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components whose general point corresponds to a smooth, irreducible, and
non-degenerate curve of degree d and genus g in Pr. In this article, we study H15,g,5
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element as well as characterizing smooth elements of each component.
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1. Introduction

In this article, we study the Hilbert scheme of smooth and non-degenerate curves
X ⊂ P5 of degree 15.

Let Hd,g,r denote the Hilbert scheme of smooth curves of degree d and genus g
in Pr. We determine the number of irreducible components, their dimensions and
study the properties of H15,g,5 such as the gonality of a general element in each
component H ⊂ H15,g,5. We also study the natural functorial map µ : H → Mg.

Severi [33] asserted that the Hilbert schemeHd,g,r is irreducible for triples (d, g, r)
in the range

(i) d ≥ g + r
or in the much wider Brill–Noether range
(ii) ρ(d, g, r) := g − (r + 1)(g − d+ r) ≥ 0.
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2 E. Ballico and C. Keem

In general, determining the irreducibility of a Hilbert scheme is a non-trivial task.
The assertion of Severi turns out to be true for r = 3, 4 under the condition (i); cf.
[16, 17]. However, our overall knowledge on Hd,g,5 is not as extensive as those on
Hd,g,3 or Hd,g,4.

In this article, we would like to concentrate on Hd,g,5 when the degree d of the
curve in P5 is relatively low. Specifically, we focus our attention on curves in P5

of degree d =15 and determine when H15,g,5 is irreducible for every possible genus
g ≤ π(15, 5) = 18. Our results include:

1.1. Main results

(i) H15,g,5 is irreducible unless g = 13, 14, 16; propositions 3.2, 3.4, 3.5, 3.6, 6.2
and theorems 4.1, 5.1, and [7, theorem 1.1].

(ii) H15,g,5 = ∅ for g =17; proposition 6.1.
(iii) An estimate of the dimension of the image of the forgetful map H → Mg

and the gonality of curves in each component H ⊂ H15,g,5.
(iv) A general X ∈ H15,15,5 has exactly one g28 , one base-point-free g

1
5 , and three

base-point-free g16 ’s; theorem 4.5.

The reducibility of H15,14,5 is a result of another article [7], which we listed in
§1.1 for a more comprehensive list of results concerning H15,g,5. Our main reason
for aiming at an extensive study of curves of degree d =15 in P5 can be addressed
as follows. The case g =14, which we studied in [7], was hard enough requiring
several new techniques. If we shift our attention to curves of higher genus, e.g.
15 ≤ g ≤ 18 = π(15, 5), there appear more interesting cases and components
containing fruitful information on the geometry of projective algebraic curves.

Besides using classical methods in analysing curves on smooth and singular
rational surfaces, we use the irreducibility of Severi varieties of nodal curves on
Hirzebruch surfaces [34] in a key step in theorem 4.1. We also use and prove seem-
ingly well-known facts stating that curves on singular surfaces of low degrees such
as singular del Pezzo or cone over an elliptic curve are flat limits of curves on
smooth surfaces when we need to rule out the possibility for a family of curves on
such singular surfaces constituting a full component; proposition 2.1 and lemma
5.12. We also use the notion of residual schemes in one of our main results; cf.
remark 4.3 and theorem 4.5.

Unless the genus g of a smooth curve X ⊂ Pr is fairly high with respect to
degX, a curve in a component of Hd,g,r with the very ample |OX(1)| is by no
means contained in a surface of low degrees. However, the residual series |KX(−1)|
may induce possibly singular curves of lower degrees which may sit on surfaces of
small degrees with better classifications in lower dimensional projective spaces. If
this occurs, studying (extrinsic) projective curves defined by the residual series may
become easier than directly handling the original curve X ⊂ Pr. We use this simple
idea several times throughout the article.

The organization of this article is as follows. In the next section, we prepare some
preliminaries. In §3, we treat curves of genus g ≤ 13. In §4 and §5, we study curves
of genus 15 and 16 and in the final section we finish off by considering curves of
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On the Hilbert scheme of smooth curves in P5 3

genus 17 and 18 and making a small observation regarding larger-than-expected
components of Hilbert schemes.

1.2. Notation and conventions

For notation and conventions, we follow those in [4] and [3]; e.g. π(d, r) is the
maximal possible arithmetic genus of an irreducible, non-degenerate, and reduced
curve of degree d in Pr which is usually referred to the first Castelnuovo genus
bound. We shall refer to irreducible curves X ⊂ Pr with the maximal possible
genus g = π(d, r) as extremal curves. π1(d, r) is the so-called second Castelnuovo
genus bound which is the maximal possible arithmetic genus of an irreducible, non-
degenerate, and reduced curve of degree d in Pr not lying on a surface of minimal
degree r − 1; cf. [19, p. 99], [4, p. 123].

Following classical terminology, a linear series of degree d and dimension r on
a smooth curve X is denoted by grd. A base-point-free linear series grd (r ≥ 2) on
X is called birationally very ample when the morphism X → Pr induced by the grd
is generically one-to-one onto (or is birational to) its image curve. A base-point-
free linear series grd on X is said to be compounded of an involution (compounded
for short) if the morphism induced by the linear series gives rise to a non-trivial
covering map X → C ′ of degree k ≥ 2.

We also recall the following standard set up and notation; cf. [3, Ch. 21, § 3, 5, 6,
11, 12] or [2, § 1 and § 2]. Let Mg be the moduli space of smooth curves of genus g.
Given an isomorphism class [C] ∈ Mg corresponding to a smooth irreducible curve
C, there exist a neighbourhood U ⊂ Mg of [C] and a smooth connected variety M
which is a finite ramified covering h : M → U , as well as varieties C and Grd proper
over M with the following properties:

(1) ξ : C → M is a universal curve, i.e. for every p ∈ M, ξ−1(p) is a smooth
curve of genus g whose isomorphism class is h(p).

(2) Grd parametrizes the pairs (p,D), where D is possibly an incomplete linear
series of degree d and dimension r on ξ−1(p).

(3) For any component G ⊂ Grd ,

dimG ≥ λ(d, g, r) := 3g − 3 + ρ(d, g, r)

and for any component H ⊂ Hd,g,r,

dimH ≥ X (d, g, r) := λ(d, g, r) + dimAut(Pr).

Throughout, we work over an algebraically closed field K of characteristic zero.

2. Preliminaries and several related results

2.1. Curves on rational surfaces and curves on a cone

We collect results on curves contained in low degree surfaces. We need the following
proposition in the final part of the proof of theorem 4.1.
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Proposition 2.1. Let S ⊂ Pr, 3 ≤ r ≤ 9, be a normal rational del Pezzo surface
of degree r. Fix an integral curve C ⊂ S. Then C is a flat limit of a family of
curves, contained in smooth del Pezzo surfaces of degree r.

Proof. For 7 ≤ r ≤ 9, the proposition is trivial because S is smooth. The case r =3
is the main result of [9]. Assume r > 3. Fix a general A ⊂ S such that #A = r − 3
and let S

′
be the blowing-up of S at all points of A. Let M ⊂ Pr be the (r − 4)-

dimensional linear space spanned by A. For a general A, the surface S
′
has the same

number of singularities as S and it is isomorphic to the cubic surface S′′ ⊂ P3 which
is the closure in P3 of the image of S \A by the linear projection ` : Pr \M → P3;
[15, p. 389]. Since A is general we know C ∩ A = ∅. Since the linear projection `
restricted to C is an embedding, C ∼= `(C) and deg(`(C)) = deg(C). By [9], there
is a smoothing family of S ′′ on which the curve `(C) is a flat limit of a family of
curves on nearby smooth cubic surface St; t ∈ T \{0}, T an integral quasi-projective
curve, 0 ∈ T , S0 = S′′, and St smooth for all t ∈ T \ {0}. Obviously, `(C) ∩ `i = ∅
for all r − 3 exceptional divisors `i of S

′′ associated with the exceptional divisors
of the blowing up of the r − 3 points of A. By [9, proposition 4.7], we may assume
that the curve `(C) is a limit of curves Ct ⊂ St, t ∈ T \ {0}, which have empty
intersection with the r − 3 exceptional divisors `i(t) of St, t ∈ T \{0} specializing to
the r − 3 exceptional divisors `i of S

′′. For t ∈ T \ {0}, let S̃t the surface obtained
from St by blowing down the r − 3 divisors `i(t). Each surface S̃t is a smooth del
Pezzo surface in Pr. Since Ct ∩ `i(t) = ∅, each curve Ct is isomorphic to a curve
C̃t ⊂ S̃t. The flat family over T gives rise to a flat family of smooth del Pezzo
surfaces S̃t, t ∈ T \ {0} with S as its flat limit together with a flat family curves
C̃t, t ∈ T \ {0} with C as its flat limit. �

When we deal with curves on a cone in Pr (usually r = 4, 5) over a rational
normal curve, we use the following elementary facts in several places of this article;
in the proofs of proposition 3.2, theorems 4.1, 5.1, and Proposition 6.2. We include
these facts mainly for fixing notation.

Remark 2.2.

(a) Let S ⊂ Pr (r ≥ 3) be a cone over a rational normal curve R ⊂ H ∼= Pr−1

with vertex outside H. Recall that S is the image of the birational morphism
Fr−1 = P(OP1 ⊕ OP1(r − 1)) → S ⊂ Pr induced by |h + (r − 1)f |, where
h2 = −(r− 1) and f is a fibre of Fr−1 → P1. Let C ⊂ S be an integral curve

of degree d, with the strict transformation C̃ of C under Fr−1 → S. Setting

k = C̃ · f , we have C̃ ≡ kh+ df and

0 ≤ C̃ · h = (kh+ df) · h = d− (r − 1)k = m (1)

where m is the multiplicity of C at the vertex of S.
(b) In the case (a), there is no smooth C ⊂ S ⊂ P5 with degC = 15 by (1);

i.e. there is no integer k such that d = 15 = m + 4k with m ∈ {0, 1}. If
S ⊂ P5 is a Veronese surface, there is no irreducible C ⊂ S with odd degC.

(c) Therefore, we may assume that a quartic surface S ⊂ P5 containing a smooth
curve of degree d =15 is a rational normal scroll.
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(d) Let S ⊂ Pr be a rational normal surface scroll. For X ∈ |aH + bL|—where
H (resp. L) is the class of a hyperplane section (resp. the class a line of the
ruling)—we have

degX = (r − 1)a+ b, pa(X) =
(
a−1
2

)
(r − 1) + (r − 2 + b)(a− 1) (2)

dim |aH + bL| = a (a+ 1) (r − 1)

2
+ (a+ 1) (b+ 1)− 1 (3)

dimS(r) = (r + 3)(r − 1)− 3 (4)

where S(r) is the irreducible family of rational normal surface scrolls in Pr;
[19, p. 91].

2.2. Some remarks on moduli maps

Let µ : H15,g,5 → Mg denote the natural functorial map—which we call the mod-
uli map—sending X ∈ H15,g,5 to its isomorphism class µ(X) ∈ Mg. In the last
two sections, we study H15,g,5 in some detail. For example, we use the follow-
ing for the dimension estimate of the image of the moduli map H15,18,5 → M18;
proposition 6.5.

Proposition 2.3. Let Q ⊂ P3 be a smooth quadric surface. Fix integers 3 ≤ a <
b ≤ 2a − 1 and a smooth X ∈ |OQ(a, b)|. Then X is a-gonal with a unique g1a, no
base-point-free g1c for a < c < b and a unique base-point-free g1b , the pencil induced
by |OQ(1, 0)|.

Proof. By [28, corollary 1], X is a-gonal with a unique pencil g1a induced by the
pencil |OQ(0, 1)|. By [32, theorem 2.1], there is no base-point-free g1c with a < c < b.
Take any g1b and take a general A ∈ g1b . Since X has no base-point-free g1b−1

(or if b = a+ 1 a unique g1a), the linear series g
1
b is complete. By adjunction, we have

h1(Q, IA(a−2, b−2)) > 0. To prove the lemma, it is sufficient to find R ∈ |OQ(1, 0)|
containing A.

Set A0 := A. Take any L1 ∈ |OQ(0, 1)| such that e1 := #(L1 ∩ A0) is maximal
and set A1 := A0 \A0∩L1. Take any L2 ∈ |OQ(0, 1)| such that e2 := #(L2∩A1) is
maximal and set A2 := A1 \A1 ∩L2. We define recursively the sets A3, . . . , Ab, the
elements L3, . . . , Lb ∈ |OQ(0, 1)|, and the integers e3, . . . , eb with ei := #(Ai−1∩Li)
maximal and Ai := Ai−1 \Ai−1 ∩Li. Since at each step we require the maximality
of the integer i and Ai−1 ⊇ Ai, we have ei ≥ ei+1 for all 1 ≤ i ≤ b− 1. Note that
if ei = 0, then Ai−1 = ∅ and Aj = ∅ for all j > i− 1 with j ≤ b. Thus Ab = ∅.

Let c be the first integer such that #Ac ≤ 2. We saw that c ≤ b−2 and c = b−2
if and only if e1 = 1. Set T := L1 ∪ · · · ∪ Lc ∈ |OQ(0, c)|. Consider the exact
sequence

0 → IAc(a− 2, b− 2− c) → IA(a− 2, b− 2) → IT∩A,T (a− 2, b− 2) → 0. (5)

First assume e1 ≥ 2 and hence c ≤ b − 3. Since OQ(a − 2, b − 2 − c)
is very ample and #Ac ≤ 2, we have h1(Q, IAc(a − 2, b − 2 − c)) = 0.
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Thus, the long cohomology exact sequence of (5) gives h1(T, IA∩T (a − 2, b −
2)) > 0. The set T has c connected components, L1, . . . , Lc, with Li ∼= P1.

Since h1(T, IA∩T,T (a− 2, b− 2)) =
c∑
i=1

h1(Li, IA∩T,T (a− 2, b− 2)|Li) > 0, we get

h1(Li, IA∩T,T (a−2, b−2)|Li) > 0 and ei ≥ a for some i ; by degOLi
(a−2, b−2) =

a− 2 for all i, we have h1(Li, IA∩T,T (a− 2, b− 2)|Li) = 0 if ei ≤ a− 1 for all i. But

then A contains a subset A
′
such that #A′ = a, A′ ⊂ Li and |A′| is the g1a on X.

Since the g1b is base-point-free and complete, we get a contradiction.
Now assume e1 = 1. Thus c = b − 2 and #(A ∩ L) ≤ 1 for all L ∈ |OQ(0, 1)|.

Thus h1(T, IT∩A,T (a − 2, b − 2)) = 0. Hence the long cohomology exact sequence
of (5) gives h1(Q, IAc(a − 2, 0)) > 0, i.e. two points in Ac = {p, s} fail to impose
independent conditions on |OQ(a − 2, 0)|. Therefore, there is R ∈ |OQ(1, 0)| such
that Ac ⊂ R. Fix any q ∈ A \ Ac. Since #(A ∩ L) ≤ 1 for all L ∈ |OQ(0, 1)|,
there are D1, . . . , Db−2 ∈ |OQ(0, 1)| such that T ′ := D1 ∪ · · · ∪ Db−2 contains

A \ {p, q}. Using T
′
instead of T, we get the existence of R′ ∈ |OQ(1, 0)| such that

{p, q} ⊂ R′. Since R is the unique element of |OQ(1, 0)| containing p, R′ = R. Thus
A ⊂ R. �

The following is a consequence of proposition 2.3 which we use in §6.1; proposition
6.5.

Corollary 2.4 Fix integers 2a− 1 ≥ b > a ≥ 3 and smooth X, X̃ ∈ |OQ(a, b)|. If
X̃ ∼= X as abstract curves, then there is v ∈ Aut(P1)×Aut(P1) such that v(X) = X̃.

Proof. Take any isomorphism X̃
u∼= X. The line bundles R1 := u∗(OX(0, 1)) and

R2 := u∗(OX(1, 0)) are the unique base-point-free line bundles on X̃ of degrees
a and b, respectively by proposition 2.3, and hence R1 = OX̃(0, 1) and R2 =
OX̃(1, 0). Thus, u induces isomorphisms |OX(1, 0)| = P1 → P1 = |OX̃(1, 0)| and
|OX(0, 1)| → |OX̃(0, 1)| and the corresponding pair in Aut(P1) × Aut(P1) induces
v. �

We use the following remark, similar to corollary 2.4, for the study of the moduli
map µ : H15,16,5 → M16 in §5.2; propositions 5.17 and 5.18.

Remark 2.5. Let S and S̃ be rational normal surface scrolls in P5. If S
u∼= S̃ as

abstract varieties, then they are projectively equivalent. To see this, assume S ∼=
S̃ ∼= F2. Note that the only very ample line bundle on F2 inducing an embedding
onto a surface of minimal degree S ∼= S̃ ⊂ P5 is OF2(h+ 3f). Hence there is

v ∈ Aut(PH0(F2,OF2(h+ 3f))) = Aut(P5) such that v(S) = S̃ and v|S = u. Let

S ∼= S̃ ∼= F0
∼= P1 × P1. Assume that u ∈ Aut(P1)×Aut(P1). The only very ample

line bundle on F0 inducing an embedding onto a minimal degree surface in P5 is
OP1×P1(1, 2), hence the conclusion follows.

3. Curves of genus g ≤ 13 and degree d = 15 in P5

We denote by HL
d,g,r the subscheme of Hd,g,r consisting of components of Hd,g,r

whose general element is linearly normal. We set α := g − d + r = g − 10 for
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(d, r) = (15, 5). For a general element X in a component of HL
15,g,5, α is the index

of speciality of |OX(1)|, the complete hyperplane series D of X ⊂ P5. For a pos-
sible component H ⊂ H15,g,5 which may not be a component of HL

15,g,5, we set
β := g − 15 + dim |D| > g − 10 = α, where D is the (incomplete) hyperplane series
of a general X ∈ H.

In this section, we study H15,g,5 for genus g ≤ 13, which is relatively simple to
handle. We recall the following concerning an upper bound of the dimension of a
birationally very ample linear series on curves, which enables us to simplify some
of our computation.

Remark 3.1. By [19, p. 75], the largest possible dimension of a birationally very
ample linear series of degree d ≥ g on a curve of genus g is 2d−g+1

3 .

Proposition 3.2. H15,13,5 is reducible with two components H1 and H2.

(i) H1 = HL
15,13,5 and dimHL

15,13,5 = X (d, g, r) = 66 with a 7-gonal general
element.

(ii) dimH2 = 68 > X (d, g, r), a general X ∈ H2 is trigonal consisting of the
image of external projection of extremal curves of degree 15 in P6.

Proof. We denote by Σd,g the irreducible Severi variety of plane curves of degree d
and genus g ; cf. [20]. By [26, theorem 3.7] and [6, theorem 2.5], HL

15,13,5 6= ∅ and

is irreducible of dimension X (15, 13, 5). For a general X ∈ HL
15,13,5, |KX(−1)| =

g29 is birationally very ample, base-point-free and hence X has a plane model of
degree 9 which follows from the proof of [6, theorem 2.5]. Therefore, X ∈ HL

15,13,5

corresponds to an element of Σ9,13.
Conversely, the residual series of the series cut out by lines in P2 on (the non-

singular model of) a general member in Σ9,13 is a very ample g515 by a result of
d’Almeida and Hirschowitz [13, theorem 0]; cf. [26, pp. 13–15] for details in a similar
situation. Therefore, we have a generically one-to-one correspondence

HL
15,13,5/Aut(P5)

bir∼= Σ9,13/Aut(P2)

via residualization. Recall that a general member in Σ9,13 is a plane curve of degree
9 with δ=15 nodes as its only singularities. By a theorem of Coppens [12, theorem],
X is 7-gonal with gonality pencils cut out by lines through a node on the plane
model of degree 9.

Suppose there is a component H other than HL
15,14,5. A general X ∈ H is not

linearly normal, β=4 by remark 3.1 and we have |D| = g615 where D is the incom-

plete hyperplane series of X ⊂ P5. Since π(15, 6) = 13 = g, the curve X̃ ⊂ P6

induced by the complete |D| = g615 is an extremal curve lying on a quintic surface

S ⊂ P6. If S is a smooth rational normal scroll, by solving (2), we get X̃ ∈ |3H|,
|KS+ X̃−H| = |3L| and X ∼= X̃ is trigonal with the trigonal pencil cut out by the
ruling |L|. If S is a cone over a rational normal curve in P5, by (1) in remark 2.2
(a), we again may conclude that X is trigonal. Conversely, on a trigonal curve X of
genus g =13, |KX − 3g13 | = g615 is very ample, hence the moduli map H → M1

g,3 is

dominant. The incomplete very ample linear series g515 which is a codimension one
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subspace of the complete |KX − 3g13 | over the family of trigonal curves M1
g,3 forms

an irreducible family F ⊂ G5
15 of dimension

dimM1
g,3 + dimG(5, 6) = 33 > 3g − 3 + ρ(d, g, r) = 31.

Therefore, the Aut(P5)-bundle over F may contribute to an extra component H2

other than HL
d,g,r. By lower semicontinuity of gonality, H1 is not in the boundary

of H2. Hence H1 and H2 are the only two distinct components of H15,13,5 by
exhaustion. �

The following lemma is easy to prove and useful when we deal with double cov-
erings of curves of small genus which may be induced by the compounded residual
series |KX(−1)|, X ∈ Hd,g,r; proposition 3.4 and theorem 4.1.

Lemma 3.3. Let X
η→ E be a double covering of a curve E of genus h ≥ 1. Let

E = gse be a non-special linear series on E. Assume that |η∗(gse)| = gs2e. Then the
base-point-free part of the complete |KX(−η∗(gse))| is compounded.

Proof. Note that for any p ∈ E, |gse + p| = gs+1
e+1 since gse is non-special and

dim |η∗(gse) + η∗(p))| = dim |η∗(gse + p)| = dim |η∗(gs+1
e+1)| ≥ dim E + 1.

Hence |KX(−η∗(gse))| is compounded. �

Proposition 3.4. H15,12,5 = HL
15,12,5 is irreducible of the expected dimension and

a general X ∈ H15,12,5 is 7-gonal.

Proof. By [6, theorem 2.3], HL
15,12,5 is irreducible. Suppose there is a component

H 6= HL
15,12,5. For a general X ∈ H with an incomplete hyperplane series D,

β = g − 15 + dim |D| ≥ 3 and hence β=3 by remark 3.1.

If E = |KX − D| = gβ−1
7 = g27 is compounded, E has non-empty base locus ∆

with deg∆ = 1. Therefore, X is bielliptic which is impossible by lemma 3.3.
If E is birationally very ample, E is base-point-free since g = 12 >

(
6−1
2

)
and

hence X has a plane model of degree 7. Consider the Severi variety Σ7,12 of plane
septics of genus g =12 whose general member is a curve with δ=3 nodes. Since

dimΣ7,12 = dim |OP2(7)| − δ = 3 · 7 + g − 1 = 32,

the family F ⊂ G2
7 consisting of base-point-free birationally very ample nets of

degree 7 on moving curves has dimension

dimF = dimΣ7,12 − dimAut(P2) = 24.

Hence the residual family F∨ := {|KX−E|; E ∈ F} ⊂ G6
15 has dimension 24 and the

family F̃ consisting of incomplete very ample g515’s arising this way has dimension

dimF∨ + dimG(5, 6) = 30 < 3g − 3 + ρ(15, 12, 5) = 33.

Thus F̃ does not constitute a full component.
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Note that α=2, ρ(d, g, 5) = g − 6α = 0 and hence there is a unique component
of Hd,g,r dominating Mg [19, theorem, pp. 69–70], which is HL

d,g,r. A general curve
of genus g =12 is 7-gonal by the Brill–Noether theorem. �

Proposition 3.5. H15,11,5 = HL
15,11,5 is irreducible of the expected dimension and

a general X is 7-gonal.

Proof. We have α=1. By [6, theorem 2.2], HL
15,11,5 is irreducible of the expected

dimension. Suppose there is a component H other than HL
15,11,5. A general X ∈

H is not linearly normal, β ≥ 2 and hence β=2 by remark 3.1. Thus, we have
|KX−D| = g15 and |D| = g615. A general element of H is induced by 6 = dimG(5, 6)
dimensional subseries of a complete g615 = |KX − g15 |. Such family of incomplete
g515’s forms an irreducible family of dimension at most

dimM1
g,5 + dimG(5, 6) = 33 < 3g − 3 + ρ(15, 11, 5) = 35,

hence such family does not contribute to a full component of H15,11,5.
Since ρ(d, g, 5) > 0, the unique component HL

d,g,r of Hd,g,r dominates Mg whose

general curve member is 7 = [ g+3
2 ]-gonal. �

Proposition 3.6. For g ≤ 10, H15,g,5 is irreducible of the expected dimension and
a general element X is [ g+3

2 ]-gonal.

Proof. This follows from [19, p. 75] for g ≤ 9 and [25, theorem] for g =10. �

4. Curves of genus g = 15

This section is devoted to the family of curves of genus g =15. The following
subsection contains the main result of this section.

4.1. Irreducibility of H15,15,5

Theorem 4.1 HL
15,15,5 = H15,15,5 is irreducible whose general element is a 5-gonal

curve lying on a smooth del Pezzo surface in P5 and dimH15,15,5 = 64.

Proof. Note that a general element in any component of H15,15,5 is linearly normal
since π(15, 6) = 13 < g = 15 and hence H15,15,5 = HL

15,15,5.
Since π1(15, 5) = 16 > g, X is not extremal or nearly extremal—a curve with

pa(X) > π1(d, r)—and hence X ⊂ P5 may not sit on a surface of small degree.
Instead, we look at the residual series |KX(−1)| and study the curve induced by it.
This technique—if one may call this ‘a technique’—is not new and has been used
before, e.g. in [26] or possibly in works by other authors.

For a general X ∈ H15,15,5, set E := g413 = |KX(−1)| and let CE ⊂ P4 be the dual
curve of X, which is by definition the image curve induced by the base-point-free
part of E . We first claim that E is birationally very ample, possibly with non-empty
base locus.

Claim 1: |KX(−1)| is birationally very ample.
Suppose |KX(−1)| is compounded. Since deg |KX(−1)| = 13 is prime, |KX(−1)|

has non-empty base locus ∆ and we have the following four possibilities:
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10 E. Ballico and C. Keem

(i) |KX(−1)| = g412 +∆, deg∆ = 1,
(ii) |KX(−1)| = g410 +∆, deg∆ = 3,
(iii) |KX(−1)| = g49 +∆, deg∆ = 4; this can be excluded since the dual curve

CE ⊂ P4 induced by the compounded g49 is non-degenerate.
(iv) |KX(−1)| = g48 + ∆, deg∆ = 5; in this case, X is hyperelliptic and does

not carry a very ample special linear series.

(i) Suppose |KX(−1)| = g412 +∆, deg∆ = 1, then one of the following holds;

(ia) X is trigonal with |KX(−1)(−∆)| = g412 = 4g13 or

(ib) ∃ X
ϕ→ CE ⊂ P4, degϕ = 2, genus(CE) = 2, g412 = ϕ∗(g46).

(ia) Set ∆ = p and let p+ q + r ∈ g13 . We have

|KX − (4g13 + p)| = |KX − 5g13 + q + r|

and hence

|OX(1)− q − r| = |KX −KX(−1)− q − r|
= |KX − (4g13 + p)− q − r| = |KX − 5g13 | = gs13, s ≥ 4

from which it follows that |OX(1)| is not very ample.
(ib) Since degϕ = 2, degϕ(X) = degCE = 6 and g(CE) ≤ π(6, 4) ≤ 2 by

Castelnuovo genus bound. Since |KX(−1)(−∆)| is complete, g46 on the normaliza-
tion of CE such that g412 = |KX(−1)(−∆)| = ϕ∗(g46) is also complete. Hence CE has
geometric genus g(CE) = 2, smooth and |OCE (1)| = g46 is non-special. However, we
may exclude this case by lemma 3.3.

(ii) Suppose |KX(−1)| = g410 + ∆, deg∆ = 3. Since CE ⊂ P4 is non-degenerate
and X is non-hyperelliptic, we have g410 = ϕ∗(g45) where ϕ : X → CE is a double
cover of an elliptic curve CE with complete, non-special g45 . Again by lemma 3.3,
we may exclude this case, finishing the proof of Claim 1.

Claim 2: No smooth X ∈ H15,15,5 is trigonal: Suppose there is a trigonal X ∈
H15,15,5. Recall that on a trigonal curve X of genus g ≥ 5 with a grd, d ≤ g − 1,
either grd is compounded with the unique g13 or |KX−grd| is compounded with g13 by
Maroni theory; cf. [29, proposition 1]. Since E is birationally very ample by Claim
1, |KX − E| = |OX(1)| is compounded with g13 , a contradiction. This finishes the
proof of Claim 2.

Claim 3: |KX(−1)| is base-point-free.
For the birationally very ample E = |KX(−1)|, suppose ∆ = Bs(E) 6= ∅ and set

E = Ẽ +∆. Note that deg∆ = 1 otherwise π(e, 4) ≤ 12 < g if e ≤ 11. Put ∆ = p

and let CẼ ⊂ P4 be the image of the morphism induced by the moving part Ẽ .
Since degCẼ = 12 and π(12, 4) = 15 = g, CẼ is an (smooth) extremal curve lying
on a cubic surface S ⊂ P4.
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On the Hilbert scheme of smooth curves in P5 11

(i) Suppose S is a smooth cubic scroll in P4 and let CẼ ∈ |aH + bL|. We solve
the degree and genus formula (2) for r =4 to get a = 4, b = 0. Since X ∼= CẼ and

|KX(−1)| = E = Ẽ +∆, we have

|KS + CẼ −H||X = |H + L||X = |KX − Ẽ|,

which is birationally very ample. From the standard exact sequence

0 → ICẼ
(H + L) → O(H + L) → O(H + L)⊗OCẼ

→ 0

the restriction map H0(S,O(H + L))
ρ−→ H0(CẼ ,O(H + L) ⊗ OCẼ

) is injective

since H0(S, ICẼ
(H + L)) = H0(S,O(−3H + L)) = 0. ρ is surjective as well by

Castelnuovo genus bound; if ρ is not surjective then

C7 ∼= H0(S,O(H + L)) ( H0(CẼ ,O(H + L)⊗OCẼ
),

which would imply that the birationally very ample |O(H+L)⊗OCẼ
| = |KX−Ẽ| on

CẼ
∼= X induces a morphism X → Ps, s ≥ 7, a contradiction by π(16, 7) = 12 < g.
By the surjectivity of the restriction map ρ and by the very ampleness of |H+L|

on the cubic scroll S, |KX − Ẽ| is very ample. Note that |OX(1)| = |KX − E| =
|KX−Ẽ −∆| gives rise to the morphism which is the composition of the embedding

X
ϕ−→ P6 given by the very ample |KX−Ẽ| followed by the projection τ with centre

at p;

However, the four-secant line through ∆, i.e. the line though ∆ in the ruling |L|,
produces a singularity and hence |OX(1)| is not very ample if ∆ 6= ∅.

(ii) Suppose S ⊂ P4 is a cone over a twisted cubic in P3. Let C̃Ẽ ⊂ F3 be the

strict transformation of CẼ ⊂ P4 under F3
|h+3f |−→ S and set C̃Ẽ ∈ |ah+ bf |. Recall

that CẼ is smooth (extremal) and so is C̃Ẽ
∼= X. From

C̃Ẽ · (h+ 3f) = (ah+ bf) · (h+ 3f) = b = deg Ẽ = 12

C̃Ẽ · (C̃Ẽ +KF3) = (ah+ bf) · ((a− 2)h+ (b− 5)f) = 2g − 2 = 28

we get a =4 and C̃Ẽ ∈ |4h+ 12f |. Note that

|KF3 + C̃Ẽ − (h+ 3f)| = |h+ 4f |

is very ample by [22, V.Cor. 2.18, p. 380]. We consider the restriction map

H0(F3,O(h + 4f))
ρ−→ H0(C̃Ẽ ,O(h + 4f) ⊗ O

C̃Ẽ
) = H0(C̃Ẽ , |KX − Ẽ|). By the
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same routine as we did for the previous case (smooth cubic scroll case), we may
claim that the restriction map ρ is surjective.

By the surjectivity of the restriction map ρ and the very ampleness of |h + 4f |
on F3, we see that |KX − Ẽ| is very ample. |OX(1)| = |KX − Ẽ − ∆| induces the

composition of two maps X
|h+4f ||X−→ P6

πp−→ P5 and the projection map πp is not

an embedding; since f · (h + 4f) = 1, f · C̃Ẽ = 4, the image of f under |h + 4f | in
P6 is a four-secant line to the smooth image of X ∼= C̃Ẽ . Therefore, |OX(1)| is not
very ample, finishing the proof of Claim 3.

Since E = |KX(−1)| is base-point-free and birationally very ample, we have

g = π1(13, 4) = 15 ≤ pa(CE) ≤ π(13, 4) = 18.

Thus, CE ⊂ P4 lies on a surface S, 3 ≤ degS ≤ 4; cf. [19, theorem 3.15, p. 99].
(A) Suppose degS = 3 and S is smooth. Let CE ∈ |aH + bL|. Solving (2), i.e.

13 = CE · H = 3a + b, pa(CE) =
3(a−1)(a−2)

2 + (2 + b)(a − 1), the following pairs
(a, b) ∈ Z× Z are possible for 15 ≤ pa(CE) ≤ 18:

pa(CE) = 18 : (5,−2), (4, 1), cases (A1), (A2) below

pa(CE) = 17, 16 : no solution

pa(CE) = 15 : (3, 4), (6− 5), cases (A3), (A4) below.

Before proceeding, we recall some standard notation concerning linear systems
and divisors on a blown up projective plane. Let P2

s be the rational surface
P2 blown up at s general points. Let ei be the class of the exceptional divi-
sor Ei and l be the class of a line L in P2. For integers b1 ≥ b2 ≥ · · · ≥ bs,
let (a; b1, · · · , bi, · · · , bs) denote class of the linear system |aL −

∑
biEi| on P2

s.
By abuse of notation, we use the expression (a; b1, · · · , bi, · · · , bs) for the divisor
aL−

∑
biEi and |(a; b1, · · · , bi, · · · , bs)| for the linear system |aL−

∑
biEi|. We use

the convention

(a; b
s1
1 , · · · , b

sj
j , · · · , b

st
t ),

∑
sj = s

when bj appears sj times consecutively in the linear system |aL−
∑
biEi|.

For computational reasons, we sometimes identify a smooth rational normal sur-
face scroll S ⊂ P4 with the Hirzebruch surface F1 embedded by the very ample
linear system |e + 2f | on P2

1. We also make obvious identifications among divisor
classes such as

H ∼= e+ 2f, L ∼= f, l − e1 ∼= f1

where e is the class of the minimal degree self-intersection curve and f is class of
the fibre on F1 (l is the class of a line, e1 the exceptional divisor on P1

1, and f 1
is the proper transformation of the line through the blown up point). By abusing
notation, we make no distinction between f and f 1 (e and e1) and use the same
letters.
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On the Hilbert scheme of smooth curves in P5 13

(A1) CE ∈ |5H − 2L|, pa(CE) = 18: Note that

CE ∈ |5H − 2L| = |5(2l − e1)− 2(l − e1)| = |8l − 3e1| (6)

and hence CE has a plane model of degree 8. On a fixed S ∼= F1, we consider the
Severi variety Σ15,M of curves of genus g =15 in the linear system M = |5H−2L|.
It is known that Σ15,M is irreducible,

dimΣ15,M = dimM− δ, δ = pa(C)− g

and a general element of Σ15,M is a nodal curve with δ=3 nodes as its only sin-
gularities; cf. [34]. We now take a general C ∈ Σ15,M, i.e. a curve with three nodes
in |5H − 2L| on S or equivalently a curve with a plane model of degree 8 with an

ordinary triple point and three nodes. Let C̃ ⊂ P2
4 be the strict transformation of

C under the blowing up P2
4

ϕ−→ S ∼= P2
1 at three nodal singularities. By abusing

notation, we set H := ϕ∗(OS(1)). We have C̃ ∈ |(8; 3, 23)| and

|KP24
+ C̃ − (2l − e1)| = | − (3; 14) + (8; 3, 23)− (2; 1, 03)| = |(3; 14)|. (7)

On the other hand, the restriction map

H0(P2
4,O(KP24

+ C̃ −H) −→ H0(C̃,O(KP24
+ C̃ −H)⊗OC̃)

is an isomorphism; injective by H0(P2
4,O(KP24

− H)) = 0 and surjective by the

Castelnuovo genus bound π(15, 6) = 13 < g, as we did in the proof of Claim 3.
Therefore, the residual series

|KP24
+ C̃ − ϕ∗OS(1)||C̃ = |KC̃ − ϕ∗OS(1)|C̃ |

of |ϕ∗OS(1)||C̃ is completely cut out by the very ample linear system |(3; 14)| on
P2
4 which induces an embedding C̃ → P5 as a smooth curve of degree

(3; 14) · C̃ = (3; 14) · (8; 3, 23) = 24− 3− 6 = 15.

Let F ⊂ G4
13 be the family of such E = g413’s arising this way; i.e. the family of

complete linear series E = g413’s such that CE ∈ Σ15,M on a rational normal scroll
S ⊂ P4, M = |5H − 2L| and E = |ϕ∗OS(1)||C̃E

. F is irreducible since Σ15,M is

irreducible. By an easy dimension count,

dimF = dimΣ15,M − dimAut(S)

= dim |5H − 2L| − δ − dimAut(S) = dim |(8; 3)| − 3− 6 = 29

> 3g − 3 + ρ(13, 15, 4) = 3g − 3 + ρ(15, 15, 5) = 27,

hence the family F is our first candidate which may contribute to a full component

of H15,15,5. Explicitly, we have the natural map F ψ→ F∨ sending E = g413 to its
residual series |K−E| = g515 such that ψ(E) is very ample for a general E ∈ F . Thus,
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there exists an irreducible family of smooth curves of degree d =15 and g =15 in
P5 which is an Aut(P5)-bundle over the family F∨ ⊂ G5

15.
(A2) CE ∈ |4H+L|, pa(CE) = 18: We have CE ∈ |4H+L| = |4(2l−e1)+ l−e1| =

|9l − 5e1|. Set L = |4H + L| and let Σ15,L be the Severi variety Σ15,L of curves of
genus g =15 in the linear system L. A general element of Σ15,L is a nodal curve

with δ=3 nodes as its only singularities. We take a general C ∈ Σ15,L. Let C̃ ⊂ P2
4

be the strict transformation of C under the blow up of S ∼= P2
1 at three nodal

singularities. Hence C̃ ∈ |(9; 5, 23)| and

|KP24
+ C̃ − (2l − e1)| = | − (3; 14) + (9; 5, 23)− (2; 1, 03)| = |(4; 3, 13)|.

The restriction map

H0(P2
4,O(KP24

+ C̃ −H) −→ H0(C̃,O(KP24
+ C̃ −H)⊗OC̃)

is an isomorphism; injective by H0(P2
4,O(KP24

− H)) = 0 and surjective by the

Castelnuovo genus bound π(15, 6) = 13 < g by the same routine as we did in (i) in
the proof of Claim 3. Therefore the residual series of |ϕ∗OS(1)||C̃ is completely cut

out by the linear system |(4; 3, 13)| on P2
4. Note that |(4; 3, 13)| is not very ample by

[14]. Furthermore, we have (9; 5, 23) ·(2, 1, 1, 02) = 2 whereas (4; 3, 13) ·(2; 1, 1, 02) =
0 contracting the (−1) curve l − e1 − e2 to a point. Hence, the image curve under
the morphism induced by |KC̃ − E| has a singularity. Therefore, the family of
linear series arising from L = |4H + L| does not contribute to a component of
H15,15,5.

(A3) CE ∈ |3H + 4L|, pa(CE) = 15: In this case, CE is trigonal and by Claim 2,
this case does not occur.

(A4) CE ∈ |6H − 5L|, pa(CE) = 15: In this case, CE ⊂ P4 is smooth. For
CE ∈ |6H − 5L|, we have |KS +CE −H| = |3H − 4L|. We may argue as in the two
previous cases (A1) and (A2) to see that the restriction map

H0(S,O(3H − 4L)) → H0(CE ,O(3H − 4L)⊗OCE )

is an isomorphism; by H0(S,O(3H − 4L−CE)) = H0(S,O(−3H +L)) = 0 and by
Castelnuovo genus bound.

We also remark that the linear system |3H − 4L| = |2(H − L) + (H − 2L)| has
the fixed part |H − 2L|;

H0(S,O(H − 2L)) = 1 and h0(S,O(3H − 4L)) = h0(S,O(2H − 2L)) = 6.

Hence the linear series |KCE − E| cut out by the linear system |3H − 4L| has non-
empty base locus B, degB = (H − 2L) ·CE = (H − 2L) · (6H − 5L) = 1 and hence
CE · 2(H − L) = 14 6= 15. This shows that curves in |6H − 5L| does not contribute
to a component of H15,15,5.

(B) degS = 3 and S is a cone over a twisted cubic in P3; CE ⊂ S ⊂ P4.
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Let F3
|h+3f |−→ S ⊂ P4 be the minimal desingularization, which contracts h to the

vertex q ∈ S; h2 = −3, h · f = 0, f2 = 0. Let C̃E ⊂ F3 be the strict transformation

of CE ⊂ P4 and set C̃E ∈ |ah+ bf |. We have

C̃E · (h+ 3f) = (ah+ bf) · (h+ 3f) = b = 13.

By (1), m := h · C̃E = h · (ah+ 13f) = −3a+ 13 ≥ 0, thus a ≤ 4 and hence a =4

by Claim 2. Thus C̃E ∈ |4h+ 13f |, m =1, pa(C̃E) = 18 by adjunction formula, CE
passes through the vertex q of S and CE is smooth at q.

Set N = |4h+13f | and let Σ15,N be the Severi variety Σ15,N consisting of curves
of genus g =15 in the linear system N on F3. Since a general element of Σ15,N is

a nodal curve, we may assume that C̃E has three nodes. Let F3,3 be the blow up
of F3 at three nodes. Let ei (i = 1, . . . , 3) be exceptional divisors of the blow up
and let fi (i = 1, . . . , 3) be three typical fibres containing the three nodal points

of C̃E . After resolving the three nodal singularities of C̃E , we get a smooth curve

ĈE ⊂ F3,3. We have

ĈE ∈ |4h+ 13f −
∑

2ei|, and set

M : = |ĈE +KF3,3 − (h+ 3f)|

= |(4h+ 13f −
∑

2ei) + (−2h− 5f +
∑

ei)− (h+ 3f)|

= |h+ 5f −
∑

ei|.

Since OF3,3(M− ĈE) = OF3,3(−(3h+ 8f −
∑
ei)) and f · (M− C̃E) < 0, we have

h0(F3,3,O(M− ĈE)) = 0 implying that the restriction map

ρ : H0(F3,3,O(M)) −→ H0(ĈE ,O(M)⊗O
ĈE

)

is injective. Note that h0(F3,3,O(M)) = h0(F3,O(h + 5f)) − 3 = 6. Set D :=

P(H0(ĈE ,O(M) ⊗ O
ĈE

)). Since X
iso∼= ĈE

bir∼= C̃E
bir∼= CE , D = |K

ĈE
− E| is bira-

tionally very ample. If ρ is not surjective, we have dimD ≥ 6 and π(15, 6) = 13 <
g = 15, which is a contradiction. Therefore, we have

Im(ρ) = H0(ĈE ,O(M)⊗O
ĈE

)

and the restriction map ρ is surjective. Denoting by f̃i the proper transformation
of three typical fibres of fi under the blow up F3,3 → F3, we have

f̃2i = −1, f̃i · ei = 1, h · f̃i = 1, ĈE · f̃i = 2, (h+ 5f − Σei) · f̃i = 0.

Hence the morphism ψ induced by M = |ĈE + KF3,3 − (h + 3f)| contracts (−1)

curves f̃i and the image curve ψ(ĈE) ⊂ P5 acquires singularities. It then follows
that M⊗O

ĈE
= |K

ĈE
(−1)| = D is not very ample.
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(C) degS = 4 and S is smooth.
Note that S ∼= P2

5 and CE is smooth; if not, we have 15 = g = π1(13, 4) �
pa(CE) ≤ π(13, 4) = 18 and hence CE is a nearly extremal curve lying on a cubic
surface, which has been treated already in the steps (A) and (B). Setting CE ∈
|(a; b1, . . . , b5)|, we have

degCE = 3a−
∑

bi = 13, C2
E = a2 −

∑
b2i = 2g − 2−KS · C = 41.

By Schwartz’s inequality, we have

(
∑

bi)
2 ≤ 5(

∑
b2i )

and substituting
∑
bi = 3a− 13 and

∑
b2i = a2 − 41 we obtain

5 (a2 − 41)− (13− 3 a)
2 ≥ 0 ⇔ a = 9, 10, 11

and therefore we have the following three cases:

(a; b1, · · · , b5) =


(9; 34, 2)

(10; 42, 33)

(11; 45).

We need to check if |KCE −E| = |KS +CE −H||CE = |CE +2KS ||CE is very ample.

The restriction map ρ : H0(S,O(CE + 2KS) → H0(CE ,O(CE + 2KS) ⊗ OCE ) is

an isomorphism; ker(ρ) = H0(S, 2KS) = 0, h0(S,O(CE + 2KS)) = 6 and by the
Castelnuovo genus bound π(15, 6) = 13 < g if ρ is not surjective. Assume the last
case among three in the above list; CE ∈ |(11; 45)|. We have

|KS + CE −H| = |(11; 45)− 2(3; 15)| = |(5; 25)|,

whose restriction on CE does not induce an isomorphism onto its image. To see this,
the (−1) curve (2; 15) on S is contracted to a point; (2; 15) · (5; 25) = 0 whereas
(11; 45) · (2; 15) = 2 and hence the image curve in P5 is singular. The verification
for the other two cases (9; 34, 2), (10; 42, 33) are similar which we omit. Hence we
conclude that |KCE − E| is not very ample.

(D) degS = 4 and S is a cone over an elliptic curve E ⊂ P3:
Recall that a cone S ⊂ Pr over an elliptic curve E ⊂ H ∼= Pr−1 with vertex

outside H is the image of the birational morphism Er := P(OE⊕OE(r)) → S ⊂ Pr

induced by |h| := |h+ rf |, where h2 = −r and f is the fibre of Er
η→ E. Let C ⊂ S

be an integral curve of degree d with the strict transformation C̃ under Er → S.
Setting k = C̃ · f , we have C̃ ≡ kh+ df , deg η|C̃ = C̃ · f = k and

pa(C̃) = (k − 1)(d− kr

2
) + 1, 0 ≤ C̃ · h = d− rk = m (8)

where m is the multiplicity of C at the vertex.
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For C = CE , d =13, and r =4, we get (k,m, pa(C̃E)) ∈ {(3, 1, 15), (2, 5, 10)}
by (8). In the first case, since g = 15 = pa(C̃E), C̃E ∈ |3h + 13f | = |3h + f | is
smooth and is a triple covering of an elliptic curve. The second case is not possible

since pa(C̃E) < g. We now check if

|KE4 + C̃E − h||C̃E
= |(−2h+ 4f + (kh+ (d− 4k)f)− h||C̃E

= |5f ||C̃E

is very ample.
Claim: The restriction map

ρ : H0(E4, |KE4 + C̃E − h|) → H0(C̃E ,KC̃E
((−1)))

fails to be surjective: We consider the exact sequence

0 → I
C̃E

(5f) = OE4(−3h+ 4f) → OE4(5f) → O(5f)|C̃E
→ 0.

We have h0(E4,OE4(−3h + 4f)) = 0, h0(E4,OE4(5f)) = 5, h1(E4,OE4(5f)) = 0
and by Serre’s duality

h1(E4,OE4(−3h+ 4f)) = h1(OE4(h)) = 1.

Thus ρ is not surjective and h0(C̃E ,O(5f)|C̃E
) = 6.

Claim: |K
C̃E

(−1)| = |KE4 + C̃E − h||C̃E
is not very ample.

Let V := Im(ρ) ⊂ H0(C̃E ,O(5f)|C̃E
) and we assume |K

C̃E
(−1)| is very ample

inducing an isomorphism ϕ onto X 1. Since P(V ) ( |K
C̃E

(−1)| and dimV = 5, we

have the following commutative diagram:

(a) ψ is the morphism on E4 induced by the base-point-free P(V ) = |5f |, degE1 =

h · 5f = 5, degψ|C̃E
= C̃E · f = (3h+ f) · f = 3. E 1 is elliptic by Claim 2.

(b) τ is the projection map with centre of projection p1 ∈ P5 corresponding
to P(V ), i.e. the intersection of all hyperplanes corresponding to divisors in P(V ),

inducing a morphism X1

τ

→ E1, degψ = deg τ = 3, τ ◦ ϕ = ψ, and p1 /∈ X1 since
P(V ) is base-point-free.

Let T1 ⊂ P5 be a cone over E 1 with vertex p1. T 1 is the image of the morphism on
E5 := P(OE1

⊕OE1
(5)) induced by |h̃| := |h+5f | and we have X1 ⊂ T1. Let X̃1 be

the strict transformation of X 1 via E5 → T1. Setting k = X̃1 ·f , we have X̃1 ≡ kh̃+
(d− 5k)f . By (8) (for d =15, r =5), we get (k,m, pa(X̃1)) ∈ {(3, 0, 16), (2, 5, 11)}.
In the first case pa(X̃) = pa(X) = 16 > g = 15, a contradiction since X 1 and X̃1
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are smooth. The second case is not possible since pa(X̃) < g. Thus we deduce that
|K

C̃E
(−1)| is not very ample.

(E) degS = 4 and S is singular with isolated singularities; CE ⊂ S ⊂ P4. We see
that CE is smooth; otherwise, we have 15 = g = π1(13, 4) � pa(CE) ≤ π(13, 4) = 18,
hence CE is a nearly extremal curve lying on a cubic surface which has been treated
already in the steps (A) and (B). We assume that there is a smooth curve C—which
we may take as CE ⊂ P4 under our current situation—of degree d =13 and genus
g =15 on a singular del-Pezzo surface S with isolated singularities. We also assume
that the dual curve of CE is a smooth curve X ⊂ P5. By proposition 2.1, we let
{Ct} be a one parameter flat family of (smooth) curves with C0 = C = CE lying on
a singular del Pezzo S ⊂ P4 and {Ct; t 6= 0}, lying on smooth del Pezzo surfaces. If
the dual curve X = C∨

0 ⊂ P5 is smooth, dual curves {C∨
t ; t 6= 0} are also smooth

since singular curves cannot specialize to a smooth curve X = C∨
0 . However, this

is contradictory to what we have verified in (C), i.e. every smooth curve Ct ⊂ P4

with (d, g) = (13, 15) lying on a smooth del Pezzo has its dual curve in P5 which is
always singular.

Conclusion: We have exhausted all the possibilities for the surfaces S ⊂ P4

on which dual curves CE of X ∈ H15,15,5 may sit. Our lengthy discussion in parts
(A)–(E) shows that the only case such that the residual series of the hyperplane
series of CE ⊂ P4 is very ample—among all the possibilities for the surface S—is the
case (A1); CE ⊂ S ⊂ P4 lies a smooth cubic surface S, pa(CE) = 18, CE ∈ Σ15,M
where M = |5H − 2L|. Part (A1) also shows that the curve X corresponding to
a general element in the Severi variety Σ15,M lies on a smooth del Pezzo surface
in P5; cf. (7). From (6), we see that a general X ∈ H15,15,5 has a plane model of
degree 8 with an ordinary triple point and lines through the triple point cut out a
base-point-free g15 . X does not have g14 by Castelnuvo–Severi inequality. �

4.2. Moduli map µ : H15,15,5 → M15

In this subsection, we show that two smooth curves in H15,15,5 are isomorphic as
abstract curves if and only if they are projectively equivalent. In order to prove this
seemingly plausible assertion, we need several preparatory results which occupy a
major part of this subsection.

Let X ⊂ Pr, r ≥ 2, be a smooth curve of genus g ≥ 2. Since X has only finitely
many automorphisms, the set G := {h ∈ Aut(Pr)|h(X) = X} is a finite group.
Hence the set

Aut(Pr)X := {Y ⊂ Pr|Y = σ(X) for some σ ∈ Aut(Pr)}

consisting of all curves Y ⊂ Pr projectively equivalent to X is an irreducible quasi-
projective variety isomorphic to Aut(Pr)/G.

Theorem 4.2 Let µ : H15,15,5 → M15 denote the moduli map. Then we have
µ−1(µ(X)) = Aut(P5)X for a general X ∈ H15,15,5.

We review a few basic facts about residual schemes which we use in theorem 4.5,
an essential step towards the proof of theorem 4.2.
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Remark 4.3. Let S be a projective variety, D an effective Cartier divisor of S
and Z ⊂ S a zero-dimensional scheme. The residual scheme ResD(Z) of Z is by
definition the closed subscheme of S with IZ : ID as its ideal sheaf. We have
ResD(Z) ⊆ Z and

deg(Z) = deg(Z ∩D) + deg(ResD(Z)). (9)

We also have

• ResD(Z) = Z if and only if Z ∩D = ∅.
• ResD(Z) = ∅ if and only if Z ⊂ D.
• If Z is a finite set then ResD(Z) = Z \ Z ∩D.
• If Z = Z1 ∪ Z2 with Z1 ∩ Z2 = ∅ then ResD(Z) = ResD(Z1) ∪ ResD(Z2).
Hence to compute ResD(Z) we may look separately at the connected
components of Z.

• Let D1 and D2 be effective Cartier divisors of S. Call D1 +D2 the sum of
effective divisors. We have
� D1+D2 = D1∪D2 if and only if D1 and D2 have no common irreducible
component.

� ResD1+D2
(Z) = ResD1

(ResD2
(Z)).

� If Z ⊂ D1 +D2, then ResD1
(Z) ⊂ D2 and ResD2

(Z) ⊂ D1.
• Take a smooth point p of S and call 2p (resp. 3p) the closed subscheme of
S with (Ip)2 (resp. (Ip)3) as its ideal sheaf. We have

� (2p)red = (3p)red = {p}, deg(2p) = 1 + dimS, deg(3p) =
(
dimS+2

2

)
.

� For a smooth point p of D, ResD(2p) = p and ResD(3p) = 2p.
� For a singular point p of D, we have 2p ⊂ D and ResD(2p) = ∅.

• Let R be a line bundle on S. We have the following exact sequence, usually
called the residual exact sequence of Z with respect to D :

0 → IResD(Z) ⊗R(−D) → IZ ⊗R → IZ∩D,D ⊗R|D → 0. (10)

For further details on residual schemes, readers are advised to consult [5, Section
2] and references therein.

Remark 4.4 (a) Let grd, r ≥ 2, be a base-point-free linear series on a smooth
curve X which is not compounded. Then its monodromy is the full symmetric
group Sd ([4, p. 111] or [19, pp. 85–86]). Later in this section, this will be used in
the following way. Let Li (1 ≤ i ≤ s) be linear series on X, possibly incomplete.
Since the monodromy group of the grd is the full symmetric group, there is a non-
empty open subset Ui of g

r
d such that for each V ∈ Ui all subsets of V with the

same cardinality impose the same number of conditions on Li. Every element of
U1 ∩ · · · ∩ Us has the same property for all Li, 1 ≤ i ≤ s.

(b) In the next theorem, we use a well-known and strong tool known as Horace
method. Let Y ⊂ P2 be an integral curve of degree d and v : X → Y the normal-
ization map. Let Z ⊂ P2 be the zero-dimensional scheme associated with v, i.e. the
scheme such that H0(P2, IZ(d − 3)) ∼= H0(X,KX). Take a base point free linear
system T on X and take a general E ∈ T . Set m := deg(E) and B := v(E). Since
T is base point free E is formed by m distinct points, #B = m and B ∩ Z = ∅.
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Set W := B ∪ Z. Knowing the integer h1(P2, IW (d − 3)) provides a key infor-
mation on T . For instance, if we take L := v∗(OY (1)) and T = |L| and take as
B the union of d collinear smooth points of Y we get that h0(X,L) = 3 if and
only if h1(P2, IW (d − 3)) = h1(P2, IZ(d − 4)) = 0. To say something about the
Brill–Noether theory on X, e.g. in the next theorem, given a plane curve Y with
deg Y = d = 8 having certain prescribed singularity types (one ordinary triple point
and three nodes or cusps), we want to show that there is a unique g15 evincing the
gonality of X, exactly three base-point-free g16 ’s and that Y has a unique degree d
plane model. For this, we need to give upper bounds on h1(P2, IB∪Z(d − 3)) only
from the information #B = m. Specifically, to show that X has a unique g15 and
exactly three g16 , we take B with #B ∈ {5, 6} and assume h1(P2, IB∪Z(5)) > 0. By
[8, lemma 34], there is a line L such that deg(L∩ (Z∪B)) ≥ 7 and then use a resid-
ual exact sequence and the explicit form of scheme Z to conclude the proof of the
characterization (or description) of the base-point-free g1t ’s, t ≤ 6, on X. This part
is a key step to prove that X has a unique g28 , an essential step towards the proof
of the description of the general fiber of the moduli map in genus 15; theorem 4.2.
This approach, the study of the cohomology group of a certain zero-dimensional
scheme W ⊂ P2 using low degree curves, say a line L, with deg(L ∩W ) very high
is usually called the ‘Horace Method’; cf. [23].

Theorem 4.5 Fix a set A ⊂ P2 such that #A = 3 and A is not collinear. Fix
p ∈ P2 \ A such that p is not contained in a line spanned by two points in A. Let
Y ⊂ P2 be an integral degree 8 curve whose only singularities are either an ordinary
node or an ordinary cusp at each point of A with an ordinary triple point at p. Let
v : X → Y denote the normalization map. Then X has genus 15. Moreover

(a) X is 5-gonal and the only g15 on X is induced by the pencil of lines through
the ordinary triple point p.

(b) X has exactly three base-point-free g16, which are induced by the pencils of
lines through one of the points of A.

(c) Set L := v∗(OY (1)). Then h
0(X,L) = 3 and |L| is the unique g28 on X.

Proof. X has genus g =15 by the assumption that Y has three ordinary nodes
or ordinary cusps at points in A and an ordinary triple point at p. Let 2p the
closed subscheme of P2 with (Ip)2 as its ideal sheaf. We have deg(2p) = 3 and
(2p)red = {p}. Set and fix Z := A∪2p once and for all; deg(Z) = 6. We note that Z
is the conductor of the normalization map, i.e. the complete linear system |KX | is
induced by |IZ(5)|. Thus to prove that h0(X,L) = 3, it is sufficient to show that Z
imposes six independent conditions on |OP2(4)|, i.e. h1(P2, IZ(4)) = 0. Recall that
for a degree 6 zero-dimensional scheme F ⊂ P2, h1(P2, IF (4)) = 0 if and only if F
is not contained in a line; cf. [8, lemma 34]. Therefore, we have h1(P2, IZ(4)) = 0
by the assumption on Z and hence h0(X,L) = 3. We can also deduce easily that
the line bundle R described in (a) and the three line bundles L1,L2,L3 described
in (b) are complete pencils. After the characterization of the (unique) g15 and the
(only) three g16 ’s in the following part (a) and (b), the uniqueness of the g28 is shown
in (c).
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For a line L ⊂ P2, deg(L ∩ Z) ≤ 3 by our assumptions on A ∪ {p}. Note that

(i) deg(L ∩ Z) = 3 if and only if L is one of the three lines, say R1, R2, R3,
containing p and one of the points of A.

(ii) deg(L∩Z) = 2 if and only if either L is one of the lines, L1, L2, L3, containing
two of the points of A or p ∈ L and L /∈ {R1, R2, R3}.

Recall that a conic D ⊂ P2 contains 2p if and only D is singular at p if and only
if D is a union of two lines intersecting at p or a double line through p. Thus


h0(P2, IZ(2)) = 0,

h1(P2, IZ(2)) = 0 since deg(Z) = 6 and therefore

h1(P2, IZ(t)) = 0 for all t ≥ 3.

(11)

(a) X has no pencil of degree four or less by the Castelnuovo–Severi inequality
[1, theorem 3.5] and hence X is 5-gonal with a g15 cut out by lines through p. Take a
complete base-point-free pencil R on X such that deg(R) = 5. Fix a general E ∈ R
and set B := v(E). We note that

(ai) B ∩ Z = ∅ since R is base-point-free and E is general,
(aii) h1(P2, IZ∪B(5)) > 0 since |KX | is induced by |IZ(5)| and R is a pencil,
(aiii) h1(P2, IZ∪B′(5)) = 0 for all B′ ( B since R is complete and base-point-

free,
(aiv) |IB(2)| 6= ∅ since #B = 5.

Fix a general C ∈ |IB(2)|. Set M := C ∩ (Z ∪ B). Since B ⊂ C, we have
ResC(Z ∪B) = ResC(Z). We consider the residual exact sequence

0 → IResC (Z)(3) → IZ∪B(5) → IM,C(5) → 0 (12)

of Z ∪B with respect to C. Since ResC(Z) ⊆ Z and h1(P2, IZ(2)) = 0 by (11), we
have h1(P2, IResC (Z)(3)) = 0. Hence by (aii), the long cohomology sequence of (12)
yields

h1(C, IM,C(5)) > 0.

We first assume that C is smooth. Since degM ≤ deg(Z∪B) = 11, deg(OC(5)) =
10 and C ∼= P1, we have h1(C, IM,C(5)) = 0, a contradiction.

We next assume that C is singular (a priori even a double line), say C = C1+C2

with deg(C1 ∩ (Z ∪B)) ≥ deg(C2 ∩ (Z ∪B)) if C1 6= C2.
Since M ⊂ C1 + C2, we have ResC1+C2

(M) = ∅, ResC2
(ResC1

(M)) = ∅
and hence ResC1

(M) ⊂ C2. By the basic property (9) on residual schemes in
remark 4.3, deg(ResC1

(M)) = deg(M) − deg(M ∩ C1). Since deg(M) ≤ 11 and

https://doi.org/10.1017/prm.2024.130 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.130


22 E. Ballico and C. Keem

deg(M ∩ C1) ≥ deg(M ∩ C2) by assumption, we have deg(M ∩ C2) ≤ 5. Since
ResC1

(M) ⊂ C2 and ResC1
(M) ⊆M , we have

deg(ResC1
(M)) = deg(ResC1

(M) ∩ C2) ≤ deg(M ∩ C2) ≤ 5.

Since h1(C, IM,C(5)) > 0, we have h1(P2, IM (5)) > 0 by usual cohomology compu-
tation of the sequence 0 → IC(5) → IM (5) → IM,C(5) → 0. Consider the residual
exact sequence of M with respect to the line C 1;

0 → IResC1
(M)(4) → IM (5) → IC1∩M,C1

(5) → 0. (13)

Since deg(ResC1
(M)) ≤ 5, we have h1(P2, IResC1

(M)(4)) = 0 [8, lemma 34]. Thus,

the long cohomology exact sequence of (13) and h1(P2, IM (5)) > 0 yield

h1(C1, IC1∩M (5)) > 0 implying deg(C1 ∩M) ≥ 7.

From this, we have the following two cases:B ⊂ C1 and deg(Z ∩ C1) ≥ 2 or

#(B ∩ C1) = 4 and deg(Z ∩ C1) = 3.

The latter possibility is excluded for a general E ∈ |R|, because only three lines,
R1, R2, R3, intersect Z in a degree 3 schemes. Thus B ⊂ C1 and deg(Z ∩ C1) = 2.
Since there are only three lines, L1, L2, L3, intersecting Z in a degree 2 scheme and
not containing p, we get p ∈ C1, concluding the proof of (a).

(b) Fix a base-point-free line bundle M on X such that deg(M) = 6. Since
X has a unique g15 by part (a), we have h0(X,M) = 2. To see this, X has no
birationally very ample g26 by the uniqueness of g15 or by genus reason. X does
carry a compounded g26 either since C is neither trigonal nor bi-elliptic.

Fix a general G ∈ |M| and set F := v(G). Since M = g16 is base-point-free and
complete, we have h1(P2, IZ∪F (5)) > 0 and h1(P2, IZ∪F ′(5)) = 0 for all F ′ ( F .
Choose any F ′ ⊂ F formed by five points and take D ∈ |IF ′(2)| 6= ∅. Set N :=
D ∩ (Z ∪ F ). Assume D is smooth thus no 3 among F

′
is collinear. Consider the

residual exact sequence of Z ∪ F with respect to D ;

0 → IResD(Z∪F )(3) → IZ∪F (5) → IN,D(5) → 0. (14)

Since #(F \ F ∩D) ≤ 1, degResD(Z ∪ F ) ≤ 7. Since no 5 among ResD(Z ∪ F ) is
collinear, h1(P2, IResD(Z∪F )(3)) = 0 by [8, lemma 34]. Thus, the long cohomology

sequence from (14) gives h1(D, IN,D(5)) > 0. Since D ∼= P1, deg(OD(5)) = 10, and
h1(D, IN,D(5)) > 0, we get

deg(N) ≥ 12.

On the other hand, we have deg(D∩Z) ≤ 5. To see this, we assume deg(D∩Z) ≥ 6
and hence D is smooth. From the exact sequence 0 → ID∩Z,D(2) → OD(2) →
OD∩Z(2) → 0, we have h1(D, ID∩Z,D(2)) > 0 following from h0(D,OD(2)) =
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5 and h0(OD∩Z) = deg(D ∩ Z) ≥ 6. From the exact sequence 0 → ID(2) →
ID∩Z(2) → ID∩Z,D(2) → 0 and by hi(P2, ID(2)) = hi(P2,OP2) = 0 (i ≥ 1), we get
h1(P2, ID∩Z(2)) > 0. Since D ∩ Z ⊆ Z, we get h1(P2, IZ(2)) > 0 contrary to (11)
concluding deg(D ∩ Z) ≤ 5, thus

deg(N) ≤ 11.

This contradiction shows that D is not smooth. Set D = D1 + D2. Exactly as
in step (a), we may prove the existence of a line D1 with deg(D1 ∩N) ≥ 7. Since
M is not induced by the pencil of lines through p, p /∈ D1. For a general G ∈ |M|,
we have D1 /∈ {L1, L2, L3}. Thus F ⊂ D1 and D1 contains one of the points of A,
concluding the proof of (b).

(c) We only need to prove the uniqueness part. Take a line bundle N on X
such that h0(N ) ≥ 3 and deg(N ) ≤ 8. Since X has only finitely many base-point-
free g16 ’s by part (b), deg(N ) = 8, h0(X,N ) = 3 and N is base-point-free. Part
(a) implies that |N | is not compounded; if it were then either X is 4-gonal or a
double covering of a smooth plane curve of degree 3, which may be excluded by the
Castelnuovo–Severi inequality. We want to apply remark 4.4(a) to the linear series
|N |.

Fix a general V ∈ |N | and set U := v(V ). To conclude the proof we need to prove
that U is formed by eight collinear points. For a general V, we have Z ∩ v(V ) = ∅.
Since h0(X,N ) = 3, we have

h1(P2, IZ∪U (5)) ≥ 2. (15)

Observation 1:

(0) Since V is general, remark 4.4(a) implies that if #(U ∩L) ≥ 3 for some line
L, then U ⊂ L, concluding the proof.

(i) Thus from now on we may assume that no 3 points among U are collinear.
(ii) Suppose #(U ∩ D) ≥ 6 for some conic D, i.e. U ∩ D fails to impose

independent conditions on |OP2(2)|. Hence by remark 4.4(a), we have
U ⊂ D.

Observation 2:

(0) The zero-dimensional scheme Z = 2p ∪ A has degree 6 and is not contained
in a conic; just because A is not formed by three collinear points and any
conic containing Z is singular at p.

(i) We set Z := {D ∈ |OP2(2)|| degZ ∩ D = 5},Z1 := {D ∈ Z|2p ⊂ D},
Z2 := Z \ Z1. Each D ∈ Z1 is singular at p and hence #Z1 = 3; each
D ∈ Z1 is the union of two lines through p containing one of the points of A.
For D ∈ Z2, D∩Z = A∪w, where w is degree 2 connected zero-dimensional
subscheme with p as its reduction. Since no conic contains Z, A∪w uniquely
determines D. Thus Z2 is a one-dimensional family and Z is an algebraic
family of dimension 1.
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Given U = v(V ), let DU ∈ |OP2(2)| be such that #(DU ∩ U) is maximal. Note
that #(U ∩DU ) ≥ 5 since dim |OP2(2)| = 5. By Observation 1(i), DU is a smooth
conic. Bezout gives #(DU ∩ v(X)) ≤ 16. Thus DU contains at most one other set
U

′
with #U ′ = 8 with U ′ = #v(V ′) = 8 for some V ′ ∈ |N | and U ′ ∩ U = ∅

#(DU ∩ U) = 5 or

U ⊂ DU .

Now we know that there are two-dimensional family of conics

U := {DU |U = v(V ), V ∈ N ,#(DU ∩ U) ≥ 5} ⊂ |OP2(2)|.

On the other hand, the family of conics

Z = {D|deg(D ∩ Z) = 5} ⊂ |OP2(2)|

moves only in one-dimensional family by Observation 2(i). Hence for general DU ∈
U , we have

deg(Z ∩DU ) ≤ 4. (16)

(c1) Assume #(DU ∩ U) = 5 for general DU ∈ U . Recall that by Observation 1(i),
DU is a smooth conic and we set W := U \DU ∩U consisting of three non-collinear
points. Note that

deg(DU ∩ (Z ∪ U)) = deg(DU ∩ Z) + deg(DU ∩ U) ≤ 9

and hence deg IDU∩(Z∪U),DU
(5) ≥ 1 implying h1(DU , IDU∩(Z∪U),DU

(5)) = 0.
Consider the residual exact sequence of Z ∪ U with respect to D :

0 → IResD(Z∪U)(3) → IZ∪U (5) → ID∩(Z∪U),D(5) → 0. (17)

From the long cohomology exact sequence of (17) and (15), we have

h1(P2, IResD(Z∪U)(3)) ≥ 2

and hence

h1(P2, IZ∪W (3)) ≥ h1(P2, IResD(Z∪U)(3)) ≥ 2. (18)

Take a line L containing two points of W and set {o} :=W \W ∩ L. We consider
the residual exact sequence of Z ∪W with respect to L; note that ResL(Z ∪W ) =
ResL(Z) ∪ {o}. Hence we have the exact sequence
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0 → IResL(Z)∪{o}(2) → IZ∪W (3) → I(Z∪W )∩L,L(3) → 0. (19)

Since ResL(Z) ⊆ Z and h1(P2, IZ(2)) = 0 (by (11)), we have

h1(IResL(Z)∪{o}(2)) ≤ 1.

From the long cohomology exact sequence of (19) together with (18), we have
h1(L, I(Z∪W )∩L,L(3)) ≥ 1. Thus deg((Z ∪W )∩L)) ≥ 5. Since deg(W ∩L) = 2, we
obtain deg(Z∩L) ≥ 3. Thus L is one of the three lines spanned by p and one of the
points of A, say L = R1; remember that the three lines Ri, i = 1, 2, 3 do not depend
on the choice of V ∈ |N | and U = v(V ). On the other hand, since R1 ∩ v(X) is a
finite set, for a general V ∈ |N |, we have v(V ) ∩ R1 = U ∩ R1 = ∅. However, we
took the line L containing two of the points of W ⊂ U , a contradiction.

(c2) Assume U ⊂ DU . In this case, we have ResDU (Z ∪ U) ⊆ Z and hence

h1(P2, IResDU
(Z∪U)(3)) = 0 since h1(P2, IZ(3)) = 0 by (11). The long cohomology

exact sequence of (17) together with (15), i.e. h1(P2, IZ∪U (5)) ≥ 2 yields

h1(DU , IDU∩(Z∪U),DU
(5)) ≥ 2.

Recalling deg(Z ∩DU ) ≤ 4, on a smooth conic DU , we have deg(DU ∩ (Z ∪ U)) ≤
12, deg IDU∩(Z∪U),DU

(5) ≥ −2 and hence h1(DU , IDU∩(Z∪U),DU
(5)) ≤ 1, a

contradiction.
Conclusion: (c1) and (c2) show that there is a subset B ⊂ U with #B = 3 and B

is collinear, i.e. v−1(B) fails to impose independent conditions on L = v∗(OP2(1)),
hence any subset B′ ⊂ U with #B′ = 3 is collinear by remark 4.4 and we are
done. �

Proof of theorem 4.2. Recall that a general element of X ∈ H15,15,5 has a plane
model of degree 8 with one ordinary triple point and three nodes as its only singu-
larities; cf. part (A1) in the proof of theorem 4.1. We also recall that a curve with
a plane model C of degree 8 with such prescribed singularities is embedded into P5

as a smooth curve of degree 15 and genus g =15 in the following way:
(i) Blowing up P2 at four (singular) points in general position in P2 and then

take the strict transformation C̃ of C in P2
4 under this blow up.

(ii) We then embed P2
4 and C̃ by the anticanonical system | −KP24

| = |(3; 14)| to

get a smooth del Pezzo S ⊂ P5 and smooth C̃ ∼= X ⊂ P5.
Now we fix four points A ⊂ P2 in general linear position. Let Ci, 1 ≤ i ≤ 2 be two

plane curves of degree 8 with one triple point and three nodes with Sing(Ci) = A.
By theorem 4.5, we have the following equivalent conditions:

(a) Two curves Xi ⊂ P5, i = 1, 2 such that Xi
∼= C̃i are isomorphic.

(b) Two singular plane models Ci of Xi are projectively equivalent under a
projective motion of P2 inducing a permutation on the set A ⊂ P2.

(c) Xi lies on a same smooth del Pezzo surface S ⊂ P5.
(d) There exists τ ∈ Aut(S) such that X1 = τ(X2).
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Note that for a smooth del Pezzo S ⊂ P5 and τ ∈ Aut(S), there is β ∈ Aut(P5)
such that β|S = τ since S is anticanonically embedded in P5. Hence we have
β(X2) = τ(X2) = X1. �

5. Curves of genus g = 16

5.1. Reducibility of H15,16,5

The aim of this subsection is to prove the following reducibility result for H15,16,5.

Theorem 5.1 H15,16,5 has three irreducible components, Γ1, Γ2 and Γ3, described
as follows:

(1) dimΓ1 = 68, every X ∈ Γ1 lies on a smooth quartic surface and is trigonal.
(2) dimΓ2 = 64, every X ∈ Γ2 lies on a smooth quartic surface and is

pentagonal.
(3) dimΓ3 = 65, every X ∈ Γ3 is ACM, lies on a quintic surface, is 6-gonal

and KX
∼= OX(2).

Take X ∈ H15,16,5. By the Castelnuovo’s genus bound, π(15, 6) = 13 and
π(15, 5) = 18, hence X is linearly normal. Since π1(15, 5) = 16 = g < π(15, 5),
X ⊂ S ⊂ P5 where S an irreducible surface with 4 ≤ degS ≤ 5 by [19, theorem
3.15]. We start making observations for the case degS = 4.

(A) degS = 4 case:
We may assume that S is a smooth rational normal scroll by remark 2.2 (c).

Let X ∈ |aH + bL| on S. By solving (2)—the degree and genus formula for d =15
and pa(X) = 16—we get (a, b) ∈ {(3, 3), (5,−5)}. Thus we have an irreducible
family Γ(a, b) of smooth curves in P5 lying on smooth quartic surface scrolls for
each (a, b) ∈ {(3, 3), (5,−5)} with

dimΓ(a, b) = dim |aH + bL|+ dimS(r)

=
a (a+ 1) (r − 1)

2
+ (a+ 1) (b+ 1)− 1 + (r + 3)(r − 1)− 3

by (3), (4) and hence

dimΓ(3, 3) = 68 > X (15, 16, 5), dimΓ(5,−5) = 64 > X (15, 16, 5). (20)

For simpler notation, we set

Γ1 := Γ(3, 3),Γ2 := Γ(5,−5).

Remark 5.2. X ∈ Γ1 has a unique g13 by the Castelnuovo–Severi inequality. By
the same reason, X has no complete base-point-free g1x for x = 4, 5, 6, 7 and is not
a double covering or a triple covering of an elliptic curve.

Remark 5.3. We recall that the smooth rational normal surface scrolls in P5 are
either an image of an embedding of F0 or an image of an embedding of F2. The
image of F2 is limits of the image of F0 and this phenomenon is carried over to the
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curves lying on them. F0 is isomorphic to a smooth quadric surface Q ⊂ P3 and
with this isomorphism OF0(1)

∼= OQ(1, 2).
(i) Take X ∈ Γ1. If S ∼= F0, OS(H) ∼= OQ(1, 2), OS(L) ∼= OQ(0, 1) hence

X ∈ |3H + 3L| = |OQ(1, 2)
⊗3 ⊗OQ(0, 1)

⊗3| = |OQ(3, 9)|.
(ii) If X ∈ Γ1 and S ∼= F2, X ∈ |3H + 3L| = |OF2(3h+ 12f)|.
(iii) For X ∈ Γ2 with S ∼= F0, X ∈ |5H − 5L| = |OQ(5, 5)|. Thus X has exactly

two g15 ’s; cf. [28, corollary 1].
(iv) For X ∈ Γ2 with S ∼= F2, X ∈ |5H − 5L| = |OF2(5h + 10f)|. Thus X has

only one g15 by [28, corollary 1].

Lemma 5.4. We have h1(OX(2)) = 0 for all X ∈ Γ1.

Proof. Note that deg(OX(2)) = deg(KX) for X ∈ Γ1. Suppose S ∼= F0. By remark
5.3 (i), X ∈ |OQ(3, 9)|. From the standard exact sequence

0 → OQ(−1,−5) → OQ(2, 4) → OX(2, 4) → 0

and by h0(OQ(−1,−5)) = h1(OQ(−1,−5)) = 0, we have h0(X,OX(2)) =
h0(X,OX(2, 4)) = h0(OQ(2, 4)) = 15 6= g. The case S ∼= F2 is similar. �

Lemma 5.5 Let X ∈ Γ2.

(i) If X ⊂ S ∼= F0, h
1(OX(2)) = 0.

(ii) If X ⊂ S ∼= F2, h
1(OX(2)) = 1 and KX

∼= OX(2).

Proof. (i) If S ∼= F0, h
1(OX(2)) = 0 follows from the same computation as in

lemma 5.4.
(ii) For the case S ∼= F2, we have X ∈ |OF2(5h + 10f)|; remark 5.3 (iii). The

exact sequence 0 → OF2(−3h− 4f) → OF2(2h+ 6f) → OX(2h+ 6f) → 0 and the
cohomology of line bundles on F2 [27, proposition 2.3] yield

h0(X,OX(2)) = h0(F2,OF2(2h+ 6f)) + h1(F2,OF2(−3h− 4f))

= h0(F2,OF2(2h+ 6f)) + h1(F2,OF2(h)) = 15 + 1 = 16.

Therefore h1(OX(2)) = 1 by Riemann–Roch. �

Lemma 5.6. For X ∈ Γ1 ∪ Γ2, h
1(P5, IX(3)) = 2 and h1(P5, IX(t)) = 0 for all

t ≥ 4.

Proof. Since S is ACM, h1(P5, IX(t)) = h1(S, IX,S(t)) for all t ∈ N.
(a) Take X ∈ Γ1:

(a-1) Assume S ∼= Q. Since X ∈ |OQ(3, 9)|, h1(Q, IX,Q(t)) = h1(Q,OQ(t −
3, 2t−9)). We have h1(Q,OQ(0,−3)) = 2 and h1(Q,OQ(t−3, 2t−9)) = 0
for all t ≥ 4 by the Künneth formula.

(a-2) Assume S ∼= F2. We have OS(1) ∼= OF2(h + 3f), X ∈ |OF2(3h + 12f)|
and IX,S(t) ∼= OF2((t − 3)h + (3t − 12)f). For t =3, h1(P5, IX(3)) =
h1(F2,OF2(−3f)) = 2. For t ≥ 4, h1(P5, IX(t)) = h1(F2,OF2((t − 3)h +
(3t− 12)f)) = 0; cf. [27, proposition 2.3].
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(b) Take X ∈ Γ2:

(b-1) If S ∼= Q, we have X ∈ |OQ(5, 5)| and IX,S(t) ∼= OQ(t− 5, 2t− 5).
(b-2) If S ∼= F2, we have X ∈ |OF2(5h + 10f)| and IX,S(t) ∼= OF2((t − 5)h +

(3t− 10)f).

The verification for this case (b) is similar and we omit the routine. �

(B) degS = 5 case: We set

Γ3 := {X ∈ H15,15,5|X ⊂ S, degS = 5}.

We recall the following well-known fact regarding surfaces of degree 5 in P5.

Remark 5.7. Let S ⊂ P5 be a quintic surface. By the classification of quintic
surfaces in P5, S is one of the following:

(i) a del Pezzo surface possibly with finitely many isolated double points
(ii) a cone over a smooth quintic elliptic curve in P4

(iii) a cone over a rational quintic curve (either smooth or singular) in P4

(iv) an image of a projection into P5 of a surface S̃ ⊂ P6 of minimal degree 5

with centre of projection p /∈ S̃.

We now assume that there is a smooth curve X ⊂ S with degX = 15 and genus
g =16. We remark that the last case (iv) is not possible under this assumption; X is
linearly normal since π(15, 6) = 13. For the case (iii), we have either dimSing(S) =
0 or S has a double line. In both cases, S is the image of a linear projection of a
cone S̃ ⊂ P6 over a rational normal curve C̃ ⊂ H̃ ∼= P5 with centre of projection
p ∈ H̃ \ C̃. This is not possible under the existence of a linearly normal X ⊂ S.

Remark 5.8. (i) By the preceding discussion, the assumption of the following
lemma 5.10—S is a quintic surface containing X ∈ H15,16,5—implies that either S
is a possibly singular del Pezzo surface or it is a cone over a linearly normal elliptic
curve of P4. Singular del Pezzo surface of degree 5 is described in [15, § 8.5.1]. They
form an irreducible family.

(ii) From proposition 2.1, we recall that the set of all X ∈ H15,16,5 contained
in a singular del Pezzo surface are limits of curves lying on a smooth del Pezzo
surface. Therefore in order to identify possible irreducible components of H15,16,5

whose general element lies on a smooth quintic surface, it is sufficient to study the
general ones, i.e. the ones contained in a blowing-up of P2 at four distinct points
in general position.

We use the following simple observation several times.

Remark 5.9. Fix any surface S ⊃ X such that deg(S) ≤ 5. Let M ⊂ P5 be a
quadric hypersurface containing X. If S * M then deg(M ∩ S) ≤ 10 < degX and
it follows that |IX(2)| = |IS(2)| if degX > 10.

Lemma 5.10. We choose a smooth X ∈ H15,16,5 and assume that X lies on an
irreducible quintic surface S ⊂ P5. Then
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(i) X is the complete intersection of S and a cubic hypersurface and
(ii) KX

∼= OX(2), X is ACM, h0(P5, IX(2)) = 5 and h0(P5, IS(t)) =
(
t+5
5

)
−

15t+ 15 for all t ≥ 3.

Proof. By remark 5.8, we may assume that S is either smooth or with finitely
many singular points such that the general hyperplane section of S is a smooth
linearly normal elliptic curve in P4. Fix a general hyperplane H ⊂ P5. By the
assumption, E := S ∩ H is a smooth linearly normal quintic elliptic curve in H.
Since pa(E) = 1 = π(5, 4), E is ACM, i.e. h1(H, IE,H(t)) = 0 for all t ∈ Z; cf. [19,
theorem 3.7, p. 87]. For an integer t, we consider the exact sequence

0 → IS(t− 1) → IS(t) → IE,H(t) → 0. (21)

Note that S is ACM [31, theorem 1.3.3], i.e. h1(P5, IS(x)) = 0 for all x ∈ Z.
Since h1(H, IE,H(t)) = 0, we have h0(H, IE(t)) =

(
4+t
4

)
− 5t for all t ≥ 0 by

Riemann–Roch. Since h1(P5, IS(t− 1)) = 0 for all t ≥ 0 and h0(P5, IS(1)) = 0, the
long cohomology exact sequence of (21) gives h0(P5, IS(2)) = 5 and then

h0(P5, IS(3)) = h0(P5, IS(2)) + h0(H, IE(3)) = 5 + 20 = 25. (22)

Since deg(OX(3)) = 45 > 30 = degKX , h0(X,OX(3)) = 30 and therefore

h0(P5, IX(3)) ≥ h0(P5,OP5(3))− h0(X,OX(3)) =
(
8
3

)
− h0(X,OX(3)) = 26.

By (22), h0(P5, IS(3)) < h0(P5, IX(3)) and there is a cubic hypersurface W ⊂ P5

containing X such thatW + S, the curve S∩W has degS∩W = degS ·degW = 15.
We want to prove that X is the scheme-theoretic intersection of S and W, i.e.

S ∩W is not the union of X and some zero-dimensional scheme. First of all, the
scheme-theoretic intersection S∩W is ACM since S is ACM, W is given by a single
equation and dimS∩W < dimS ([10, th. 2.1.3], [18, prop. 18.13], [30, ex. 17.4 with
ν=1 and n =1]). Since S ∩W is ACM, it has no embedded component ([10, th.
2.1.2(a)], [18, cor. 18.10], [24, th. 141]), i.e. S ∩W = X scheme-theoretically.

By remark 5.9, h0(P5, IX(2)) = h0(P5, IS(2)) = 5. Since X is ACM,

h0(OX(2)) = h0(P5,O(2))− h0(P5, IX(2)) + h1(P5, IX(2))

= h0(P5,O(2))− h0(P5, IS(2)) = 16.

Since deg(OX(2)) = deg(KX), Riemann–Roch gives OX(2) ∼= KX . For t ≥ 3, we
have h1(OX(t)) = 0 and by h1(P5, IX(t)) = 0

h0(P5, IX(t)) = h0(P5,OP5(t))− h0(X,OX(t)) + h1(P5, IX(t))

=
(
t+5
5

)
− 15t+ 15.

�

We consider the family ∆ consisting of curves X ∈ H15,16,5 contained in an ellip-
tic cone. The following lemma asserts that ∆ is an irreducible family of dimension
60.
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Lemma 5.11.

(i) ∆ is an irreducible family of dimension 60.
(ii) For each X ∈ ∆, there is a unique degree 3 morphism u : X → E with E an

elliptic curve, X is 6-gonal and the g16’s on X are the pull-backs of the g12’s
on E which are parametrized by the points of E.

Proof. (i) Let ∆1 denote the family of all degree 5 elliptic cones in P5. The family
H5,1,4 of linearly normal elliptic curves in P4 forms an irreducible family of the
expected dimension 25; cf. [16]. Hence dim∆1 = dimP5 + dimH5,1,4 = 30 and
∆1 is irreducible; note that there is a natural dominant rational map ∆1 → P5∗

whose fibre over H ∈ P5∗ is the irreducible Hilbert scheme H5,1,4 of the same
dimension. We note that the proof of lemma 5.10 (i) only requires the assumption
X ∈ H15,16,5 lying on surface of degree 5 with isolated singularities. Therefore, each
element X ∈ ∆ is a smooth complete intersections of an element of ∆1 and a cubic
hypersurface. Consider the locus

Ψ := {(S, T )|S * T} ⊂ ∆1 × P(H0(P5,OP5(3))).

The projection π1 : Ψ → ∆1 is surjective with the fiber

π−1(S) ∼= P(H0(P5,OP5(3))/H
0(P5, IS(3))).

By the same computation as (22), we get

h0(P5, IS(3)) = h0(P5, IS(2)) + h0(H, IS∩H(3)) = 5 + 20 = 25. (23)

By (23), we conclude that Ψ is irreducible and

dimΨ = dim∆1 + dimP(H0(P5,OP5(3))/H
0(P5, IS(3))) = 60.

We note that every smooth curve X ∈ H15,16,5 is contained in a unique elliptic
cone S ∈ ∆1 if any. This follows from the following argument. By remark 5.9,
|IX(2))| = |IS(2))| if X ⊂ S. In particular, S is the base locus of |IX(2)| and
therefore X is contained in a unique S ∈ ∆1. From this, we may deduce that the

natural map Ψ
ψ→ ∆ where ψ(S, T ) = S ∩ T is injective and surjective, hence

dim∆ = dimΨ = 60.
(ii) By (8) (with d = 15, r = 5), for each X ∈ ∆, there is a degree 3 morphism

u : X → E onto an elliptic curve induced by E5 → E; the uniqueness of the
triple covering follows from the Castelnuovo-Severi inequality. X is 6-gonal and
the g16 ’s on X are the pull-backs of g12 ∈ W 1

2 (E) ∼= W1(E) ∼= Jac(E) ∼= E by the
Castelnuovo–Severi inequality. �

Since dim∆ = 60 = X (15, 16, 5) by lemma 5.11, we cannot exclude the possibility
that ∆ may constitute a full component of H15,16,5. The following two lemmas show
that ∆ is in the boundary of the component Γ3.
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Lemma 5.12. Every degree 5 elliptic cone T is a flat limit of a family of smooth
del Pezzo. More precisely, there is a flat family {St}t∈K of degree 5 surfaces of P5

such that S0 = T and St is a smooth del Pezzo for all t 6= 0.

Proof. From lemma 5.10 (ii), h0(P5, IT (2)) = 5 for all degree 5 surface T containing
an element of H15,16,5. Given X ∈ H15,16,5, we fix an elliptic cone T with the vertex
p. We fix a hyperplane H ⊂ P5 such that p /∈ H and set E := S ∩H. The linearly
normal elliptic curve E and p uniquely determine T. We take a set of four points
{p1, p2, p3, p4} ⊂ P2 such that no 3 of them is collinear. We take a smooth plane

cubic E′ ⊂ P2 containing {p1, p2, p3, p4}, E′ u∼= E such that OE′(3)(−p1 − p2 −
p3 − p4) ∼= u∗(OE(1)). This can be done by taking an isomorphism u : E′ → E
first, where u−1 is an arbitrary embedding of E as a plane cubic, taking 3 general
o1, o2, o3 ∈ E′, then taking as o4 the unique point of E

′
such that OE′(3)(−o1 −

o2 − o3 − o4) ∼= u∗(OE(1)). Blowing up P2 at {o1, o2, o3, o4}, we get a smooth del
Pezzo S ⊂ P5 such that S ∩H = E = T ∩H. We take homogeneous coordinates
x0, x1, . . . , x5 such that H = {x0 = 0} and p = (1 : 0 : 0 : 0 : 0 : 0). We take a bases

{q1(x0, . . . , x5), q2(x0, . . . , x5), . . . , q5(x0, . . . , x5)} ⊂ H0(P5, IS(2)).

For any t ∈ K (the base field) and i = 1, 2, 3, 4, 5 we set

qi,t(x0, x1, x2, x3, x4, x5) := qi(tx0, x1, x2, x3, x4, x5).

For t =1, these five quadratic forms generate H0(P5, IS(2)), while for t =0, they
span H0(P5, IT (2)). For any t ∈ K \ {0} consider the automorphism of P5 sending
x0 7→ tx0 and xi 7→ xi for i = 1, . . . , 5. For each t 6= 0, the common zero locus the
forms qi,t(x0, . . . , x5), i = 1, . . . , 5, is a surface St projectively equivalent to S1 = S
while S0 = T . The family {St}t∈K is flat, because all St have the same Hilbert
polynomial [22, Theorem III.9.9]. Thus, T = S0 is a flat limit of del Pezzo surfaces
St. �

Lemma 5.13. ∆ is in the closure of Γ3 \∆, Γ3 is irreducible and dimΓ3 = 65.

Proof. Fix X ∈ ∆ and let T denote the degree 5 elliptic cone containing X. By
lemma 5.12, there is a flat family {St}t∈K of degree 5 surfaces of P5 such that S0 = T
and St is a smooth del Pezzo for all t 6= 0. Lemma 5.10 shows that X = T ∩W
for some cubic hypersurface W. Since X is smooth, W is transversal to T. Since
smoothness is an open condition, there is an open neighbourhood U ⊂ K containing
0 such that W is transversal to St for all t ∈ U . For each t ∈ U \ {0}, we have
St∩W ∈ Γ3\{S0}. Therefore, X ⊂ T is a flat limit of the curves St∩W , t ∈ U \{0}.

A standard computation in the proof of theorem 4.1 (B-iii) shows thatX ∈ Γ3\∆

contained in a fixed smooth del Pezzo surface P2
4

|(3:14)|
↪→ S ⊂ P5 is in |(9; 34)| =

|3(3 : 14)|. Since no non-trivial automorphism of P2 fixes a set of four points in
general position, the open subset of Γ3 formed by curves lying on a smooth del
Pezzo is irreducible and
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dimΓ3 = dimAut(P5) + dim |(9; 34)| = 35 +
(
9+2
2

)
− 1− 4

(
3+1
2

)
= 65.

�

Proposition 5.14. A general X ∈ Γ3 is 6-gonal.

Proof. Take Y ∈ Γ3 contained in a smooth del Pezzo surface, i.e. assume that Y is
a normalization of a degree 9 plane curve having ordinary triple points at the four
general points p1, p2, p3, p4 as its only singularities. The pencil of lines through each
pi induces a base-point-free g16 . A fifth base-point-free g16 on Y is induced by the
pencil of conics containing {p1, p2, p3, p4}. Hence lemma 5.13 gives that a general
element of Γ3 has a base-point-free g16 . By lemma 5.11 (ii), X ∈ ∆ ⊂ Γ3 is 6-gonal.
By lower semi continuity of gonality, a general element of Γ3 has gonality at least
6 and we are done. �

Proof of theorem 5.1. We saw that H15,16,5 is the union of three pairwise disjoint
irreducible families Γ1, Γ2, and Γ3. Dimensions of Γi are computed and the gonality
of elements in each Γi has been determined; cf. dimension count (20), lemma 5.13,
remarks 5.2 & 5.3, and Proposition 5.14.

Recall that each element of Γ3 is ACM by lemma 5.10, while no element of Γ1∪Γ2

is ACM by lemma 5.6. Hence by upper semicontinuity for cohomology, no element
of Γ3 is a limit of elements of Γ1 ∪ Γ2.

On the other hand, by lemma 5.4 and lemma 5.5, h1(X,OX(2)) = 0 for all X ∈
Γ1, while h

1(X,OX(2)) = 1 for all X ∈ Γ3 by lemma 5.10. Again, semicontinuity
for cohomology tells that no element of Γ1 is a limit of a family of elements of Γ3.

Likewise, we can deduce that a general element of Γ2 is not a limit of a family
of elements of Γ3. Note that we have dimΓ1 > dimΓ2 and each element of Γ1 is
trigonal and each element of Γ2 is 5-gonal.

By (lower) semicontinuity of gonality, no element of Γ2 is a limit of elements of
Γ1. Therefore, H15,16,5 has exactly three distinct irreducible components, Γ1, Γ2,
and Γ3. �

5.2. The moduli map µ : H15,16,5 → M16

Let µ : H15,16,5 → M16 denote the moduli map. Since elements of Γ1, Γ2, and Γ3

have different gonalities, for each X ∈ Γi, we have µ
−1(µ(X)) ⊂ Γi. For i = 1, 2 let

Γi,0 denote the non-empty open subset of Γi formed by all X ∈ Γi contained in a
minimal degree surface isomorphic to F0. For i = 1, 2 set Γi,2 := Γi \ Γi,0, i.e. Γi,2
is the set of all X ∈ Γi contained in a minimal degree surface isomorphic to F2.

Remark 5.15. For each X ∈ Γ2,0 (resp. X ∈ Γ2,2) we have µ−1(µ(X)) ⊂ Γ2,0

(resp. µ−1(µ(X)) ⊂ Γ2,2); elements of Γ2,0 have exactly two g15 and elements of Γi,2
have only one g15 ; cf. remark 5.3.

Let C be a trigonal curve of genus g ≥ 5. By the Castelnuovo–Severi inequality,
C has a unique g13 . Let R be the trigonal line bundle on C. Let m(C ) be the Maroni
invariant of C, i.e. let m(C)+2 be the first integer t such that h0(R⊗t) ≥ t+2 [29,
eq. 1.2]. We always have (g− 4)/3 ≤ m(C) ≤ (g− 2)/2 and the canonical model of
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C sits in a surface of degree g − 2 in Pg−1 isomorphic to the Hirzebruch surface Fe
where e := g − 2− 2m(C) ≥ 0; cf. [29, p. 172].

Lemma 5.16. If X ∈ Γ1,e, e ∈ {0, 2}, then e = 14− 2m(X).

Proof. We use notation in remark 5.3. For e =0, we have X ∈ |OQ(3, 9)| and
ωX ∼= OX(1, 7). For e =2, we have X ∈ |OF2(3h + 12f)| and ωX ∼= OX(h + 8f).
Hence the canonical model of X sits inside the image of F0 (resp. F2) under the
morphism induced by the linear system |OQ(1, 7)| (resp. |OF2(h+ 8f)|). �

Let σ : Q→ Q be the automorphism which shifts the two factors of Q = P1×P1.

Proposition 5.17. For X ∈ Γ2,0, we have

µ−1(µ(X)) = Aut(P5)X ∪Aut(P5)σ(X) and dimµ(Γ2,0) = 29.

Proof. For the first assertion, we observe that µ−1(µ(X)) ⊂ Γ2,0; remark 5.15. We
use corollary 2.4 and remark 2.5 to conclude that

µ−1(µ(X)) = Aut(P5)X ∪Aut(P5)σ(X).

Therefore dimµ(Γ2,0) = dimΓ2 − dimAut(P5) = 29. �

Proposition 5.18. Fix X ∈ Γ1,0 and X1 ∈ Γ1,2. Then we have

µ−1(µ(X)) = Aut(P5)X, µ−1(µ(X1)) = Aut(P5)X1

dimµ(Γ1,0) = dimµ(Γ1)) = 33, dimµ(Γ1,2) = 31.

Proof. Lemma 5.16 implies µ(Γ1,0) ∩ µ(Γ1,2) = ∅. Any isomorphism between two
non-hyperelliptic curves C1, C2 of genus g ≥ 5 induces a projective automorphism
ϕ ∈ Aut(Pg−1) such that ϕ(Cκ1 ) = Cκ2 where Cκi ⊂ Pg−1 is the canonical model of
Ci. Now assume that C 1 (and hence C 2) is trigonal and call Ti ⊂ Pg−1 (i = 1, 2),
the base locus of |ICκ

i
(2)|. Obviously ϕ(T1) = T2. Up to Aut(Pg−1), we may assume

T1 = T2. Since Ti is a surface of minimal degree g − 2 containing the trigonal curve
Cκi , we have Ti ∼= Fe with e = g − 2 − 2m(Ci). Therefore, we may deduce that
isomorphism between two curves induces an automorphism of Fe. By remark 2.5,
minimal degree surface scrolls in P5 which are isomorphic as abstract variety are
also projectively equivalent, hence we get the result. �

6. Curves of genus g = 17 and g = 18

In this section, we treat the two remaining cases g =17 and g =18. We first prove
that there is no smooth curve of degree d =15 and genus g =17 in P5.

Proposition 6.1. H15,17,5 = ∅.

Proof. Since π1(15, 5) = 16 < g = 17, X ⊂ S ⊂ P5 with degS = 4 by [19, th. 3.15]
and S is a smooth rational normal scroll by remark 2.2 (c). Assume X ∈ |aH+bL|.
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However, there is no pair of integers (a, b) satisfying the degree and genus formula
(2) for (d, pa(X)) = (15, 17). �

6.1. Irreducibility of H15,18,5 and the moduli map µ : H15,18,5 → M18

Proposition 6.2. H15,18,5 is irreducible, dimH15,18,5 = 68 and every smooth X ∈
H15,18,5 is 4-gonal with a unique g14.

Proof. The irreducibility follows directly from [19, corollary 3.16, p. 100]. Since X
is an extremal curve, X ⊂ S ⊂ P5 where S is a smooth rational normal scroll by
remark 2.2 (c). By solving (2) for pa(X) = 18, we have X ∈ |4H − L|. By (3) and
(4), we have

dimH15,18,5 = dim |4H − L|+ dimS(5) = 68.

X has a g14 cut out by the ruling of the scroll which is unique by the
Castelnuvo–Severi inequality. �

Since deg(X) > 2 deg(S), the theorem of Bezout gives |IX(2)| = |IS(2)|. Since
S is cut out by quadrics, S is the base locus of |IX(2)| and therefore X ∈ H15,18,5

is contained in a unique minimal degree surface; cf. [4, p. 120]. There are two non-
isomorphic rational normal scrolls in P5, which are the images of F0 and F2 under
the morphism induced by appropriate very ample linear systems. Let Λ0 (Λ2 resp.)
denotes the locus of smooth curves in H15,18,5 contained in F0 (F2 resp.). Since
each X ∈ H15,18,5 is contained in a unique minimal degree surface, Λ2 ∩ Λ0 = ∅.
However, we want to prove something stronger: we want to prove that no element
of Λ0 is isomorphic to an element of Λ2. We will use the following lemma which
asserts that the first scrollar invariant of the unique g14 on X ∈ H15,18,5 detects the
integer e ∈ {0, 2} such that X ∈ Λe.

Lemma 6.3. Take e ∈ {0, 2} and X ∈ Λe. Let R be the only degree 4 line bundle on
X such that h0(X,R) = 2. Let c be the minimal integer such that h0(R⊗c) ≥ c+2,
the first scrollar invariant of |R|. Then we have the following two cases for the
integer c:

 e = 0, c = 7, h0(R⊗7) = 11

e = 2, c = 5, h0(R⊗5) = 7.

Proof. If e =0 we have X ∈ |OQ(4, 7)| with R = OX(0, 1). Fix an integer t ≥ 1.
From the cohomology sequence of the exact sequence
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0 → OQ(−4, t− 7) → OQ(0, t) → OX(0, t) → 0,

we have h0(R⊗t) = h0(Q,OQ(0, t))+h
1(Q,OQ(−4, t−7)) and hence h0(R⊗7) = 11

and c=7. For e =2, we have X ∈ |4H −L| = |4h+ 11f | with R = OX(f). We use
the exact sequence

0 → OF2(−4h+ (t− 11)f) → OF2(tf) → OX(tf) → 0,

to get h0(R⊗5) = 7 and c=5. We omit routine computation. �

The following is an immediate consequence of lemma 6.3.

Proposition 6.4. No smooth element of Λ2 is isomorphic to a smooth element of
Λ0.

Proposition 6.5. Take X ∈ Λ0. Then:

(a) X is 4-gonal with a unique g14, no base-point-free g1c for 5 ≤ c ≤ 6 and a
unique g17.

(b) µ−1(µ(X)) = Aut(P5)X.
(c) dimµ(H15,18,5) = dimµ(Λ0) = 33.

Proof. (a) follows from proposition 2.3. For (b), we fix any X̃ ∈ H15,18,5 isomorphic

to X. Lemma 6.3 gives X̃ ∈ Λ0. Let S̃ (resp. S ) be the minimal degree surface
containing X̃ (resp. X ). Thus, there is u ∈ Aut(P5) such that u(S̃) = S; cf.
remark 2.5. Call Aut0(S) ∼= Aut(P1) × Aut(P1) ⊂ Aut(S) the connected com-
ponent of Aut(S) containing the identity. By corollary 2.4, there is v ∈ Aut0(S)
such that v(u(X̃)) = X. Remark 2.5 provides the existence of w ∈ Aut(P5) such
that w(S) = S and w|S = v. Thus w◦u ∈ Aut(P5) satisfies w◦u(S̃) = w(S) = S and
hence

w ◦ u(X̃) = w(u(X̃)) = v(u(X̃)) = X.

(c) follows from

dimµ(H15,18,5) = dimµ(Λ0) = dimH15,18,5 − dimµ−1(µ(X))

= dimH15,18,5 − dimAut(P5) = 68− 35 = 33.

�

6.2. An epilogue, a remark on the larger-than-expected components

Throughout this article, we dealt with several Hilbert schemes with larger-
than-expected components. Regarding the existence (or non-existence) of such
components in general, the following conjecture is stated in [21, p. 142]:
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Conjecture: (i) If H is any component of the Hilbert scheme Hd,g,r such that
the image of the rational map H −→ Mg has codimension g − 4 or less, then

dimH = X (d, g·r).

(ii) Right after that, it is also remarked in [21, p. 143] that ‘to be honest, the
available evidence suggests that the existence of a number β(g) tending linearly to
∞ with g, such that any such component H whose image in Mg has codimension
β ≤ β(g) has the expected dimension; we use the function g − 4 just for simplicity’.

Our results discussed in this article suggest that the function β(g) = g − 4 may
need to be replaced with smaller β(g).

Remark 6.6. (i) For (d, g, r) = (15, 15, 5), Hd,g,r = HL
d,g,r is irreducible

and dimHd,g,r = 64 > X (d, g, r) = 62 by theorem 4.1. By theorem 4.1,
codimµ(Hd,g,r) = 3 · g − 3 − (dimHd,g,r − dimAut(Pr)) = 13 > g − 4 and hence
the family Hd,g,r is special with big codimension in Mg. Also, this does not give
an evidence to disprove the conjecture.

(ii) For (d, g, r) = (15, 16, 5), the three components Γi (i = 1, 2, 3) of Hd,g,r =
HL
d,g,r have dimension larger than X (d, g, r) = 60 by theorem 5.1. By proposition

5.18, codimµ(Γ1) = 12 = g− 4, hence providing an evidence to the contrary to the
conjecture if β(g) = g − 4.

(iii) For (d, g, r) = (15, 13, 5), Hd,g,r is reducible with two components, one with
the expected dimension and the other one with more than expected dimension
whose image under the moduli map µ has codimension g − 4 = codim M1

g,3 =
3g−3−(2g+1); proposition 3.2. Hence the literal statement of the above conjecture
turns out to be untrue if one puts β(g) = g−4. However, elements of this component
are not linearly normal. There are other examples of this kind suggesting that
β(g) = g − 4 is rather too large to ensure the validity of the above conjecture. By
[11, proposition 3.5], there exists a component of the Hilbert scheme with (d, g, r) =
(2g−2−2k, g, r)—subject to several crude and technical numerical conditions such
as 2 ≤ g−4

k−1 ,
2g+2−2k

3 − 1 < r ≤ g− 2− 2k, g > (k− 1)2—dominating M1
g,k, whereas

codimM1
g,k = g + 2− 2k ≤ β(g) = g − 4. Again, curves in this component are not

linearly normal.
(iv) If one focus on components consisting of linearly normal curves, β(g) = g−5

would be a choice suggested by the example in (ii). The authors do not know of
any example of a component with dimension greater-than-expected such that the
image under the moduli map µ has codimension at most g − 5.
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