)L.

COROLLARY 3.12. Let F ,G ∈ L′DL be semisimple complexes. Then

Hom•(F ,G) :=
⊕
n∈Z

Hom(F ,G[n])

admits an increasing filtration F6v by Fr-submodules indexed by v ∈ L′WL (with
its partial order inherited from W ) such that the associated graded satisfies

GrF
v Hom•(F ,G) ∼= Hom•(i∗vF , i !vG). (3.2)

Moreover, this filtration is functorial in F and G.

Proof. The Schubert stratification gives a filtration on G with GrvG ∼= iv∗i !vG. We
get a corresponding filtered complex structure on RHom(F ,G) with associated
graded pieces quasi-isomorphic to RHom(i∗vF , i !vG). We need to show that the
spectral sequence converging to Hom•(F ,G) corresponding to this filtration
degenerates at E1. For this, it suffices to work in the nonmixed category L′DL,
and we may assume F = IC(w)L and G = IC(w′)L.

Proposition 3.11(2) implies that i∗vF is a direct sum of C(v)L[n] for n ≡
`(w) − `(v) mod 2 and i !vG is a direct sum of C(v)L[n] for n ≡ `(w′) − `(v)
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mod 2. Therefore RHom(i∗vF , i !vG) is isomorphic to a direct sum of even shifts
of RHom(C(v)L,C(v)L)[`(w′)−`(w)] ∼= H∗Γ (v)k (ptk)[`(w

′)−`(w)]. Therefore
Hom•(i∗vF , i !vG) is concentrated in degrees of a fixed parity independent of v
and hence the degeneration at E1.

3.13. Monodromic version of the Hecke algebra. Recall the monodromic
version of the Hecke algebra for W with monodromy in o defined in [24, 1.4].
Let Ho be the unital associative Z[v, v−1

]-algebra with generators Tw(w ∈ W )

and 1L(L ∈ o) and relations

1L1L′ = δL,L′1L, for L,L′ ∈ o;

TwTw′ = Tww′, if w,w′ ∈ W and `(ww′) = `(w)+ `(w′); (3.3)
Tw1L = 1wLTw, for w ∈ W,L ∈ o;

T 2
s = v

2T1 + (v
2
− 1)

∑
L;s∈W ◦L

Ts1L, for simple reflections s ∈ W ; (3.4)

T1 = 1 =
∑
L∈o

1L.

The algebra Ho is closely related to the algebra introduced by Yokonuma [30],
as explained in [17, 35.3, 35.4]. Note that {Tw1L; (w,L) ∈ W × o} is a Z[v,
v−1
]-basis of Ho. For w ∈ W , we set T̃w = v−`(w)Tw ∈ Ho. There is a unique

involution¯: Ho→ Ho defined by vm Tw1L = v
−m T−1

w−1 1L for any (w,L) ∈ W×o
and any m ∈ Z.

For any (w,L) ∈ W × o, there is a unique element cw,L ∈ Ho such that

• cw,L = cw,L;

• cw,L =
∑

y∈W py,L;w,LT̃y1L, where py,L;w,L ∈ v
−1Z[v−1

] if y 6= w, and
pw,L;w,L = 1.

The elements {cw,L}(w,L)∈W×o form a Z[v, v−1
]-basis of Ho called the canonical

basis. This is analogous to the basis {Cw} introduced in [11, Theorem 1.1].
Let Do = ⊕L′,L∈o(L′DL). The Grothendieck group K0(Do) is a Z[v, v−1

]-
module, where the action of v is given by 〈−1〉. As in [22, 2.9], there is a unique
Z[v, v−1

]-linear map
γ : K0(Do)→ Ho

sending F ∈ L′DL to the element
∑

w∈L′WL
Aw,F (v)Tw1L, where Aw,F (v) ∈

Z[v, v−1
] is the virtual Poincaré polynomial of the stalk i∗ẇF , that is, Aw,F (v) =∑

i, j∈Z(−1)i(dim GrW
j Hi i∗ẇF)(−v) j .
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By construction, γ (∆(ẇ)L) = T̃w1L. Under γ , IC(ẇ)L is sent to cw,L for (w,
L) ∈ W × o. Indeed, the purity property proved in Proposition 3.11 gives the
degree bound for py,L;w,L needed to characterize cw,L.

By [22, 2.10], γ is a ring homomorphism.

4. Blocks

In this section, we give a decomposition of L′DL into a direct sum of full
triangulated subcategories called blocks. First, we need some preparation on
Weyl groups.

4.1. Blocks in L′WL. Let L,L′ ∈ o. Denote

L′WL = L′WL/W ◦

L = W ◦

L′\L′WL.

Each element β ∈ L′WL is called a block of L′WL, and it inherits a partial order
restricted from the Bruhat order in W .

Let L,L′ and L′′ ∈ o. Let β ∈ L′WL and γ ∈ L′′WL′ . Then the set γ · β :=
{w1w2|w1 ∈ γ,w2 ∈ β} is equal to W ◦

L′′w1w2 = w1W ◦

L′w2 = w1w2W ◦

L (for any
w1 ∈ γ,w2 ∈ β), which defines an element in L′′WL. This defines a map

(−) · (−) : L′′WL′ × L′WL→ L′′WL,

which is associative in the obvious sense.

LEMMA 4.2. Each block β ∈ L′WL contains a unique minimal element wβ

and a unique maximal element wβ under its partial order. The minimal element
wβ (respectively, maximal element wβ) is characterized by the property that
wβ(Φ+L) ⊂ Φ

+ (respectively, wβ(Φ+L) ⊂ Φ
−).

Proof. In [13, Lemma 1.9(i)], it is shown that each β contains a unique
minimal length (hence minimal) elementwβ characterized by the stated property.
Let 6W ◦L be the Bruhat order on W ◦

L induced by the positive roots Φ+L ; see
Section 2.4. By [13, Lemma 1.9(ii)], if v 6W ◦L v

′, thenwβv 6 wβv′. Therefore, if
we writewL,0 for the longest (and maximal) element in W ◦

L,wβwL,0 is the unique
maximal element in β. Clearly, it is characterized by the stated property.

COROLLARY 4.3. For β ∈ L′WL and γ ∈ L′′WL′ , we have the equalities in W

wγwβ
= wγβ, wγwβ = wγβ, wγw

β
= wγβ .
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Proof. Let us prove the first equality and the proof of the rest is similar. To show
wγwβ is the minimal element in the block γβ, by the criterion in Lemma 4.2, it
suffices to show that wγwβ(Φ+L) ⊂ Φ

+. Since wβ is minimal in β, wβ(Φ+L) ⊂

Φ+ ∩ ΦL′ = Φ+L′ (we are using (2.3)), and indeed equality holds. Then by
the same argument, wγwβ(Φ+L) ⊂ wγ (Φ+L′) ⊂ Φ+, which shows that wγwβ

is minimal in the block γβ.

COROLLARY 4.4. Let β ∈ L′WL. Then w 7→ wβwwβ,−1 gives an isomorphism
of Coxeter groups W ◦

L
∼

→ W ◦

L′ .

Proof. Since wβΦ+L ⊂ Φ
+
∩ΦL′ = Φ

+

L′ , w
β sends simple roots in ΦL to simple

roots in ΦL′ . Hence conjugation by wβ sends simple reflections in W ◦

L to simple
reflections in W ◦

L′ .

4.5. The groupoid Ξ . Let Ξ be the groupoid whose object set is o, and the
morphism set L′ΞL := HomΞ (L,L′) = {wβ

|β ∈ L′WL}. Clearly, L′ΞL is in
bijection with L′WL, and we often make the identification L′ΞL

∼

→ L′WL. The
composition map is defined by the multiplication in W since wγwβ

= wγβ by
Corollary 4.3.

Let β ∈ L′WL. For w ∈ β, there is a unique v ∈ W ◦

L such that w = wβv.
Define

`β(w) = `L(v), (4.1)

where `L is the length function of the Coxeter group W ◦

L, as defined in (2.2).
The following lemma is a slight generalization of [14, Lemma 5.3].

LEMMA 4.6. Let β ∈ L′WL and w ∈ β.

(1) `β(w) = #{α ∈ Φ+L |wα < 0}.

(2) For γ ∈ L′′WL′ , we have

`γβ(w
γw) = `β(w).

(3) Writew into a product of simple reflections in W (not necessarily reduced),
w = siN · · · si2 si1 . Let L0 := L and L j = si j · · · si1(L) for j > 1. Then

`β(w) 6 #{1 6 j 6 N |si j ∈ W ◦

L j−1
}. (4.2)

(4) If in (3) siN · · · si2 si1 is reduced, then equality in (4.2) holds.
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Proof. (1) Write w = wβv for v ∈ W ◦

L. Since wβ sends Φ+L (respectively Φ−L)
to positive (respectively negative) roots, for α ∈ Φ+L , wβvα < 0 if and only if
vα < 0. Therefore, #{α ∈ Φ+L |wα < 0} = #{α ∈ Φ+L |vα < 0} = `L(v) = `β(w).

(2) Write w = wβv for v ∈ W ◦

L. Then wγw = (wγwβ)v. By Corollary 4.3,
wγwβ

= wγβ ; we have `γβ(wγw) = `L(v) = `β(w).
(3) Let w be the sequence of simple reflections (siN , . . . , si2, si1). Denote the

right side of (4.2) by L(w). We argue by induction on the length N of the
sequence w.

For N = 0, the statement is clear. Suppose the statement is proved for all w of
length < N . Let s = siN and w′ = (siN−1, . . . , si2, si1), w

′
= siN−1 · · · si2 si1 so that

w = sw′. Note that LN−1 = w
′L = sL′. Let β ′ ∈ sL′WL be the block containing

w′. By inductive hypothesis, we have `β ′(w′) 6 L(w′). We have two cases:
Case 1: s /∈ W ◦

sL′ . In this case, L(w) = L(w′). On the other hand, s is minimal
in its block γ ∈ L′W sL′ . By part (2), `β(w) = `β(sw′) = `β ′(w

′). Therefore
`β(w) = `β ′(w

′) 6 L(w′) = L(w).
Case 2: s ∈ W ◦

sL′ . In this case, L(w) = L(w′) + 1. On the other hand, we
have wΦ+L ∩ Φ

−
= sw′Φ+L ∩ Φ

−
= s(w′Φ+L ∩ sΦ−). Since the only difference

between Φ− and sΦ− is that −αs has been changed to αs , #(w′Φ+L ∩ sΦ−) 6
#(w′Φ+L ∩Φ

−)+ 1. By part (1), `β(w) = #(wΦ+L ∩Φ
−) = #(w′Φ+L ∩ sΦ−) 6

#(w′Φ+L ∩Φ
−)+1 = `β ′(w′)+1. Therefore `β(w) 6 `β ′(w′)+1 6 L(w′)+1 =

L(w).
(4) To prove the equality in the case where w is a reduced word, one uses the

same inductive argument. The only point that needs modification is in Case 2.
Since `(w) = `(w′)+ 1 in this case, we have w′−1αs ∈ Φ

+, or αs ∈ w
′Φ+. But

since s ∈ W ◦

w′L, we also have αs ∈Φw′L = w
′ΦL; therefore αs ∈ w

′ΦL ∩ w
′Φ+∩

sΦ− = w′Φ+L ∩ sΦ−. Hence wΦ+L ∩Φ
−
= s(w′Φ+L ∩ sΦ−) = s(w′Φ+L ∩Φ

−)t

{−αs}. By part (1), `β(w) = `β ′(w
′) + 1. Therefore `β(w) = `β ′(w

′) + 1 =
L(w′)+ 1 = L(w).

4.7. Partial order on a block. For a block β ∈ L′WL, we define a partial
order6β on elements of β as follows. Every element in β can be written uniquely
as wβw for some w ∈ W ◦

L. Then we define wβw′ 6β wβw if and only if w′ 6W ◦L
w (under the Bruhat order of W ◦

L). For w′, w ∈ W ◦

L′ , w
′wβ 6β wwβ if and only

if w′ 6W ◦L′
w (using Corollary 4.4).

Later we will need the following result comparing the partial order 6β with
the partial order restricted from the Bruhat order of W .

LEMMA 4.8. Let β ∈ L′WL.
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(1) If γ ∈ L′′WL′ , left multiplication by wγ gives an isomorphism of posets
(β,6β)

∼

→ (γβ,6γβ).

(2) If δ ∈ LWL′′ , right multiplication by wδ gives an isomorphism of posets
(β,6β)

∼

→ (βδ,6βδ).

(3) For w,w′ ∈ β, if w′ 6β w, then w′ 6 w.

Proof. (1) follows directly from the definition and Corollary 4.3.
(2) It suffices to show that x 6β y implies xwδ 6βδ ywδ, for the reverse

implication can be obtained by inverting δ. Left multiplying by wβ,−1, we reduce
to the case β = W ◦

L, the neutral block. Let x, y ∈ W ◦

L and x 6W ◦L y, and we
show xwδ 6δ ywδ. Let x ′ = wδ,−1xwδ, y′ = wδ,−1 ywδ

∈ W ◦

L′′ . By Corollary 4.4,
x 6W ◦L y implies x ′ 6W ◦L′′

y′; hencewδx ′ 6δ wδ y′ by definition. Therefore xwδ
=

wδx ′ 6δ wδ y′ = ywδ.
(3) Induction on `(w). The statement is clear forw = e. Assume the statement

is true for all w with `(w) < N (for varying β). Now suppose `(w) = N . Write
w = w1s for some simple reflection s such that `(w) = `(w1)+ 1.

If s /∈W ◦

L, write β ′ = βs andw′ = w′1s. Thenw′1, w1 ∈ β
′, andw′1 6β ′ w1 since

right multiplication by s is an isomorphism of posets β ′
∼

→ β by (2). Applying
the inductive hypothesis to w1, we get w′1 6 w1. Hence w′ = w′1s 6 max{w1,

w1s} = w.
If s ∈ W ◦

L, then s is a simple reflection in W ◦

L. Since w′ 6β w1s, either
w′ 6β w1 or w′ = w′1s and w′1 6β w1. In the former case, applying the inductive
hypothesis to w1, we see w′ 6 w1 6 w. In the latter case, applying the inductive
hypothesis to w1, we get w′1 6 w1; hence w′ = w′1s 6 max{w1, w1s} = w.

REMARK 4.9. The converse of Lemma 4.8(3) is not true in general. In particular,
if w,w′ ∈ W ◦

L, then w′ 6 w does not necessarily imply w′ 6W ◦L w.

DEFINITION 4.10. (1) For each β ∈ L′WL, let L′Dβ

L be the full triangulated
subcategory of L′DL generated by {∆(w)L}w∈β . Let L′Dβ

L ⊂ L′DL be the
preimage of L′Dβ

L under ω. We call L′Dβ

L (respectively, LDβ

L) a block of
L′DL (respectively, LDL).

(2) When β is the unit coset W ◦

L, we denote the block LDβ

L (respectively, LDβ

L)
by LD◦L (respectively, LD◦L), and call it the neutral block .

The terminology ‘block’ is justified by the next proposition.
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PROPOSITION 4.11 (Block decomposition). We have direct sum decompositions
of the triangulated categories

L′DL =
⊕

β∈L′WL

L′Dβ

L, L′DL =
⊕

β∈L′WL

L′Dβ

L. (4.3)

Proof. We prove the nonmixed statement, and the mixed version follows.
Clearly, the subcategories {L′Dβ

L}β∈L′WL
generate L′DL. It remains to show that

if w1, w2 ∈ L′WL are not in the same right W ◦

L coset, then

RHom(∆(w1)L,∆(w2)L) = 0. (4.4)

We prove (4.4) by induction on `(w2). For `(w2) = 0, that is, w2 = e,
by adjunction, RHom(∆(w1)L,∆(e)L) ∼= RHom(C(w1), i !w1

∆(e)L), which
vanishes whenever w1 6= e. This verifies (4.4) for `(w2) = 0.

Suppose (4.4) is proved for `(w2) < n (n > 0). Consider the case `(w2) = n
andw1 ∈ L′WL−w2W ◦

L. Let s be a simple reflection such that `(w2)= `(w2s)+1.
By Lemma 3.5, we have ∆(w2)L ? ∇(s)sL ∼= ∆(w2s)sL. Since ?∇(s)sL is an
equivalence, we have

RHom(∆(w1)L,∆(w2)L) ∼= RHom(∆(w1)L ? ∇(s)sL,∆(w2)L ? ∇(s)sL)
∼= RHom(∆(w1)L ? ∇(s)sL,∆(w2s)L).

If either `(w1) = `(w1s) + 1 or s /∈ W ◦

L, then by either Lemma 3.5 or
Lemma 3.6(1), we similarly have ∆(w1)L ? ∇(s)sL ∼= ∆(w1s)sL. Hence
RHom(∆(w1)L ? ∇(s)sL,∆(w2s)L) = RHom(∆(w1s)sL,∆(w2s)sL), which
vanishes by inductive hypothesis since `(w2s) < n.

It remains to treat the case s ∈ W ◦

L and `(w1) = `(w1s)− 1. Since ∇(s)L is in
the triangulated subcategory generated by ∆(s)L and ∆(e)L, ∆(w1)L ? ∇(s)L
is in the triangulated subcategory generated by ∆(w1)L ? ∆(s)L ∼= ∆(w1s)L
and∆(w1)L ? ∆(e)L = ∆(w1)L, and we are done again by inductive hypothesis
applied to w2s.

COROLLARY 4.12. Let β ∈ L′WL andw ∈ β. Then∇(ẇ)L and IC(ẇ)L ∈ L′Dβ

L.
In particular, L′Dβ

L is also the full triangulated subcategory of L′DL generated
either by the collection {IC(w)L}w∈β or by the collection {∇(w)L}w∈β .

Proof. Since ∇(w)L and IC(w)L are indecomposable objects and they admit
nonzero maps from ∆(w)L, they must lie in the same summand as ∆(w)L in
decomposition (4.3) for L′DL.
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PROPOSITION 4.13 (Convolution preserves blocks). Let L,L′ and L′′ ∈ o. Let
β ∈ L′WL and γ ∈ L′′WL′ . Then

L′′Dγ

L′ ? L′Dβ

L ⊂ L′′Dγ ·β

L .

Proof. It suffices to show the same statement for the nonmixed categories. By
definition, it suffices to show that for any w1 in a block β ∈ L′WL and any other
block γ ∈ L′′WL′ ,

L′′Dγ

L′ ? ∆(w1)L ⊂ L′′Dγ ·β

L . (4.5)

We prove this by induction on `(w1). When `(w1) = 0, w1 = e, the statement is
clear since (−) ? ∆(e)L is the identity functor.

Next we consider the case `(w1) = 1, that is, w1 = s is a simple reflection. If
s /∈ W ◦

L, then by Lemma 3.6(3), for any w2 ∈ γ , ∆(w2)sL ? ∆(s)L ∼= ∆(w2s)L,
which implies (4.5).

If s ∈ W ◦

L, it suffices to show that

∆(w2)L ? ∆(s)L ∈ L′′Dγ

L (4.6)

(noww2 andw2s are in the same block denoted by γ ). If `(w2s)= `(w2)+1, then
by Lemma 3.4, ∆(w2)L ? ∆(s)L ∼= ∆(w2s)L, which verifies (4.6). If `(w2s) =
`(w2)− 1, then by 3.4, we have ∆(w2)L ? ∆(s)L ∼= ∆(w2s)L ? ∆(s)L ? ∆(s)L.
Since∆(s)L ? ∆(s)L ∈ LD(6 s)L, which is generated by∆(s)L and∆(e)L, we
have∆(w2)L ? ∆(s)L ∈ 〈∆(w2s)L,∆(w2s)L ? ∆(s)L)〉 = 〈∆(w2s)L,∆(w2)L〉,
which verifies (4.6) in this case. This completes the proof when `(w1) = 1.

Now consider the case `(w1) > 2. Write w1 = w′1s, where s is a simple
reflection in W and `(w1) = `(w′1) + 1. Then ∆(w1)L ∼= ∆(w′1)sL ? ∆(s)L.
By inductive hypothesis applied to `(w′1), we have L′′Dγ

L′ ? ∆(w
′

1)sL ⊂ L′′Dγ ·β ′

sL ,
where β ′ ∈ L′W sL is the block containing w′1. By the proven case for simple
reflections, L′′Dγ ·β ′

sL ? ∆(s)L ⊂ L′′Dγ ·β

L . Combining these two facts, we get (4.5)
for w1.

We will also need the following statement about stalks of IC(w)L later.

LEMMA 4.14. Let β ∈ L′WL and w ∈ β. Then i∗v IC(w)L and i !vIC(w)L vanish
unless v ∈ β and v 6β w.

Proof. It is enough to prove the stalk statement, and the costalk statement
follows by the Verdier duality.

Induction on `(w). The statement is clear for w = e. Suppose it is proved for
`(w) < N (for varying β), and we now prove it for `(w) = N . Write w = w′s
for some simple reflection s such that `(w) = `(w′)+ 1.
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If s /∈ W ◦

L, then IC(w)L ∼= IC(w′)sL ? ∆(s)L by Lemma 3.6(3). Let β ′ =
βs. Applying inductive hypothesis to IC(w′)sL, we see that IC(w′)sL lies in
〈∆(v)sL[n]; v 6β ′ w′, n ∈ Z〉. Therefore, IC(w′)sL ? ∆(s)L lies in

〈∆(v)sL ? ∆(s)L[n]; v 6β ′ w′, n ∈ Z〉.

Note that ∆(v)sL ? ∆(s)L = ∆(vs)L, and v 6β ′ w′ implies vs 6β w′s = w. We
see that IC(w)L ∈ 〈∆(v)L[n]; v 6β w, n ∈ Z〉; hence i∗v IC(w)L is zero unless
v 6β w.

If s ∈ W ◦

L, then IC(w)L is a direct summand of IC(w′)L ? IC(s)L,
and we shall prove the stalk statement for the latter. Applying inductive
hypothesis to IC(w′)L, we see that IC(w′)sL ∈ 〈∆(v)sL[n]; v 6β ′ w′, n ∈ Z〉.
Therefore, IC(w′)L ? ∆(s)L ∈ 〈∆(v)L ? IC(s)L[n]; v 6β ′ w′, n ∈ Z〉.
Since ∆(v)L ? IC(s)L only has stalks along Gv and Gvs , we see that
i∗v (IC(w

′)L ? IC(s)L) is nonzero only if either v 6β w′ or vs 6β w′. In
the former case, v 6β w′ 6β w and in the latter, vs 6β maxβ{w′, w′s} = w

(using that s is a simple reflection in W ◦

L). In either case, i∗v (IC(w
′)L ? IC(s)L)

is zero unless v 6β w. This completes the induction step.

5. Minimal IC sheaves

In this section, we study the simple perverse sheaves with minimal support
in each block, and use them to prove categorical equivalences among different
blocks.

5.1. Minimal IC sheaves. For β ∈ L′WL, any object ξ ∈ L′Dβ

L is called a
minimal IC sheaf if ωξ ∼= IC(wβ)L. We denote by L′P

β

L the groupoid of minimal
IC sheaves in L′Dβ

L. The automorphism group of objects in L′P
β

L is Q×` .

PROPOSITION 5.2. Let β ∈ L′WL and ẇβ be a lifting of wβ .

(1) The natural maps ∆(ẇβ)L→ IC(ẇβ)→ ∇(ẇβ)L are isomorphisms.

(2) Let L′′ ∈ o and γ ∈ L′′WL′ . Then the functor

(−) ? IC(ẇβ) : L′′Dγ

L′ → L′′Dγβ

L

is an equivalence with inverse (−) ? IC(ẇβ,−1). A similar statement is true
for left convolution with IC(ẇβ).

(3) The equivalence (−) ? IC(ẇβ) sends ∆(ẇ)L,∇(ẇ)L and IC(ẇ)L to
∆(ẇẇβ)L, ∇(ẇẇβ)L and IC(ẇẇβ)L, for all w ∈ W .
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Proof. We prove all the statements by induction on `(wβ). For `(wβ) = 0, the
statements are clear. Suppose the statements are true for `(wβ) < n. Let β be
such that `(wβ) = n. Write wβ

= w′s for some simple reflection s such that
`(w′) = n − 1. We have s /∈ W ◦

L for otherwise w′ ∈ β and it is shorter than w.
Let β ′ ∈ L′W sL be the block containingw′. We must havew′ = wβ ′ for otherwise
`(wβ ′s) 6 `(wβ ′) + 1 6 `(w′) and wβ ′s ∈ β would be shorter than wβ . Hence
wβ
= wβ ′s.

For part (1), it suffices to show its nonmixed version. By Lemma 3.6(3),
IC(wβ ′)sL ? IC(s)L ∼= IC(wβ ′s)L ∼= IC(wβ)L. By inductive hypothesis,
∆(wβ ′)sL

∼

→ ∇(wβ ′)sL. By Lemma 3.6(1), ∆(s)L
∼

→ IC(s)L
∼

→ ∇(s)L. Hence
the natural map ∆(wβ)L → IC(wβ)L can be factorized into isomorphisms
∆(wβ)L = ∆(wβ ′s)L ∼= ∆(wβ ′)sL ? ∆(s)L ∼= IC(wβ ′)sL ? IC(s)L ∼=
IC(wβ ′s)L = IC(wβ)L. By the Verdier duality, the natural map IC(wβ)L →

∇(wβ)L is also an isomorphism. This proves part (1) for IC(wβ)L.
Part (2) follows from (1) together with Lemma 3.5.
Finally, we show part (3). By inductive hypothesis, ∆(ẇ)L′ ? IC(ẇβ ′)sL ∼=

∆(ẇẇβ ′)sL. Therefore ∆(ẇ)L′ ? IC(ẇβ ′ ṡ)L ∼= ∆(ẇ)L′ ? IC(ẇβ ′)sL ? IC(ṡ)L ∼=
∆(ẇẇβ ′)sL ? IC(ṡ)L ∼= ∆(ẇẇβ ′ ṡ)L, where we use Lemma 3.6(3). Write
ẇβ
= ẇβ ′ ṡt for t ∈ T (Fq). Then by (2.6), IC(ẇβ)L = IC(ẇβ ′ ṡ)L ⊗ Lt , and

∆(ẇẇβ)L = ∆(ẇẇ
β ′ ṡ)L ⊗ Lt . Therefore ∆(ẇ)L′ ? IC(ẇβ ′ ṡ)L ∼= ∆(ẇẇβ ′ ṡ)L

implies ∆(ẇ)L′ ? IC(ẇβ)L ∼= ∆(ẇẇβ)L. The arguments for ∇ and IC are
similar.

We may strengthen statement (3) in the above proposition to canonical
isomorphisms. To do this, we first need a lemma. The rest of this section is only
used in Section 10.

LEMMA 5.3. Let ẇ, ẇ′ ∈ NG(T ) be any liftings of w,w′ ∈ W , respectively. Let

mw,w′ : Gw

B
× Gw′ → G be the multiplication map. Let B− be the Borel subgroup

of G such that B∩B− = T , and let U− be the unipotent radical of B−. We denote
Ad(ẇ)U by wU.

(1) The following map is an isomorphism

U− ∩ w−1
U ∩ w′U

∼

→ m−1
w,w′(ẇẇ

′)

u 7→ (ẇu, u−1ẇ′).

(2) We have dim(U−∩w−1
U ∩w

′

U ) = 1
2 (`(w)+`(w

′)−`(ww′)). In particular,
m−1
w,w′(ẇẇ

′) is isomorphic to an affine space of dimension 1
2 (`(w)+`(w

′)−

`(ww′)).
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Proof. (1) By the Bruhat decomposition, any g ∈ Gw can be written uniquely as
ẇub, where u ∈ w−1

U ∩ U− and b ∈ B; any g′ ∈ Gw′ can be written uniquely
as b′u ′ẇ′, where b′ ∈ B and u ′ ∈ w′U ∩ U−. Using these facts, we have an
isomorphism

ϕ : (w
−1

U ∩U−)× B × (w
′

U ∩U−)
∼

→ Gw

B
× Gw′ (5.1)

(u, b, u ′) 7→ (ẇub, u ′ẇ′).

We write a point (g, g′) ∈ m−1
w,w′(ẇẇ

′) as ϕ(u, b, u ′) as above; then gg′ = ẇẇ′

implies ubu ′ = 1, or b = u−1u ′−1. Since b ∈ B and u−1u ′−1
∈ U−, we must

have b = 1 and u ′ = u−1, and the latter implies u ∈ U−∩w
−1

U ∩w
′

U . Therefore,
restricting ϕ to triples (u, b, u ′), where b = 1 and u ′ = u−1, gives an isomorphism

U− ∩ w−1
U ∩ w′U

∼

→ m−1
w,w′(ẇẇ

′)

u 7→ ϕ(u, 1, u−1) = (ẇu, u−1ẇ′).

(2) Since dim(U− ∩ w−1
U ∩ w′U ) = #(Φ− ∩ w−1Φ+ ∩ w′Φ+), and `(w) =

#(Φ− ∩ wΦ+) for all w ∈ W , the dimension formula is equivalent to

2#(Φ−∩w−1Φ+∩w′Φ+)= #(Φ−∩w−1Φ+)+#(Φ−∩w′Φ+)−#(Φ−∩ww′Φ+).
(5.2)

We have

#(Φ− ∩ w−1Φ+) = #(Φ− ∩ w−1Φ+ ∩ w′Φ+)+ #(Φ− ∩ w−1Φ+ ∩ w′Φ−),

#(Φ− ∩ w′Φ+) = #(Φ− ∩ w−1Φ+ ∩ w′Φ+)+ #(Φ− ∩ w−1Φ− ∩ w′Φ+),

#(Φ− ∩ ww′Φ+) = #(w−1Φ− ∩ w′Φ+).

Thus to prove (5.2), it is enough to prove

#(Φ−∩w−1Φ+∩w′Φ−)+ #(Φ−∩w−1Φ−∩w′Φ+)= #(w−1Φ−∩w′Φ+). (5.3)

By the change of variable α 7→ −α, we see that

#(Φ− ∩ w−1Φ+ ∩ w′Φ−) = #(Φ+ ∩ w−1Φ− ∩ w′Φ+),

so that (5.3) is equivalent to

#(Φ+ ∩ w−1Φ− ∩ w′Φ+)+ #(Φ− ∩ w−1Φ− ∩ w′Φ+) = #(w−1Φ− ∩ w′Φ+),

which is obvious.

The next result will not be used in the rest of the paper.
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COROLLARY 5.4. Let B be the flag variety of G, and Ow ⊂ B × B the G-
orbit containing (1, ẇ), w ∈ W . Let w1, w2, w3 be elements of W such that
w1w2w3 = 1. Let

Aw1,w2,w3 = {(B1, B2, B3) ∈B
3
|(B1, B2) ∈Ow1, (B2, B3) ∈Ow2, (B3, B1) ∈Ow3}.

Then Aw1,w2,w3 is a single G-orbit under the diagonal G-action on B3, and
dim(Aw1,w2,w3) = dimB+ (`(w1)+ `(w2)+ `(w3))/2.

Proof. Since G acts transitively (by simultaneous conjugation) on Ow3 , it is
enough to show that for fixed (B3, B1) ∈ Ow3 , the conjugation action of B1 ∩ B3

on A′ := {B2 ∈ B|(B1, B2) ∈ Ow1, (B2, B3) ∈ Ow2} is transitive and that
dim(A′) = dimB + (`(w1) + `(w2) + `(w3))/2 − dimOw3 = (`(w1) +

`(w2) − `(w3))/2. We may assume that B1 = B, B3 =
w−1

3 B = w1w2 B. Then
A′ = {gB ∈ G/B|g ∈ Gw1, g−1ẇ1ẇ2 ∈ Gw2}, and it can be identified with
the fiber m−1

w1,w2
(ẇ1ẇ2) considered in Lemma 5.3: gB ∈ A′ corresponds to (g,

g−1ẇ1ẇ2) ∈ m−1
w1,w2

(ẇ1ẇ2). By Lemma 5.3(1), the action of U ∩ w1w2U on
m−1
w1,w2

(ẇ1ẇ2) by u · (g, g−1ẇ1ẇ2) = (ug, g−1u−1ẇ1ẇ2) is already transitive;
therefore the action of B∩w1w2 B on A′ by left translation on gB is also transitive.
The dimension formula follows from Lemma 5.3(2).

CONSTRUCTION 5.5. Let β ∈ L′WL and w ∈ W . We will construct canonical
isomorphisms

∆(ẇ)L′ ? IC(ẇβ)L ∼= ∆(ẇẇ
β)L, (5.4)

∇(ẇ)L′ ? IC(ẇβ)L ∼= ∇(ẇẇ
β)L, (5.5)

IC(ẇ)L′ ? IC(ẇβ)L ∼= IC(ẇẇβ)L. (5.6)

There are similar canonical isomorphisms for left convolution with IC(ẇβ)L.
By Proposition 5.2(3), we know that the two sides of the above equations are

indeed isomorphic, and such isomorphisms are unique up to a scalar (for the
endomorphisms of ∆(ẇẇβ)L,∇(ẇẇ

β)L and IC(ẇẇβ)L are scalars).
We first construct the canonical isomorphism (5.4). For this, it suffices to

construct a canonical isomorphism between the stalks of the two sides at ẇẇβ .
By the definition of convolution, we have

i∗ẇẇβ (∆(ẇ)L′ ? IC(ẇβ)L) ∼= H∗c(m
−1
w,wβ

(ẇẇβ)k,C(ẇ)L′
B
� C(ẇβ)L|m−1

w,wβ
(ẇẇβ )).

Here C(ẇ)L′
B
� C(ẇβ)L is the descent of C(ẇ)L′ � C(ẇβ)L to Gw

B
× Gwβ , and

mw,wβ : Gw

B
× Gwβ → G is the multiplication map. Using Lemma 5.3(1), we may
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identify m−1
w,wβ

(ẇẇβ) with the unipotent group U− ∩ w−1
U ∩ wβU , under which

the restriction of C(ẇ)L′
B
� C(ẇβ)L is canonically isomorphic to the constant

sheaf Q`〈`(w)+ `(w
β)〉 since the stalk of C(ẇ)L′ at ẇ and the stalk of C(ẇβ)L

at ẇβ are canonically isomorphic to Q`〈`(w)〉 and Q`〈`(w
β)〉, respectively, by

construction. Therefore we have a canonical isomorphism of Fr-modules

i∗ẇẇβ (∆(ẇ)L′ ? IC(ẇβ)L) ∼= H∗c(U
−

k ∩
w−1

Uk ∩
wβUk,Q`〈`(w)+ `(w

β)〉)

∼= Q`〈`(w)+ `(w
β)〉〈−`(w)− `(wβ)+ `(wwβ)〉

= Q`〈`(ww
β)〉 ∼= i∗ẇẇβ∆(ẇẇ

β)L,

where we used the dimension formula for U− ∩ w−1
U ∩ wβU proved in

Lemma 5.3(2). We define the canonical isomorphism (5.4) to be the one that
restricts to the above isomorphism after taking stalks at ẇẇβ .

To construct the canonical isomorphism (5.6), we consider the following
diagram

∆(ẇ)L′ ? IC(ẇβ)L
(5.4) //

��

∆(ẇẇβ)L

��
IC(ẇ)L′ ? IC(ẇβ)L

λ // IC(ẇẇβ)L

where the vertical maps are induced from the canonical maps ∆(ẇ)L →
IC(ẇ)L, and the upper horizontal map is the one constructed just now. Since
Hom(∆(ẇ)L′ ? IC(ẇβ)L, IC(ẇẇβ)L) is one-dimensional, an arbitrary choice
of the isomorphism λ (dashed arrow) would make the diagram commutative
up to a nonzero scalar. Hence there is a unique choice of the isomorphism λ

making the above diagram commutative. This constructs the desired map (5.6).
The construction of (5.5) is similar.

WARNING 5.6. For two blocks β ∈ L′WL and γ ∈ L′′WL′ , Construction 5.5
gives a canonical isomorphism

canẇγ ,ẇβ : IC(ẇγ )L′ ? IC(ẇβ)L ∼= IC(ẇγ ẇβ)L. (5.7)

Let δ ∈ L′′′WL′′ be yet another block. We have two isomorphisms between
IC(ẇδ)L′′ ? IC(ẇγ )L′ ? IC(ẇβ)L and IC(ẇδẇγ ẇβ)L given by first doing
convolution IC(ẇγ )L′ ? IC(ẇβ)L or doing IC(ẇδ)L′′ ? IC(ẇγ )L′ :

IC(ẇδ)L′′ ? IC(ẇγ )L′ ? IC(ẇβ)L

can
ẇδ ẇγ ,ẇβ

◦(can
ẇδ ,ẇγ

?id)
//

can
ẇδ ,ẇγ ẇβ

◦(id?can
ẇγ ,ẇβ

)

// IC(ẇδẇγ ẇβ)L .

(5.8)

https://doi.org/10.1017/fmp.2020.9 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2020.9


G. Lusztig and Z. Yun 34

However, these two maps are not equal in general, as we will see from the
following example.

EXAMPLE 5.7. Consider the case G = SL2, and L ∈ Ch(T ) nontrivial. Let
ṡ =

(
1

−1

)
be a lifting of the nontrivial element s ∈ W , and sL = L−1. In this

case, both IC(ṡ)L and IC(ė)L = δL are minimal IC sheaves. We claim that the
two isomorphisms between IC(ṡ)L ? IC(ṡ−1)sL ? IC(ṡ)L and IC(ṡ)L given as in
(5.8) differ by a sign.

Indeed, the stalk of F = IC(ṡ)L ? IC(ṡ−1)L ? IC(ṡ)L at ṡ can be calculated
from the definition of the convolution as follows. We identify G/U with A2

−{0},
where U is the stabilizer of e1 = (1, 0). The fiber of the three-fold convolution

morphism G
U
× G

U
× G → G over ṡ can be identified with pairs of vectors (v1,

v2) ∈ (A2
− {0})2 via the map (g1, g2, g3) 7→ (g1e1, g1g2e1). The open subset

Y = {v1 = (x1, y1) ∈ A2
− {0}, v2 = (x2, y2) ∈ A2

− {0}|y1 6= 0, x2 6= 0,
x1 y2 − x2 y1 6= 0} of (A2

− {0})2 is relevant to our calculation. For any invertible
function f on Y , we use L f to denote the pullback f ∗L. We consider the local
system K = L−y1L−1

x1 y2−x2 y1
Lx2 . Let Gm × Gm act on Y by scaling the vectors

(x1, y1) and (x2, y2) separately. Then K is equivariant under the G2
m action on Y

and hence descends to a local system on X = Y/G2
m , which we still denote by

K. We have a canonical isomorphism

i∗ṡ F ∼= H∗c(X,K)〈3〉.

Now X ↪→ A2 by coordinates u = x1/y1 and v = y2/x2, and with image A2
−

{uv = 1}. The local system K = L−1
1−uv on X . Therefore we have canonically

i∗ṡ F ∼= H∗c(X,L−1
1−uv)〈3〉.

The isomorphism canė,ṡ ◦ (canṡ,ṡ−1 ? id) corresponds to the isomorphism by
restriction to the line v = 0:

i∗v=0 : H
∗

c(X,L−1
1−uv)〈3〉

∼

→ H∗c(A
1
v=0,Q`)〈3〉 ∼= Q`〈1〉.

Here we have used the canonical trivialization of the stalk of L at 1, and the
fundamental class of A1. Similarly, the other isomorphism canṡ,ė ◦ (id ? canṡ−1,ṡ)

corresponds to the isomorphism by restriction to the line u = 0. Let σ : X → X
be the involution (u, v) 7→ (v, u). Then L−1

1−uv has a canonical σ -equivariant
structure such that the σ -action on the stalk at (0, 0) is the identity. This induces
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an involution σ ∗ on H∗c(X,L−1
1−uv)〈3〉, and the following diagram is commutative:

H∗c(X,L−1
1−uv)〈3〉

σ ∗ //

i∗v=0
��

H∗c(X,L−1
1−uv)〈3〉

i∗u=0
��

H∗c(A1
v=0,Q`)〈3〉 Q`〈1〉 H∗c(A1

u=0,Q`)

We claim that σ ∗ acts on the one-dimensional space H∗c(X,L−1
1−uv) by −1, which

would imply our claim in the beginning of this example.
We compare two traces Tr1 = Tr(Fr,H∗c(X,L−1

1−uv)) and Tr2 = Tr(σ ∗ ◦ Fr,
H∗c(X,L−1

1−uv)). Let χ be the character of F×q corresponding to L−1. By the
Lefschetz trace formula, Tr1 =

∑
u,v∈Fq ,uv 6=1 χ(1 − uv). The fiber of (u, v) 7→

a = 1− uv has q − 1 elements over a 6= 1, and has 2q − 1 elements over a = 1.
Therefore, Tr1 = (q − 1)

∑
a 6=0,1 χ(a)+ (2q − 1) = q since χ 6= 1. On the other

hand, σ ∗ ◦ Fr is the Frobenius for the variety X ′ ⊂ ResFq2 /FqA1
− {Nm = 1},

which becomes isomorphic to X over Fq2 . Using this interpretation, we have
Tr2 =

∑
u∈Fq2 ,Nm(u)6=1 χ(1 − Nm(u)). The fiber of the map Fq2 3 u 7→ 1 −

Nm(u) = a ∈ Fq has q + 1 elements over a 6= 1 and 1 element over a = 1.
Therefore Tr2 = (q + 1)

∑
a 6=0,1 χ(a)+ 1 = −q . This shows Tr1 = −Tr2; hence

σ ∗ acts by −1 on the one-dimensional space H∗c(X,L−1
1−uv).

5.8. The 3-cocycle. For three composable blocks β, γ, δ, let σ(ẇδ, ẇγ , ẇβ)

be the ratio of the two isomorphisms in (5.8) (top over bottom). It is easy to
see that σ(ẇδ, ẇγ , ẇβ) depends only on β, γ, δ, so we denote it by σ(wδ, wγ ,

wβ). Recall the groupoid Ξ defined in Section 4.5. By the pentagon axiom for
the associativity of the convolution, the assignment (wδ, wγ , wβ) 7→ σ(wδ, wγ ,

wβ) defines a 3-cocycle σ ∈ Z 3(Ξ,Q×` ). In other words, for four composable
morphisms wε, wδ, wγ and wβ in Ξ ,

σ(wδ, wγ , wβ)σ (wεδ, wγ , wβ)−1σ(wε, wδγ , wβ)

σ (wε, wδ, wγβ)−1σ(wε, wδ, wγ ) = 1.

In [32, Section 4], we will show that σ always takes values in {±1}. In fact,
there is a 3-cocycle εW

3 ∈ Z 3(W, {±1}) canonically attached to the Coxeter group
(W, S), and σ is the pullback of εW

3 along the natural map Ξ → [pt/W ]. In [32,
Section 5], we will also calculate the cohomology class of σ , which often turns
out to be nontrivial.
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6. Maximal IC sheaves

6.1. Maximal IC sheaves. Let L,L′ ∈ o and β ∈ L′WL. Recall that wβ is
the longest element in the block β. An object F ∈ L′Dβ

L is called a maximal IC
sheaf if ωF ∼= IC(wβ)L.

When L,L′ are trivial, there is only one block β in Db
m(B\G/B), wβ = w0 is

the longest element in W and IC(wβ)L ∼= Q`[dim G/B] is a shifted constant
sheaf on B\G/B. The constant sheaf Q` on B\G/B has two remarkable
properties: (a) convolution with it always yields a direct sum of constant sheaves;
(b) its stalks and costalks are one-dimensional. Below we will prove analogues
of these properties for maximal IC sheaves in each block.

PROPOSITION 6.2. Let β ∈ L′WL and γ ∈ L′′WL′ . Let w ∈ β.

(1) For anyw ∈ β, the convolution IC(wγ )L′ ? IC(w)L is isomorphic to a direct
sum of shifts of IC(wγβ)L.

(2) The perverse cohomology pHi(IC(wγ )L′ ? IC(w)L) vanishes unless
−`β(w) 6 i 6 `β(w).

(3) There are isomorphisms
pH`β (w)(IC(wγ )L′ ? IC(w)L) ∼= IC(wγβ)L,

pH−`β (w)(IC(wγ )L′ ? IC(w)L) ∼= IC(wγβ)L.

Proof. We prove the statements simultaneously by induction on `(w). Forw = e,
the statement is clear.

If `(w) = 1, w is a simple reflection s.
If s /∈ W ◦

L, Lemma 3.6(3) implies that IC(wγ )L′ ? IC(s)L ∼= IC(wγ s)L.
By Corollary 4.3, wγ s = wγβ is the maximal element in γβ; hence
IC(wγ )L′ ? IC(s)L ∼= IC(wγβ)L. Note that `β(s) = 0 in this case, and (2)(3)
hold trivially.

If s ∈ W ◦

L (hence L′ = sL = L), then by Lemma 3.10, IC(wγ )L ∼=
π∗s IC(wγ )L̃[1]; here IC(wγ )L̃ = ωIC(ẇγ )L̃ ∈ LDL̃. By Lemma 3.8,
IC(wγ )L ? IC(s)L ∼= π∗s πs∗π

∗

s IC(wγ )L̃[1]. By the projection formula,
πs∗π

∗

s IC(wγ )L̃
∼= IC(wγ )L̃ ⊗ H∗(P1

k) because πs : G/B → G/Ps is a P1-
fibration. Therefore

IC(wγ )L ? IC(s)L ∼= π∗s IC(wγ )L̃[1] ⊕ π
∗

s IC(wγ )L̃[−1]
= IC(wγ )L[1] ⊕ IC(wγ )L[−1].

Note that `β(s) = 1 in this case, and (2)(3) follow from the above isomorphism.
This settles the case `(w) = 1.
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For `(w) > 1, write w = w′s for some simple reflection s such that `(w′) =
`(w)− 1. Let β ′ = βs ∈ L′W sL so w′ ∈ β ′. We shall first prove the analogues of
the statements (1)(2) for IC(w′)sL ? IC(s)L instead of IC(w)L (in statement (2),
the range for i is still [−`β(w), `β(w)]).

By inductive hypothesis, IC(wγ )L′ ? IC(w′)sL ∼= IC(wγβ ′)sL⊗V ′ for a graded
Q`-vector space V ′ = ⊕n∈ZV ′n[−n] such that V ′n = 0 unless −`β ′(w′) 6 n 6
`β ′(w

′) and dim V ′
±`β′ (w

′) = 1. Therefore

IC(wγ )L′ ? (IC(w′)sL ? IC(s)L) ∼= ⊕n V ′n[−n] ⊗ (IC(wγβ ′)sL ? IC(s)L). (6.1)

If s /∈ W ◦

L, we have `β(w) = `β ′(w
′) by the formula for `β given in

Lemma 4.6(4). We also have IC(wγβ ′)sL ? IC(s)L ∼= IC(wγβ) by Lemma 3.6(3).
The statements (1)(2)(3) for IC(w′)sL ? IC(s)L follow easily from (6.1).

If s ∈ W ◦

L, we have `β(w) = `β ′(w
′) + 1 by the formula for `β given in

Lemma 4.6(4). By the w = s case already treated in the beginning of the
proof, we have IC(wγβ ′)sL ? IC(s)L ∼= IC(wγβ)L[1]⊕ IC(wγβ)L[−1]. Therefore
IC(wγ )L′ ? IC(w′)sL ? IC(s)L ∼= ⊕n(V ′n[−n − 1] ⊕ V ′n[−n + 1])⊗ IC(wγβ)L ∼=
⊕n∈Z(V ′n−1 ⊕ V ′n+1) ⊗ IC(wγβ)L[−n]. The statements (1)(2)(3) follow from the
known properties of V ′.

Finally we deduce the statements (1)(2)(3) for IC(w)L from the proven
statements for IC(w′)sL ? IC(s)L. When s /∈ W ◦

L, we have IC(w′)sL ? IC(s)L ∼=
IC(w)L by Lemma 3.6(3). Therefore the statements are already proven. Below
we deal with the case s ∈ W ◦

L.
By the decomposition theorem, IC(w)L is a direct summand of

IC(w′)sL ? IC(s)L. By Lemma 6.3, IC(w′)L ? IC(s)L is itself perverse. Hence
we can write

IC(w′)L ? IC(s)L ∼= IC(w)L ⊕ P
for some semisimple perverse sheaf P ∈ L′DL with support in U\G<w/U . We
see that

IC(wγ )L′ ? IC(w′)L ? IC(s)L ∼= IC(wγ )L′ ? IC(w)L ⊕ IC(wγ )L′ ? P .

By the proven statements (1)(2)(3) for the left side above, we have

IC(wγ )L′ ? IC(w)L ⊕ IC(wγ )L′ ? P ∼= IC(wγβ)L ⊗ (⊕n Vn[−n]), (6.2)

where Vn is a finite-dimensional Q`-vector space, Vn = 0 unless −`β(w) 6 n 6
`β(w), and dim V±`β (w) = 1.

Part (2) for IC(wγ )L′ ? IC(w)L is now clear from the degree range on the right
side of (6.2).

Part (1). In view of (6.2), each perverse cohomology sheaf of
IC(wγ )L′ ? IC(w)L is a direct summand of a direct sum of IC(wγβ)L,
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and hence itself a direct sum of IC(wγβ)L. By the decomposition theorem,
IC(wγ )L′ ? IC(w)L is then a direct sum of shifts of IC(wγβ)L.

Part (3). We claim that P is a direct sum of IC(v)L for v ∈ β and v <β

w. In fact, the argument in the third paragraph of Lemma 4.14 shows that
IC(w′)L ? IC(s)L only has stalks along Gv for v 6β w. Now P is supported
on U\G<w/U ; its direct summands can only be IC(v)L for v ∈ β and v <β w.

By the above claim, we have `β(v) < `β(w) for any IC(v)L that
shows up in P . By inductive hypothesis applied to these IC(v)L, we have
pH±`β (w)(IC(wγ )L′ ? P) = 0. Therefore pH±`β (w)(IC(wγ )L′ ? IC(w)L) ∼=
IC(wγβ)L ⊗ V±`β (w) ∼= IC(wγβ)L.

LEMMA 6.3. Let s ∈ W be a simple reflection andw′ ∈ W be such that `(w′s)=
`(w′)+ 1. Then IC(w′)sL ? IC(s)L is a perverse sheaf.

Proof. If s /∈ W ◦

L, then IC(w′)sL ? IC(s)L ∼= IC(w)L by Lemma 3.6(3).
If s ∈ W ◦

L, by Lemma 3.8, we have IC(w′)sL ? IC(s)L ∼= π∗s πs∗IC(w′)sL[1].
It suffices to show that πs∗IC(w′)sL is perverse in the following sense. Let
ν : L̃ s → L s be a finite étale isogeny such that L̃ is defined via a character
of ker(ν). Let P̃s = Ps ×Ls L̃ s and B̃ = B ×Ls L̃ s . We have the projection
map π̃s : G/B̃ → G/P̃s . Viewing IC(w′)sL as a complex on the stack G/B̃,
then πs∗IC(w′)sL as a complex on G/P̃s is simply π̃s∗IC(w′)sL. We shall
show that π̃s∗IC(w′)sL is a perverse sheaf on G/P̃s . Since π̃s is smooth of
relative dimension 1, π̃∗s [1] preserves perverse sheaves, which would imply that
IC(w′)sL ? IC(s)L ∼= π̃∗s π̃s∗IC(w′)sL[1] is perverse.

For v ∈ W , let v be its image in W/〈s〉. Then G/P̃s =
⊔

v∈W/〈s〉 BvPs/P̃s

is a stratification of G/P̃s , and dim BvPs/P̃s = `(v) := min{`(v), `(vs)}.
By the Verdier duality, it suffices to show that for any v 6 w′ and
x ∈ (BvPs)/P̃s = (Gv ∪ Gvs)/P̃s , the stalk of π̃s∗IC(w′)sL at x , which is
H∗(π̃−1

s (x), IC(w′)sL|π̃−1
s (x)), lies in degrees 6 −`(v). Note that π̃−1

s (x) ∼= P1

for any x ∈ G/P̃s .
First, consider the case v < w′, and we may assume vs < v. Then IC(w′)sL|Gv

lies in degrees 6 −`(v) − 1 and IC(w′)sL|Gvs lies in degrees 6 −`(vs) − 1 =
−`(v). We have π̃−1

s (x) ∩ Gv/B̃ ∼= A1 and π̃−1
s (x) ∩ Gvs/B̃ ∼= pt. Therefore

H∗(π̃−1
s (x), IC(w′)sL|π−1

s (x)) lies in degrees 6 −`(v)− 1+ 2 = −`(v).
If v = w′, then the stalk of π̃s∗IC(w′)sL at x ∈ (Bw′Ps)/P̃s lies in degree
−`(w′) because Gw′/B̃ → (Bw′Ps)/P̃s is an isomorphism. This finishes the
stalk degree estimates needed to show that π̃s∗IC(w′)sL is perverse.

PROPOSITION 6.4. Let NL be the length of the longest element in the Coxeter
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group W ◦

L (with respect to its own simple reflections). For β ∈ L′WL and w ∈ β,
we have

i∗wIC(wβ)L ∼= C(w)L[NL − `β(w)]; i !wIC(wβ)L ∼= C(w)L[−NL + `β(w)].

Here `β is the function defined in (4.1).

Proof. The second isomorphism follows from the first one by the Verdier duality.
We prove the first one by backward induction on `(w) (we allow L to vary in o,
and wβ is determined by w and L). If w = w0 is the longest element in W , then
w0 = wβ for the block β containingw0, and i∗w0

IC(wβ)L ∼= C(w0)L by definition
(and in this case `β(w0) = NL).

Now suppose the isomorphism holds for any w ∈ W such that `(w) > n. Let
w ∈ W be such that `(w) = n, and let β ∈ wLWL be the block containing w. Let
s be a simple reflection in W such that `(ws) = `(w)+ 1. We denote ws by w′.
Let β ′ = βs ∈ wLW sL, the block containing w′.

If s /∈ W ◦

L, then by Lemma 3.6(1), right convolution with IC(s)sL gives an
equivalence wLDL → wLDsL sending IC(wβ)L to IC(wβs)sL and ∇(w)L to
∇(w′)sL. By Corollary 4.3, wβs = wβ ′ . Therefore we have an isomorphism of
graded H∗Tk

(ptk)-modules (coming from the left T -action)

Hom(IC(wβ)L,∇(w)L) ∼= Hom(IC(wβ ′)sL,∇(w′)sL). (6.3)

Applying the inductive hypothesis to IC(wβ ′)sL and w′ (which is longer than w),
we get

Hom(IC(wβ ′)sL,∇(w′)sL) ∼= Hom(i∗w′IC(wβ ′)sL,C(w′)sL)
∼= End(C(w′)sL)[−NsL + `β ′(w

′)] ∼= H∗Γ (w′)k (ptk)[−NsL + `β ′(w
′)].

The last isomorphism uses Lemma 2.10. Similarly,

Hom(IC(wβ)L,∇(w)L) ∼= Hom(i∗wIC(wβ)L,C(w)L)
∼= Hom[{ẇ}/Γ (w)](i∗ẇ(IC(wβ)L),Q`)[`(w)].

In view of (6.3), we have an isomorphism of graded H∗Tk
(ptk)-modules

H∗Γ (w′)k ({ẇ})[−NsL + `β ′(w
′)] ∼= Hom(i∗ẇIC(wβ)L,Q`)[`(w)].

This forces i∗ẇ(IC(wβ)L) ∼= Q`[`(w) + NsL − `β ′(w
′)] ∈ Db

Γ (w)k
({ẇ}), which

implies that i∗wIC(wβ)L ∼= C(w)L[NsL−`β ′(w
′)] by Lemma 2.10. Clearly, NsL =

NL. By Lemma 4.6(4), `β(w) = `β ′(w′). Therefore i∗wIC(wβ)L ∼= C(w)L[NL −

`β(w)].
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If s ∈ W ◦

L, then IC(wβ)L is in the image of π∗s by Lemma 3.10, which implies
that the stalks of IC(wβ)L at ẇ and at ẇ′ are isomorphic to each other. By
inductive hypothesis, the stalk i∗ẇ′IC(wβ)L ∼= Q`[`(w

′) + NL − `β(w
′)] (now

w′ ∈ β). By Lemma 4.6(4), we have `β(w′) = `β(ws) = `β(w) + 1. Therefore
i∗ẇIC(wβ)L ∼= Q`[`(w

′)+ NL − `β(w
′)] ∼= Q`[`(w)+ NL − `β(w)], and hence

i∗wIC(wβ)L ∼= C(w)L[NL − `β(w)].

6.5. Rigidified maximal IC sheaf in the neutral block. Let L ∈ o. Recall
that δL = IC(ė)L ∈ LD◦L is the monoidal unit of LD◦L under convolution. Recall
that NL is the length of the longest element wL,0 in the Coxeter group W ◦

L (in
terms of simple reflections in W ◦

L).
A rigidified maximal IC sheaf in LD◦L is a pair (Θ, ε), where Θ ∈ LD◦L is

such that Θ[NL] is a maximal IC sheaf (that is, ωΘ[NL] ∼= IC(wL,0)L) and
ε : Θ → δL is a nonzero map in LD◦L.

Rigidified maximal IC sheaves exist. Indeed, by Proposition 6.4,
i∗e IC(ẇL,0)[−NL] ∼= C(ė) ⊗ V for a one-dimensional Fr-module V . Therefore,
forΘ = IC(ẇL,0)[−NL]⊗V ∗, we get a nonzero map ε : Θ → δL by adjunction.

Let (Θ, ε) and (Θ ′, ε ′) be two rigidified maximal IC sheaves in LD◦L. Then
there is a unique isomorphism α : ωΘ

∼

→ ωΘ ′ such that ε ′◦α = ε as elements in
Hom(Θ, δL). The uniqueness of α implies that Fr(α) = α; moreover, Hom(Θ,
Θ ′[−1]) = 0, and hence α uniquely lifts to an isomorphism α : Θ

∼

→ Θ ′ inside
LD◦L. Therefore any two rigidified maximal IC sheaves are isomorphic to each
other. Moreover, the automorphism group of any rigidified maximal IC sheaf is
trivial. Therefore we may identify all the rigidified maximal IC sheaves in LD◦L
as a single object and denote it by

(Θ◦L, εL : Θ
◦

L→ δL).

We denote by
(Θ◦L, εL) = ω(Θ

◦

L, εL)

the rigidified maximal IC sheaf in LD◦L.

PROPOSITION 6.6. There is a unique coalgebra structure on Θ◦L (inside the
monoidal category LD◦L) with εL as the counit map.

Proof. For each n > 2, let (Θ◦L)
?n be the n-fold convolution of Θ◦L. We will

construct a comultiplication map

µn
L : Θ

◦

L→ (Θ◦L)
?n
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characterized as the unique map such that the following diagram is commutative

Θ◦L
µn
L //

εL

��

(Θ◦L)
?n

ε?nL

��
δL

∼ // (δL)?n

(6.4)

where the bottom arrow is the canonical isomorphism from the monoidal unit
structure on δL.

Let δL = ωδL. By an iterated application of Proposition 6.2(3), we see that
pHi((Θ◦L)

?n) = 0 for i < NL, and Θ◦L[NL] ∼=
pHNL((Θ◦L)

?n). Therefore there
is a nonzero map µn

: Θ◦L → (Θ◦L)
?n , unique up to a scalar. Since nonzero

maps Θ◦L → δL are unique up to a scalar, the claim below shows that there
is a unique nonzero multiple of µn (call it µn

L) that makes the nonmixed
version of diagram (6.4) (that is, the diagram after applying ω to all terms)
commutative. The uniqueness of µn

L implies that it is invariant under Frobenius;
moreover, Hom(Θ◦L, (Θ

◦

L)
?n
[−1]) = 0 for perverse degree reasons. Therefore

µn
L determines uniquely a morphism µn

L : Θ
◦

L→ (Θ◦L)
?n in LD◦L.

CLAIM. The composition (for any nonzero choice of µn)

Θ◦L
µn

−→ (Θ◦L)
?n ε?nL
−→ (δL)

?n ∼= δL

is nonzero.

Proof of Claim. We prove the claim by induction on n. For n = 2, we take the
degree zero stalks of the above maps at the identity element ė ∈ G. The map
becomes (where i : {ė} ↪→ G is the inclusion)

i∗Θ◦L
H0i∗µ2

−−−→ H0i∗(Θ◦L ? Θ
◦

L)
∼= H0((G/B)k, inv∗Θ◦L ⊗Θ

◦

L) (6.5)
res
−→ H0i∗(inv∗Θ◦L ⊗Θ

◦

L)

∼= i∗Θ◦L ⊗ i∗Θ◦L ∼= i∗δL ⊗ i∗δL = Q` = i∗δL.

Here H0i∗µ2 is an isomorphism since Θ◦L ? Θ◦L is a direct sum of Θ◦L and
Θ◦L[− j] for j > 0 by Proposition 6.2, and i∗Θ◦L is concentrated in degree
0 by Proposition 6.4. The second isomorphism follows from the definition of
the convolution, where inv : G → G is the inversion map. The map ‘res’
is the restriction map to {ė}. To prove the claim, we show that composition
(6.5) is an isomorphism. It suffices to show that res is an isomorphism. Let
F = inv∗Θ◦L ⊗ Θ◦L ∈ Db(Bk\Gk/Bk). By Proposition 6.4, the stalk of F
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along the cell Xw,k = Gw,k/Bk vanishes if w /∈ W ◦

L, and if w ∈ W ◦

L, it
lies in degree 2(−`(w) + `L(w)). We compute H∗((G/B)k,F) using the
stratification G/B = tw∈W Xw; the contribution of Xw is 0 if w /∈ W ◦

L and is
H∗c(Xw,k,Q`[2`(w)− 2`L(w)]) ∼= Q`[−2`L(w)] for w ∈ W ◦

L. This shows that
the only contribution to H0((G/B)k,F) is from the point stratum Xe; hence res
is an isomorphism. This proves the case n = 2.

Suppose the claim is proved for n − 1. Up to a nonzero scalar, µn is equal to
the composition

Θ◦L
µ2

−→ Θ◦L ? Θ
◦

L
µn−1?id
−−−→ (Θ◦L)

?(n−1) ? Θ◦L.

Composing with ε?nL , we see that up to a nonzero scalar, ε?nL ◦µ
n can be rewritten

as the composition

Θ◦L
µ2

−→ Θ◦L ? Θ
◦

L
(ε
?(n−1)
L ◦µn−1)?id
−−−−−−−−→ δL ? Θ

◦

L
id?εL
−−→ δL ? δL

∼= δL.

By inductive hypothesis, ε?(n−1)
L ◦µn−1 is a nonzero multiple of εL. Therefore the

above composition is, up to a nonzero scalar, ε?2L ◦ µ
2, which is nonzero by the

n = 2 case proved above. This completes the induction step.

We continue with the proof of Proposition 6.6. Co-associativity of µ2
L follows

by the uniqueness of µ3
L. It remains to check the counit axioms, that is, the

compositions

Θ◦L
µ2
L
−→ Θ◦L ? Θ

◦

L
id?εL
−−→ Θ◦L ? δL

∼= Θ
◦

L, (6.6)

Θ◦L
µ2
L
−→ Θ◦L ? Θ

◦

L
εL?id
−−→ δL ? Θ

◦

L
∼= Θ

◦

L (6.7)

are the identity maps. Composing (6.6) with εL, we recover the map Θ◦L
µ2
L
−→

Θ◦L ? Θ
◦

L
ε?2L
−→ δL, which is equal to εL by construction. This forces (6.6) to be

the identity because the endomorphisms of Θ◦L are scalars. The same argument
works to show that (6.7) is the identity map.

DEFINITION 6.7. For w ∈ W ◦

L, define

C(w)†L := i∗wΘ
◦

L〈`L(w)〉,

∆(w)
†
L := iw!C(w)

†
L, ∇(w)

†
L := iw∗C(w)

†
L, IC(w)†L := iw!∗C(w)

†
L.

By Proposition 6.4, ωC(w)†L ∼= C(w)L. By Proposition 3.11(1), C(w)†L is
pure of weight zero. ThereforeωIC(w)†L ∼= IC(w)L and IC(w)†L is pure of weight
zero. We call IC(w)†L a rigidified IC sheaf.

https://doi.org/10.1017/fmp.2020.9 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2020.9


Endoscopy for Hecke categories 43

LEMMA 6.8. There is a unique map θ †
w : Θ

◦

L → IC(w)†L〈−`L(w)〉 whose
restriction under i∗w is the identity map of C(w)†L〈−`L(w)〉.

Proof. By Corollary 3.12, there is a filtration on M = Hom•(Θ◦L,
IC(w)†L〈−`L(w)〉) indexed by {v ∈ W ◦

L; v 6 w} such that GrF
v M ∼=

Hom•(i∗vΘ
◦

L, i !vIC(w)
†
L〈−`L(w)〉) as graded R⊗R-modules. By Proposition 6.4,

we have

ωGrF
v M ∼= Hom•(C(v)L, i !vIC(w)L)[`L(v)− `L(w)].

If v < w, i !vIC(w)L lies in perverse degrees > 0; moreover, this costalk is
zero unless v <W ◦L w by Lemma 4.14 (in particular `L(v) < `L(w)). These
imply that GrF

v M is concentrated in degrees > 2 for v < w. Therefore the
quotient map M → GrF

wM is an isomorphism in degrees 6 1, and in particular
in degree 0. Now GrF

wM = Hom•(i∗wΘ
◦

L, i∗wIC(w)†L〈−`L(w)〉), which is the
same as Hom•(C(w)†L〈−`L(w)〉,C(w)†L〈−`L(w)〉), and the quotient map M→
GrF

wM is induced by i∗w. Therefore there is a unique θ †
w ∈ M0 mapping to

id ∈ End(C(w)†L〈−`L(w)〉) = (GrF
wM)0.

LEMMA 6.9. (1) There is a unique isomorphism ιe : IC(e)†L ∼= δL such that
ιe ◦ θ

†
e = εL.

(2) Let s ∈ W be a simple reflection and s ∈ W ◦

L. Recall the object IC(s)L
introduced in Section 3.7. Then there is a unique isomorphism ιs : IC(s)

†
L
∼=

IC(s)L such that the composition ιs ◦ θ †
s : Θ

◦

L → IC(s)L〈−1〉 restricts to
the identity map on the stalks at e ∈ G. (Recall the stalks of both Θ◦L and
IC(s)L〈−1〉 are equipped with an isomorphism with the trivial Fr-module
Q`.)

Proof. (1) The rigidification εL : Θ◦L → δL gives by adjunction a nonzero map
C(e)†L = i∗eΘ

◦

L → C(ė)L, which has to be an isomorphism. This induces the
desired isomorphism ιe. The uniqueness part is clear.

(2) By Lemma 3.10, we can write Θ◦L = π
∗

s Θ for some shifted perverse sheaf
Θ ∈ LDL̃. Since the stalk ofΘ◦L at ė is the trivial Fr-module by the rigidification
εL, we have Θ|Ps

∼= L̃, and hence i∗6sΘ
◦

L
∼= L̃ ∈ LD(6 s)L. By adjunction

θ †
s gives a nonzero map L̃ ∼= i∗6sΘ

◦

L → i∗6sIC(s)
†
L〈−1〉, which has to be an

isomorphism. This induces an isomorphism IC(s)†L ∼= i6s∗L̃〈1〉 = IC(s)L. The
uniqueness of ιs is clear.
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6.10. Rigidified maximal IC sheaves in general. Let L,L′ ∈ o and β ∈

L′WL. Let ξ ∈ L′P
β

L be a minimal IC sheaf in the block β (see Section 5.1). Let

Θ(ξ) := Θ◦L ? ξ.

Then Θ(ξ) is equipped with a nonzero map

ε(ξ) := εL′ ? idξ : Θ(ξ) = Θ◦L′ ? ξ → δL′ ? ξ ∼= ξ.

The pair (Θ(ξ), ε(ξ)) has a trivial automorphism group. We denote

(Θ(ξ), ε(ξ)) := ω(Θ(ξ), ε(ξ)) ∈ L′Dβ

L.

By Proposition 5.2(3), Θ(ξ) ∼= IC(wβ)L[−NL].

LEMMA 6.11. For ξ ∈ L′P
β

L, there is a unique isomorphism

τ(ξ) : ξ ? Θ◦L
∼

→ Θ◦L′ ? ξ

making the following diagram commutative

ξ ? Θ◦L

id?εL
��

τ(ξ) // Θ◦L′ ? ξ

εL′ ?id

��
ξ ? δL

∼ // ξ
∼ // δL′ ? ξ

(6.8)

Proof. By Proposition 5.2, both ω(ξ ? Θ◦L) and ω(Θ◦L′ ? ξ) are isomorphic
to IC(wβ)L[−NL]. Therefore isomorphisms τ : ω(ξ ? Θ◦L)

∼

→ ω(Θ◦L′ ? ξ)

are unique up to a nonzero scalar. Moreover, since ξ ? (−) is an equivalence,
Hom(ξ ? Θ◦L, ξ) ∼= Hom(Θ◦L, δL) ∼= Q`. Therefore there is a unique τ making
the nonmixed version of diagram (6.8) commutative. Uniqueness of τ implies
that it is Fr-invariant and lifts to a unique isomorphism τ(ξ) in L′Dβ

L.

Let L′′ ∈ o, γ ∈ L′′WL′ and η ∈ L′′P
γ

L′ . To save notation, we will abbreviate
η ? ξ by ηξ . Consider the composition

ϕ(η, ξ) : Θ(ηξ) = Θ◦L′′ ? (ηξ)

µ2
L′′ ?id
−−−→ (Θ◦L′′ ? Θ

◦

L′) ? (ηξ) = Θ
◦

L′′ ? (Θ
◦

L′ ? η) ? ξ

id?τ(η)−1?id
−−−−−−→ Θ◦L′′ ? η ? Θ

◦

L′ ? ξ = Θ(η) ? Θ(ξ).

Here µ2
L′′ : Θ

◦

L′′ → Θ◦L′′ ? Θ◦L′′ is the comultiplication constructed in
Proposition 6.6.
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PROPOSITION 6.12. The notation is the same as above.

(1) The composition

Θ(ηξ)
ϕ(η,ξ)
−−−→ Θ(η) ? Θ(ξ)

ε(η)?ε(ξ)
−−−−→ ηξ

is the same as ε(ηξ).

(2) The following compositions are the identity maps

Θ(ξ)
ϕ(δL′ ,ξ)
−−−−→ Θ◦L′ ? Θ(ξ)

εL′ ?id
−−−→ δL′ ? Θ(ξ) ∼= Θ(ξ),

Θ(ξ)
ϕ(ξ,δL)
−−−→ Θ(ξ) ? Θ◦L

id?εL
−−→ Θ(ξ) ? δL ∼= Θ(ξ).

(3) For L′′′ ∈ o and ζ ∈ L′′′ΞL′′ , the following diagram is commutative

Θ(ζηξ)

ϕ(ζη,ξ)

��

ϕ(ζ,ηξ) // Θ(ζ) ? Θ(ηξ)

id?ϕ(η,ξ)

��
Θ(ζη) ? Θ(ξ)

ϕ(ζ,η)?id // Θ(ζ) ? Θ(η) ? Θ(ξ)

(6.9)

Proof. Part (1) follows from the definition of ϕ(η, ξ) and the characterizing
property of the comultiplication µ2

L on Θ◦L that ε?2L ◦ µ
2
L = εL.

The proof of (2) is similar to the verification of the counit axioms in the proof
of Proposition 6.6. We omit it here.

To prove (3), we observe that by Proposition 6.2, Θ(ζηξ) is identified with
the lowest nonzero perverse cohomology of Θ(ζ) ? Θ(η) ? Θ(ξ). Therefore
nonzero maps Θ(ζηξ) → Θ(ζ) ? Θ(η) ? Θ(ξ) are unique up to a scalar.
Therefore it suffices to show that, after composing with ε(ζ ) ? ε(η) ? ε(ξ) :
Θ(ζ) ? Θ(η) ? Θ(ξ) → ζηξ , both compositions in diagram (6.9) are equal to
ε(ζηξ). But this follows from iterated applications of part (1).

7. Monodromic Soergel functor

In this section, we introduce the Soergel functor between the monodromic
Hecke category and the category of graded R-bimodules, construct its monoidal
structure and prove an analogue of Soergel’s Extension Theorem for this functor.

7.1. R-bimodules with Frobenius actions. Let

R = H∗Tk
(ptk,Q`)

∼= Sym(X∗(T )Q`),
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with the grading degX∗(T )Q` = 2, and the Frobenius action on X∗(T )Q` by q .
Let R ⊗ R-gmod be the category of Z-graded R ⊗ R-modules. Let (R ⊗ R,
Fr)-gmod be the category of Z-graded R⊗R-modules M =⊕n Mn with a degree-
preserving automorphism Fr : M → M compatible with the Frobenius action on
R ⊗ R; that is, for homogeneous a ∈ R and m ∈ M , we have Fr((a ⊗ 1)m) =
qdeg(a)/2(a⊗1)Fr(m) and Fr((1⊗a)m) = qdeg(a)/2(1⊗a)Fr(m). Let ω : (R⊗ R,
Fr)-gmod→ R ⊗ R-gmod be the functor forgetting the Frobenius action.

We use [1] for the degree shift for graded (R ⊗ R,Fr)-modules, that is, if
M =⊕n∈ZMn

∈ R⊗R-gmod, M[1] is the graded R⊗R-module with (M[1])n =
Mn+1 as Fr-modules. For M ∈ (R ⊗ R,Fr)-gmod, M(n/2) is the same graded
R ⊗ R-module as M with the Frobenius action multiplied by q−n/2. Let 〈n〉 be
the composition [n](n/2).

For M1,M2 ∈ (R ⊗ R,Fr)-gmod, we understand M1 ⊗R M2 as the tensor
product of M1 and M2 with respect to the second R-action on M1 and the first
R-action on M2.

For M1,M2 ∈ R ⊗ R-gmod, their inner Hom is the graded R ⊗ R-module

Hom•(M1,M2) =
⊕
n∈Z

HomR⊗R-gmod(M1,M2[n]).

If M1,M2 ∈ (R ⊗ R,Fr)-gmod, then Hom•(M1,M2) is also naturally an object
in (R ⊗ R,Fr)-gmod.

For two objects F ,G ∈ L′Dβ

L, let

Hom•(F ,G) :=
⊕
n∈Z

Hom(F ,G[n]).

Since Hom•(F ,G) = H∗Tk×Tk
((U\G/U )k,RHom(F ,G)), it is a graded (R⊗ R,

Fr)-module, where the R⊗R = H∗Tk×Tk
(ptk)-action comes from the T ×T -action

on U\G/U given in Section 2.7. The same notation applies to L′D(w)L and
L′D(6 w)L.

For each w ∈ W , let R(w) be the graded R-bimodule, which is the quotient
of R ⊗ R by the ideal generated by w(a)⊗ 1− 1⊗ a for all a ∈ R. We have a
canonical isomorphism in (R ⊗ R,Fr)-gmod:

R(w) ∼= H∗Γ (w)k (ptk)
∼= Hom•(C(ẇ)L,C(ẇ)L).

DEFINITION 7.2. (1) Let β ∈ L′WL and ξ ∈ L′P
β

L be a minimal IC sheaf in
the block β. The mixed Soergel functor associated with ξ is the functor

Mξ := Hom•(Θ(ξ),−) : L′Dβ

L→ (R ⊗ R,Fr)-gmod.
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(2) The nonmixed Soergel functor associated with ξ is

Mξ := Hom•(Θ(ξ),−) : L′Dβ

L→ R ⊗ R-gmod.

(3) When ξ = δL ∈ LP
◦

L, we denote the corresponding Soergel functors by
M◦ = Hom•(Θ◦L,−) and M◦ = Hom•(Θ◦L,−).

LEMMA 7.3. Let ξ ∈ L′P
β

L. There is a canonical isomorphism in (R ⊗ R,
Fr)-gmod

Mξ (ξ) ∼= R(wβ)

under which the canonical map ε(ξ) : Θ(ξ)→ ξ corresponds to 1 ∈ R(wβ).

Proof. By definition, we have

RHom(Θ(ξ), ωξ) ∼= RHom(IC(wβ)L[−NL],∇(w
β)L)

= RHom(i∗wβ IC(wβ)L,C(wβ)L)[NL].

By Proposition 6.4, i∗
wβ

IC(wβ)L ∼= C(wβ)L[NL]. Therefore,

RHom(Θ(ξ), ωξ) ∼= RHom(C(wβ)L,C(wβ)L).

Taking cohomology, we get an isomorphism of graded R ⊗ R-modules α :
Mξ (ξ)

∼= ωR(wβ), well defined up to a scalar. We normalize this isomorphism
by requiring that ε(ξ) go to 1 ∈ R(wβ). Since both ε(ξ) and 1 ∈ R(wβ) are
invariant under Fr, α is also Fr-equivariant.

LEMMA 7.4. Let s ∈ W be a simple reflection and s ∈ W ◦

L. Recall we have a
canonical isomorphism IC(s)L ∼= IC(s)†L given by Lemma 6.9(2).

(1) Let ξ ∈ L′P
β

L for some block β ∈ L′WL and F ∈ L′Dβ

L. There is a canonical
isomorphism in (R ⊗ R,Fr)-gmod

Mξ (F)⊗Rs R〈1〉
∼

→Mξ (F ? IC(s)†L) (7.1)

such that the composition

Mξ (F)
(7.1) // Mξ (F ? IC(s)†L〈−1〉)

Lemma 3.8o

��
Mξ (π

∗

s πs∗F)
adj // Mξ (F)

(7.2)

is the identity.
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(2) There is a canonical isomorphism in (R ⊗ R,Fr)-gmod

M◦(IC(s)†L〈−1〉) ∼= R ⊗Rs R (7.3)

under which θ †
s corresponds to 1⊗ 1.

Proof. (1) Let L̃ ∈ Ch(L s) be the extension of L. By Lemma 3.10, we can write
Θ(ξ) = π∗s Θ for some shifted perverse sheaf Θ ∈ LDL̃. By Lemma 3.8, we
have

Hom•(Θ(ξ),F) ∼= Hom•(π∗s Θ,F) ∼= Hom•(Θ, πs∗F)
= H∗((B\G/Ps)k,RHom(Θ, πs∗F)). (7.4)

The right side above is naturally a graded (R ⊗ Rs,Fr)-module, for Rs
=

H∗(Ps )k
(ptk).

Let πs also denote the projection B\G/B → B\G/Ps . For any complex K ∈
Db

m(B\G/Ps), the pullback H∗((B\G/Ps)k,K)→ H∗((B\G/B)k, π∗s K) is right
Rs-linear. It then induces a natural map in (R ⊗ R,Fr)-gmod:

H∗((B\G/Ps)k,K)⊗Rs R→ H∗((B\G/B)k, π∗s K). (7.5)

This is in fact a bijection because

H∗((B\G/B)k, π∗s K) ∼= H∗((B\G/Ps)k, πs∗π
∗

s K)
∼= H∗((B\G/Ps)k,K⊗ πs∗Q`)

and πs∗Q`
∼= Q` ⊕ Q`〈−2〉 (in Db

m(B\G/Ps)) corresponding to the
decomposition R = Rs

⊕ αs Rs . Applying isomorphism (7.5) to K = RHom(Θ,
πs∗F), we get

H∗((B\G/Ps)k,RHom(Θ, πs∗F))⊗Rs R
∼= H∗((B\G/B)k, π∗s RHom(Θ, πs∗F))
∼= H∗((B\G/B)k,RHom(π∗s Θ,π

∗

s πs∗F))
∼= Hom•(Θ(ξ),F ? IC(s)†L〈−1〉).

Here we have used Lemma 3.8. Combining this with (7.4), we get an
isomorphism

Mξ (F)⊗Rs R〈1〉 = Hom•(Θ(ξ),F)⊗Rs R〈1〉
∼= Hom•(Θ(ξ),F ? IC(s)†L) =Mξ (F ? IC(s)†L).

The construction above shows that composition (7.2) is induced by applying
Hom•(Θ,−) to the composition of adjunction maps πs∗F → πs∗π

∗

s πs∗F →
πs∗F , which is the identity.
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(2) Taking F = δL in (1), we get the canonical isomorphism (7.3). The fact
that θ †

s corresponds to 1 ⊗ 1 follows from the fact that (7.2) is the identity for
F = δL. This proves part (2).

7.5. Monoidal structure. Let β ∈ L′WL, γ ∈ L′′WL′ , F ∈ L′Dβ

L, G ∈ L′′Dγ

L′ ,
ξ ∈ L′P

β

L and η ∈ L′′P
γ

L′ . Consider the maps

Hom(Θ(η),G[i])× Hom(Θ(ξ),F [ j]) ?
−→ Hom(Θ(η) ? Θ(ξ),G ?F [i + j])
(−)◦ϕ(η,ξ)
−−−−−→ Hom(Θ(ηξ),G ?F [i + j]).

Taking the direct sum over i, j ∈ Z, we get a pairing

(·, ·) :Mη(G)×Mξ (F)→Mηξ (G ?F)

satisfying the following relations for a ∈ R, f ∈Mξ (F) and g ∈Mη(G):

((1⊗ a) · g, f ) = (g, (a ⊗ 1) · f ),
((a ⊗ 1) · g, f ) = (a ⊗ 1) · (g, f ), (g, (1⊗ a) · f ) = (1⊗ a) · (g, f ).

Therefore it induces a map in (R ⊗ R,Fr)-gmod:

cη,ξ (G,F) :Mη(G)⊗R Mξ (F)→Mηξ (G ?F). (7.6)

As F and G vary, the above maps form a natural transformation between two
bifunctors L′′Dγ

L′ × L′Dβ

L → (R ⊗ R,Fr)-gmod defined by the left and right
sides. The co-associativity of {ϕ(η, ξ)} as shown in Proposition 6.12(3) implies
that maps (7.6) are associative for three composable ξ, η, ζ .

LEMMA 7.6. With the above notation, cη,ξ (G, ξ) is an isomorphism in (R ⊗ R,
Fr)-gmod. In particular (by Lemma 7.3), there is a canonical isomorphism

Mη(G)⊗R R(wβ)
∼

→Mηξ (G ? ξ).

A similar statement holds when G appears in the second factor.

Proof. By definition, we have

ψ :Mηξ (G ? ξ) = Hom•(Θ(ηξ),G ? ξ) = Hom•(Θ(η) ? ξ,G ? ξ)
∼= Hom•(Θ(η),G) =Mη(G),

where we used the fact that ?ξ is an equivalence (Proposition 5.2). The
composition

Mη(G)⊗R R(wβ) ∼=Mη(G)⊗R Mξ (ξ)
cη,ξ (G,ξ)
−−−−→Mηξ (G ? ξ)

ψ
−→Mη(G)
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sends f ⊗ 1 to f , and hence it is an isomorphism. This implies that cη,ξ (G, ξ) is
an isomorphism.

For the statement where G appears as the second factor, we use the canonical
isomorphism Θ(ξ) ∼= ξ ? Θ◦L given in Lemma 6.11. The rest of the argument is
the same as above.

LEMMA 7.7. Let s ∈ W be a simple reflection and s ∈ W ◦

L. Let ξ ∈ L′P
β

L for
some block β ∈ L′WL and F ∈ L′Dβ

L. Then the map cξ,δL(F , IC(s)L) is an
isomorphism.

Proof. Lemma 7.4 already gives us an isomorphism

µF ,s :Mξ (F)⊗R M◦(IC(s)L) ∼=Mξ (F)⊗Rs R〈1〉 ∼=Mξ (F ? IC(s)L).

It remains to show that µF ,s is the same as cξ,δL(F , IC(s)L). To prove this, after
a diagram chase, it is enough to show that the following composition (we are
using notation from the proof of Lemma 7.4)

π∗s Θ = Θ(ξ)
ϕ(ξ,δL)
−−−→ Θ(ξ) ? Θ◦L

id?ψs
−−→ Θ(ξ) ? IC(s)L〈−1〉

∼= π
∗

s πs∗Θ(ξ) = π
∗

s πs∗π
∗

s Θ (7.7)

is the natural map given by the adjunction Θ → πs∗π
∗

s Θ . By
Proposition 6.2(2)(3), π∗s πs∗Θ(ξ) ∼= Θ(ξ) ? IC(s)L〈−1〉 lies in perverse degree
> 0, with ωpH0π∗s πs∗Θ(ξ) ∼= Θ(ξ). We see that Hom(Θ(ξ), π∗s πs∗Θ(ξ)) is
one-dimensional. Therefore it suffices to show that the composition of (7.7)
with the adjunction π∗s πs∗Θ(ξ)→ Θ(ξ) is the identity map of Θ(ξ). This boils
down to the commutativity of the following diagram

Θ(ξ)
ϕ(ξ,δL) //

id

Θ(ξ) ? Θ◦L
id?ψs //

id?εL
��

Θ(ξ) ? IC(s)L〈−1〉

id?εsvv
Θ(ξ)

∼ // Θ(ξ) ? δL

Here εs : IC(s)L〈−1〉 → δL is the map that induces the identity at ė ∈ G. The left
square is commutative by Proposition 6.12(2); the right triangle is commutative
by the characterization of ψs . This finishes the proof.

COROLLARY 7.8. The map cη,ξ (G,F) in (7.6) is an isomorphism if either F ∈
L′Dβ

L is a semisimple complex or G ∈ L′′Dγ

L′ is a semisimple complex.

Proof. By symmetry, we only need to treat the case F semisimple, and it
suffices to work with nonmixed complexes. Since any simple perverse sheaf
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IC(w)L is a direct summand of a successive convolution IC(si1, . . . , sin )L :=

IC(si1)L1 ? · · · ? IC(sin )L, it suffices to prove the statement for F = IC(si1, . . . ,

sin )L for any sequence of simple reflections (si1, . . . , sin ) in W . But the latter case
follows by successive application of either Lemma 7.6 or Lemma 7.7.

The next result is the main result of this section. It is a monodromic version
of Soergel’s theorem [27, Erweiterungssatz 17]. For the nonmonodromic Hecke
categories, the Erweiterungssatz (Extension Theorem) of Soergel is a special
case of a more general result of Ginzburg for varieties with Gm-actions [9]. Our
argument below is specific to the Hecke categories.

THEOREM 7.9. Let β ∈ L′WL, ξ ∈ L′P
β

L and let F ,G ∈ L′Dβ

L be semisimple
complexes. Then the natural map

m(F ,G) : Hom•(F ,G)→ Hom•R⊗R-gmod(Mξ (F),Mξ (G))

is an isomorphism in (R ⊗ R,Fr)-gmod.

Proof. Since m(F ,G) is Fr-equivariant, if suffices to prove that m(F ,G) is an
isomorphism in R ⊗ R-gmod. Therefore we may assume F ,G ∈ L′Dβ

L. In the
rest of the argument, we only consider the nonmixed Soergel functors, and we
do not specify the nonmixed minimal IC sheaves defining them (the nonmixed
minimal IC sheaves are unique up to isomorphism in each block); we simply
write M for the nonmixed Soergel functor.

Since every semisimple complex is a direct sum of shifts of IC(w)L (for
w ∈ β), it suffices to prove the above isomorphism for F = IC(w)L.
For a sequence w = (si1, . . . , sin ) of simple reflections, write IC(w)L =
IC(si1)si2 ···sin L ? · · · ? IC(sin )L. By the decomposition theorem [1], every
IC(w)L is a direct summand of IC(w)L for some sequence w. It suffices to treat
the case F = IC(w)L for a sequence w = (si1, . . . , sin ) of simple reflections,
that is, showing the following is an isomorphism

Hom•(IC(w)L,G)→ Hom•R⊗R-gmod(M(IC(w)L),M(G)). (7.8)

We prove this by induction on the length of w (and varying block β

accordingly). If w = ∅, this means IC(w)L ∼= δL. This case will be treated
in Lemma 7.10.

Now suppose (7.8) is an isomorphism for all w of length < n. Consider a
sequence w = (si1, . . . , sin ) of length n and arbitrary semisimple complex G in
the same block as IC(w)L. Let w′ = (si1, . . . , sin−1), s = sin ; then IC(w)L ∼=
IC(w′)sL ? IC(s)L. Consider the following diagram, where each solid arrow is
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well defined up to a nonzero scalar:

Hom•(IC(w′)sL ? IC(s)L,G)
a //

m

��

Hom•(IC(w′)sL,G ? IC(s)sL)

m′

��
Hom•(M(IC(w′)sL ? IC(s)L),M(G))

u

��

Hom•(M(IC(w′)sL),M(G ? IC(s)sL))

u′

��
Hom•(M(IC(w′)sL)⊗R M(IC(s)L),M(G))

b // Hom•(M(IC(w′)sL),M(G)⊗R M(IC(s)sL))
(7.9)

Here the map a is the adjunction isomorphism either from Lemma 3.6 if s /∈ W ◦

L
or as in Corollary 3.9 if s ∈ W ◦

L. The maps m and m ′ are given by the functor
M, and m ′ is an isomorphism by inductive hypothesis for w′. The isomorphisms
u and u ′ are induced by the monoidal structure of M proved in Corollary 7.8.
Therefore, to show that m is an isomorphism, it suffices to construct the dotted
arrow b, which is an isomorphism and makes the diagram commutative up to a
nonzero scalar.

If s /∈ W ◦

L, using Lemma 7.6, we have

Hom•(M(IC(w′)sL)⊗R M(IC(s)L),M(G))
∼= Hom•(M(IC(w′)sL)⊗R R(s),M(G))
∼= Hom•(M(IC(w′)sL),M(G)⊗R R(s))
∼= Hom•(M(IC(w′)sL),M(G)⊗R M(IC(s)sL)).

Let b be the composition of the above isomorphisms. It is easy to check that b
makes (7.9) commutative; hence m is an isomorphism.

If s ∈ W ◦

L, by Lemma 7.7, it suffices to construct an isomorphism

b′ : Hom•(M(IC(w′)L ⊗Rs R〈1〉,M(G))
∼

→ Hom•(M(IC(w′)L),M(G)⊗Rs R〈1〉).

By [28, Proposition 5.10(2)], for M1,M2 ∈ R ⊗ R-gmod, there is a bifunctorial
isomorphism of R-bimodules:

Hom•R⊗R-gmod(M1,M2 ⊗Rs R〈1〉) ∼= Hom•R⊗R-gmod(M1 ⊗Rs R〈1〉,M2). (7.10)

Indeed, since R = Rs
⊕ αs Rs (note α2

s ∈ Rs), we may identify R with
Rs
〈1〉 ⊕ Rs

〈−1〉 as graded Rs-modules. For an R-bimodule map f : M1 →

M2 ⊗Rs R〈1〉 = M2〈1〉 ⊕ M2〈−1〉, we write f (x) = ( f−1(x), f1(x)), where
f±1 : M1 → M2〈±1〉 is R ⊗ Rs-linear. Then f 7→ f1 gives an isomorphism
Hom•R⊗R-gmod(M1,M2 ⊗Rs R〈1〉) ∼= Hom•R-Mod-Rs (M1,M2〈−1〉), with inverse
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f1 7→ ( f : x 7→ ( f1(xαs), f1(x))). On the other hand, by the adjunction between
tensor and forgetful functors, we also have

Hom•R⊗R-gmod(M1 ⊗Rs R〈1〉,M2) ∼= Hom•R-Mod-Rs (M1〈1〉,M2)

∼= Hom•R-Mod-Rs (M1,M2〈−1〉).

Combining these isomorphisms, we get the desired isomorphism (7.10).
Moreover, (7.10) is compatible with the adjunction in Corollary 3.9 under the
isomorphisms in Lemma 7.4. Isomorphism (7.10) gives the desired isomorphism
b′ and hence b, which makes diagram (7.9) commutative up to a nonzero scalar.
Therefore m is again an isomorphism in this case. This finishes the proof.

LEMMA 7.10. For any semisimple complex G ∈ LD◦L, the natural map

m(δL,G) : Hom•(δL,G)→ Hom•R⊗R-gmod(R(e),M
◦(G)) (7.11)

is an isomorphism of graded R-bimodules.

Proof. Recall the adjunction ie∗ : LD(e)L ↔ LD◦L : i !e. The adjunction map
ie∗i !eG → G gives a commutative diagram

Hom•(δL, ie∗i !eG)

a

��

m(δL,ie∗i !eG) // Hom•R⊗R-gmod(R,M
◦(ie∗i !eG))

b

��
Hom•(δL,G)

m(δL,G) // Hom•R⊗R-gmod(R,M
◦(G))

We will show that m(δL,G) is an isomorphism by showing that the other
three arrows in the above diagram are isomorphisms. Here the arrows a and
b are induced by the adjunction map ie∗i !eG → G and a is an isomorphism by
adjunction.

We show that m(δL, ie∗i !eG) is also an isomorphism. Indeed, by
Proposition 3.11(2), i !eG is a direct sum of shifts of C(e)L. It suffices to
treat the case where i !eG is replaced by C(e)L, or equivalently replacing ie∗i !eG
with δL, in which case both sides are identified with the regular R-bimodule
R(e) = R.

Finally, we show that b is an isomorphism. Using the filtration F6wM◦(G) in
Corollary 3.12, we have F6eM◦(G) = Hom•(Θ◦L, ie∗i !eG) = M◦(ie∗i !eG), which
implies that b is injective.

To see that b is surjective, we argue that any R ⊗ R-linear map ϕ : R(e)→
M◦(G) must land in F6eM◦(G). Extend the partial order on W ◦

L to a total order,

https://doi.org/10.1017/fmp.2020.9 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2020.9


G. Lusztig and Z. Yun 54

and suppose w ∈ W ◦

L is the smallest element under this total order such that
ϕ(R(e)) ⊂ F6wM◦(G). Then the projection R

ϕ
−→ F6wM◦(G) → GrF

wM
◦(G)

must be nonzero for otherwise ϕ(R(e)) would land in the previous step of the
filtration. However, by (3.2) and Proposition 3.11(2), GrF

wM
◦(G) is a free R(w)-

module. For there to exist a nonzero R ⊗ R-linear map R(e)→ R(w), we must
have w = e, which implies that ϕ(R(e)) ⊂ F6eM◦(G), as desired. This finishes
the proof of the lemma.

8. Soergel bimodules

After reviewing basics about Soergel bimodules, the main result of this section
is Proposition 8.7, which connects simple perverse sheaves in the monodromic
Hecke category with indecomposable Soergel bimodules via the Soergel functor
introduced in the previous section.

8.1. Soergel bimodules. Consider a finite Weyl group (W0, S0) with
reflection representation V over Q`. Let R = Sym(V ∗) (graded with V ∗ in
degree 1). We recall the notion of Soergel R-bimodules.

For any sequence (sin , . . . , si1) of simple reflections, we have the Bott–
Samelson bimodule S(sin , . . . , si1) := R ⊗Rsin R ⊗R

sin−1 ⊗ · · · ⊗Rsi1 R.
The indecomposable Soergel bimodules are, up to degree shifts,

indecomposable direct summands of S(sin , . . . , si1) for some sequence (sin ,

. . . , si1) of simple reflections in W0. A Soergel bimodule is a direct sum
of indecomposable Soergel bimodules. Let SB(W0) ⊂ R ⊗ R-gmod be the
full subcategory consisting of the Soergel bimodules. Then SB(W0) carries a
monoidal structure given by the tensor product (−)⊗R (−).

Soergel [28] shows that, for each w ∈ W0, there is an indecomposable Soergel
bimodule S(w) characterized (up to isomorphism) among graded R⊗R-modules,
by the following two properties.

(1) Supp(S(w)) ⊂ V × V contains Γ (w) = {(wx, x)|x ∈ V }, the graph of the
w action on V .

(2) For some (equivalently any) reduced expression w = sin · · · si1 in W0, S(w)
is a direct summand of the Bott–Samelson bimodule S(sin , . . . , si1).

To emphasize the dependence on the Coxeter group W0, we denote S(w) also by
S(w)W0 .

8.2. Rigidified Soergel bimodules. It is easy to see that the degree zero part
of S(w) is one-dimensional. Moreover, the endomorphism ring of S(w) inside
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R ⊗ R-gmod consists of scalars. Indeed in our case W0 is a Weyl group, so
we may interpret S(w) as the equivariant intersection cohomology of an IC
sheaf of a Schubert variety in a flag variety, and deduce the statement about
the endomorphism ring from it (see [27, Lemma 19 and Erweiterungssatz 17]).

For fixed w ∈ W0, consider a pair (M, 1M), where M ∈ SB(W0) is isomorphic
to S(w) and 1M ∈ M0 is any nonzero element. Then the automorphism group
of such a pair is trivial, and any two such pairs are isomorphic by a unique
isomorphism. Therefore we may identify all such pairs with one pair, and denote
it by (S(w), 1).

8.3. Extended Soergel bimodules. For L ∈ o and w ∈ W , we define a
graded R⊗ R-module S(w)L as follows. Let β ∈ wLWL be the block containing
w. Write w = xwβ for x ∈ W ◦

wL. Then we define

S(w)L := S(x)W ◦wL ⊗R R(wβ).

Again we can rigidify S(w)L by equipping it with the degree zero element 1⊗ 1.
We also define a generalization of Bott–Samelson modules. For a sequence

(sin , . . . , si1) of simple reflections in W , and L ∈ o, let L j = si j · · · si1L. Define

S(sin , . . . , si1) := S(sin )Ln−1 ⊗R S(sin−1)Ln−2 ⊗R ⊗ · · · ⊗R S(si1)L.

Note that S(si j )L j−1
∼= R(si j ) if si j /∈ W ◦

L j
and is otherwise isomorphic to R⊗R

si j

R.

LEMMA 8.4. Let (sin , . . . , si1) be a reduced word of simple reflections in W and
L ∈ o, L j = si j · · · si1L for 1 6 j 6 n. Let β ∈ Ln WL be the block containing
w = sin · · · si1 . Then there is a reduced word (tm, . . . , t1) of simple reflections in
the Coxeter group W ◦

Ln
such that w = tm tm−1 · · · t1w

β and

S(sin , . . . , si1)L
∼= S(tm, . . . , t1)W ◦Ln

⊗R R(wβ)

as graded R ⊗ R-modules.

Proof. We prove the lemma by induction on n. For n = 1 and s = si1 /∈ W ◦

L, then
s = wβ and S(s)L ∼= R(wβ) (corresponding to m = 0). For n = 1 and s = si1 ∈

W ◦

L, we have wβ
= 1 and s is a simple reflection in W ◦

L, and S(s)L ∼= S(s)W ◦L .
Now suppose the statement is proved for reduced words of length less than n

(n > 2). Let β ′ ∈ Ln WL1
be the block containing w′ = sin · · · si2 . By inductive

hypothesis, there is a reduced word (tm, . . . , t1) in W ◦

Ln
such that tm · · · t1w

β ′
=

w′

S(sin , . . . , si2)L1
∼= S(tm, . . . , t1)W ◦Ln

⊗R R(wβ ′).
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Write s = si1 . If s /∈ W ◦

L, then wβ
= wβ ′s, and we have

S(sin , . . . , si1)L
∼= S(sin , . . . , si2)L1 ⊗R S(s)L
∼= S(tm, . . . , t1)W ◦Ln

⊗R R(wβ ′)⊗R R(s)
∼= S(tm, . . . , t1)W ◦Ln

⊗R R(wβ ′s)

= S(tm, . . . , t1)W ◦Ln
⊗R R(wβ).

We have tm · · · t1w
β
= tm · · · t1w

β ′s = w′s = w.
If s ∈ W ◦

L, then L1 = L, β ′ = β. Moreover, t = wβswβ,−1 is a simple
reflection in W ◦

Ln
by Corollary 4.4. Hence

S(sin , . . . , si1)L
∼= S(sin , . . . , si2)L1 ⊗Rs R
∼= S(tm, . . . , t1)W ◦Ln

⊗R R(wβ)⊗Rs R
∼= S(tm, . . . , t1)W ◦Ln

⊗Rt R(wβ)

= S(tm, . . . , t1, t)W ◦Ln
.

Here we have used S(s)L = R ⊗Rs R and R(wβ) ⊗Rs R ∼= R ⊗Rt R(wβ). We
have tm · · · t1twβ

= tm · · · t1w
βs = w′s = w. Since `β(w) = `β ′(w

′) + 1 by
Lemma 4.6(4), (tm, . . . , t1, t) is a reduced word for wwβ,−1. This completes the
inductive step.

We have the following characterization for S(w)L.

LEMMA 8.5. Let L ∈ o andw ∈ W . Let M be an indecomposable graded R⊗R-
module such that

(1) Supp(M) ⊃ Γ (w) as a subset of Spec (R ⊗ R) = V × V ;

(2) for some reduced expressionw = sin sin−1 · · · si1 in W , M is a direct summand
of S(sin , . . . , si1)L.

Then M ∼= S(w)L.

Proof. Let β ∈ wLWL be the block containing w. Write w = xwβ for x ∈ W ◦

wL.
Let M ′ = M⊗R R(wβ,−1). Then M ′ is an indecomposable R⊗ R-module whose
support contains Γ (wwβ,−1) = Γ (x). By Lemma 8.4, S(sin , . . . , si1)L

∼= S(tm,

. . . , t1)W ◦Ln
⊗R R(wβ) for a reduced expression tm · · · t1 of x = wwβ,−1 in W ◦

Ln
.

Therefore, M ′ is a direct summand of S(tm, . . . , t1)W ◦Ln
. By Soergel’s criterion in

Section 8.1, M ′ ∼= S(x)W ◦Ln
. Hence M = M ′⊗R R(wβ) ∼= S(x)W ◦Ln

⊗R R(wβ) =

S(w)L.
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8.6. Soergel bimodules with Frobenius action. Let (R ⊗ R,Fr)-gmodpure
be the full subcategory of (R ⊗ R,Fr)-gmod consisting of those M = ⊕n Mn

such that Mn is pure of weight n as an Fr-module (Section 1.10.1). Forgetting
the Frobenius action gives a functor

ω : (R ⊗ R,Fr)-gmodpure → R ⊗ R-gmod.

This functor admits a one-side inverse

(−)\ : R ⊗ R-gmod→ (R ⊗ R,Fr)-gmodpure

that sends a graded R⊗R-module M =⊕n Mn to the same graded R⊗R-module
M with Fr acting on Mn by qn/2.

Let SBm(W ◦

L) ⊂ (R ⊗ R,Fr)-gmodpure be the preimage of SB(W ◦

L) under ω,
that is, it is the full subcategory consisting of M ∈ (R ⊗ R,Fr)-gmodpure such
that ωM ∈ SB(W ◦

L). Then SBm(W ◦

L) also carries a monoidal structure given by
(−)⊗R (−).

PROPOSITION 8.7. Let L ∈ o and w ∈ W ◦

L. Then there is a unique isomorphism
in (R ⊗ R,Fr)-gmod

M◦(IC(w)†L〈−`L(w)〉) ∼= S(w)\W ◦L (8.1)

under which θ †
w corresponds to 1 ∈ S(w)\W ◦L .

Proof. We first prove more generally for any w ∈ W , we have an isomorphism
in R ⊗ R-gmod:

M(IC(w)L[−`β(w)]) ∼= S(w)L. (8.2)

Here β ∈ wLWL is the block containing w, and we are suppressing the choice
of a minimal IC sheaf ξ ∈ wLP

β

L from Mξ because the isomorphism class
of the functor Mξ is independent of ξ . To show (8.2), we apply the criterion
in Lemma 8.5 to M = M(IC(w)L[−`β(w)]). By Theorem 7.9, End(M) =
End(IC(w)L) = Q`; hence M is indecomposable. By Corollary 3.12, M admits
a filtration indexed by {v ∈ W ; v 6 w} with the last associated graded

GrF
wM ∼= Hom•(i∗wIC(wβ)[−NL], i !wIC(w)L[−`β(w)]),

which by Proposition 6.4 is Hom•(C(w)[−`β(w)],C(w)[−`β(w)]) ∼= R(w).
Therefore Supp(M) ⊃ Supp(R(w)) = Γ (w). Finally, for any reduced
expression w = sin · · · si1 , IC(w)L is a direct summand of IC(sin , . . . ,

si1)L = IC(sin )Ln−1 ? · · · ? IC(si1)L by the decomposition theorem. Therefore M
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is a direct summand of M(IC(sin , . . . , si1)L[−`β(w)]). By repeated applications
of Lemmas 7.3 and 7.4, one sees that

M(IC(sin , . . . , si1)L[−`β(w)])
∼= S(sin , . . . , si1)L.

The shift by `β(w) matches the number of 1 6 j 6 n such that si j ∈ W ◦

L j−1
by

Lemma 4.6(4), which enters the above calculation because of the shift [1] that
appears in Lemma 7.4(1). The above checks the conditions in Lemma 8.5 and
hence (8.2) is proved.

Now consider the case w ∈ W ◦

L and let M†
= M◦(IC(w)†L〈−`L(w)〉). We

have already proved that ωM† ∼= S(w)W ◦L as a graded R ⊗ R-module. Now the
Frobenius action on S(w)W ◦L compatible with the grading and the R ⊗ R-action
is unique up to a scalar (proof: if F and F ′ are two such Frobenius actions
on S(w)W ◦L , then F ′ ◦ F−1

∈ AutR⊗R-gmod(S(w)W ◦L)
∼= Aut(IC(w)L) = Q×` ).

Therefore, M† ∼= S(w)\W ◦L ⊗ V for some one-dimensional Fr-module V . In
particular, we have an identification of Fr-modules (M†)0 ∼= V . Now 0 6= θ †

w ∈

(M†)0 is Fr-invariant; hence V is a trivial Fr-module. Therefore M† ∼= S(w)\W ◦L ;
such an isomorphism is unique up to a scalar, and it becomes unique if we require
θ †
w to go to 1.

8.8. More on Soergel bimodules. The rest of the section is only used in the
proof of Proposition 9.5. Let L ∈ o and consider Soergel bimodules for W ◦

L.
In the rest of the section, we shall denote S(w)W ◦L simply by S(w). To each
indecomposable Soergel bimodule S ∼= S(w)[n], we assign the integer d(S) :=
−n + `L(w). This is the analogue of the perverse degree for Soergel bimodules.

LEMMA 8.9. Let S, S′ be indecomposable Soergel bimodules for W ◦

L.

(1) If d(S) < d(S′), then HomR⊗R-gmod(S, S′) = 0.

(2) If d(S) = d(S′) and S and S′ are not isomorphic, then HomR⊗R-gmod(S,
S′) = 0.

Proof. If S = S(w)[n] and S′ = S(w′)[n′], then by Proposition 8.7,
M◦(IC(w)L[n−`L(w)]) ∼= S, M◦(IC(w′)L[n′−`L(w′)]) ∼= S′. By Theorem 7.9,

HomR⊗R-gmod(S, S′) = Hom(IC(w)[n − `L(w)], IC(w′)[n′ − `L(w′)])
= Hom(IC(w)[−d(S)], IC(w′)[−d(S′)]).

If d(S) < d(S′), then Hom(IC(w)[−d(S)], IC(w′)[−d(S′)]) = 0 by perverse
degree reasons; therefore HomR⊗R-gmod(S, S′) = 0.
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If d(S) = d(S′), then Hom(IC(w)[−d(S)], IC(w′)[−d(S′)]) is the same as
Hom(IC(w), IC(w′)), which vanishes if w 6= w′. In this case for w 6= w′, we get
HomR⊗R-gmod(S, S′) = 0.

PROPOSITION 8.10. Let M ∈ SBm(W ◦

L). There exists a finite filtration 0 =
F0 M ⊂ F1 M ⊂ · · · ⊂ Fn M = M by subobjects in SBm(W ◦

L) with the following
properties:

(1) For 1 6 i 6 n, GrF
i M ∼= S(wi)

\
〈ni 〉 ⊗ Vi for some wi ∈ W ◦

L, ni ∈ Z and
finite-dimensional Fr-module Vi pure of weight zero.

(2) The filtration ωF•M of ωM splits in R ⊗ R-gmod.

Proof. Let M = ⊕n Mn
∈ SBm(W ◦

L). Since M is finitely generated as a graded
R ⊗ R-module, each Mn is finite-dimensional, and may be decomposed into
generalized eigenspaces of Fr. We group the generalized Frobenius eigenvalues
according to the cosets Q×` /qZ:

M = ⊕
λ∈Q×` /qZ Mλ.

Since Fr acts on R ⊗ R by integer powers of q , each Mλ is itself an object in
(R ⊗ R,Fr)-gmod; since ωMλ is a direct summand of a Soergel bimodule, it
is also a Soergel bimodule. Hence Mλ ∈ SBm(W ◦

L). We only need to produce
a filtration for each Mλ. Without loss of generality, we consider the case λ = 1
and assume M = M1, that is, Fr-eigenvalues on M are in qZ. In particular, M is
evenly graded.

Consider any decomposition ωM = ⊕α∈I Sα, where each Sα is an
indecomposable Soergel bimodule. Let Fi M = ⊕α∈I,d(Sα)6i Sα ⊂ M .
By Lemma 8.9(1), Fi M is independent of the decomposition of ωM
into indecomposables. Therefore each Fi M is stable under Fr, and
hence an object in SBm(W ◦

L). Moreover, by Lemma 8.9(2), we can
canonically write ωGrF

i M = ⊕w∈W ◦LS(w)[`L(w) − i] ⊗ i Vw, where
i Vw = HomR⊗R-gmod(S(w)[`L(w) − i], ωGrF

i M). Equip i Vw with the
Frobenius action by viewing it as HomR⊗R-gmod(S(w)\〈`L(w)− i〉,GrF

i M);
then GrF

i M ∼= ⊕w∈W ◦LS(w)
\
〈`L(w)− i〉 ⊗ i Vw as objects in (R ⊗ R,Fr)-gmod.

After refining the filtration F•M and renumbering, it becomes a filtration
satisfying the required conditions.

9. Equivalence for the neutral block

In this section, we prove Theorem 1.3.
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9.1. The endoscopic group. Let L ∈ o and consider the neutral block LD◦L.
Let H be the reductive group over Fq with a maximal torus identified with T
and the root system Φ(H, T ) = ΦL ⊂ X∗(T ). In particular, the Weyl group
of H with respect to T is identified with W ◦

L. We call H the endoscopic group
of G corresponding to L. Let BH ⊂ H be the Borel subgroup containing T
corresponding to the positive rootsΦ+L . As defined, H is unique up to nonunique
isomorphisms. We will give a rigidification of H later in Section 10.2.

To justify the terminology, we recall the usual definition of endoscopic groups
of G. Let Ĝ be the Langlands dual group of G defined over Q`, with a maximal
torus T̂ and rootsΦ(Ĝ, T̂ ) ⊂ X∗(T̂ ) = X∗(T ) identified with the corootsΦ∨(G,
T ) of (G, T ). Let κ be a semisimple element in Ĝ, and Ĥ be the neutral
component of the centralizer Ĝκ . An endoscopic group of G associated with
κ is a reductive group over Fq whose Langlands dual is isomorphic to Ĥ .

Now let Ĥ ⊂ Ĝ be the connected reductive subgroup containing T̂ with roots
Φ(Ĥ , T̂ ) = Φ∨L ⊂ Φ∨(G, T ) = Φ(Ĝ, T̂ ). Then Ĥ is dual to H . We claim
that Ĥ is the neutral component of the centralizer in Ĝ of a semisimple element
κ ∈ T̂ , which would imply that H is an endoscopic group of G in the usual sense.
In fact, bijection (2.1) allows us to identify Ch(T ) with X∗(T ) ⊗Z Hom(F×q ,
Q×` ). Choosing a generator ζ ∈ F×q , we get an isomorphism Hom(F×q ,Q

×

` )
∼=

µq−1(Q`) by evaluating at ζ ; hence Ch(T )
∼

→ X∗(T ) ⊗Z µq−1(Q`) = T̂ [q −
1](Q`). This allows us to turn L ∈ Ch(T ) into an element κ ∈ T̂ (Q`) such that
κq−1
= 1. Then we have Ĥ = Ĝ◦κ as subgroups of Ĝ.

With the correspondence L↔ κ ∈ T̂ [q− 1](Q`) above, WL is identified with
the Weyl group of the possibly disconnected group Ĝκ with respect to T̂ , that is,
WL ∼= NĜκ

(T̂ )/T̂ . If G has a connected center so that Ĝ has a simply connected
derived group, Ĝκ is connected by Steinberg [29, Theorem 8.1]; hence WL = W ◦

L
in this case (see also [7, Theorem 5.13]).

Consider the usual Hecke category for H :

DH := Db
m(BH\H/BH ).

We denote by IC(w)H ,∆(w)H and ∇(w)H the objects in DH that are the
intersection complex, standard perverse sheaf and costandard perverse sheaf
supported on the closure of the Schubert cell BHwBH/BH ⊂ H/BH defined
similarly as in (2.4) for H in place of G and the trivial character sheaf on T in
place of L.

THEOREM 9.2 (Monodromic–endoscopic equivalence for the neutral block).
Let L ∈ Ch(T ) and H be the endoscopic group of G attached to L as in
Section 9.1. Then there is a canonical monoidal equivalence of triangulated
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categories
Ψ ◦L : DH

∼

→ LD◦L
satisfying the following:

(1) For all w ∈ W ◦

L,

Ψ ◦L(IC(w)H ) ∼= IC(w)†L, (9.1)
Ψ ◦L(∆(w)H ) ∼= ∆(w)

†
L, (9.2)

Ψ ◦L(∇(w)H ) ∼= ∇(w)
†
L. (9.3)

In particular, Ψ ◦L is t-exact for the perverse t-structures.

(2) There is a functorial isomorphism of graded (R ⊗ R,Fr)-modules for all
F ,F ′ ∈ DH ,

Hom•(F ,F ′) ∼→ Hom•(Ψ ◦L(F), Ψ ◦L(F ′)). (9.4)

Part (2) of the theorem does not automatically follow from the equivalence
Ψ ◦L because, as in (1.1), Hom(−,−) denotes the Hom space after base change to
k = Fq .

The proof will occupy Sections 9.3–9.8.

9.3. DG model for LD◦L. We apply the construction of [6, Section B.1–B.2]
to the category LD◦L. Let LC◦L ⊂ LD◦L be the full subcategory consisting of
objects that are pure of weight zero. By Proposition 3.11, any object F ∈ LC◦L
is also very pure in the sense that i∗wF and i !wF are pure of weight zero for all
w ∈ W ◦

L. Then LC◦L is an additive Karoubian category stable under the operation
(−) ⊗ V , where V is any bounded complex of finite-dimensional Fr-modules
such that Hi V has weight i . In particular, LC◦L is stable under 〈n〉, for all n ∈ Z.
By Lemma 3.3(2), LC◦L is a monoidal category under convolution.

Let LC◦L be the essential image of LC◦L under ω : LD◦L → LD◦L. Then LC◦L is
the category of semisimple complexes in LD◦L. Let K b(LC◦L) be the homotopy
category of bounded complexes in LC◦L. Let K b(LC◦L)0 ⊂ K b(LC◦L) be the thick
subcategory consisting of complexes that are null-homotopic when mapped to
K b(LC◦L).

As in [6, Section B.1], with the help of a filtered version of LD◦L, there is a
triangulated functor (the realization functor) ρ̃ : K b(LC◦L)→ LD◦L.

LEMMA 9.4. The functor ρ̃ descends to an equivalence

ρ : K b(LC◦L)/K b(LC◦L)0 → LD◦L.
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Proof. By [6, Proposition B.1.7], ρ̃ induces an equivalence of triangulated
categories

ρ : K b(LC◦L)/ ker(ρ̃)
∼

→ LD◦L. (9.5)

We claim that ker(ρ̃) = K b(LC◦L)0. The inclusion ker(ρ̃) ⊂ K b(LC◦L)0 is proved
in [6, Lemma B.1.6]. We now show the inclusion in the other direction. Suppose
K• ∈ K b(LC◦L)0, and h : ωK• → ωK•[−1] is a homotopy between idK• and
0. Then for any F ∈ LC◦L, Hom•(F ,K•) is calculated by a spectral sequence
whose E1-page consists of E i, j

1 = Ext j(F ,Ki) with differentials E i, j
1 → E i+1, j

1

induced by the differentials of K•. The chain homotopy h implies that E•, j
1 is

null-homotopic; hence E2 = 0 and Hom•(F ,K•) = 0 for all F ∈ LC◦L. This
implies that ωρ̃(K•) = 0 in LD◦L. Now ω : LD◦L→ LD◦L is conservative; hence
ρ̃(K•) = 0, and K• ∈ ker(ρ̃).

PROPOSITION 9.5. The restriction of M◦ gives a monoidal equivalence

ϕ0 : LC◦L
∼

→ SBm(W ◦

L)

such that for F ,F ′ ∈ LC◦L, there is a canonical isomorphism in (R ⊗ R,
Fr)-gmod:

Hom•(F ,F ′) ∼= Hom•R⊗R-gmod(ϕ0(F), ϕ0(F ′)). (9.6)

Proof. The monoidal structure of M◦ restricted to semisimple complexes is
proved in Corollary 7.8. Let ϕ̃0 := M◦|LC◦L : LC◦L → (R ⊗ R,Fr)-gmod.
Isomorphism (9.6) with ϕ0 replaced by ϕ̃0 follows from Theorem 7.9.

Now for F ,F ′ ∈ LC◦L, Exti(F ,F ′) is pure of weight i by the ∗-purity
of F and !-purity of F ′ (cf. [6, Lemma 3.1.5]). This implies homLC◦L(F ,
F ′) = Hom(F ,F ′)Fr since Ext−1(F ,F ′) is pure of weight −1. It also implies
that (Hom•(F ,F ′))Fr

= Hom(F ,F ′)Fr
= homLC◦L(F ,F

′). On the other hand,
hom(R⊗R,Fr)-gmod(M,M ′) = HomR⊗R-gmod(M,M ′)Fr for M,M ′ ∈ SBm(W ◦

L).
Taking Frobenius invariants of both sides of (9.6), we conclude that ϕ0 is fully
faithful.

We show that the image of M◦|LC◦L lies in SBm(W ◦

L). Indeed for F ∈ LC◦L, ωF
is a semisimple complex; hence ωM◦(F) =M◦(ωF) is a direct sum of shifts of
M◦(IC(w)L), which is isomorphic to a shift of S(w)W ◦L by Proposition 8.7. On
the other hand, the very purity of Θ◦L and F implies that Exti(Θ◦L,F) is pure
of weight i ; hence M◦(F) ∈ (R ⊗ R,Fr)-gmodpure. We conclude that M◦(F) ∈
SBm(W ◦

L).
Finally, we show that any M ∈ SBm(W ◦

L) is in the essential image of ϕ0. Let
0 = F0 M ⊂ F1 M ⊂ · · · ⊂ Fn M = M be a filtration satisfying the conditions
in Proposition 8.10. In particular, GrF

i M ∼= S(wi)
\

W ◦L
⊗ Vi for some wi ∈ W ◦

L
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and Vi ∈ Db
m(pt) pure of weight zero. We prove by induction on i that Fi M

is in the essential image of ϕ0. For i = 0, there is nothing to prove. Suppose
i > 1 and we have found Fi−1 ∈ LC◦L such that ϕ0(Fi−1) ∼= Fi−1 M . Let
Ki = IC(wi)

†
L〈−`L(wi)〉 ⊗ Vi ∈ LC◦L. Let ε ∈ Ext1

(R⊗R,Fr)(GrF
i M, Fi−1 M) be

the extension class of

0→ Fi−1 M → Fi M → GrF
i M → 0 (9.7)

in (R ⊗ R,Fr)-mod (nongraded modules). We have a short exact sequence

0→ HomR⊗R(GrF
i M, Fi−1 M)Fr → Ext1

(R⊗R,Fr)(GrF
i M, Fi−1 M)

→ Ext1
R⊗R(GrF

i M, Fi−1 M)Fr
→ 0.

Since (9.7) splits in R ⊗ R-mod, the image of ε in Ext1
R⊗R(GrF

i M, Fi−1 M)Fr

is zero; therefore ε comes from a class ε̃ ∈ HomR⊗R(GrF
i M, Fi−1 M)Fr. By

Theorem 7.9, M◦ induces an isomorphism of Fr-modules

Hom•(Ki ,Fi−1)
∼

→ Hom•R⊗R-gmod(GrF
i M, Fi−1 M) = HomR⊗R(GrF

i M, Fi−1 M).

Therefore ε̃ can be viewed as a class ε̃ ′ ∈ Hom•(Ki ,Fi−1)Fr = Hom(Ki ,Fi−1)Fr

(because Ext j(Ki ,Fi−1) has weight j). Let ε ′ be the image of ε̃ ′ under the
map Hom(Ki ,Fi−1)Fr → hom(Ki ,Fi−1[1]) (the latter is calculated in LD◦L).
Let Fi = Cone(ε ′)[−1] ∈ LD◦L. Then Fi fits into a distinguished triangle
Fi−1 → Fi → Ki → Fi−1[1]. Therefore Fi ∈ LC◦L and ϕ0(Fi) ∼= Fi M by
construction.

To state the next theorem, we need some notation. For F ,F ′ ∈ LD◦L, we let
Extn(F ,F ′)m be the weight m summand of the Fr-module Extn(F ,F ′). For M,
M ′ ∈ K b(R ⊗ R-mod), their morphism space in K b(R ⊗ R-mod) is denoted by
HOMK b(R⊗R-mod)(M,M ′), and it is the homotopy classes of R ⊗ R-linear chain
maps M → M ′. We denote the degree shift of complexes in K b(R⊗ R-mod) by
{1}. We denote

HOM•K b(R⊗R-mod)(M,M ′) =
⊕
n∈Z

HOMK b(R⊗R-mod)(M,M ′{n}).

When M,M ′ ∈ K b(R ⊗ R-gmod), HOMK b(R⊗R-mod)(M,M ′) also carries an
internal grading from the gradings of each component M i and M ′i (which are
in R⊗ R-gmod), and we denote the graded pieces by HOMK b(R⊗R-mod)(M,M ′)m .
If M,M ′ ∈ K b((R ⊗ R,Fr)-gmod), HOMK b(R⊗R-mod)(M,M ′) also inherits an
Fr-module structure.
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THEOREM 9.6. The equivalence K b(ϕ0) on the homotopy categories of LC◦L and
SBm(W ◦

L) induces a monoidal equivalence of triangulated categories

ϕL : LD◦L
ρ−1

−→ K b(LC◦L)/K b(LC◦L)0
K b(ϕ0)
−−−→ K b(SBm(W ◦

L))/K b(SBm(W ◦

L))0.

Here K b(SBm(W ◦

L))0 consists of complexes of objects in SBm(W ◦

L) that become
null-homotopic in SB(W ◦

L).
Moreover, for F ,F ′ ∈ LD◦L, we have a functorial isomorphism of (R ⊗ R,

Fr)-modules

Hom•(F ,F ′) ∼→ HOM•K b(R⊗R-mod)(ωϕL(F), ωϕL(F ′)) (9.8)

under which

Extn(F ,F ′)m
∼

→ HOMK b(R⊗R-mod)(ωϕL(F), ωϕL(F ′){n − m})m, ∀n,m ∈ Z.
(9.9)

Proof. In view of the equivalence ϕ0, to prove ϕL is an equivalence, it suffices
to show that the image of K b(LC◦L)0 under K b(ϕ0) is K b(SBm(W ◦

L))0. If K• ∈
K b(LC◦L)0, then there exists a chain homotopy hi : ωKi

→ ωKi−1 between
idωK• and 0. Applying ϕ0 to hi , we get ϕ0(hi) : ωϕ0(Ki)→ ωϕ0(Ki−1), giving
a chain homotopy between idωϕ0(K•) and 0. The same argument shows that
ϕ−1

0 sends K b(SBm(W ◦

L))0 to K b(LC◦L)0. This shows that ϕL is an equivalence.
The monoidal structure of ϕL comes from that of ϕ0 since K b(LC◦L)0 and
K b(SBm(W ◦

L))0 are monoidal ideals.
We prove isomorphism (9.8). For F •,F ′•, two bounded complexes in LC◦L,

let F = ρ(F •),F ′ = ρ(F ′•) ∈ LD◦L. Then there is a spectral sequence with
Ea,b

1 = ⊕ j−i=aExtb(F i ,F ′ j) that converges to Exta+b(F ,F ′). The differential
d1 : Ea,b

1 → Ea+1,b
1 is given by an alternating sum of maps induced by the

differentials in F • and F ′•. Since Ea,b
1 is pure of weight b, the spectral sequence

degenerates at E2. This implies that

Ea,b
2 = Exta+b(F ,F ′)b. (9.10)

Let M = ωϕL(F), that is, M is a complex with terms M i
= ωM◦(F i) ∈

SB(W ◦

L); similarly, let M ′ = ωϕL(F ′). By Theorem 7.9, M◦ induces an
isomorphism of Fr-modules Ea,b

1
∼= ⊕ j−i=aHomR⊗R-gmod(M i ,M ′ j [b]), and the

differential d1 is given by an alternating sum of differentials in M• and M ′•.
Therefore Ea,b

2 is isomorphic to HOMK b(R⊗R-gmod)(M,M ′[b]{a}), which is the
same as the degree b part of HOMK b(R⊗R-mod)(M,M ′{a}) for the internal grading
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Ea,b
2
∼= HOMK b(R⊗R-mod)(M,M ′{a})b. (9.11)

Comparing (9.10) and (9.11), we get (9.9). Taking the direct sum over all n and
m in (9.9), we get (9.8).

REMARK 9.7. The functor K b(ω) : K b(SBm(W ◦

L)) → K b(SB(W ◦

L)) clearly
factors through K b(SBm(W ◦

L))0. It induces a functor

ϕL : LD◦L→ K b(SB(W ◦

L)).

The homotopy category K b(SB(W ◦

L)) can be viewed as an Fr-semisimplified
version of the monodromic Hecke category LD◦L.

9.8. Finishing the proof of Theorem 9.2. Apply Theorem 9.6 to the
endoscopic group H and the trivial character sheaf L = Q` ∈ Ch(T ). We get a
monoidal equivalence

ϕH : DH
∼

→ K b(SBm(WH ))/K b(SBm(WH ))0

such that for K,K′ ∈ DH , there is a natural R ⊗ R-linear isomorphism

Hom•(K,K′) ∼→ HOM•K b(R⊗R-mod)(ωϕH (K), ωϕH (K′)) (9.12)

with an analogue of (9.9). Since WH = W ◦

L, we may identify the target categories
of ϕL and ϕH .

Let Ψ ◦L = ϕ−1
L ◦ ϕH . Then Ψ ◦L is a monoidal equivalence of triangulated

categories. Combining (9.8) and (9.12), we get (9.4).
It remains to show (9.1)–(9.3). By Proposition 8.7 and its analogue for DH , we

know ϕL(IC(w)
†
L)
∼= S(w)\W ◦L〈`L(w)〉

∼= ϕH (IC(w)H ) for allw ∈ W ◦

L. Therefore
Ψ ◦L(IC(w)H ) ∼= IC(w)†L for all w ∈ W ◦

L. This proves (9.1).
Now we show (9.2). Let F = (Ψ ◦L)−1(∆(w)

†
L). From the properties of∆(w)†L

and the fact that (Ψ ◦)−1 preserves IC sheaves and Hom spaces, we have the
following:

(1) F lies in the full triangulated subcategory generated by IC(w′)H ⊗ V for
w′ 6 w (Bruhat order of W ) and Fr-modules V .

(2) Hom•(F , IC(w′)H ) = 0 for all w′ < w.

(3) There is a canonical isomorphism Hom•(F , IC(w)H ) ∼= R(w) as graded
(R ⊗ R,Fr)-modules.
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We show that these properties imply a canonical isomorphism F ∼= ∆(w)H . Let
Y ⊂ H (respectively, Z ⊂ H ) be the union of BHw

′BH for w′ 6 w (respectively,
w′ < w) in the Bruhat order of W . By Lemma 4.8(3), Y and Z are closed,
and Y − Z = BHwBH = H(w) is open in Y . Note that Y is not necessarily
the closure of H(w); see Remark 4.9. Property (1) above implies that F is
supported on BH\Y/BH ; property (2) implies that F |Z = 0. Therefore F = j!G
for some G ∈ Db

m(BH\H(w)/BH ) =: DH (w) (where j : H(w) ↪→ Y is the
open embedding). Now Hom•(F , IC(w)H ) ∼= Hom•DH (w)

(G,Q`), and property
(3) above gives a map F → IC(w)H in DH (corresponding to 1 ∈ Q` under
the isomorphism Hom(F , IC(w)H ) ∼= Q`, which is Fr-invariant and hence lifts
uniquely to hom(F , IC(w)H ) for Hom−1(F , IC(w)H ) = 0) and hence a nonzero
map c : G → Q` in DH (w) ∼= Db

Γ (w),m(pt). Moreover, property (3) implies that
Hom•(G,Q`) is a free left R-module of rank one and is generated in degree
zero, which implies that G has rank one and is concentrated in degree zero.
Therefore the canonical map c is an isomorphism, and it induces an isomorphism
F = j!G

∼

→ j!Q` = ∆(w)H . Therefore we get a canonical isomorphism
Ψ ◦L(∆(w)H ) ∼= Ψ

◦

L(F) = ∆(w)
†
L.

A similar argument proves (9.3).

REMARK 9.9 (Parabolic version). It is possible to extend Theorem 9.2 to a
parabolic version. Namely, consider two standard parabolic subgroups P and
Q of G with unipotent radicals UP and UQ and Levi subgroups L and M
containing T . Suppose that L ∈ Ch(T ) extends to rank-one local systems
K ∈ Ch(L) and K′ ∈ Ch(M). Then we may consider the category K′DK =

Db
(M×L ,K′�K−1),m(UQ\G/UP). We still have a block decomposition of K′DK

indexed by ΩL = WL/W ◦

L.
By Lemma 2.3, we haveΦ(L , T ),Φ(M, T )⊂ΦL. Hence L and M determine

standard parabolic subgroups PH and Q H of H whose Levi factors have roots
Φ(L , T ) and Φ(M, T ). Then there is an equivalence between the neutral block
K′D◦K and Db

m(Q H\H/PH ), which can be proved using similar techniques used
in this paper.

We have the following strengthening of the purity result in Proposition 3.11
to include Frobenius semisimplicity for the stalks of IC sheaves. To state it,
recall that PW ◦L

x,y (t) is the Kazhdan–Lusztig polynomial [11] for the Coxeter group
W ◦

L, of degree less than 1
2 (`L(y) − `L(x)) if x < y. The numerical part of the

following result was first proved in [13, Lemma 1.11].

PROPOSITION 9.10. Let L,L′ ∈ o.
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(1) For v 6 w ∈ W ◦

L, write

PW ◦L
v,w (t) =

∑
n>0

av,w(n)tn.

Then we have

i∗v IC(w)†L ∼= C(v)†L〈`L(w)− `L(v)〉 ⊗

(⊕
n>0

Q`〈−2n〉⊕av,w(n)

)
, (9.13)

i !vIC(w)
†
L
∼= C(v)†L〈−`L(w)+ `L(v)〉 ⊗

(⊕
n>0

Q`〈2n〉⊕av,w(n)

)
. (9.14)

(2) Let w, v be in the same block β ∈ L′WL. Write v = wβx and w = wβ y for
x, y ∈ W ◦

L. Then there is a one-dimensional Fr-module V1 (depending on ẇ
and v̇) of weight zero such that

i∗v IC(ẇ)L ∼= C(v̇)L〈`L(y)− `L(x)〉 ⊗

(⊕
n>0

Q`〈−2n〉⊕ax,y (n)

)
⊗ V1,

i !vIC(ẇ)L ∼= C(v̇)L〈−`L(y)+ `L(x)〉 ⊗

(⊕
n>0

Q`〈2n〉⊕ax,y (n)

)
⊗ V1.

Proof. (1) We first treat the costalk i !vIC(w)
†
L. In Proposition 3.11, we already

proved that Kv = i !vIC(w)
†
L ∈ LD(v)L is a successive extension of C(v)†〈n〉⊗Vn

for finite-dimensional Fr-modules Vn pure of weight zero, and n ≡ `(w)− `(v)
mod 2. We shall first show

Kv is a direct sum of C(v)†L〈n〉 for n ≡ `(w)− `(v) mod 2. (9.15)

Let LC(v)L ⊂ LD(v)L be the subcategory of complexes that are pure of weight
zero. Applying Proposition 9.5 to the case G = T (now C(v)†L plays the role of
Θ◦L), we see that Hom•(C(v)†L,−) induces a full embedding

h : LC(v)L ↪→ (R(v),Fr)-mod. (9.16)

Here R(v) = H∗Γ (v)k (ptk) is introduced in Section 7.1. Under this embedding,
to show (9.15), it suffices to show that h(Kv) is a direct sum of R(v)〈n〉 for
n ≡ `(w)−`(v) mod 2. By Proposition 3.11, h(Kv) is a successive extension of
R(v)〈n〉⊗Vn for n ≡ `(w)−`(v) mod 2 and for Fr-modules Vn pure of weight
zero. In particular, h(Kv) is free as an R(v)-module. Therefore it suffices to show
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that h(Kv), as an Fr-module, is a direct sum of Q`〈n〉 for n ∈ Z (necessarily of
the same parity as `(w)−`(v)): for then h(Kv)⊗R(v)Q` is a direct sum of Q`〈n〉,
and we can lift a basis of h(Kv)⊗R(v)Q` consisting of Frobenius eigenvectors to
Frobenius eigenvectors in h(Kv), giving an R(v)-basis of h(Kv).

To summarize, to show (9.15), we only need to show that h(Kv) is a
direct sum of Q`〈n〉 as an Fr-module. By Corollary 3.12, Hom•(i∗vΘ

◦

L,

Kv) = GrF
vM◦(IC(w)

†
L), the latter being a subquotient of S(w)\W ◦L〈`L(w)〉

(by Proposition 8.7), and is hence a direct sum of Q`〈n〉. Since i∗vΘ
◦

L =

C(v)†L〈−`L(v)〉, h(Kv) = GrF
vM◦(IC(w)

†
L)〈−`L(v)〉 is a direct sum of Q`〈n〉.

This proves (9.15).
By Theorem 9.2, we have

h(Kv) = Hom•(∆(v)†L, IC(w)†L) ∼= Hom•(∆(v)H , IC(w)H ),

which by adjunction is Hom•(C(v)H , i !vIC(w)H ). Therefore the multiplicity of
C(v)†L〈n〉 in Kv is the same as the multiplicity of C(v)H 〈n〉 in i !vIC(w)H , which
is well known to be expressed in terms of the coefficients of PW ◦L

v,w , as in (9.14).
The statement for i∗v IC(w)†L can be proved in the same way by analyzing

Hom•(IC(w)†L,∇(v)
†
L) and comparing it to Hom•(IC(w)H ,∇(v)H ). We omit

details.
(2) By Proposition 5.2, there is a minimal IC sheaf ξ ∈ L′P

β

L such that
IC(ẇ)L ∼= ξ ? IC(y)†L. Then ξ ? ∆(x)†L ∼= ∆(v̇)L⊗V1 for some one-dimensional
Fr-module V1. We have Hom•(C(v̇)L ⊗ V1, i !vIC(ẇ)L) = Hom•(∆(v̇)L ⊗ V1,

IC(ẇ)L) ∼= Hom•(ξ ? ∆(x)†L, ξ ? IC(y)†L) = Hom•(∆(x)†L, IC(y)†L), which is a
direct sum of Q`〈n〉 as an Fr-module by (1). By the same argument as in (1) using
embedding (9.16), this implies that i !vIC(ẇ)L is a direct sum of C(v̇)L〈n〉 ⊗ V1,
with multiplicities given by the coefficients of PW ◦L

x,y . The argument for i∗v IC(ẇ)L
is similar, using Hom•(IC(ẇ)L,∇(v̇)L ⊗ V1) ∼= Hom•(IC(y)†L,∇(x)

†
L).

Similarly, we have the Frobenius semisimplicity of convolution.

PROPOSITION 9.11. (1) For w,w′ ∈ W ◦

L, the convolution IC(w′)†L ? IC(w)†L
is a direct sum of IC(v)†L〈n〉 for v ∈ W ◦

L and n ≡ `L(w)+ `L(w′)− `L(v)
mod 2.

(2) Let L,L′,L′′ ∈ o, w ∈ L′WL and w′ ∈ L′′WL′ . Let β ∈ L′WL and
β ′ ∈ L′′WL′ be the blocks containing w and w′. Then the convolution
IC(ẇ′)L′ ? IC(ẇ)L is a direct sum of IC(v̇)L〈n〉⊗V v̇

ẇ′,ẇ for v ∈ β ′β ⊂ L′′WL,

n ≡ `β(w) + `β ′(w′) − `β ′β(v) mod 2 and a one-dimensional Fr-module
V v̇
ẇ′,ẇ depending only on ẇ, ẇ′ and v̇.
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Proof. (1) The same statement for DH holds by [6, Proposition 3.2.5]; hence (1)
follows from the equivalence Ψ ◦L.

(2) Write w = xwβ for x ∈ W ◦

L′ ; w
′
= wβ ′ y for y ∈ W ◦

L′ . Let ξ ∈ L′P
β

L and
η ∈ L′′P

β ′

L′ be such that IC(ẇ)L ∼= IC(x)†L′ ? ξ and IC(ẇ′)L′ ∼= η ? IC(y)†L′ . For
v ∈ β ′β, we have v = wβ ′zwβ for z ∈ W ◦

L′ , and let V v̇
ẇ′,ẇ be the one-dimensional

Fr-module such that

IC(v̇)L ⊗ V v̇
ẇ′,ẇ
∼= η ? IC(z)†L′ ? ξ.

By (1), IC(y)†L′ ? IC(x)†L′ is a direct sum of IC(z)†L′〈n〉 for z ∈ W ◦

L′ and n ≡
`L′(x)+ `L′(y)− `L′(z) mod 2. Therefore IC(ẇ′)L′ ? IC(ẇ)L ∼= η ? IC(y)†L′ ?
IC(x)†L′ ? ξ is a direct sum of η ? IC(z)†L′〈n〉 ? ξ for z ∈ W ◦

L′ and n ≡ `L′(x) +
`L′(y) − `L′(z) mod 2, or equivalently a direct sum of IC(v̇)L〈n〉 ⊗ V v̇

ẇ′,ẇ for
v ∈ β ′β and n ≡ `L′(x)+`L′(y)−`L′(z) mod 2, where v = wβ ′zwβ . It remains
to note that `L′(x) = `β(w), `L′(y) = `β ′(w′) and `L′(z) = `β ′β(v).

10. Equivalence for all blocks

In this section, we extend the monoidal equivalence for the neutral blocks in
Theorem 9.2 to an equivalence for all blocks (Theorem 10.12). To do this, we
will need to extend the endoscopic group to a groupoid, and it will be convenient
to organize the various blocks into a 2-category.

10.1. The groupoid Ξ̃ . We define a groupoid Ξ̃ in Fq-schemes as follows.
Its object set is o, and the morphism L′Ξ̃L between L and L′ ∈ o is the union of
connected components of NG(T ) whose image in W is in L′ΞL. In other words,
L′Ξ̃L parametrizes liftings of wβ for blocks β ∈ L′WL. The composition map is
defined by the multiplication in NG(T ). We have an obvious map of groupoids
Ξ̃ → Ξ , which is a T -torsor.

For β ∈ L′WL, let L′Ξ̃
β

L ⊂ L′Ξ̃L be the component corresponding towβ . Then
L′Ξ̃L =

∐
β∈L′WL L′Ξ̃

β

L.

10.2. Relative pinning. We give a rigidification of the endoscopic group
H = HL attached to L ∈ o as follows. Recall that H contains T as a maximal
torus, and hasΦ+L as its positive roots with respect to the Borel BH . Let∆L ⊂Φ

+

L
be the set of simple roots. A relative pinning for the endoscopic group H
is a collection of isomorphisms ια : Hα

∼= Gα for each α ∈ ∆L. Here Hα

(respectively, Gα) is the root subgroup for α (isomorphic to the additive group) of
H (respectively, G). The automorphism group of the data (H, T, BH , {ια}α∈∆L)
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is trivial. Therefore a relatively pinned endoscopic group attached to L is unique
up to a unique isomorphism.

For each L ∈ o, we use the notation H ◦L to denote the relatively pinned
endoscopic group attached to L. Its canonical Borel subgroup is denoted by B H

L .
Let L,L′ ∈ o and ẅ ∈ L′Ξ̃L with image w ∈ L′WL. There is a unique

isomorphism
σ(ẅ) : H ◦L→ H ◦L′

characterized as follows. It is w when restricted to T . Since w is minimal in
its block, it induces an isomorphism between the based root systems (ΦL,∆L)

and (ΦL′,∆L′). For each simple root α ∈ ∆L, σ(ẅ) is required to restrict to
an isomorphism of root subgroups H ◦L,α

∼

→ H ◦L′,wα, and we require that the
following diagram be commutative

H ◦L,α
ια //

σ(ẅ)

��

Gα

Ad(ẅ)

��
H ◦L′,wα

ιwα // Gwα

When L′ = L, the above construction gives an action of LΞ̃L on H ◦L. When
restricted to T ⊂ LΞ̃L, it is the conjugation action of T on H ◦L.

10.3. The groupoid H. We construct a groupoid H in Fq-schemes together
with a map of groupoids ωH : H→ Ξ as follows. Set Ob(H) = o and ωH is the
identity on objects. For L,L′ ∈ o, define the morphism Fq-scheme in H as

L′HL = L′Ξ̃L
T
× H ◦L,

where the action of T on H ◦L is by left translation, and its action on L′Ξ̃L ⊂

NG(T ) is by right translation.
For β ∈ L′WL, we get a component

L′H
β

L := L′Ξ̃
β

L
T
× H ◦L.

The map ωH : H → Ξ then sends L′H
β

L to wβ
∈ L′ΞL. There is a canonical

isomorphism

L′H
β

L = L′Ξ̃
β

L
T
× H ◦L ∼= H ◦L′

T
× L′Ξ̃

β

L

sending (ẅ, h) 7→ (σ (ẅ)(h), ẅ). Under this isomorphism, L′H
β

L is an (H ◦L′, H ◦L)-
bitorsor.
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For β ∈ L′WL and γ ∈ L′′WL′ , the composition map

L′′H
γ

L′ × L′H
β

L→ L′′H
γβ

L

is defined as

(L′′Ξ̃
γ

L′
T
× H ◦L′)× (L′Ξ̃

β

L
T
× H ◦L)→ L′′Ξ̃

γβ

L
T
× H ◦L

(ẅ′, h′, ẅ, h) 7→ (ẅ′ẅ, σ (ẅ−1)h′h).

It is easy to check that the composition map is associative. Under the
composition map, LHL becomes a group scheme over Fq with a neutral
component H ◦L and a component group WL/W ◦

L. Each L′HL is a (L′HL′, LHL)-
bitorsor.

The double cosets B H
L′\L′HL/B H

L are in natural bijection with L′WL: for w ∈
L′WL, we can write it uniquely as wβv for the block β ∈ L′WL containing w
and v ∈ W ◦

L = W (H ◦L, T ). Then w corresponds to the (B H
L′, B H

L )-double coset

containing (ẇβ, v̇) ∈ L′Ξ̃L
T
× H ◦L = L′HL, which we denote by H(w)L.

10.4. 2-categories over a groupoid. What we call a 2-category C is called a
‘bicategory’ in [25, Ch.XII.6]. It has an object set Ob(C), and for x, y ∈ Ob(C),
the morphisms from x to y form an ordinary category, which we denote by yCx .
The category xCx carries an identity 1x . For x, y, z ∈ Ob(C), there is a bifunctor
called composition: zCy × yCx → zCx . For a quadruple of objects, there is a
natural isomorphism of functors giving the associativity of composition. These
data are required to satisfy the pentagon axiom for associativity and another
axiom involving the identities {1x}.

From a 2-category C, we get an ordinary category π61C with the same object
set and morphism sets Homπ61C(x, y) := |yCx |, the set of isomorphism classes
of objects of yCx .

Let Γ be a small groupoid, viewed as a category where all morphisms are
isomorphisms. A 2-category C over Γ is a 2-category with a functor ω : π61C→
Γ . In other words, for each object x ∈ Ob(C), we assign an objectω(x) ∈ Ob(Γ ),
and for a pair of objects x, y ∈ Ob(C), a map yhx : |yCx | → ω(y)Γω(x) compatible
with compositions and sending identities to identities.

If (C, ω : π61C→ Γ ) is a 2-category over Γ , and x, y ∈ Ob(C), ξ ∈ ω(y)Γω(x),
we denote by yC

ξ
x ⊂ yCx the full subcategory of objects whose isomorphism class

maps to ξ via yhx . Then yCx =
∐

ξ∈ω(y)Γω(x) yC
ξ
x . The composition functor restricts

to a bifunctor

◦ : zC
η
y × yC

ξ
x → zC

ηξ
x , ∀ξ ∈ ω(y)Γω(x), η ∈ ω(z)Γω(y).
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EXAMPLE 10.5. The categories {L′Dβ

L}L,L′∈o can be organized into a 2-category
D over Ξ in an obvious way. The object set is o and ω is the identity map on
the object sets. For L,L′ ∈ o, the morphism category is L′DL =

∐
β∈L′WL L′Dβ

L
with composition given by convolution (using Proposition 4.13).

EXAMPLE 10.6. For L,L′ ∈ o and β ∈ L′WL, define

L′EβL := Db
m(B

H
L′\L′H

β

L/B H
L ).

Then the groupoid structure on H gives a convolution functor for β ∈ L′WL and
γ ∈ L′′WL′ ,

? : L′′EγL′ × L′EβL→ L′′EγβL ,

carrying an associativity natural transformation satisfying the pentagon axiom.
This defines a 2-category E over Ξ with object set o and morphism categories
L′EL =

∐
β∈L′WL L′EβL.

If β = W ◦

L ⊂ LWL is the neutral block, we denote LEβL by LE◦L. This is the
usual Hecke category DH◦L for the reductive group H ◦L.

10.7. Twisting data. Let E be a field. An E-linear twisting data for a
groupoid Γ is a normalized 2-cocycle of Γ with values in Pic(E), the Picard
groupoid of one-dimensional E-vector spaces. More precisely, it is the following
data (λ, µ):

(1) for arrows x
ξ
−→ y

η
−→ z in Γ , an E-line λ(η, ξ);

(2) for any arrow x
ξ
−→ y in Γ , trivializations of the lines λ(ξ, idx) and λ(idy, ξ);

(3) for arrows x
ξ
−→ y

η
−→ z

ζ
−→ t in Γ , an isomorphism of E-lines

µζ,η,ξ : λ(ζ, ηξ)⊗E λ(η, ξ)
∼

→ λ(ζη, ξ)⊗E λ(ζ, η).

The data (λ, µ) should satisfy the following conditions:

• For arrows x
ξ
−→ y

η
−→ z in Γ , µη,idy ,ξ is the identity map of λ(η, ξ) using the

trivializations of λ(idy, ξ) and λ(η, idy).

• For four composable morphisms ξ, η, ζ, τ in Γ , the following diagram is
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commutative:

λ(τ, ζηξ)⊗ λ(ζ, ηξ)⊗ λ(η, ξ)

id⊗µζ,η,ξ

tt

µτ,ζ,ηξ⊗id

**
λ(τ, ζηξ)⊗ λ(ζη, ξ)⊗ λ(ζ, η)

µτ,ζη,ξ⊗id

��

λ(τζ, ηξ)⊗ λ(τ, ζ )⊗ λ(η, ξ)

µτζ,η,ξ⊗idλ(τ,ζ )

��
λ(τζη, ξ)⊗ λ(τ, ζη)⊗ λ(ζ, η)

id⊗µτ,ζ,η // λ(τζη, ξ)⊗ λ(τζ, η)⊗ (τ, ζ )

Let Z 2
norm(Γ,Pic(E)) be the category of E-twisting data.

Suppose we have chosen a basis for each λ(η, ξ) compatible with the
trivializations of λ(idy, ξ) and λ(ξ, idx). Using these bases, µζ,η,ξ then gives an
element in E×. The collection {µζ,η,ξ } defines a normalized 3-cocycle of Γ with
values in E× (normalized meansµζ,η,ξ = 1 whenever one of ζ, η, ξ is the identity
arrow). A different choice of bases of λ(η, ξ) gives another 3-cocycle, which
differs from the previous one by a coboundary of a normalized 2-cochain. This
gives an equivalence of groupoids

Z 3
norm(Γ, E×)/C2

norm(Γ, E×)
∼

→ Z 2
norm(Γ,Pic(E)). (10.1)

In particular, the isomorphism classes of Z 2
norm(Γ,Pic(E)) are parametrized by

H3(Γ, E×), and the automorphism groups are Z 2
norm(Γ, E×).

There is an action of Z 3
norm(Γ, E×) on Z 2

norm(Γ,Pic(E)) as follows. For
z ∈ Z 3

norm(Γ, E×) and (λ, µ) ∈ Z 2
norm(Γ,Pic(E)), z · (λ, µ) = (λ, zµ), where

(zµ)ζ,η,ξ = z(ζ, η, ξ)µζ,η,ξ .

10.8. Twisting a 2-category by twisting data. Let (C, ω : π61C → Γ ) be
a 2-category over a groupoid Γ , such that yC

ξ
x is a module category for Pic(E),

for every x, y ∈ Ob(C) and ξ ∈ ω(y)Γω(x). Let (λ, µ) ∈ Z 2
norm(Γ,Pic(E)) be a

twisting data for Γ . We define a new 2-category C(λ,µ) over Γ as follows:

(1) C(λ,µ) has the same objects and the same morphism categories as C.

(2) For x, y, z ∈ Ob(C) and ω(x)
ξ
−→ ω(y)

η
−→ ω(z) in Γ , the composition

functor ◦λ for C(λ,µ) is defined as

◦λ : zC
η
y × yC

ξ
x → zC

ηξ
x

(G,F) 7→ (G ◦F)⊗E λ(η, ξ).

Here G ◦F is the composition functor in C.

https://doi.org/10.1017/fmp.2020.9 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2020.9


G. Lusztig and Z. Yun 74

(3) The identity morphism in xCx remains the same, and the natural
isomorphisms f ◦λ 1x

∼= f ∼= 1y ◦λ f for f ∈ yC
ξ
x are defined using

similar isomorphisms for ◦ and the trivializations of λ(ξ, idx) and λ(idy, ξ).

(4) The associativity isomorphisms for C(λ,µ) between two three-term
composition functors (h ◦λ g) ◦λ f ∼= h ◦λ (g ◦λ f ), where ω( f ) = ξ,

ω(g) = η and ω(h) = ζ are three composable arrows in Γ , are obtained
using the associativity isomorphisms for ◦λ and the isomorphism µζ,η,ξ .

The pentagon identities for C and for {µζ,η,ξ } imply the pentagon identities for
C(λ,µ).

CONSTRUCTION 10.9. We define a Q`-linear twisting data (λ, µ) for Ξ , which
depends on the choice of a lifting ẇβ for the minimal elements wβ in each block
β ∈ L′WL. From the liftings {ẇβ

} (normalized such that ė is the identity of G),
we get a normalized T (Fq)-valued 2-cocycle c for the groupoidΞ : for β ∈ L′ΞL
and γ ∈ L′′ΞL′ , let

c(γ, β) = (ẇγβ)−1ẇγ ẇβ .

Now define

λ(γ, β) := Lc(γ,β) (the stalk of L at c(γ, β)).

Since c(γ, β) = 1 if one of γ, β is the neutral block, λ(γ, β) = Lė carries a
trivialization in this case. The construction of λ gives canonical isomorphisms
µ
\

δ,γ,β : λ(δ, γβ) ⊗ λ(γ, β)
∼

→ λ(δγ, β) ⊗ λ(δ, γ ) coming from the fact that c
is a cocycle and L is a character sheaf. The pair (λ, µ\) is a Q`-linear twisting
data, but it is not what we will use.

Instead, by combining the canonical isomorphism canẇγ ,ẇβ in (5.7) and
isomorphism (2.6), we have a canonical isomorphism

c(γ, β) : IC(ẇγ )L′ ? IC(ẇβ)L ∼= IC(ẇγβ)L ⊗ λ(γ, β). (10.2)

Our µδ,γ,β will come from the above isomorphism and the associativity for
the convolution. More precisely, let σ(wδ, wγ , wβ) ∈ Q×` be the normalized 3-
cocycle on Ξ introduced in Section 5.8 as the ratio of the two maps in (5.8). Let
µ = σµ\, that is, µδ,γ,β = σ(wδ, wγ , wβ)µ

\

δ,γ,β . Then {λ(γ, β)} together with
{µδ,γ,β} define a twisting data (λ, µ) ∈ Z 2

norm(Ξ,Pic(Q`)).
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From the construction of µ, we have a commutative diagram

IC(ẇδ)L′′ ? IC(ẇγ )L′ ? IC(ẇβ )L

id?c(γ,β)

**

c(δ,γ )?id

tt
(IC(ẇδγ )L′ ⊗ λ(δ, γ )) ? IC(ẇβ )L

c(δγ,β)

��

IC(ẇδ)L′′ ? (IC(ẇγβ )L ⊗ λ(γ, β))

c(δ,γβ)

��
IC(ẇδγβ )L ⊗ λ(δ, γ )⊗ λ(δγ, β) IC(ẇδγβ )L ⊗ λ(δ, γβ)⊗ λ(γ, β)

id⊗µδ,γ,βoo
(10.3)

LEMMA 10.10. The cohomology class of (λ, µ\) in H3(Ξ,Q×` ) is trivial. In
particular, the cohomology class of (λ, µ) in H3(Ξ,Q×` ) is equal to the class
of the 3-cocycle σ introduced in Section 5.8.

Proof. By construction, (λ, µ\) is the image of a cocycle c ∈ Z 2
norm(W, T (Fq))

under the homomorphism T (Fq)→ Pic(Q`) given by the character sheaf L. It
suffices to show that L can be trivialized (as a character sheaf) when restricted
to T (Fq), or more generally to any finite subgroup A ⊂ Tk . Let T ′k = Tk/A,
another torus over k, and let π : Tk → T ′k be the projection. It suffices to show
that the pullback π∗ : Ch(T ′k )→ Ch(Tk) is surjective, for then any L ∈ Ch(Tk)

is isomorphic to π∗L′ for some L′ ∈ Ch(T ′k ), and L|A ∼= π∗L′|A is visibly trivial.
Now Ch(Tk) = Homcont(π

t
1(Tk),Q

×

` ) (where π t
1 stands for the tame fundamental

group). Since Q×` is divisible, any homomorphism ρ : π t
1(Tk) → Q×` can be

extended to π t
1(T

′

k ), and if ρ is continuous, any such extension is also continuous
because π t

1(Tk) ⊂ π
t
1(T

′

k ) has a finite index. Therefore π∗ : Ch(T ′k )→ Ch(Tk) is
surjective.

REMARK 10.11. If G has a connected center, then WL = W ◦

L and Ξ is a
groupoid that is equivalent to a point. Since H3(Ξ,Q×` ) = 1 in this case, (λ,
µ) can be trivialized by equivalence (10.1); however, the trivializations of (λ, µ)
are not unique but form a torsor under Z 2

norm(Ξ,Q
×

` ).
On the other hand, when ΩL is nontrivial, the cohomology class of σ is

calculated in [32], which by Lemma 10.10 also gives the cohomology class of
the twisting data (λ, µ).

For example, let G = SL2, and L ∈ Ch(T ) be the unique element of order two.
Then o = {L}, andΞ is the groupoid with one object L and automorphism group
W = Z/2Z = {1, s}. The calculation in Example 5.7 shows that σ(s, s, s) = −1.
Therefore the class of (λ, µ) in H3(Z/2Z,Q×` ) ∼= {±1} is nontrivial.
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We are ready to state the extension of Theorem 9.2 to all blocks. Recall from
Section 10.3 that for L ∈ o and w ∈ W , we have a (B H

wL, B H
L )-double coset

H(w)L ⊂ wLHL. Let C(w)H
L = Q`〈`β(w)〉 (where β ∈ wLWL is the block

containing w) be the shifted and twisted constant sheaf on H(w)L. Let ∆(w)H
L ,

∇(w)H
L and IC(w)H

L be the !-, ∗-, and middle extensions of C(w)H
L to the closure

of H(w)L, viewed as objects in wLEβL ⊂ wLEL.

THEOREM 10.12 (Monodromic–endoscopic equivalence in general). Fix a
lifting ẇβ for the minimal element wβ in each block β, and use them to define
the twisting data (λ, µ) ∈ Z 2

norm(Ξ,Pic(Q`)) as in Construction 10.9. Then
there is a canonical equivalence of 2-categories over Ξ ,

Ψ : E(λ,µ) ∼= D,

such that we have the following:

(1) For L ∈ o and β the unit coset in LWL, the equivalence Ψ restricts to the
equivalence Ψ ◦L in Theorem 9.2 as monoidal functors.

(2) For L,L′ ∈ o and w ∈ L′WL, write w = xwβ for x ∈ W ◦

L′ . Then the
equivalence Ψ sends ∆(w)H

L ,∇(w)
H
L and IC(w)H

L in L′EL to ∆(x)†L′ ?
IC(ẇβ)L,∇(x)

†
L ? IC(ẇβ)L and IC(x)†L′ ? IC(ẇβ)L in L′DL.

REMARK 10.13. In the statement of the above theorem, Ψ being an equivalence
of 2-categories implies that for L,L′ ∈ o and β ∈ L′WL, it restricts to an
equivalence of triangulated categories L′Ψ

β

L : L′EβL
∼

→ L′Dβ

L; moreover, the
equivalences {L′Ψ

β

L} are compatible with convolution structures after modifying
the convolution structure of the {L′EβL} by the twisting data (λ, µ).

By the last paragraph of Section 10.9, when G has a connected center, one can
choose a (noncanonical) trivialization of the twisting data (λ, µ) and conclude
that E ∼= D in this case.

The rest of the section is devoted to the proof of Theorem 10.12.

10.14. Action of minimal IC sheaves on neutral blocks. For L,L′ ∈ o,
β ∈ L′WL, we define the functor

β(−) : LD◦L → L′D◦L′
F 7→ βF := ξ ?F ? ξ−1,

where ξ ∈ L′P
β

L, and ξ−1
∈ LP

β−1

L′ is the inverse of ξ under convolution (that is,
ξ−1 is equipped with canonical isomorphisms ξ−1 ? ξ ∼= δL and ξ ? ξ−1 ∼= δL′
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satisfying the usual axioms). We claim that the functor β(−) is independent
of the choice of ξ up to a canonical isomorphism. Indeed, if ξ ′ ∈ L′P

β

L is
another minimal IC sheaf, then we may canonically write ξ ′ = ξ ⊗ V for
a one-dimensional Fr-module V = Hom(ξ, ξ ′). Then ξ ′−1

= ξ−1
⊗ V ∨, and

ξ ′ ? F ? ξ ′−1 ∼= ξ ? F ? ξ−1
⊗ (V ⊗ V ∨) ∼= ξ ? F ? ξ−1 canonically.

If L,L′,L′′ ∈ o, γ ∈ L′′WL′ and β ∈ L′WL, then there is a canonical
isomorphism making the following diagram commutative:

LD◦L
γβ (−)

::

β (−) // L′D◦L′
γ (−) // L′′D◦L′′

Moreover, these isomorphisms are compatible with three-step compositions. All
these statements can be checked easily using the independence of ξ in defining
the functor β(−).

By Corollary 4.4, we have an isomorphism of Coxeter groups W ◦

L → W ◦

L′
given by Ad(wβ). It induces an equivalence

β(−) : SBm(W ◦

L)
∼

→ SBm(W ◦

L′).

LEMMA 10.15. There is a canonical isomorphism making the following
diagram commutative:

LD◦L
ϕL //

β (−)

��

K b(SBm(W ◦

L))/K b(SBm(W ◦

L))0

K b(β (−))

��
L′D◦L′

ϕL′ // K b(SBm(W ◦

L′))/K b(SBm(W ◦

L′))0

Moreover, these isomorphisms are compatible for composable blocks β, γ .

Proof. Unwinding the definitions of the functors involved, it suffices to give
a canonical isomorphism βΘ◦L

∼= Θ◦L′ . Now Θ◦L〈NL〉 is a maximal IC sheaf
equipped with a nonzero map εL : Θ◦L→ δL. Therefore βΘ◦L〈NL〉 =

βΘ◦L〈NL′〉

is a maximal IC sheaf equipped with a nonzero map βεL :
βΘ◦L →

βδL = δL′ ,
that is, (βΘ◦L,

βεL) is a rigidified maximal IC sheaf in L′D◦L′ . Therefore, by the
discussion in Section 6.5, there is a unique isomorphism (βΘ◦L,

βεL) ∼= (Θ◦L′,

εL′).

For L,L′ ∈ o, β ∈ L′WL, the isomorphism σ(ẇβ) : H ◦L
∼

→ H ◦L′ (see
Section 10.2) induces an equivalence of neutral blocks

β(−) : LE◦L
∼

→ L′E◦L′ .
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From the definition of IC(wβ)H
L , we get canonically

βF ∼= IC(wβ)H
L ?F ? IC(wβ,−1)H

L′, ∀F ∈ LE◦L.

From this, we see that the functor β(−) is independent of the choice of the lifting
ẇβ up to a canonical isomorphism.

Lemma 10.15 immediately implies the following.

COROLLARY 10.16. Let L,L′ ∈ o, β ∈ L′WL. There is a canonical
isomorphism making the following diagram commutative:

LE◦L
Ψ ◦L //

β (−)

��

LD◦L
β (−)

��
L′E◦L′

Ψ ◦L′ // L′D◦L′

Moreover, these isomorphisms are compatible with compositions of 1-morphisms
in E and D for composable blocks β, γ .

10.17. Proof of Theorem 10.12. For L,L′ ∈ o and β ∈ L′WL, define the
functor

L′Ψ
β

L : L′EβL → L′Dβ

L

F ? IC(wβ)H
L 7→ Ψ ◦L′(F) ? IC(ẇβ)L, ∀F ∈ L′E◦L′ = DH◦L′

.

Note that (−) ? IC(wβ)H
L : L′E◦L′ → L′EβL is an equivalence. These equivalences

satisfy the requirements (1)(2) in the statement of the theorem. It remains
to extend these equivalences to an equivalence of 2-categories, that is, we
need to give natural isomorphisms between composition functors and check
compatibilities with associativity.

For L,L′,L′′ ∈ o and β ∈ L′WL, γ ∈ L′′WL′ , consider F̃ := F ? IC(wβ)H
L ∈

L′E◦L (for some F ∈ L′E◦L′) and G̃ := G ? IC(wγ )H
L′ ∈ L′′E◦L′ (for some G ∈ L′′E◦L′′).

The λ-twisted composition of F̃ and G̃ is

F̃ ◦λ G̃ = (G ? IC(wγ )H
L′ ?F ? IC(wβ)H

L)⊗ λ(γ, β).

Using that IC(wγ )H
L′ ? F = γF ? IC(wγ )H

L′ , we get a canonical isomorphism

F̃ ◦λ G̃ ∼= (G ? γF) ? IC(wγβ)H
L ⊗ λ(γ, β).

Hence
L′′Ψ

γβ

L (F̃ ◦λ G̃) ∼= Ψ ◦L′′(G ? γF) ? IC(ẇγβ)L ⊗ λ(γ, β). (10.4)
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On the other hand,

L′′Ψ
γ

L′(F̃) ◦ L′Ψ
β

L(G̃) = (Ψ ◦L′′(G) ? IC(ẇγ )L′) ? (Ψ
◦

L′(F) ? IC(ẇβ)L).

Using that IC(ẇγ )L′ ? Ψ
◦

L′(F) ∼= γ (Ψ ◦L′(F)) ? IC(ẇγ )L′ , we get

L′′Ψ
γ

L′(F̃) ◦ L′Ψ
β

L(G̃) ∼= Ψ ◦L′′(G) ? γ (Ψ ◦L′(F)) ? IC(ẇγ )L′ ? IC(ẇβ)L.

Using the canonical isomorphism γ (Ψ ◦L′(F)) ∼= Ψ ◦L′′(γF) in Corollary 10.16, we
get

L′′Ψ
γ

L′(F̃) ◦ L′Ψ
β

L(G̃) ∼= Ψ ◦L′′(G ? γF) ? (IC(ẇγ )L′ ? IC(ẇβ)L). (10.5)

Comparing (10.4) and (10.5), using (10.2), we get a canonical isomorphism

L′′Ψ
γ

L′(F̃) ◦ L′Ψ
β

L(G̃) ∼= L′′Ψ
γβ

L (F̃ ◦λ G̃).

The compatibility of these isomorphisms with the associativity in E and D
follows from the pentagon diagram (10.3). This finishes the proof.

11. Application to character sheaves

In this section, we apply Theorem 9.2 to get an equivalence between the
asymptotic versions of character sheaves on G with semisimple parameter o and
unipotent character sheaves on its endoscopic group. To state the theorem, we
review three versions of the statement ‘character sheaves are categorical center
of Hecke categories’ (after passing to asymptotic versions).

In this section, all schemes are defined over k = Fq .

11.1. Truncated convolution for the usual Hecke category. Let H be a
connected reductive group over k with maximal torus T and Borel subgroup BH

containing T (later H will be an endoscopic group of G). Let c be a two-sided
cell in the Weyl group WH . Let Sc

H be the full subcategory of DH consisting
of perverse sheaves that are direct sums of IC(w)H for w ∈ c. Then Sc

H is a
semisimple Abelian category equipped with a truncated convolution (−) ◦ (−)
defined in [20, 3.2]. Note that the truncated convolution in [20] is first defined
for the mixed version of Sc

H via a perverse degree truncation and a weight
truncation; the weight truncation is in fact unnecessary because convolution
preserves complexes pure of weight zero. Therefore one can directly define
truncated convolution on Sc

H .
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11.2. Unipotent character sheaves. We recall the relationship between the
usual Hecke category DH for a connected reductive group H and unipotent
character sheaves on H , following [20].

Character sheaves on H are certain simple perverse sheaves on H equivariant
under the conjugation action by H . Each character sheaf has a semisimple
parameter that is a WH -orbit of Ch(T ). When the semisimple parameter is the
trivial local system on T , we call the character sheaf unipotent. Each unipotent
character sheaf on H can be assigned a two-sided cell in WH ; see [20, 1.5].
Let CSc

u(H) be the full subcategory of Db
H (H) (for the conjugation action)

consisting of finite direct sums of unipotent character sheaves belonging to c.
Then CSc

u(H) is a semisimple Q`-linear Abelian category. By [20, 4.6, 9.1],
truncated convolution is defined on CSc

u(H) and makes it a braided monoidal
category.

THEOREM 11.3 [20, Theorem 9.5]. There is a canonical equivalence of braided
monoidal categories

CSc
u(H)

∼

→ Z(Sc
H ),

where Z(−) denotes the categorical center introduced by Joyal and Street [10],
Majid [26] and Drinfeld.

11.4. Truncated convolution for monodromic Hecke categories. Now
consider the situation for G. Let o ⊂ Ch(T ) be a W -orbit. In [22, 1.11, Case
(v)], the notion of two-sided cells inside W × o is defined (see also [22, third
paragraph in p. 620]). Such a two-sided cell c ⊂ W × o can be characterized as
follows. For L,L′ ∈ o and any block β ∈ L′WL, let c(β) = c ∩ (β × {L}) ⊂
L′WL × {L} ⊂ W × o. Then {c(β)} satisfies the following:

(1) For any triple L,L′,L′′ ∈ o and β ∈ L′WL and γ ∈ L′′WL′ , we have
wγ c(β) = c(γβ) = c(γ )wβ .

(2) For L ∈ o and β the neutral block β = W ◦

L, c(β) is the union of a ΩL =

WL/W ◦

L-orbit of the usual two-sided cells for W ◦

L.

In other words, starting from a fixed L ∈ o and a two-sided cell c ⊂ W ◦

L, there
is a unique two-sided cell c ⊂ W × o, which we denote by c = [c], such that
c ∩ (W ◦

L × {L}) = ∪ω∈ΩLω(c).
Fix a two-sided cell c for W × o. For β ∈ L′WL, let L′Sc(β)

L be the
full subcategory of L′Dβ

L consisting of finite direct sums of simple perverse
sheaves of the form IC(w)L for w ∈ c(β). Let L′Sc

L = ⊕β∈L′WL
(L′Sc(β)

L ) and
Sc

o = ⊕L,L′∈o(L′Sc
L). Truncated convolution [22, 2.24, 4.6] defines a monoidal
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structure (−) ◦ (−) on Sc
o. (In [22], the convolution on the monodromic Hecke

category is defined in a different way from Section 3.1. Namely, in loc. cit., the

pushforward along G
U
× G → G was used instead of G

B
× G → G. As a result,

convolution as defined in loc. cit. does not preserve purity while the convolution
in this paper does. Therefore, instead of using the definition of the truncated
convolution in [22, 2.24, 4.6], we may work with the convolution defined in this
paper and ignore weight truncation (doing only the cell truncation). In particular,
truncated convolution can be defined directly for the nonmixed category Sc

o.)

11.5. Character sheaves with general monodromy. Let CSo(G) be the
semisimple Abelian category of finite direct sums of character sheaves whose
semisimple parameter is o (see [22, middle of p.698]). To each character sheaf
A with semisimple parameter o, one can attach a two-sided cell cA for W × o
following [22, first paragraph of p.699]. Let CSc

o(G) be the full subcategory of
CSo(G) consisting of finite direct sums of character sheaves A such that cA = c.
By [22, 5.20, 6.11], truncated convolution equips CSc

o(G) with the structure of
a braided monoidal category.

THEOREM 11.6 [22, Theorem 6.13]. There is a canonical equivalence of
braided monoidal categories

CSc
o(G)

∼

→ Z(Sc
o).

11.7. Unipotent character sheaves on a disconnected group as a twisted
center. Let H be a reductive group with a finite-order automorphism σ . Then
there is the notion of σ -twisted unipotent character sheaves: these are certain
simple perverse sheaves on H equivariant under the σ -twisted conjugation action
h · x = hxσ(h)−1, h, x ∈ H . Let c be a two-sided cell of WH invariant under
σ . Then one can define the category CSc

u(H ; σ) consisting of finite direct sums
of σ -twisted unipotent character sheaves on H whose two-sided cell is c. If σ
changes to the automorphism σAd(h) for some h ∈ H(k), then right translation
by h induces an equivalence between CSc

u(H ; σ) and CSc
u(H ; σAd(h)).

On the other hand, if σ stabilizes BH , then it induces an autoequivalence σ∗
of the monoidal category DH . For a two-sided cell c for WH fixed by σ , Sc

H
is stable under the σ -action, and one can talk about the σ -twisted center of the
monoidal category Sc

H , denoted by Z(Sc
H ; σ). Objects F in Z(Sc

H ; σ) are F ∈
Sc

H equipped with functorial isomorphisms F ◦ σ∗G ∼= G ◦ F for G ∈ Sc
H . If σ

changes to σAd(b) for some b ∈ BH (k), then the actions of σ and σAd(b) on DH
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are canonically equivalent (using the Ad(BH )-equivariant structures of objects in
DH ) and hence a canonical equivalence Z(Sc

H ; σ)
∼= Z(Sc

H ; σAd(b)).

THEOREM 11.8 [23, Theorem 7.3]. Under the above assumptions (in particular,
c is fixed by σ ), there is a canonical equivalence of categories

CSc
u(H ; σ)

∼

→ Z(Sc
H ; σ).

11.9. More notations Now we set up notation for our application to
character sheaves. Fix L ∈ o, and let c be a two-sided cell of W ◦

L. Let [c]
be the two-sided cell for W × o constructed from c by the procedure described
in Section 11.5. Let Ωc ⊂ ΩL be the stabilizer of c under ΩL.

Let H be the endoscopic group of G attached to L. In Section 10.3, we have
introduced an algebraic group LHL containing H = H ◦L as its neutral component.
The component group of LHL is ΩL. For β ∈ ΩL, any lifting ẇβ

∈ LΞ
β

L =

wβT induces an automorphism of H preserving BH . The category of β-twisted
character sheaves CSc

u(H ;β) is independent of the choice of ẇβ up to canonical
equivalences as we discussed in Section 11.7. Therefore we may unambiguously
identify all these categories and write it as CSc

u(H ;β). Note that CSc
u(H ;β)

carries an action of Ωc: for each β ′ ∈ Ωc with lifting ẇβ ′
∈ LΞ̃

β ′

L , the ẇβ ′-action
on H induces an autoequivalence of CSc

u(H ;β), which depends only on β ′ up
to canonical equivalences.

For β ∈ ΩL, we have defined an autoequivalence β(−) : LDL → LDL in
Section 10.14. For any minimal IC sheaf ξγ ∈ LP

γ

L for γ ∈ ΩL (so ξγ ∼=
IC(wγ )L), define a Q`-line

Λβ(γ ) := Hom(ξγ , βξγ ). (11.1)

Note thatΛβ(γ ) is independent of the choice of ξγ up to canonical isomorphisms.
We have canonical isomorphisms Λβ(γ1) ⊗ Λβ(γ2)

∼

→ Λβ(γ1γ2) satisfying
associativity, and Λβ(1) is canonically trivialized. Therefore the assignment
γ 7→ Λβ(γ ) defines a normalized 1-cocycle on ΩL valued in Pic(Q`). By
restriction, we may view Λβ as a normalized 1-cocycle on Ωc valued in Pic(Q`).

Suppose C is an E-linear category (E is a field) on which a group A acts
(so each γ ∈ A gives an autoequivalence of C, which we denote by γ (−),
1A(−) = idC , together with natural isomorphisms γ1γ2(−) ∼= γ1(γ2(−)) satisfying
associativity and unital conditions). Let Λ ∈ Z1

norm(A,Pic(E)) be a normalized
1-cocycle of A valued in Pic(E). Then an (A,Λ)-equivariant structure on an
object X ∈ C is a collection of isomorphisms αγ : γ X ∼= X ⊗ Λ(γ ) for γ ∈ A,
which is the identity for γ = 1A (Λ(1A) is trivialized) such that for γ1, γ2 ∈ A,
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the following diagram is commutative

γ1γ2 X

αγ1γ2

��

γ1αγ2 // γ1 X ⊗Λ(γ2)

αγ1⊗id

��
X ⊗Λ(γ1γ2)

∼ // X ⊗Λ(γ1)⊗Λ(γ2)

where the bottom map is the one from the cocycle structure of Λ. Let C(A,Λ) be
the category of objects in C equipped with (A,Λ)-equivariant structures, with
the obvious notion of morphisms compatible with the equivariant structures.

THEOREM 11.10. (1) Let o ⊂ Ch(T ) be the W -orbit of L, and c a two-
sided cell in W ◦

L. There is an equivalence of semisimple Abelian categories
depending on the liftings {ẇβ

}β∈Ωc :

CS [c]o (G)
∼

→

⊕
β∈Ωc

CSc
u(H ;β)

(Ωc,Λβ ).

(2) The class of Λβ in H2(ΩL,Q
×

` ) is always trivial. In particular, we have a
noncanonical equivalence of semisimple Abelian categories

CS [c]o (G)
∼

→

⊕
β∈Ωc

CSc
u(H ;β)

Ωc, (11.2)

where (−)Ωc means the category of objects with Ωc-equivariant structures.

REMARK 11.11. Equivalence (11.2) induces a canonical bijection between
simple objects on both sides (independent of how one trivializes Λβ). Simple
objects in CSc

u(H ;β) are classified in [19, Section 46], from which one can get
a classification of simple objects in CS [c]o (G) using (11.2). In the case where
Ωc is trivial, simple objects in both CSc

u(H) and CS [c]o (G) are parametrized by
the set M(Gc) by [15, Theorem 23.1] (see [13, Sections 4.4–4.13] for Gc and
M(Gc)). This is consistent with (11.2).

The rest of the section is devoted to the proof of Theorem 11.10.

LEMMA 11.12. The projection from S [c]o to LS [c]L induces an equivalence on their
categorical centers:

rL : Z(S [c]o )
∼

→ Z(LS [c]L ). (11.3)
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Proof. We construct an inverse to rL as follows. Let LFL ∈ Z(LS [c]L ). Define
F = ⊕L′FL ∈ S [c]o = ⊕L,L′(L′S [c]L ) by L′FL = 0 if L′ 6= L, and L′FL′ =

ξ ?LFL ? ξ
−1 for some ξ ∈ L′PL. Using the central structure of LFL, we see that

L′FL′ is independent of the choice of ξ up to canonical isomorphisms. Moreover,
we show that F carries a central structure. For G ∈ L′′S [c]L′ , upon choosing ξ ∈
L′PL and η ∈ L′′PL, we may write G = η ? H ? ξ−1 for H ∈ LS [c]L . Then we
have an isomorphism F ◦ G = L′′FL′′ ◦ G = (η ? LFL ? η

−1) ◦ (η ?H ? ξ−1) ∼=

η?(LFL◦H) ? ξ−1 ∼= η ? (H◦LFL) ? ξ
−1
= G◦L′FL′ = G◦F coming from the

central structure of LFL. Again this isomorphism is independent of the choices
of ξ and η. The construction LFL 7→ F gives an inverse to rL and shows that rL
is an equivalence.

LEMMA 11.13. Using liftings {ẇβ
}β∈Ωc , there is an equivalence

Z(LS [c]L )
∼

→

⊕
β∈Ωc

Z(LS◦,cL ;β)
(Ωc,Λβ ), (11.4)

where LS◦,cL consists of direct sums of IC(w)L for w ∈ c ⊂ W ◦

L.

Proof. For each β ∈ ΩL, let ξβ = ωIC(ẇβ)L ∈ LP
β

L. For F ∈ Z(LS [c]L ), write
F = ⊕β∈ΩLFβ ? ξβ , where Fβ ∈ LS◦,[c]L := LS◦L ∩ LS [c]L . By the description
of [c] in Section 11.5, Fβ can be written uniquely as a direct sum ⊕c′∈ΩL·cF c′

β ,
where F c′

β ∈ LS◦,c
′

L . Let (−)◦ (−) denote the truncated convolution in LS [c]L . The
central structure of F gives the following isomorphisms:

(Fβ ? ξβ) ◦ (G ? ξγ ) ∼= (G ? ξγ ) ◦ (Fβ ? ξβ), ∀β, γ ∈ ΩL,G ∈ LS◦,[c]L . (11.5)

Using the action ofΩL on LD◦L introduced in Section 10.14, we may rewrite the
above isomorphism as

(Fβ ◦
βG) ? ξβ ? ξγ ∼= (G ◦ γFβ) ? ξγ ? ξβ .

By (11.1), we have ξβ ? ξγ ? ξ−1
β ? ξ−1

γ = δL⊗Λβ(γ ). We may rewrite the above
isomorphism as

Fβ ◦
βG ⊗Λβ(γ ) ∼= G ◦ γFβ, ∀β, γ ∈ ΩL,G ∈ LS◦,[c]L . (11.6)

Taking γ = 1, we get isomorphisms

ηG : Fβ ◦
βG ∼= G ◦Fβ, ∀β ∈ ΩL,G ∈ LS◦,[c]L , (11.7)

which equip Fβ with a β-twisted central structure, that is, Fβ has a natural lift to
an object F #

β ∈ Z(LS
◦,[c]
L ;β).
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Taking G = δL in (11.6), we get isomorphisms

ζγ : Fβ ⊗Λβ(γ ) ∼=
γFβ, ∀γ ∈ ΩL, (11.8)

which equip Fβ with an (ΩL,Λβ)-equivariant structure. The central structure
implies that isomorphisms (11.6) satisfy compatibilities with convolution of the
G ? ξγ ’s, which are equivalent to the commutative diagram

Fβ ◦
βγG ⊗Λβ(γ )

ηγ G⊗id // γG ◦Fβ ⊗Λβ(γ )
id◦ζγ // γG ◦ γFβ

Fβ ◦
γβG ⊗Λβ(γ )

ζγ ◦id // γFβ ◦
γβG

γ ηG // γ (G ◦Fβ)

for all γ ∈ ΩL and G ∈ LS◦,[c]L . The commutativity of these diagrams means
exactly that F #

β carries an (ΩL,Λβ)-equivariant structure as an object in
Z(LS◦,[c]L ;β), that is, F #

β further lifts to an object F♥β ∈ Z(LS
◦,[c]
L ;β)

(ΩL,Λβ ).
Take a cell c′ ⊂ W ◦

L in the ΩL-orbit of c and take G ∈ LS◦,c
′

L . Now βG ∈
LS◦,β(c

′)

L . For w,w′ ∈ W ◦

L in different cells, the truncated convolution of IC(w)L
and IC(w′)L vanishes. Therefore the left side of (11.7) lies in LS◦,β(c

′)

L while the
right side lies in LS◦,c

′

L . If β(c′) 6= c′, then both sides of (11.7) must vanish; hence
IC(w)L ◦ F c′

β = 0 for all w ∈ c′. This implies F c′
β = 0 if β(c′) 6= c′ since LS◦,c

′

L
has a monoidal unit. Since ΩL is Abelian, β ∈ ΩL either fixes all c′ in the orbit
of c or none; therefore Fβ = 0 if β /∈ Ωc.

Now we consider β ∈ Ωc. Isomorphisms (11.8) allow us to recover F c′
β

for any cell c′ in the ΩL-orbit of c from F c
β . The object F c

β lifts to F c,♥
β ∈

Z(LS◦,cL ;β)
(Ωc,Λβ ). The functor F♥β 7→ F c,♥

β is an equivalence

Z(LS◦,[c]L ;β)
(ΩL,Λβ ) ∼→ Z(LS◦,cL ;β)

(Ωc,Λβ ).

Combining the above discussions, we arrive at equivalence (11.4) given by F 7→
⊕β∈ΩcF c,♥

β .

11.14. Proof of Theorem 11.10(1). Theorem 9.2 implies a monoidal
equivalence between semisimple Abelian categories:

Sc
H
∼

→ LS◦,cL . (11.9)

In [22], the value of the a-function for [c] used in the construction of the
truncated convolution is the same as the value of the a-function on c as a cell for
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WH . By Corollary 10.16, (11.9) is equivariant under the actions ofΩc. Therefore,
we get a canonical braided monoidal equivalence for β ∈ Ωc:

Z(Sc
H ;β)

(Ωc,Λβ ) ∼→ Z(LS◦,cL ;β)
(Ωc,Λβ ). (11.10)

Composing the known equivalences, we get

CS [c]o (G) ∼

Th.11.6 // Z(S [c]o )
(11.3)

∼

// Z(LS [c]L )
(11.4)

∼

// ⊕β∈ΩcZ(LS
◦,c
L ;β)

(Ωc,Λβ )

⊕β∈ΩcZ(Sc
H ;β)

(Ωc,Λβ )

(11.10)

∼

55

⊕β∈ΩcCSc
u(H ;β)

(Ωc,Λβ )Th.11.8
∼

oo

11.15. Proof of Theorem 11.10(2). If ΩL is cyclic, then H2(ΩL,Q
×

` ) = {1}.
When G is almost simple, the only case where ΩL is not cyclic is when G =

Spin4n and ΩL ∼= Z/2Z× Z/2Z for certain L. In this case, if β = 1, then β(−)

is naturally isomorphic to the identity functor; hence Λβ carries a trivialization.
If β 6= 1, then Λβ(β) carries a canonical trivialization such that Λβ : ΩL →

Pic(Q`) factors through Λβ : ΩL/〈β〉 ∼= Z/2Z→ Pic(Q`). Therefore the class
ofΩL is the pullback from the class ofΛβ in H2(ΩL/〈β〉,Q

×

` ) = {1}, which has
to be trivial.

In general, let G̃ → G be the simply connected cover of the derived subgroup
of G. Then G̃ =

∏
i G i , where each G i is almost simple and simply connected.

Let T̃ ⊂ G̃ be the maximal torus whose image in G is contained in T , and
let L̃ ∈ Ch(T̃ ) be the pullback of L. Then under the identification of the Weyl
groups of G̃ and G, there are an inclusion WL ⊂ WL̃ and an equality W ◦

L = W ◦

L̃.
Therefore ΩL ⊂ ΩL̃. Moreover, from the definitions we see that for β ∈ ΩL,
Λβ is the restriction to ΩL of the similarly defined cocycle Λ̃β for ΩL̃ . By the
almost simple case settled above, the class of Λ̃β is always trivial in H2(ΩL̃,

Q×` ); hence the same is true for Λβ by restriction. The proof of Theorem 11.10
is now complete.

12. Application to representations

In [21] and [23], the first author has related the category of representations
of G(Fq) to the twisted categorical center of asymptotic versions of the
monodromic Hecke category of G, in a similar way that character sheaves
on G are related to the categorical center of the monodromic Hecke category.
In this section, we apply the monodromic–endoscopic equivalence to prove a
relationship between representations of G(Fq) and its endoscopic groups.
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In this section, all schemes are over k = Fq . We will work in the more general
context of disconnected groups as in [23], and establish a relationship between
character sheaves on disconnected groups and unipotent character sheaves on
their endoscopic groups.

12.1. Disconnected groups and forms. Let G be a connected reductive
group over k with maximal torus T and Borel subgroup B containing T (all
defined over k). Let ε : G → G be a morphism over k preserving (T, B) and
satisfying one of the following two conditions:

(A) ε is the Frobenius map for some rational structure of G over Fq ;

(B) ε is a finite-order automorphism of G over k.

We will refer to the two conditions above as ‘Situation (A)’ and ‘Situation (B)’.
We form the semidirect semigroup product G o εZ>0 (where εZ>0 is a copy of

Z> acting on G via ε). There is the notion of character sheaves on the coset G ·ε;
see [23, Section 6.1]. These are certain G-equivariant simple perverse sheaves on
G · ε. In Situation (B), this notion is the same as the ε-twisted character sheaves
on G considered in Section 11.7.

When ε is in Situation (A), character sheaves on G · ε are exactly the
irreducible Q`-representations of the finite group Gε , the group of Fq-points of
the form of G with Frobenius map ε.

The map ε induces an action on Ch(T ): εL := ε∗L. In the following, we fix a
W -orbit o ⊂ Ch(T ) that is stable under the action of ε. Fix L ∈ Ch(T ). We have
the relatively pinned endoscopic group H = H ◦L as defined in Section 10.2 (now
over k).

The map ε induces an automorphism of the based root system of G, which we
still denote by ε. It restricts to a bijection of based root systems ε : ΦL

∼

→ ΦεL
(it sends Φ+L = ΦL ∩ Φ

+ to Φ+εL = ΦεL ∩ Φ
+ because ε is a bijection of based

root systems). For each β ∈ LW εL, wβ gives a bijection of based root systems
wβ
: ΦεL→ ΦL. The composition wβ

◦ ε is an automorphism of the based root
system (ΦL,∆L).

Fix a lifting ẇβ for each β ∈ LW εL. In Situation (A), there is a unique Fq-
Frobenius structure σβε : H → H preserving (T, BH ), inducing wβ

◦ ε on the
root system of H (which is identified with ΦL), and such that (σβε,Ad(ẇβ) ◦ ε)

is compatible with the relative pinning in the sense that the following diagram is
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commutative for each simple root of α of H :

Hα

σβε

��

ια // Gα

Ad(ẇβ )◦ε
��

Hwβε(α)

ι
wβ ε(α) // Gwβε(α)

Note that the construction of σβε depends on the choice of the lifting ẇβ .
Similarly, in Situation (B), there is a unique finite-order automorphism σβε :

H → H preserving (T, BH ), inducing wβ
◦ ε on the root system of H , and such

that (σβε,Ad(ẇβ) ◦ ε) is compatible with the relative pinning in the above sense.

EXAMPLE 12.2. Suppose ε is the Frobenius map for the split Fq-structure of G.
In this case, εL = L1/q (note that the order of L is always prime to p). Assume
that WL = {1} (we always assume o be stable under ε). In this case, H = T ,
and there is a unique w ∈ W such that wL1/q

= L (the blocks are singletons,
so w can be viewed as a block). Then σwε : T → T is the Frobenius map for
the Fq-form of T given by the W -conjugacy class of w (note that the conjugacy
classes of maximal tori of the split G defined over Fq are classified by conjugacy
classes in W ).

12.3. Character sheaves on disconnected groups as a twisted center.
Recall that we fix a W -orbit o ⊂ Ch(T ) stable under ε, and also fix L ∈ o. Let
c ⊂ W × o be a two-sided cell that is stable under ε. As in Section 11.4, we may
write c = [c] for some two-sided cell c ⊂ W ◦

L, which is well defined up to the
action of ΩL.

Let CSc
o(G; ε) be the semisimple Abelian category whose objects are finite

direct sums of character sheaves on G · ε with semisimple parameter o and
belonging to the cell c (see [23, Section 6.1]). In Situation (A), the G-conjugation
action on G · ε is transitive by Lang’s theorem, with the stabilizer of 1 · ε equal
to the finite group Gε . Therefore we have an equivalence

CSc
o(G; ε) ∼= Repc

o(G
ε), (12.1)

the latter being the semisimple Abelian category of Q`-representations of the
finite group Gε whose semisimple parameter is o and are finite direct sums of
irreducible representations belonging to the cell c.

The following theorem proved in [23] is a common generalization of
Theorems 11.3, 11.6 and 11.8.
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THEOREM 12.4 [23, Theorem 7.3]. Under the above assumptions (in particular,
o and c are stable under ε), there is a canonical equivalence of categories

CSc
o(G; ε)

∼

→ Z(Sc
o; ε).

12.5. More notations We need some more notation to state the next theorem.
Fix a two-sided cell c of W ◦

L contained in c ∩ W ◦

L. Then c ∩ W ◦

L is the union of
two-sided cells that are in the same ΩL-orbit of c.

For β ∈ LW εL, wβ
◦ εL = L; hence wβ

◦ ε acts on WL,W ◦

L and on ΩL, and
permutes the cells in W ◦

L that belong to c. Let

Bc = {β ∈ LW εL|w
β
◦ ε preserves the cell c of W ◦

L}.

The left translation action of ΩL on LW εL (using the multiplication of blocks
defined in Section 4.1) restricts to an action of Ωc = StabΩL(c) on Bc, making
it a Ωc-torsor. Similarly, the right translation action of γ ∈ ΩL on LW εL by
β 7→ βε(γ ) makes Bc a right Ωc-torsor. Combining the two actions, we get a
twisted conjugation action of ΩL on LW εL:

Adε(γ )(β) = γβε(γ )−1, γ ∈ ΩL, β ∈ LW εL.

It restricts to an action ofΩc on Bc, which we still denote by Adε . For β ∈ LW εL,
letΩβ ⊂ΩL be its stabilizer underΩL; letΩc,β =Ωc∩Ωβ . SinceΩL is Abelian,
the groups Ωβ,Ωc and Ωc,β are independent of the choices of c and β.

When β ∈ Bc, we can define the semisimple Abelian category CSc
u(H ; σβε)

consisting of finite direct sums of unipotent character sheaves on H · σβε
belonging to the cell c. In Situation (A), we have an equivalence

CSc
u(H ; σβε) ∼= Repc

u(H
σβε ), (12.2)

the latter being the semisimple Abelian category of unipotent Q`-representations
of the finite group H σβε belonging to the cell c.

For β ∈ LW εL, we introduce a twisted analogue of the cocycle Λβ defined in
(11.1). For γ ∈ Ωβ ⊂ ΩL, define

Λβε(γ ) = Hom(ξγ , ξβ ? ε∗ξγ ? ξ−1
β ).

This is canonically independent of the choices of ξγ ∈ LP
γ

L and ξβ ∈ LP
γ

FεL,
and it defines a normalized 1-cocycle Λβε of lines on Ωβ .

Finally, using the group LHL with neutral component H and group of
components equal to ΩL, there is a canonical action of Ωβ on CSu(H ; σβε),
defined in the same way as discussed in Section 11.9. This restricts to an
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action of Ωc,β on CSc
u(H ; σβε). It therefore makes sense to form the category

CSc
u(H ; σβε)

(Ωc,β ,Λβε ) of objects in CSc
u(H ; σβε) equipped with Ωc,β-equivariant

structures twisted by the cocycle Λβε (restricted to Ωc,β), in the sense discussed
in Section 11.9.

The following result gives a relationship between character sheaves for a
disconnected group with a fixed semisimple parameter and unipotent character
sheaves on its endoscopic groups, generalizing Theorem 11.10.

THEOREM 12.6. Choose a representative for each Adε(Ωc)-orbit of Bc, and
denote this set of representatives by Ḃc. There is an equivalence of semisimple
Abelian categories:

CSc
o(G; ε) ∼=

⊕
β∈Ḃc

CSc
u(H ; σβε)

(Ωc,β ,Λβε ).

Using (12.1) and (12.2), we get the following corollary.

COROLLARY 12.7. In Situation (A), under the same notations as Theorem 12.6,
there is an equivalence of semisimple Abelian categories:

Repc
o(G

ε) ∼=
⊕
β∈Ḃc

Repc
u(H

σβε )(Ωc,β ,Λβε ).

EXAMPLE 12.8. Consider G = SLn , and ε is the Frobenius map for the split Fq-
structure on G. Let K ∈ Ch(Gm) be of order n. For a rational number a whose
denominator is prime to n, it makes sense to take the tensor power Ka . Let

L = K �K2 � · · ·�Kn
∈ Ch(Gn

m).

Restricting L to the diagonal torus T of G (identified with the subtorus T ⊂ Gn
m

with product equal to 1), we denote it still by L ∈ Ch(T ). The Weyl group Sn

acts on Ch(Gn
m) by w(L1 � · · ·� Ln) = Lw−1(1) � · · ·� Lw−1(n), and it restricts

to an action on Ch(T ).
Let o be the W -orbit of L. In this case, W ◦

L = {1} but WL = ΩL ∼= Z/nZ can
be identified with the group generated by the cyclic permutation c : i 7→ i + 1
in Sn . We have H = T . Since there is only one cell c for T with any semisimple
parameter, we will omit c from the notation.

We have ε∗L = K1/q � K2/q
· · · � Kn/q . Let w(i) = i/q mod n, viewed as

an element in Sn; then B = LWεL = {ciw|i ∈ Z/nZ}. For β ∈ B, we have
Adε(c)(β) = cβε(c)−1

= cβc−1. Direct calculation shows that Adε(c) sends
ciw ∈ B to ci+(q−1)/qw ∈ B. Let d = gcd(n, q − 1); then the Adε-action of
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ΩL = Z/nZ on B has d orbits, and the stabilizers are isomorphic to Z/dZ.
By Corollary 12.7, SLn(Fq) has d2 irreducible representations with semisimple
parameter o (the twistings Λβε can be trivialized since ΩL is cyclic).

EXAMPLE 12.9. Consider the case G = SLn , but ε is the Frobenius map
corresponding to the special unitary group SUn over Fq . Its action on the diagonal
torus is given by (x1, x2, . . . , xn) 7→ (x−q

n , x−q
n−1, . . . , x−q

1 ). We consider the same
L ∈ Ch(T ) as in Example 12.8. This time, εL = K−n/q � · · · � K−1/q . Let
w(i) = (i − n − 1)/q mod n, viewed as an element in Sn; then B = LWεL =

{ciw|i ∈ Z/nZ}. For β ∈ B, we have Adε(c)(β) = cβε(c)−1
= cβc because

ε(c) = c−1. Then Adε(c)(ciw) = ci+(q+1)/qw. Let d ′ = gcd(q + 1, n). Then as
in the discussion in Example 12.8, SUn(Fq) has d ′2 irreducible representations
with semisimple parameter o.

12.10. Sketch of proof of Theorem 12.6. Applying Theorem 12.4 to
CSc

o(G; ε) and to CSc
u(H ; σβε) separately, we reduce to showing that

Z(Sc
o; ε)
∼=

⊕
β∈Ḃc

Z(Sc
H ; σβε)

(Ωc,β ,Λβε ).

By the equivalence in Theorem 9.2, we may replace Sc
H by LS◦,cL on the right

side and reduce to showing that

Z(Sc
o; ε)
∼=

⊕
β∈ḂL,c

Z(LS◦,cL ;β ◦ ε∗)
(Ωc,β ,Λβε ). (12.3)

Here the twisting β◦ε∗ that appears on the right side refers to the autoequivalence
F 7→ ξβ ? ε∗F ? ξ−1

β of LS◦,cL .
The argument for (12.3) is similar to that of Theorem 11.10, so we only

sketch the main steps. We have a twisted analogue of (11.3): restriction gives
an equivalence

Z(Sc
o; ε)

∼

→ Z(LSc
εL; ε). (12.4)

Here the right side contains objects F ∈ LSc
εL together with functorial

isomorphisms F ◦ ε∗G
∼

→ G ◦ F for G ∈ LSc
L (◦ denotes the truncated

convolution). One can then write F ∈ Z(LSc
εL; ε) as a sum

F =
⊕

c′∼c,β∈LW εL

F c′
β ? ξβ

for F c′
β ∈ LS◦,c

′

L (where c′ runs over the ΩL-orbit of c). The ε-commutation
with G in various cell subcategories of LS◦L implies that if F c

β 6= 0, then wβ
◦ ε
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preserves c, that is, β ∈ Bc. The ε-commutation with G ∈ LS◦,cL shows that
F c
β carries a β ◦ ε∗-twisted central structure. The ε-commutation with G = ξγ

for γ ∈ ΩL then shows that F c
β determines F γ ·c

γ ·εβ
, and that F c

β (for β ∈ Bc) is
equipped with an (Ωc,β,Λβε)-equivariant structure. Sending F ∈ Z(LSc

εL; ε) to
{F c

β}β∈Ḃc then induces an equivalence

Z(LSc
εL; ε)

∼=

⊕
β∈Ḃc

Z(LS◦,cL ;β ◦ ε∗)
(Ωc,β ,Λβε ).

Combining this with (12.4), we get (12.3), proving the theorem.
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