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Abstract
Establishing a precise electromagnetic scattering model of surfaces is of great significance
for comprehending the underlying mechanics of synthetic aperture radar (SAR) imaging. To
describe surface electromagnetic scattering more comprehensively, this paper established a
nonlinear integral equationmodelwith theCreamermodel and bispectrum (IEM-C). Based on
the IEM-Cmodel, the effect of parameters, such as radar wave incidence angle, wind speed and
direction of sea surfaces, and different polarizationmodes on the backscattering coefficients of
C-band radar waves, was systematically evaluated.The results show that the IEM-Cmodel can
characterize both the vertical nonlinear features due to wave interactions and the horizontal
nonlinear features due to the wind direction. The sensitivity of the sea surface backscattering
coefficient in the IEM-C model to nonlinear effects varies with different incident angles. At
the incident angle of 30∘, the IEM-Cmodel exhibits the most significant nonlinear effects. The
nonlinear effects of the IEM-C model vary under different wind speeds. By comparing with
the measured data, it is proved that the IEM-Cmodel is closer to the real sea surface scattering
situation than the IEM model.

Introduction

Sea currents have a significant impact on human production and life. It is imperative to acquire
comprehensive oceanic information and comprehend the intricacies of its processes and causal-
ity [1]. Sea current observation methods are divided into two categories: in situ detection and
remote-sensing detection. In situ detection methods offer high measurement accuracy but are
limited in terms of equipment cost and detection range. On the other hand, remote-sensing
detection methods have the advantages of wide coverage, high resolution, and near real-time
data, providing a large amount of oceanic information [2]. Among various remote-sensing
detection methods, synthetic aperture radar (SAR) stands out due to its advantages, such as
all-time and all-weather imaging capabilities, comprehensive coverage, and high resolution,
making it a valuable method for ocean sensing and detection [3]. SAR obtains images of the tar-
get area by transmitting microwave signals and receiving signals reflected from the sea surface.
Themorphology, roughness, and other features of the sea surface affect the scattering process of
the sea surface and electromagnetic waves. By analyzing the scattering process, themorphology
and structure of the sea surface can be inverted, which in turn generates high-resolution SAR
images.Therefore, the establishment of an accurate electromagnetic scattering model of the sea
surface is of great significance for understanding the SAR imaging mechanism and optimizing
the SAR imaging algorithm.

Electromagnetic scattering models of surfaces can be divided into two categories: numerical
calculation models and approximate analytical models. Numerical calculation models directly
employ Maxwell’s equations to numerically solve differential or integral equations [4]. While
these models provide very accurate results, a large amount of computational effort is required
to compute large-scale problems [5]. In addition, these methods do not consider the physical
context of ocean dynamics. Analytical approximation models, on the other hand, by physically
approximating the problem under specific conditions, simplify the complex calculations pro-
viding a more intuitive physical explanation, which contributes to a better understanding of the
scattering process [6]. Due to different physical approximation conditions, approximate analyt-
ical models are divided into the Kirchhoff approximation [7], the small perturbation model [8],
the small slope approximation [9], and the integral equation model (IEM) [10]. The IEM has
been widely recognized and applied in research because of its wide applicability of roughness
[11–14].

Electromagnetic scattering calculations based on random rough surfaces are the key to
studying electromagnetic scattering from surfaces [15]. The ocean’s surface can be described as
a disorderly rough surface. In early electromagnetic scattering studies, it was often assumed that
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the sea surface was a superposition of a series of linear waves to
simplify calculations. However, there are many nonlinear effects in
the real sea surface, whichmake the surface appear nonlinear char-
acteristics. Therefore, many scholars have developed nonlinear sea
surfacemodels to improve the accuracy of electromagnetic scatter-
ing from the sea surface. In 1989, Creamer proposed an improved
linear representation to translate linear surfaces into the nonlinear
surfaces, due to the fact that surface height and velocity potential
can be expressed as a pair of standard Hamiltonian variables [16].
However, due to its computational complexity and usability chal-
lenges, the Creamer model has not been widely used. In response
to the limitation, Soriano developed the second-order Creamer
model by expanding the Creamer formulation using a Taylor
series up to the second order [17]. By employing the fast inverse
Fourier transform, the second-order Creamer model is computed
significantly faster than the initial Creamer model, which greatly
improves the simulation efficiency. In 2020, Su investigated the
backscattering characteristics of a nonlinear surface under flow
field modulation using the second-order Creamer model [18]. In
2022, Hwang conducted research on the swell factor of waves, with
a particular focus on the impacts of linear and nonlinear sea sur-
face Doppler spectral inversion using the second-order Creamer
model [19].

In summary, the Creamer model can describe the vertical non-
linearity characteristics in the sea surface. However, there are also
other nonlinearity characteristics in the sea surface. According to
Aquarius satellite data, the backscatter coefficient of the sea sur-
face exhibits significant variations with different wind directions,
indicating that wind direction is a nonlinear influencing factor on
the sea surface [20]. In 1992, Chen and Fung integrated the bis-
pectrum into the IEM model, offering enhanced comprehension
of how wind conditions affect the surface [12].

The wave spectrum is a mathematical function used to describe
the distribution of energy carried by sea waves. It serves as a sta-
tistical instrument that captures the interplay among wave height,
wave period, direction, and energy distribution [21]. Specifically, it
is obtained by applying the Fourier transform to the autocorrela-
tion function of the sea surface. The wave bispectrum refers to the
Fourier transform of the bicorrelation function of the sea surface
elevation. It serves as a third-order statistical measure that charac-
terizes the nonlinearity and skewness features of the sea surface
[13]. Hence, Xie developed a bistatic scattering model for non-
Gaussian surfaces based on the bispectrum and analyzed the sen-
sitivity of the model to the wind field [14]. At present, most studies
consider the nonlinear scattering in one case. The Creamer model
only considers the vertical direction’s nonlinearity characteristics,
while the bispectrumonly considers the horizontal direction’s non-
linearity characteristics. There are few studies of electromagnetic
scattering from surfaces that consider both horizontal and vertical
nonlinear properties.

The nonlinearity of the surface affects the distribution of rough-
ness, which in turn affects the inversion of radar echo signals.
Consequently, investigating the effects of the nonlinear properties
of two-dimensional surfaces on the computation of electromag-
netic scattering is of significant value. In this paper, the nonlinear
integral equation model incorporating the Creamer nonlinearity
(IEM-C) is developed based on the IEM model by combining the
second-order Creamer nonlinear surface and bispectrum theory.
The IEM-C model incorporates nonlinear corrections to linear
sea surfaces and the bispectrum function is further added. These
improvements enrich the discussion of nonlinear scattering factors
at the surface and improve the computational accuracy. Based on

the IEM-C model, the backscattering coefficients under different
parameters were simulated, and the effects of the variations of
parameters such aswind speed,wind angle, polarizationmode, and
radar wave incidence angle on the nonlinear scattering character-
istics of sea surfaces were analyzed. Furthermore, the simulation
results of the IEM-C model were compared with measured data,
providing validation for its accuracy and reliability [22, 23].

Establishment of the IEM-C model

The sea surface is composed of large-scale structures and
microstructures, with small-scale bubbles, breaking waves, and
swells superimposed on large-scale quasi-periodic waves. Most
early scattering studies have focused on linear surface scattering
characteristics, which assume that the sea surface is a compos-
ite of linear waves. However, due to the presence of effects such
as wave–wave interactions and the modulating influence of wind
direction, the actual sea surface is nonlinear. Common nonlin-
ear characteristics include vertical and horizontal nonlinearity.
Vertical nonlinearity refers to the interaction betweenwaves result-
ing in modulation at the crest and trough. Horizontal nonlinearity
refers to the variation in backscattering coefficients between down-
wind and upwind conditions, which arises from the tilting of the
sea surface caused by wind direction [17].

Introduction of vertical nonlinear features

The linear surface model is the prerequisite for nonlinear sur-
face models. Common methods for modeling sea surfaces include
fractal, bilinear superposition, and linear filtering [15]. The linear
filtering method treats the surface as a superposition of different
harmonics, with the amplitude of the harmonics being indepen-
dent Gaussian random variables that are specifically proportional
to the wave spectrum. The linear sea surface can be realized by
Fourier transform of the spectrum. The spatial Fourier compo-
nents of the linear surface can be expressed as follows:

AL (kx, ky) = Y (k) √W (kx, ky) ΔkxΔky/2

+ Y* (−k) √W (kx, ky) ΔkxΔky/2 (1)

hL (x, y) = 4M ⋅ N ⋅ F−1 [AL (kx, ky)]

=
M

∑
m=−M

N

∑
n=−N

AL (kxm, kyn) exp[ j(kxmx + kyny)]

(2)

where k represents the wave vector of the sea surface; kx, ky repre-
sent the wave vectors along the x-, y-direction, respectively; Y(k)
is the independent Gaussian random variables; the * denotes the
Hermitian form, which insures that hL(x, y)is real; and hL(x, y) is
the sea height at different points. The number of grid points along
the surface in x- and y-directions are defined as 2 M and 2 N,
respectively. F−1[⋅] represents the inverse two-dimensional Fourier
transform. W (kx, ky) represents the two-dimensional wave spec-
trum, composed of an omnidirectional and a directional spectrum.
The wave spectrum describes the distribution of energy on the
ocean surface with respect to wavelength and wave direction.

The sea surface height and velocity potential can be formulated
as a pair of typical Hamiltonian variables. The nonlinear term of
the second-order Creamer model can be written as the Hilbert
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transform of the linear surface [16]. In the two-dimensional case,
the Hilbert transform vector of the linear term is

hc(x, y) = Re∑
k

(−jkk )AL(kx, ky) exp( j(kxx + kyy)) (3)

where k = √k2x + k2y , and the components of its Hilbert vector in
the x-, y-directions are as follows:

hcx(x, y) = Re∑
k

(−j
kx
k )AL(kx, ky) exp( j(kxx + kyy)) (4)

hcy(x, y) = Re∑
k

(−j
ky
k )AL(kx, ky) exp( j(kxx + kyy)) (5)

The Creamer nonlinear Fourier components can be calculated
by Equation (6) [12].

ANL(kx, ky) = 1
MN ∑

x,y

exp [ jk ⋅ hc(x, y)] − 1
k exp( j(kxx + kyy))

(6)

where the exponential term in Equation (6) is dependent not only
on k but also on the parameter hc(x, y), which leads to complex
model calculations. Soriano et al. retained the first two approxima-
tions by expanding the exponential term using Taylor series, which
effectively reduces the computational complexity while preserv-
ing the nonlinear interaction between waves [17]. The first term of
the Taylor expansion is equivalent to the Fourier transform of the
linear ocean surface, designated as AL (kx, ky). The second term
characterizes weakly nonlinear effects:

C2(kx, ky) = − k2x
2kF [h2cx] −

kxky
k F [hcxhcy] −

k2y
2kF [h2cy] (7)

where F[⋅] represents the Fourier transform, and C2 (kx, ky)
defines the second term of Creamer model expansion. Then the
Fourier transform of the nonlinear surface can be expressed as
follows:

ANL(kx, ky) = AL(kx, ky) + C2(kx, ky) (8)

The nonlinear sea surface of the second-order Creamer model
can be obtained by replacing the AL (kx, ky) of Equation (2) with
the ANL(kx, ky) and performing a Fourier inverse transform.

The shape of the sea surface will be different under different
wind conditions. The wind serves as a significant environmental
parameter in simulating the sea surface. It can be described by the
wind speed at 10 m above sea level and the wind direction (𝜙).
Figure 1 shows the two-dimensional linear and nonlinear sea sur-
faces established using the Elfouhaily spectrum with a wind speed
of 5 m/s and wind direction along the x-direction [21].

To facilitate a more detailed examination of the disparity
between linear and nonlinear surfaces, a one-dimensional surface
can be derived by sampling from a two-dimensional surface. In
this study, Fig. 2(a) displays the one-dimensional linear and non-
linear surfaces obtained by sampling fromFig. 1 at y = 250m along
the x-direction. Additionally, Fig. 2(b) illustrates the cumulative
distribution function of the slopes computed from the linear and
nonlinear surfaces depicted in Fig. 2(a).

Figure 2(a) shows that the nonlinear sea surface is sharper,
with steeper crests and gentler troughs than the linear sea sur-
face. The sea surface is commonly regarded as a superposition
of waves with different wavelengths, which can be classified into
shorter wavelength short waves and longer wavelength long waves.
Wavelengths of short waves are usually less than 1m, which is close
to radar wavelengths and has a strong correlation with remote-
sensing imaging results. On the other hand, wavelengths of long
waves range from a few meters to several hundred meters. Due to
the interaction between the waves in the sea surface, short waves
are suppressed at the troughs of long waves and enhanced at the
crests. By analyzing the cumulative distribution characteristics of
the slope for linear and nonlinear sea surfaces in Fig. 2(b), it can be
observed that the slope distribution of the nonlinear sea surface is
steeper compared to the linear surface.

Introduction of horizontal nonlinear features

The sea surface is a randomly rough surface affected by wind and
waves, with different height at different positions. The sea sur-
face height h(x, y) is a random variable that can be described by
the probability density function of the sea surface height. A ran-
dom variable can be characterized by its statistical distribution by
usingmoments. Let the surface function h(x, y) be a real stationary
random process with zero mean. The first-order moments of the
random variable represent its mathematical expectation ⟨h⟩ = 0,
the second-order moments represent the variance ⟨h2⟩ = 𝛿2, and
the third-order moments represent the skewness ⟨h3⟩ = 𝜇3 [18].
The second-order moments of the sea surface height are related to
the autocorrelation function of the sea surface.

⟨h (x, y) h (x + 𝜉x, y + 𝜉y)⟩ = 𝛿2𝜌 (𝜉x, 𝜉y) (9)

W (kx, ky) = 1
2𝜋 ∫ 𝛿2𝜌 (𝜉x, 𝜉y) exp (−jkx𝜉x − jky𝜉y)d𝜉xd𝜉y

(10)

where 𝛿 is the root mean square height of the surface, 𝜉x represents
the displacement in the x-direction, and 𝜉y represents the displace-
ment in the y-direction, 𝜌(𝜉x, 𝜉y) is the autocorrelation function of
surface.

Equation (10) shows that the wave spectrum W(kx, ky) is the
Fourier transform of the autocorrelation function 𝜌(𝜉x, 𝜉y). The
autocorrelation function is the second-order statistic that char-
acterizes the statistical distribution of sea surface height. The
third-order moments of the sea surface height are related to the
bicorrelation function of the sea surface.The bispectrum is defined
as the Fourier transform of the bicorrelation function.

⟨h (x, y) h (x + 𝜉x, y + 𝜉y) h(x + 𝜁x, y + 𝜁y)⟩ = 𝛿3S (𝜉x, 𝜉y; 𝜁x, 𝜁y)
(11)

where 𝜉x, 𝜁x denotes the displacement in the x-direction and 𝜉y, 𝜁y
denotes the displacement in the y-direction, and S (𝜉x, 𝜉y; 𝜁x, 𝜁y) is
the bicorrelation function, which can characterize both the linear
and nonlinear features of the sea surface [13].

when 𝜁x = 𝜉x, 𝜁y = 𝜉y, we have

⟨h (x, y) h2 (x + 𝜉x, y + 𝜉y)⟩ = 𝛿3S (𝜉x, 𝜉y) (12)
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Figure 1. Two-dimensional sea surface of (a) linear (b) nonlinear.

Figure 2. One-dimensional sea surface: (a) Height distribution; (b) Slope distribution.

and when 𝜁x = 0, 𝜁y = 0, we have

⟨h2 (x, y) h (x + 𝜉x, y + 𝜉y)⟩ = ⟨h2 (x′ − 𝜉x, y′ − 𝜉y) h (x′, y′)⟩
= 𝛿3S (−𝜉x, −𝜉y) (13)

The variables have reduced from four to two. The bicorrelation
function S (𝜉x, 𝜉y) can be decomposed into a symmetric part and
an asymmetric part.

S (𝜉x, 𝜉y) = Ss (𝜉x, 𝜉y) + Sa (𝜉x, 𝜉y) (14)

Ss (𝜉x, 𝜉y) =
S (𝜉x, 𝜉y) + S (−𝜉x, −𝜉y)

2 (15)

Sa (𝜉x, 𝜉y) =
S (𝜉x, 𝜉y) − S (−𝜉x, −𝜉y)

2 (16)

According to the properties of Fourier transforms, the Fourier
transform of an even function is a real-valued even function, and
the Fourier transform of an odd function is a purely imaginary odd
function. The bispectrum B(kx, ky) can be divided into real and
imaginary parts.

B (kx, ky) = Bs (kx, ky) + jBa (kx, ky)

= 1
(2𝜋)2

∫ 𝛿3S(𝜉x, 𝜉y) exp (−jkx𝜉x − jky𝜉y) d𝜉xd𝜉y

(17)

where Bs(kx, ky) is the real part of the bispectrum, which is
the Fourier transform of Ss (𝜉x, 𝜉y), and Ba(kx, ky) is the imagi-
nary part of the bispectrum, which is the Fourier transform of
Sa (𝜉x, 𝜉y).

In the IEM model, Bs(kx, ky) does not contribute to backscat-
tering, while Ba(kx, ky) can be derived from Equation (18) [12–14].

Ba(k, 𝜙) = − 1
16ks0 (6 − k2s20 cos2𝜙) cos𝜙 exp(−ks0

4 ) (18)

where s0 is the correlation distance of the bispectrum function [16].

Establishment of nonlinear electromagnetic scattering model

In the electromagnetic scattering model of the random rough sur-
face, radar waves are incident to the sea surface and received
by the radar after undergoing scattering from the sea surface.
In this paper, the IEM-C model is developed based on the IEM
model, combining the Creamer nonlinear sea-surface and bispec-
trum, to calculate the backscattering coefficients. The backscat-
tering coefficients of the IEM-C model can be divided into the
contributions of the wave spectrum and bispectrum, as shown in
Equation (19).

𝜎0
pp = 𝜎0

pp(N) + 𝜎0
pp(S) (19)
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The 𝜎0
pp(N) represents the contribution from the wave spec-

trum, while the 𝜎0
pp(S) represents the contribution from the bis-

pectrum [13].The backscattering coefficient generated by the wave
spectrum𝜎0

pp(N) is given by Equation (20).

𝜎0
pp(N) = k2i

2 exp [−2𝛿2ki
2cos2𝜃i]

∞

∑
n=1

∣Inpp∣
2W(n) (2ki sin 𝜃i, 0)

n!
(20)

Inpp = (2ki cos 𝜃i𝛿)nfpp exp(−k2i 𝛿2cos2𝜃i) + (ki𝛿 cos 𝜃i)nFpp (21)

where ki is the wave number of incident radar, 𝜃i is the incidence
angle of radar wave, fpp is Kirchhoff field coefficient, and Fpp is
the compensation field coefficient [10].The subscript pp represents
the polarization state of radar waves.W(n)(2ki sin 𝜃i, 0) is the nth-
order wave spectrum which is the Fourier transform of the nth
autocorrelation function 𝜌(n)(x, y).

𝜎0
pp(S) consists of three components representing the contri-

bution of the bispectrum to the Kirchhoff field, the cross-field,
and in the compensating field, as shown in Equation (22). The
detailed derivation process can be found in paper [12], specifically
equations (31)–(53).

𝜎0
pp(S) = k2i

2 ∣ fpp∣
2 exp (−4k2i 𝛿2 cos2 𝜃i)

∞

∑
n=1

(−8k3i cos3 𝜃i)
n

n! B(n)
a (2ki sin 𝜃i, 0)

+ k2i
2 Re (fpp

*Fpp) exp (−3k2i 𝛿2cos2𝜃i)
∞

∑
n=1

(−3k3i cos3 𝜃i)
n

n! B(n)
a (2ki sin 𝜃i, 0)

+ k2i
8 ∣Fpp∣

2 exp (−2k2i 𝛿2 cos2 𝜃i)
∞

∑
n=1

(−k3i cos3 𝜃i)
n

n! B(n)
a (2ki sin 𝜃i, 0) (22)

where B(n)
a (2ki sin 𝜃i, 0) represents the nth-order bispectrum,

which is the Fourier transform of the nth-order bicorrelation
function.

Simulation analysis

The simulated sea surface has a size of 500 m × 500 m with a
resolution of 1 m. The radar wave frequency is 5.3 GHz, and
the sea surface roughness parameter is k𝛿 = 4.75. The analysis
compares the differences in backscattering coefficients between
the IEM model and the IEM-C model in the C-band for differ-
ent polarizations, radar incidence angles, wind speeds, and wind
directions.

Different wind angles

First, the variation of the backscattering coefficient of the IEM-
C model with the wind direction is analyzed. The wind direction
angle 𝜙 is defined as the angle between the wind direction and the
radar line of sight direction. With a fixed radar wave frequency of
5.3 GHz, an incident angle of 30∘, the wind speed of 4 m/s, and the
wind direction of 0∘ (north), the relationship between the backscat-
tering coefficient of the sea surface and the wind direction angle is
illustrated in Fig. 3.

From Fig. 3, it can be observed that the backscattering coeffi-
cients of HH polarization and VV polarization exhibit cosine-like
variations with respect to 𝜙. The backscattering coefficients of the
IEM model are the same in upwind (𝜙 = 0∘) and downwind (𝜙 =
180∘) conditions. The backscattering coefficients of the IEM-C
model exhibit differences in upwind (𝜙 = 0∘) and downwind
(𝜙 = 180∘) conditions, with a 0.6 dB increase in upwind compared
to downwind. The IEM-C model demonstrates differences in the
backscattering coefficients between upwind and downwind condi-
tions, which are not present in the IEM model. For 0 < 𝜙 < 90∘,
the backscattering coefficient of the IEM-C model is greater than
that of the IEM model. At 𝜙 = 90∘, the backscattering coefficient
of the IEM-C model is the same as the IEM model. For 90 < 𝜙 <
270∘, the backscattering coefficient of the IEM-C model is smaller
than that of the IEMmodel.The IEM-Cmodel adds the bispectrum
of the surface on the basis of the second-order Creamer nonlinear
sea surface, considering the nonlinear skewness characteristics in
the horizontal direction caused bywind direction. In upwind cases,
the roughness increases, leading to an enhancement the backscat-
tering coefficient. In downwind cases, the roughness decreases,
reducing the backscattering coefficient. The model simulation
results show that the IEM-C model exhibits wind-dependent

Figure 3. Backscattering coefficients for different wind directions: (a) HH polarization; (b) VV polarization.
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Figure 4. Backscattering coefficients at different incidence angles (a) HH – upwind; (b) VV – upwind; (c) HH – downwind; (d) VV – downwind.

characteristics that are closer to the real sea surface scattering
conditions.

Based on Fig. 3(a), it is evident that the disparity between the
backscattering coefficients of the IEM-Cmodel and the IEMmodel
decreases as 𝜙 increases from 0∘ to 90∘. Conversely, the dispar-
ity between the backscattering coefficients of the IEM-C model
and the IEM model gradually increases as 𝜙 increases from 90∘

to 180∘.
The closer the wind direction, the stronger the nonlinear scat-

tering due to the wind direction. The nonlinear scattering proper-
ties are most pronounced in the case of upwind and downwind,
while they have no effect in the case of crosswind. The variation
of nonlinear scattering contributions observed in VV polarization
shows the same trend as in HH polarization. Comparing Fig. 3(a),
(b), the backscattering coefficient of HH polarization (0.31 dB)
is larger than that of VV polarization (0.15 dB) for the same
wind angle. In the IEM-C model, the difference of backscatter-
ing coefficients due to wind direction is more pronounced in HH
polarization.

Different radar wave incidence angles

Under the premise of wind speed at 5 m/s and radar frequency
at 5.3 GHz, the backscattering coefficient of the IEM-C model
and the IEM model was calculated for upwind and downwind

conditions with different incidence angles. The results are shown
in Fig. 4.

Figure 4 illustrates a gradual decrease in the backscattering
coefficients of both the IEM model and the IEM-C model as the
incident angle increases. At small incidence angles, the dominant
mechanism responsible for the backscattering is specular reflec-
tion, contributing to a higher backscatter coefficient. As the inci-
dence angle increases, the contribution of specular reflection
decreases, and Bragg scattering becomes dominant. As the angle
of incidence increases further, the Bragg scattering decreases.

Based on the data presented in Fig. 4(a), (b), it can be observed
that the backscattering coefficient of the IEM-C model is higher
than that of the IEM model under upwind conditions. Similarly,
from the observations in Fig. 4(c), (d), it is evident that the
backscattering coefficient of the IEM-C model is lower compared
to the IEM model under downwind conditions. As the inci-
dent angle increases, the difference of backscattering coefficients
between the IEM-C model and the IEM model initially increases
and then decreases, with the most significant difference (2.3 dB)
observed at an incident angle of 30∘.

Different wind speeds

Figure 5 illustrates the relationship between the wind speed
and backscattering coefficient (upwind and downwind) for
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Figure 5. Backscattering coefficients at different wind speeds (a) HH – upwind; (b) VV – upwind; (c) HH – downwind; (d) VV – downwind.

the radar wave frequency of 5.3 GHz and incident angle
of 30∘.

A comprehensive analysis of Fig. 5 reveals that, irrespective of
the polarization mode or the specific model employed, there is a
discernible upward trend in the backscattering coefficient of the
sea surface with increasing wind speed. This observed behavior
can be attributed to the heightened instability of the sea surface as
wind speed escalates.This leads to the increase in the roughness of
the sea surface and the consequent increase in the backscattering
coefficient.

By analyzing the backscattering results of the IEM and IEM-
C models under the same polarization and wind direction con-
ditions depicted in Fig. 5, it becomes evident that the IEM
model exhibits a linear increase in the backscattering coefficient
with increasing wind speed. Conversely, the backscattering coef-
ficient of the IEM-C model demonstrates a nonlinear variation
with wind speed. As the wind speed intensifies, the disparity
between the IEM-C and IEM models initially enlarges and then
diminishes, reaching its most pronounced level at a wind speed
of 5 m/s.

Observing the backscattering coefficients for different polar-
izations and wind directions in Fig. 5(a), (c) and Fig. 5(b), (d),
significant differences are observed.The backscattering coefficients
of the IEM-C model for the downwind case are smaller than those
of the IEM model for the same wind speeds. The scattering coeffi-
cients of the IEMmodel are smaller than those of the IEM-Cmodel
for the upwind case. Under the same wind speed conditions, the

difference in backscattering coefficients between the IEM-Cmodel
and the IEM model is larger in the HH polarization compared to
the VV polarization.

Model verification

To validate the IEM-C model proposed in this paper, a compar-
ison was conducted between its simulation results and the mea-
sured data. The measured data were obtained from airborne radar
measurements conducted by the United States Naval Research
Laboratory (NRL) [22]. The operating bands of the radar are the
X band (8910 MHz), C band (4455 MHz), L band (1228 MHz),
and P band (428 MHz). This paper compares C band (4455 MHz)
measurement data with simulation results.

Figure 6 illustrates the variation of backscattering coefficients
with incident angles underHH andVVpolarization.The backscat-
tering coefficient decreases as the angle of incidence increases. It
can be seen in the Fig. 6 that compared with the IEM model, the
IEM-C model has stronger backscattering coefficients, which is
closer to the airborne radar measured data. That is because the
IEM-C model considers the wave–wave interaction and modifies
the slope distribution, generating more large local steep surfaces
that enhance the backscattering. Compared to the IEMmodel, the
mean absolute deviation of the backscattering coefficient of IEM-C
model decreases from 2.77 to 1.17 dB and the standard deviation
from 1.06 to 0.75 dB for HH polarization.
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Figure 6. Backscattering coefficients of simulation and measurement for (a) HH polarization; (b) VV polarization.

Conclusion

Based on the IEM model, this study establishes the IEM-C model
that considered the vertical and horizontal nonlinear characteris-
tics of the sea surface, and analyzed the differences in the backscat-
tering coefficients between the IEM-C model and the IEM model
under different parameters.

By comparing the backscattering coefficients of the IEM-C
model and the IEM model under different wind directions and
speeds, it was observed that, under upwind and downwind condi-
tions, the IEM-Cmodel exhibited differences in the backscattering
coefficients, while the IEM model did not show such differences.
Under crosswind conditions, the backscattering coefficients of the
IEM model were identical to those of the IEM-C model. Under
downwind conditions, the backscattering coefficients of the IEM-
C model were higher than those of the IEM model, while under
upwind conditions, the backscattering coefficients of the IEM-C
model were lower than those of the IEM model. Both the IEM-C
model and the IEMmodel demonstrated a decreasing trend of the
backscattering coefficients of the sea surface as the incident angle
of the radar wave increased.

The nonlinear difference between the IEM-C model and the
IEM model shows a tendency of increasing and then decreasing
with increasing incidence angle. The nonlinear scattering feature
of the IEM-C model is most significant at an incidence angle of
30∘. The backscattering coefficients of the IEM-C model and the
IEMmodel show some differences with the change of wind speed.
The effect of the nonlinear scattering feature is most significant at
a wind speed of 5 m/s.

Through comparison with measured data, the reliability of the
IEM-Cmodel is validated, demonstrating its closer approximation
to the actual sea surface scattering characteristics. This highlights
the importance of incorporating nonlinear features in the study of
electromagnetic scattering from the sea surface.

In conclusion, the IEM-C model accounts for both vertical
and horizontal nonlinear scattering characteristics of the surface,
explaining the differences in surface backscattering coefficient
under upwind and downwind conditions. Compared to the IEM
model, the IEM-C model is more representative of actual sea
surface conditions. The study of sea surface electromagnetic scat-
tering contributes to a better understanding of the sea surface
electromagnetic scattering mechanism and provides theoretical
guidance for SAR imaging and ocean parameter retrieval.
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