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Dynamics of weighted flexible ribbons
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This study explores the dynamics of flexible ribbons with an added weight G at
the tail in uniform flow, considering key parameters like inflow Reynolds number
(Reu), mass ratio (Mt) and aspect ratio (A). For two-dimensional ribbons, a simplified
theoretical model accurately predicts equilibrium configurations and forces. Inspired by
Barois & De Langre (J. Fluid Mech., vol. 735, 2013, R2), we introduce an important
control parameter (CG) that effectively collapses normalized forces and angle data.
Vortex-induced vibration is observed, and Strouhal number (St) scaling laws with CG
are identified. In three-dimensional scenarios, the model effectively predicts lift, but its
accuracy in predicting drag is limited to situations with small Reu values. The flow along
the side edges mitigates pressure differences, thereby suppressing vibration and uplift,
particularly noticeable in the case of narrow ribbons. This study offers new insights into
the dynamics of flexible bodies in uniform flow.
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1. Introduction

The interaction between flexible structures and surrounding fluids is a common and
well-known phenomenon in nature, as seen in the reconfiguration of plants (de
Langre 2008), flapping of flags (Shelley & Zhang 2011), swimming fish (Triantafyllou,
Triantafyllou & Yue 2000) and the flight of birds/insects (Wu 2011). Studying the
dynamics of these fluid–flexible structure systems is valuable for biologists seeking a
deeper understanding of plant biology and the locomotion of aquatic and aerial animals
(Nepf 2012; Lauder 2015). Moreover, the fundamental mechanisms uncovered can serve
as inspiration for engineers designing high-performance biomimetic aerial/underwater
vehicles or robots (Platzer et al. 2008; Smits 2019). The applications extend to energy
extraction (Allen & Smits 2001; Wu 2011; Mathai et al. 2022), the paper industry
(Watanabe et al. 2002) and flow control (Shen et al. 2003; Sunil, Kumar & Poddar 2022).
As a result, these issues have captivated human interest for several decades.
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Previous studies, such as Alben, Shelley & Zhang (2002), Gao et al. (2020) and Sun
et al. (2022), have focused on drag reduction in fluid–flexible structure interactions. Classic
theory for rigid bluff bodies suggests that drag (Fd) is proportional to the square of the
oncoming flow speed (U), i.e. Fd ∼ U2 (Batchelor 1967). However, flexible bodies under
fluid loading undergo reconfiguration, decreasing the projected area perpendicular to the
flow and adopting a more streamlined posture (Alben et al. 2002; Buchak, Eloy & Reis
2010; Luhar & Nepf 2011; Schouveiler & Eloy 2013). This reconfiguration results in a
slower-growing form of drag, expressed as Fd ∼ U2+V , where V is the Vogel exponent
(Vogel 1984, 1989). Examples like tree leaves (Vogel 1989) or circular plastic sheets
(Schouveiler & Boudaoud 2006) demonstrate a much slower drag growth than the U2 law
as they roll into tighter cones in the fluid. In a two-dimensional (2-D) flowing soap film, a
flexible fibre tethered at the midpoint exhibits drag scaling as U4/3 (i.e. V = −2/3) at high
Reynolds numbers (Re), as observed in the experimental and theoretical study by Alben
et al. (2002) and Alben, Shelley & Zhang (2004). Additionally, Zhu (2008) numerically
studied a compliant fibre tethered in a viscous flow at moderate Re (i.e. Re ∈ [10, 800])
and found that the power law exponents decrease monotonically from approximately 2
towards 4/3 as Re increases. Experimental investigations by Barois & de Langre (2013)
on the reconfiguration of flexible ribbons with added weight at the free end revealed that
drag is nearly independent of free-stream velocity at high Re. This unique phenomenon is a
focal point of the present study. In nature, plants laden with fruits naturally droop and sway
in the wind. Similarly, in everyday scenarios, heavy objects are often added to the trailing
edge of flags to prevent violent flapping. These observations highlight the relevance of
weighted flexible structures in both natural and engineered systems.

However, the aforementioned studies do not address the flapping or vibration of bodies.
When flow passes a bluff body, vortex shedding typically occurs with significant flow
separation at relatively high Re. In such cases, a vortex wake, such as the Kármán vortex
street, becomes observable. The periodic shedding of vortices results in oscillatory forces
acting on the body, causing drag and lift in the streamwise and transverse directions,
respectively. If the body is elastically mounted, it may undergo substantial vibration,
termed vortex-induced vibration (VIV) (Williamson & Govardhan 2004). There is an
extensive body of literature on VIV of rigid objects, including works by Sarpkaya (2004),
Wu, Ge & Hong (2012), Raissi et al. (2019), Carlson, Currier & Modarres-Sadeghi (2021)
and Han et al. (2023), for interested readers to explore.

In the presence of an oncoming flow, flexible structures like flags, fibres or filaments
may exhibit passive flapping motions (Zhang et al. 2000; Jia et al. 2007; Jia & Yin
2008; Kim et al. 2013). Taneda (1968) experimentally explored various flags and observed
that flags remain motionless in slow flows, transitioning to regular and irregular flapping
states as the flow speed increases. The motion of flexible filaments in a flowing soap
film was investigated by Zhang et al. (2000), revealing two distinct dynamical states for
a single filament: stretched–straight and coherent flapping states. Shelley, Vandenberghe
& Zhang (2005) studied oscillations of heavy flags through experiments and theoretical
analysis, identifying a critical flow velocity triggering flag flapping. The corresponding
Strouhal number (St) is consistent with that of swimming/flying animals for efficient
cruising (Taylor, Nudds & Thomas 2003). Eloy et al. (2008) conducted experiments
on the flutter of flexible plates with varying aspect ratios, highlighting the significance
of three-dimensional (3-D) effects. Numerous numerical studies complement these
experiments. For instance, 2-D simulations of a flag in viscous flow by Zhu & Peskin
(2002) and Connell & Yue (2007), or inviscid flow by Alben & Shelley (2008) confirmed
bistable properties or hysteresis observed in experiments by Zhang et al. (2000) and
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Shelley et al. (2005). Connell & Yue (2007), by altering the mass ratio of 2-D flags and
fluid, identified three distinct regimes: fixed-point, regular flapping and chaotic flapping
regimes. The flapping of 3-D flags was simulated by Kim & Peskin (2007) and Huang
& Sung (2010), considering the effects of gravity. Additional numerical simulations of
flexible flags or filaments can be found in works by Zhu & Peskin (2003), Zhu (2009),
Uddin, Huang & Sung (2013), O’Connor & Revell (2019) and others.

In this study, we numerically investigate the dynamics of flexible ribbons in a uniform
flow, with a weight G added at the trailing edges. Notably, the only existing experimental
research on this specific fluid–flexible structure problem was conducted by Barois & de
Langre (2013). However, their study lacked comprehensive discussion, omitting crucial
details such as flow fields, potentially due to experimental measurement challenges.
Additionally, they did not account for the effects of aspect ratio (A) and the 2-D cases,
which could yield notably different results, particularly when vibrations occur with a
large aspect ratio. Furthermore, their study neglected viscous effects given the sufficiently
large Re. To address these limitations, we conduct both 2-D and 3-D simulations at
low Reynolds numbers (∼O(102)). Our investigation involves a thorough examination of
ribbon reconfiguration and forces, and we establish a simplified theoretical model based
on force decomposition for accurate predictions. Force decomposition allows us to isolate
tangential forces, enabling a closer examination of viscous effects. Special attention is
given to ribbon vibrations and the derivation of scaling laws. Additionally, we explore 3-D
effects by varying the aspect ratio, conducting a detailed analysis of both 2-D and 3-D flow
fields.

Adding weight to the end of the flexible ribbon serves several purposes in our study.
Firstly, it simulates gravity’s effect on flexible structures encountered in real-world
scenarios. Our goal is to understand how gravity influences their motion and deformation.
Secondly, adding weight enables us to manipulate the system’s dynamic behaviour.
Adjusting the centre of mass affects dynamic characteristics like vibration frequency,
amplitude and mode shape of the ribbon. This provides more control variables and
experimental parameters, enhancing our understanding of fluid–structure interaction.
Furthermore, this approach offers insights and strategies for designing and optimizing
flexible structures. Optimizing weight distribution improves performance across aerospace
and mechanical engineering. For example, in flexible unmanned aerial vehicles, added
weights may enhance flight dynamics.

Note that both 2-D and 3-D simulations are essential in our study. Considering that
achieving a much wider range ofA would demand significant computational resources,
we selected a feasible range that still allowed us to investigate relevant 3-D effects. The
2-D simulations are valuable as they correspond to cases where A approaches infinity,
assuming deformation in the spanwise direction can be neglected. This simplification
enables us to focus on the fundamental behaviour of the ribbon and its interaction with
the surrounding fluid. Besides, conducting 2-D simulations aligns with our theoretical
analysis, which is inherently two-dimensional. This allows for a direct comparison between
theoretical predictions and numerical simulations, facilitating a deeper understanding of
the fluid–structure interaction phenomenon.

The remainder of this paper is organized as follows. In § 2, we present the physical
problem and mathematical formulation. The numerical method and validation are detailed
in § 3. In § 4, we discuss comprehensive results, and concluding remarks are provided
in § 5.
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Figure 1. Schematic diagrams illustrating 2-D (a) and 3-D (b) flexible ribbons in a uniform flow. Here, U
represents the oncoming flow speed, L and W denote the chord and span length of the ribbon, respectively, G
is the weight added at the trailing edge, θl is the angle between the tangent direction of the leading edge and
the horizontal direction and s as well as (s1, s2) represent the curvilinear coordinates on the ribbons.

2. Physical problem and mathematical formulation

The schematic diagrams of the 2-D and 3-D flexible ribbons considered in our study are
illustrated in figure 1. These flexible ribbons, characterized by a length L (and width W
in 3-D cases), are immersed in a uniform flow with an oncoming speed U. The leading
edge of the ribbon is stationary, while a weight G is affixed at the trailing edge, inducing
a natural droop. The remaining sections of the ribbon have the freedom to move and
passively deform, facilitated by fluid–structure interactions.

We employ the incompressible Navier–Stokes equations to model and solve the fluid
flow,

∂v

∂t
+ v · ∇v = − 1

ρ
∇p + μ

ρ
∇2v + f b, (2.1)

∇ · v = 0, (2.2)

where v is the velocity, p is the pressure, ρ is the density of the fluid, μ is the dynamic
viscosity and f b denotes the Eulerian momentum force acting on the surrounding fluid
due to the immersed boundary.

To characterize the deformation and motion of the ribbon within a Lagrangian
coordinate system, we employ the structural equation. In the case of 3-D scenarios, the
structural equation is formulated as follows (Huang & Sung 2010; Hua, Zhu & Lu 2014):

ρsh
∂2X
∂t2

=
2∑

i,j=1

∂

∂si

{
ϕij

[
δij −

(
∂X
∂si

· ∂X
∂sj

)−1/2
]

∂X
∂sj

− ∂

∂sj

(
γij

∂2X
∂si∂sj

)}
+ F s + F g,

(2.3)

where X (s1, s2, t) = (X(s1, s2, t), Y(s1, s2, t), Z(s1, s2, t)) is the position vector of the
ribbon, s1 and s2 are the chordwise and spanwise Lagrangian coordinates, respectively,
ρs is the structural mass density, h is the structural thickness, F s is the Lagrangian
force exerted on the plate by the surrounding fluid, F g = Gg/g is the weight added at
the trailing edge (here, g is the magnitude of gravitational acceleration g) and δij is the
Kronecker delta function. Matrix ϕij is the in-plane effect matrix, where ϕ11 = ϕ22 = Eh
is the structural stretching stiffness and ϕ12 is the structural shearing stiffness. Matrix γij
represents the out-of-plane effect matrix associated with bending and twisting stiffness,
where γ11 = EI denotes the chordwise bending stiffness. At the leading edge (s1 = 0),
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the simply supported condition is adopted, i.e.

X = (0, 0, s2),
∂2X

∂s2
1

= 0. (2.4a,b)

At the trailing edge (s1 = L) and two other free edges (s2 = 0 or W), the boundary
conditions are

ϕij

[
δij −

(
∂X
∂si

· ∂X
∂sj

)−1/2
]

∂X
∂sj

− ∂

∂sj

(
γij

∂2X
∂si∂sj

)
= 0,

∂2X
∂si∂sj

= 0. (2.5a,b)

Here, the Einstein summation convention is not applied on i and j (i, j = 1, 2). In addition,
the weight G = Wmtg is evenly distributed at the trailing edge (see figure 1b), where mt is
the mass per unit length of the additional weight.

For the 2-D cases, the structural equation (2.3) degenerates into the following form (Zhu
& Peskin 2002; Connell & Yue 2007; Hua, Zhu & Lu 2013):

ρsh
∂2X
∂t2

− ∂

∂s

[
Eh

(
1 −

∣∣∣∣∂X
∂s

∣∣∣∣
−1
)

∂X
∂s

]
+ EI

∂4X
∂s4 = F s + F g, (2.6)

where s is the Lagrangian coordinate, X (s, t) = (X(s, t), Y(s, t)) is the position vector of
the ribbon. At the leading edge of the ribbon (s = 0), the simply supported condition
(2.4a,b) becomes

X = (0, 0) ,
∂2X
∂s2 = 0. (2.7a,b)

At the free end (s = L), the boundary conditions are

− Eh

(
1 −

∣∣∣∣∂X
∂s

∣∣∣∣
−1
)

∂X
∂s

+ EI
∂3X
∂s3 = 0,

∂2X
∂s2 = 0. (2.8a,b)

Besides, the weight G = 1 · mtg (considering unit depth) is concentrated at the trailing
edge (see figure 1a).

In our study, the fluid density ρ, the dynamic viscosity μ and the dimensional length of
the ribbon L are fixed. To normalize the above equations, the characteristic quantities ρ,
L and Uref = κμ/ρL are chosen, where κ = 200 is a constant (note that other values of
κ are also acceptable, and would not alter the trends and findings presented in our study).
Therefore, the characteristic time is T = L/Uref , and the gravitational acceleration is g =
U2

ref /L. Based on dimensional analysis, the following dimensionless governing parameters
are introduced: the aspect ratioA = W/L, the Reynolds number based on the oncoming
flow speed Reu = ρUL/μ, the mass ratio of the ribbon to the fluid M = ρsh/ρL, the mass
ratio of additional weight at the trailing edge to the fluid Mt = mt/ρL2, the stretching
stiffness S = Eh/ρU2

ref L and the bending stiffness K = EI/ρU2
ref L3.

3. Numerical method and validation

The lattice Boltzmann method (Chen & Doolen 1998) is employed for the numerical
solution of the Navier–Stokes equations, while a finite element method is utilized to model
the motion of the flexible plate (Doyle 2001). The immersed boundary method (Zhu &
Peskin 2002) is employed to couple the fluid and structure solvers. To enforce the no-slip
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Figure 2. Validations for cases: (a) transverse displacement of the trailing edge of the 2-D flag with Re = 200,
K = 0.0015, M = 1.5, S = 1000 and Fr = 0.5 (Huang, Shin & Sung 2007); (b) transverse displacement of the
centre of the trailing edge of the 3-D flag with Re = 200, K = 0.0001, M = 1.0, S = 1000, Fr = 0 andA = 1
(Huang & Sung 2010).

boundary condition, the body force term f b in (2.1) acts as an interaction force between
the fluid and the immersed boundary. The deformation of the plate is addressed using the
corotational scheme (Doyle 2001), which is adept at handling large displacements. Further
details on the numerical methods can be found in our previous papers (Hua et al. 2013;
Huang, Wei & Lu 2018; Zhang, Huang & Lu 2020).

The simulations are performed on a computational domain in the range [−15, 25] ×
[−15, 15] in the x and y directions for 2-D cases, and [−10, 30] × [−10, 10] × [−10, 10] in
the x, y and z directions for 3-D cases. This domain size is sufficiently large to eliminate any
boundary effects. Initially, the fluid’s velocity field is Uex throughout the domain, where
ex is the unit vector in the x direction. A uniform velocity Uex is imposed at the upstream
boundary and the side boundaries of the fluid computational domain. At the downstream
boundary, a convective boundary condition ∂v/∂t + U∂v/∂x = 0 is specified.

To validate the numerical method, simulations of 2-D and 3-D flags in a uniform flow are
conducted. In the 2-D case, the non-dimensional parameters are Re = 200, K = 0.0015,
M = 1.5, S = 1000 and Froude number Fr = gL/U2 = 0.5 (Huang et al. 2007). For
the 3-D case, the parameters are Re = 200, K = 0.0001, M = 1.0, S = 1000, Fr = 0
and A = 1 (Huang & Sung 2010). The results are depicted in figure 2, showing good
agreement with results in the literature (Huang et al. 2007; Huang & Sung 2010).

Besides, we have also made a direct comparison of our results with those of Barois
& de Langre (2013), as shown in figure 3. In this comparison, the G-normalized drag
Fd/G of the 3-D ribbon is presented as a function of CG with Mt = 1 and A = 0.5,
where the definition of CG in 3-D scenarios is CG = ρU2LW/2G. Despite our Reu

being approximately one or two orders of magnitude smaller than theirs (∼O(102–103)
compared with ∼O(103–105)), our results capture the variation trend of the Fd/G curve
well. Especially when CG < 1, our results are consistent with their experimental findings.
This indicates the significance of our study within the Reu ∼ O(102–103) range. However,
for CG > 1, we observe that our Fd/G values are notably larger than their corresponding
values. This discrepancy may be due to the significant skin friction caused by viscous
effects in our study, owing to our lower Reu, as discussed in § 4.2.1.

Furthermore, our numerical strategy has been successfully validated and applied to
study various flow problems, including tandem flexible inverted flags in a uniform flow
(Huang et al. 2018), the impact of trailing-edge shape on the self-propulsive performance
of heaving flexible plates (Zhang et al. 2020) and the scaling laws of the self-propulsive
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Figure 3. The G-normalized drag Fd/G of the 3-D ribbon as a function of CG with Mt = 1 andA = 0.5.
The experimental results of Barois & de Langre (2013) are also presented withA ≈ 0.1.

140 145 150 155 160

1.8

2.0

2.2

2.4 �x/L = 0.0075   �t/T = 0.0001875

�x/L = 0.01       �t/T = 0.00025

�x/L = 0.02       �t/T = 0.0005

t/T

F x
/F

re
f

30 32 34 36 38 40
1.4

1.6

1.8

2.0

t/T

�x/L = 0.0125   �t/T = 0.0003125

�x/L = 0.025     �t/T = 0.000625

�x/L = 0.04       �t/T = 0.001

(a) (b)

Figure 4. Grid independence and time-step independence study for (a) the 2-D ribbon with Mt = 1 and
Reu = 200 and (b) the 3-D ribbon with Mt = 1, Reu = 200 and A = 0.25. The streamwise force Fx
normalized by Fref = (1/2)ρU2

ref L as a function of time is presented.

performance of flexible plates (Liu, Liu & Huang 2022). Additional detailed numerical
validations are available in these referenced papers.

The outcomes of the grid independence and time-step independence assessments for
the 2-D and 3-D flexible ribbons are depicted in figure 4. It indicates that 	x/L = 0.01
and 	t/T = 0.00025 are suitable for the 2-D cases, while 	x/L = 0.025 and 	t/T =
0.000625 are sufficient for the 3-D cases to attain accurate results. Consequently, we adopt
these mesh sizes and time-step sizes in our subsequent simulations.

4. Results and discussion

In the present simulations, certain parameters are held constant: mass ratio of the ribbon to
the fluid (M = 0.5), bending stiffness (K = 10−4) and stretching stiffness (S = 104). The
choice of a large S ensures that the ribbon is nearly inextensible, while a small K ensures
that the ribbon is fully compliant with the surrounding flow, aligning with the experimental
findings of Barois & de Langre (2013). The selected value for M also conforms to previous
studies on flexible bodies in a uniform flow (Huang & Sung 2010; Hua et al. 2014; Sun
et al. 2022), where M ranges from 10−1 to 100. The remaining key parameters, namely the
inflow Reynolds number Reu, the mass ratio of the additional weight at the trailing edge
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Mt = 1

Reu

Mt = 2 Mt = 3(a) (b) (c)

Figure 5. The equilibrium configurations of the ribbons for (a) Mt = 1, Reu = 100–400, (b) Mt = 2, Reu =
100–600 and (c) Mt = 3, Reu = 100–700. Here, the curves represent time-averaged configurations, as the
ribbons undergo periodic oscillation in 2-D scenarios. In each panel, the Reu values of the cases increase
gradually from left to right, with an interval of 100.

Mt and the aspect ratioA, are left variable. Both 2-D and 3-D cases are considered, and
the corresponding results are presented in §§ 4.1 and 4.2, respectively.

4.1. Analysis of two-dimensional results
In the 2-D scenarios, the aspect ratio A = ∞, and we investigate the effects of Reu
(∈ [50, 800] with an interval of 50) and Mt (= 1, 2 and 3). In Appendix A, we demonstrate
that the initial angle of the ribbon has no impact on the statistics of interest, such as
time-averaged forces. Once released from the initial state, the system promptly reaches
an equilibrium state, where the ribbon may undergo periodic oscillations.

Our initial focus is on quasi-static results (§ 4.1.1) to propose a simplified model
(§ 4.1.2). In this context, quantitative results are presented as time-averaged values unless
explicitly specified otherwise. For instance, the time-averaged drag and lift are defined as
Fd = f1

∫ t′+1/f1
t′ Fx(t) dt and Fl = f1

∫ t′+1/f1
t′ Fy(t) dt, respectively, where f1 represents the

dominant frequency or flapping frequency, and Fx(t) and Fy(t) denote the instantaneous
streamwise and transverse forces of the ribbon. The analysis of kinematic characteristics
(i.e. vibrations) and flow fields of the system will be conducted in § 4.1.4.

4.1.1. Reconfiguration and forces
The discussion on the reconfiguration of the ribbons is presented first, as depicted in
figure 5. In slow flows (i.e. small Reu), the ribbon sags downwards due to gravity
acting on the trailing edge. As Reu increases, the ribbon gradually lifts upwards with
noticeable bending deformations (figure 5), presenting a more streamlined shape. The
projection length of the ribbon in the x and y directions, denoted as Lx and Ly respectively,
monotonically increases and decreases with the flow speed, as illustrated in figure 6. These
observations align with the fundamental characteristics of flexible body reconfiguration in
flow (Alben et al. 2002; Gosselin, de Langre & Machado-Almeida 2010).

It is noteworthy that higher speeds can induce self-collision of the ribbon due to violent
vibrations (see § 4.1.4). This leads to simulation failure, and the corresponding cases are
discarded. Thus, there exists a critical value of Reu, denoted as Rec

u, beyond which the
system becomes unstable. The value of Rec

u is dependent on the mass ratio of the weight
added at the trailing edge Mt. We observed that, for Mt = 1, 2 and 3, the critical Reynolds
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Figure 6. The normalized projected length of the ribbon in the x and y directions, i.e. (a) Lx and (b) Ly.
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Figure 7. The normalized time-averaged (a) leading-edge inclination angle θl, (b) drag Fd , (c) lift Fl and
(d) leading-edge tension Tl of the 2-D ribbons as functions of Reu for various Mt. The hollow circles mark the
positions where θl = 0.

number Rec
u is approximately 450, 600 and 750, respectively. Consequently, in figures 6

and 7, only cases with Reu ≤ Rec
u are plotted. This observation of Rec

u increasing with Mt
agrees with expectations, as a larger Mt typically enhances system stability.

In addition to Lx and Ly, the leading-edge inclination angle θl can also be employed to
quantitatively describe the ribbon’s reconfiguration (see figure 1a). Figure 7(a) illustrates
θl as a function of Reu. It is noted that θl exhibits an initial increase followed by a slight
decrease with the increase of Reu. The decrease in θl for large Reu is associated with
the increase in the streamwise projection length Lx of the ribbon (see figures 5 and 6(a),
and note that the ribbon’s total length remains constant due to its inextensibility). Its
further mechanism will be discussed in figure 8. It is noteworthy that θl can significantly
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Figure 8. Time-averaged pressure contours around the ribbon for Reu = 350 (a), 400 (b) and 450 (c) with
Mt = 1. Solid and dashed lines denote the positive and negative normalized pressure contours, respectively.

exceed 0, as evident in figure 7(a), where the maximum value of θl is approximately 36◦,
or in figure 5, where the ribbon conspicuously protrudes upwards for large Reu. This
result diverges from the experiments conducted by Barois & de Langre (2013), where
the maximum value of θl is 0. A more in-depth analysis of this disparity is provided in the
subsequent sections.

The flow-induced reconfiguration significantly influences the forces acting on the
ribbons (Schouveiler & Boudaoud 2006; Luhar & Nepf 2011). Figure 7(b–d) presents the
time-averaged drag Fd, lift Fl and leading-edge tension Tl of the ribbon as functions of
Reu for different Mt. It is observed that, at small Reu, the drag of the ribbon adheres well
to the classical quadratic law, i.e. Fd ∼ Re2

u ∼ U2 (see the dashed line in figure 7b). This
behaviour is attributed to the minimal deformation of the ribbon at small Reu. For instance,
at Reu ≤ 250 with Mt = 3, the ribbon exhibits Ly ≥ 0.92 (see figure 6b), resembling an
upright rigid plate. Consequently, the drag of the ribbon at small Reu mimics that of rigid
bluff bodies. The U2 growth in drag also implies the predominance of form drag while skin
friction can be neglected (Alben et al. 2002). In the absence of skin friction, the tension
of the ribbon is uniform and equivalent to the weight G added at the trailing edge (see
§ 4.1.2). Therefore, at small Reu, the leading-edge tension Tl of the ribbon remains nearly
constant (see figure 7d), i.e. Tl ≈ G (note that the value of normalized weight G/Fref is
twice that of Mt due to the factor 1/2 in Fref = (1/2)ρU2

ref L).
As Reu increases, the influence of skin friction becomes significant. The hollow circles

in figure 7 mark the positions where θl = 0, signifying a point where skin friction starts
to play a crucial role. Figure 7(d) indicates that, when θl > 0, the leading-edge tension Tl
experiences a substantial increase with the rising Reu. This phenomenon may be attributed
to the fact that, under large Reu conditions (θl > 0), the ribbon’s shape tends to align more
parallel to the oncoming flow (see figure 5), facilitating the generation of skin friction.
Consequently, skin friction contributes to the tension in the ribbon, resulting in Tl > G for
high Reu (figure 7d).

Here, we would like to estimate the magnitude of the skin friction to better elucidate
whether it plays an important role. The skin friction can be approximated as viscous
drag per unit width on a flat plate aligned with the flow, expressed as: Fvis =
1.33ρU2LxRe−1/2

u (Batchelor 1967; Alben et al. 2002) (i.e. the U3/2 scaling), where
Lx is the length of the plate (in our study, it is the projected length of the ribbon
in the x direction). The dimensionless skin friction is given by: F̂vis = Fvis/Fref =
1.33ρU2LxRe−1/2

u /(0.5ρU2
ref L) = 2.66Re3/2

u Lx/(κ
2L). Through calculation, when Reu is
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Weighted flexible ribbons in a uniform flow

small, Fvis is at least one order of magnitude smaller than the total drag Fd, indicating its
negligible contribution (i.e. Fvis/Fd < 10−1). Specifically, for the case with Reu = 400
and Mt = 2, Fvis/Fd ≈ 0.09, thus the skin friction can be ignored. However, at large
Reu, Fvis significantly increases. For instance, for Reu = 600 and Mt = 2, Fvis/Fd ≈ 0.17,
which closely matches the percentage increase of Tl compared with G in figure 7(d).
Alternatively, the approximate 17 % increase can be directly observed from figure 12(a).
This indicates that, at large Reu, the skin friction may have a significant effect on
leading-edge tension increment. These conclusions are consistent with what we have found
and summarized in the above analysis and § 4.1.2.

Remarkably, it is observed that, when θl > 0, the change in Fd remains small, and Fd
approximates G as Reu increases (see figure 7b). In other words, the drag appears to be
independent of the oncoming flow speed, resembling the findings of Barois & de Langre
(2013). In the experiments by Barois & de Langre (2013), skin friction was neglected
as Reu ∼ O(104). Consequently, the tension in the ribbon equalled the weight added at
the trailing edge, i.e. Tl = G. As Reu increased, they observed that the leading edge of
the ribbon remained horizontal (Barois & de Langre 2013), implying θl = 0. Therefore, the
drag remained constant since Fd = Tl cos θl = G (see figure 25a). In contrast, in our study,
θl continues to increase after reaching 0 (figure 7a), resulting in a further reduction in the
transverse projection length Ly (figure 6b) and the form drag. However, the increased skin
friction, as detailed in the next section, compensates for the reduced form drag, thereby
maintaining the total drag substantially unchanged (figure 7b).

Concerning the lift Fl, it primarily relies on the transverse pressure difference across
the ribbon. Notably, a larger transverse pressure difference results in a greater θl.
Consequently, Fl exhibits a similar trend to θl as Reu increases (see figure 7c). In figure 8,
we present time-averaged pressure contours around the ribbon for Reu = 350, 400 and
450 with Mt = 1. It is seen that, with the rise in Reu, the high-pressure region beneath
the ribbon diminishes and shifts towards the trailing edge, indicating a decrease in the
pressure difference across the ribbon. Hence, beyond certain thresholds (e.g. Reu = 350
for Mt = 1 and Reu = 450 for Mt = 2), both Fl and θl decline as Reu increases, as depicted
in figure 7(a,c). Additionally, since Fl = Tl sin θl + G (see figure 25a), it becomes evident
that Fl ≈ G when θl = 0 (indicated by the hollow circles in figure 7c).

Furthermore, it is observable that an increase in Mt (or the weight G) leads to an
approximately proportional increase in Tl (figure 7d). This, in turn, results in a proportional
increase in Fd and Fl when Reu is large (figure 7b,c). Therefore, G emerges as a pivotal
characteristic force of the system, offering insights for force rescaling in § 4.1.3.

4.1.2. Simplified theoretical model
To facilitate a more insightful analysis of the fluid–flexible structure problem, it is
necessary to establish a simplified theoretical model. In Appendix B, we achieve this by
decomposing the force acting on the ribbon. Next, we would like to check whether the
model can effectively predict the equilibrium configurations and forces of the ribbons.

According to (B7), we can obtain the local inclination angle θ at different positions of
the ribbon. Specifically, in (B7), let ŝ = 0 (i.e. the leading edge), we can get that

θl = θ(0) = −π

2
+ fnL

G
, (4.1)

or
fnL
G

= θl + π

2
. (4.2)
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Figure 9. The local inclination angle θ along the ribbon for various Reu with Mt = 2. Symbols and lines
represent numerical and theoretical (according to (4.3)) results, respectively.
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Figure 10. The G-normalized total normal force fnL/G as a function of the leading-edge inclination angle θl
for different Mt. The dash-dotted line is the fitting curve: fnL/G = γ (θl + π/2), with a slope of γ = 1.1 and
R2 = 0.99.

Substituting (4.2) into (B7), we have

θ(ŝ) = θl − ŝ
(
θl + π

2

)
. (4.3)

The equations (4.3) and (B7) describe the theoretical equilibrium shape of the ribbon. In
practical terms, (4.3) is more useful than (B7) because it is more convenient to observe θl
rather than fn in experiments. Figure 9 shows the local inclination angle θ along the ribbon
for various Reu with Mt = 2, where symbols and lines represent numerical and theoretical
(according to (4.3)) results, respectively. It is seen that the theoretical model effectively
predicts θ along the ribbon when Reu is not too large. However, the model fails for large
Reu, primarily because, under those circumstances, the large tangential force stretches the
ribbon in the streamwise direction, and the shape is no longer a circular arc (see the cases
with large Reu in figure 5).

This theoretical model is also applicable for predicting the drag and lift of the ribbon.
Although (4.2) has provided the relationship between fn and θl, we aim to validate the
results through numerical simulations. Figure 10 illustrates the G-normalized total normal
force fnL/G as a function of the leading-edge inclination angle θl. It is observed that, for
all Mt, fnL/G well satisfies the linear relationship with respect to θl with the slope γ = 1.1,
while the slope given by (4.2) is 1. This slight difference may arise from the non-uniform
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Figure 11. The G-normalized (a) drag Fd/G and (b) lift Fl/G as functions of θl for various Mt. The
dash-dotted lines represent the theoretical predictions given by (4.5) and (4.6).

distribution of fn near the edges (see figure 26a). The tangential force might also influence
the slope as it alters the ribbon shape (i.e. θl) and local tension magnitude. Considering
these factors, γ can be regarded as a correction parameter, and (4.2) can be modified to

fn = γ G
L

(
θl + π

2

)
, (γ = 1.1). (4.4)

According to (4.3) and (4.4), the total drag Fd and lift Fl of the ribbon can be calculated
as follows:

Fd =
∫ 1

0
−fn sin θ ·L dŝ =

∫ 1

0
−γ G

L

(
θl + π

2

)
sin
[
θl − ŝ

(
θl + π

2

)]
·L dŝ

= γ G cos θl, (4.5)

Fl =
∫ 1

0
fn cos θ ·L dŝ =

∫ 1

0

γ G
L

(
θl + π

2

)
cos

[
θl − ŝ

(
θl + π

2

)]
·L dŝ

= γ G(1 + sin θl). (4.6)

Figure 11 presents the G-normalized drag Fd/G and lift Fl/G. The numerical results align
well with the theoretical values given by (4.5) and (4.6). However, small discrepancies are
noticed for cases with θl ≈ 0.2π (see figure 11a). This is not surprising as the assumptions
made in the theoretical prediction, fn ≈ C and fτ ≈ 0, are broken in these large-Reu cases.

Next, we examine the contribution of normal and tangential forces to drag and lift (i.e.
the x and y component forces experienced by the ribbon). Let us begin by investigating the
contribution of normal and tangential forces to drag

Fn,x = f1

∫ t′+1/f1

t′

∫ L

0
fn,x(s, t) ds dt, Fτ,x = f1

∫ t′+1/f1

t′

∫ L

0
fτ,x(s, t) ds dt, (4.7a,b)

where f1 is the vibration frequency of the ribbon (see § 4.1.4). The contribution of normal
and tangential forces to lift

Fn,y = f1

∫ t′+1/f1

t′

∫ L

0
fn,y(s, t) ds dt, Fτ,y = f1

∫ t′+1/f1

t′

∫ L

0
fτ,y(s, t) ds dt. (4.8a,b)

In figure 12, we present these forces as functions of Reu for cases with Mt = 2. It is
observed that, when Reu ≤ 300, the drag almost entirely comes from the normal force
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Figure 12. (a) The drag Fd , the total x-component of f n and f τ (i.e. Fn,x and Fτ,x) and (b) the lift Fl, the
total y-component of f n and f τ (i.e. Fn,y and Fτ,y) as functions of Reu with Mt = 2. The forces are rescaled
using G.

since Fd ≈ Fn,x and Fτ,x ≈ 0 (see figure 12a). When Reu > 300, the tangential force
begins to exert its effect in generating drag, contributing approximately 15 % of the drag
for Reu = 600 (see figure 12a). These results are consistent with our estimation of skin
friction or tangential force in § 4.1.1. Therefore, for high Reu (or θl), the drag calculated by
the theoretical model (4.5) is smaller than the actual one (see figure 11a).

On the other hand, as shown in figure 12(b), the tangential force contributes less to the
lift, and almost all the lift is generated by the normal force, i.e. Fl ≈ Fn,y. Hence, the
theoretical model works well for the lift, even when Reu (or θl) is large (see figure 11b).

4.1.3. Normalization analysis and rescaling
In § 4.1.1, we presented key results of the ribbons vs Reu, normalizing the forces by Fref =
(1/2)ρU2

ref L. However, these data did not collapse (see figure 7). The introduction of new
scaling parameters is necessary to achieve a possible uniform scaling and enhance our
understanding of the underlying mechanisms of the problem.

Note that the forces involved in the system mainly include the fluid force characterized
by ρU2L, the elastic force characterized by EI/L2 and the weight G added at the trailing
edge. Since the bending stiffness of the ribbon in our study is K = EI/ρU2

ref L3 = 10−4,
we can see that EI/L2 = 10−4ρU2

ref L ≈ 10−4ρU2L, i.e. the elastic force is negligible
because it is much smaller than the fluid force. While G and ρU2L are of the same
order of magnitude. Therefore, the behaviour of the ribbon is primarily governed by the
balance between G and the characteristic fluid force ρU2L. Hence, a key non-dimensional
parameter can be defined as (Barois & de Langre 2013)

CG = ρU2L
2G

, (4.9)

which can also be regarded as the G-normalized characteristic fluid force. It is inspired by
the theoretical model in § 4.1.2, where fn, Fd and Fl are all proportional to G (see (4.4),
(4.5) and (4.6)). This suggests that G serves as the characteristic force of the system, and
all forces, including the characteristic fluid force ρU2L, should be rescaled using G.

The forces and angle data in the new scaling are plotted in figure 13. Remarkably, this
scaling collapses the data well for all Mt, compared with figure 7. Additionally, for small
CG, the G-normalized drag can be scaled as Fd/G ∼ CG, corresponding to the U2 growth
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Figure 13. (a) Leading-edge inclination angle θl, (b) drag Fd , (c) lift Fl and (d) leading-edge tension Tl as
functions of CG for various Mt.

of drag in figure 7(b); while Fd/G ≈ 1 when CG is large (see figure 13b), corresponding to
Fd ≈ G (figure 7b). It is also noteworthy that, similar to Rec

u, there is a critical CG, i.e. Cc
G,

beyond which the system is unstable due to self-collision of the ribbon. For various Mt, Cc
G

remains almost constant, at approximately 2.4 (see figure 13). This consistency suggests
that Cc

G effectively characterizes the system, offering a more stable descriptor than Rec
u,

which increases with Mt. Hence, CG proves to be a more suitable control parameter for the
system.

4.1.4. Vortex-induced vibration of the ribbon
In the following, we will discuss the details of the VIV observed in the ribbons
(Williamson & Govardhan 2004). Figure 14 presents the instantaneous vorticity contours
and corresponding power spectrum density of the transverse force for Reu = 200, 300 and
500 with Mt = 2. The flow behind the ribbon exhibits unsteadiness, with vortices shedding
alternately, forming a classical Kármán vortex street (see supplementary movies available
at https://doi.org/10.1017/jfm.2024.512). The vortex shedding frequency corresponds to
the dominant frequency of the transverse force, denoted as f1, or the vibration frequency
of the ribbon. Observing figure 14(b,d, f ), it is evident that f1 increases with the rise in
Reu. The increase in vortex shedding frequency f1 signifies a reduction in the streamwise
distance between adjacent vortices. Additionally, as Reu increases, the transverse projected
length of the ribbon Ly gradually decreases (see figure 6b), resulting in a narrower wake.
Consequently, for larger Reu, the vortex street tends to be more compact in both the
streamwise and transverse directions, as illustrated in figure 14(a,c,e). Furthermore, it
is observed that, at relatively large Reu (e.g. Reu = 500 in figure 14e), the vortex street
appears irregular. This irregularity may be attributed to the complex interaction between
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Figure 14. Instantaneous vorticity contours (a,c,e) and corresponding power spectrum density (PSD) of the
transverse force (b,d, f ) for (a,b) Reu = 200, (c,d) Reu = 300 and (e, f ) Reu = 500 with Mt = 2. The frequency
is normalized by fref = Uref /L.

the ribbon’s structure and the vortices, leading to the emergence of secondary frequencies,
as depicted in figure 14( f ).

Note that the first natural frequency of the ribbon in vacuum is given by: f vac
1 =

(C2
1/2πL2)

√
EI/ρsh = Uref /L · (C2

1/2π)
√

K/M, where C1 = 1.875 is a constant (Van
Eysden & Sader 2006). Thus, the dimensionless first natural frequency is represented as
f̂ vac
1 = f vac

1 · L/Uref = (C2
1/2π)

√
K/M. In our study, the bending stiffness K (= 10−4) is

very small and the mass ratio M is of the order of 1. Consequently, f̂ vac
1 is considerably

small, nearly two orders of magnitude smaller than the observed flapping frequency in
figure 14. In conventional VIV systems, such as an elastically mounted rigid cylinder, the
oscillation frequency of the body closely aligns with its natural frequency f vac

1 (Williamson
& Govardhan 2004). This is attributed to the significant value of K, where the elastic force
acts as the primary restoring force for body vibration. However, in our study, the elastic
force EL/L2 is negligible compared with the fluid force (see § 4.1.3). In the following, we
will demonstrate that the Strouhal number (St) related to the ribbon’s vibration frequency
is determined by the equilibrium between the fluid reaction force and pressure difference
moments.
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Figure 15. Time history of streamwise force Fx, transverse force Fy and leading edge inclination angle θl for
(a) case I: Mt = 2, Reu = 200 and (d) case II: Mt = 2, Reu = 500. (b,c) Instantaneous pressure contours in
case I. (e, f ) Instantaneous pressure contours in case II. At t = t1 and t3, the ribbons reach their maximum θl;
at t = t2 and t4, minimum θl. Solid and dashed lines for pressure contours denote the positive and negative
normalized pressure contours.

Vortex shedding induces time-varying forces on the ribbons, as shown in figure 15,
which illustrates the time history of forces (Fx and Fy), θl and instantaneous pressure
contours at several representative moments. In the case with a lower Reu (i.e. case I:
Reu = 200 in figure 15a), the forces and θl exhibit an in-phase relationship. Specifically,
when θl reaches its local maximum value at t/T = t1, the high pressure difference across
the ribbon (see figure 15b) results in large Fx and Fy. Conversely, when θl is at its local
minimum, i.e. t/T = t2, the pressure difference across the ribbon significantly diminishes
(see figure 15c), leading to lower Fx and Fy at that instant.

However, in the case with a higher Reu (i.e. case II: Reu = 500 in figure 15d), the
forces and θl exhibit an antiphase relationship. At t/T = t3, high pressure exists near
the leading edge (figure 15e), causing the ribbon to lift upwards and θl to reach a local
maximum value. Conversely, at t/T = t4, the high-pressure range extends backward and
downward (figure 15 f ), corresponding to a locally minimum θl (figure 15d). It is worth
noting that a smaller θl implies a large transverse projected length Ly and higher pressure
difference. As a result, the locally minimum θl at t/T = t4 leads to larger forces (Fx and Fy)
compared with those at t/T = t3 (see figure 15e, f ). Additionally, due to the superposition
of multiple frequencies (see figure 14 f ), the variation of forces with time at Reu = 500 is
more complex than at Reu = 200.

Furthermore, the time-varying forces induce significant vibrations of the flexible ribbon.
In this context, the Strouhal number St, based on the vibration frequency f1, ribbon length
L and inflow speed U, can be introduced (Shelley et al. 2005; Huang & Sung 2010), i.e.

St = f1L
U

. (4.10)
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Figure 16. (a) The leading-edge vibration amplitude Al, (b) the Strouhal number St and (c) Lx/Ly for
different Mt as functions of CG.

Besides, the leading-edge vibration amplitude Al can be defined as the difference between
the maximum and minimum values of the leading-edge inclination angle θl. The values of
Al and St as functions of CG for various Mt are presented in figure 16(a,b). It is observed
that, as CG increases, Al significantly grows due to the effects of vortex shedding, reaching
a maximum of 30◦–45◦ (see figure 16a). Meanwhile, it is surprising to find that St remains
almost constant, i.e. St = C for small CG, where C ≈ 0.154 is a constant (see figure 16b).
In the following, we will show that this behaviour can be interpreted by considering the
balance of moments on the ribbon.

During the ribbon’s vibration, the mass and acceleration of the surrounding fluid set
into motion are scaled as ρL2 and f 2

1 L, respectively (Batchelor 1967; Gazzola, Argentina
& Mahadevan 2014). Consequently, the moment of the reaction force exerted by the fluid
on the ribbon scales as Mrea = ρL2 · f 2

1 L · L, considering that the arm of the force is scaled
as L. On the other hand, the moment caused by the pressure difference across the ribbon
scales as Mpre = FpreL = (ρU2L) · L, where Fpre is the force generated by the pressure
difference. Balancing these two moments yields

f1L ∼ U or St = C, (4.11)

meaning that the vibration velocity of the trailing edge f1L is proportional to U, and
consequently, St remains unchanged for small CG.

Next, we would like to focus on the range of large CG. As CG further increases,
Al significantly decreases while St notably increases (see figure 16a,b). In this case, a
simple scaling law between St and CG emerges, namely St ∼ C2/3

G (see figure 16b). The
explanation for this behaviour is analogous to the earlier analysis. For large CG (i.e. large U
or Reu), the ribbon experiences an overall upward lift and bending deformation (figure 5).
Consequently, the acceleration of the surrounding fluid and the arm of the force are scaled
as f 2

1 Ly and Ly, respectively. This leads to Mrea being scaled as ρL2 · f 2
1 Ly · Ly. On the other

hand, the moments of streamwise and transverse forces caused by pressure difference are
scaled as Mpre,s = ρU2Ly · Ly and Mpre,t = ρU2Lx · Lx, respectively. Note that Mpre,s may
be small enough to be ignored since Ly is much smaller than Lx when Reu (or CG) is large
(see figure 6). Balancing the moments Mrea and Mpre,t, we obtain

f1L·Ly ∼ U·Lx or St ∼ Lx/Ly, (4.12)

meaning that St is proportional to Lx/Ly. Figure 16(c) shows Lx/Ly as a function
of CG. It is observed that, for large CG, Lx/Ly exhibits approximately C2/3

G growth.
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Hence, (4.12) becomes

St ∼ Lx/Ly ∼ C2/3
G , (4.13)

which aligns well with the St-scaling indicated in figure 16(b) for large CG.
Additionally, when CG is small, Lx/Ly demonstrates a more rapid growth (figure 16c),

i.e.
Lx/Ly ∼ CG ∼ U2, (4.14)

attributed to the gradually noticeable deformations of the ribbon as the speed increases
(see figure 6). Note that the transitions of the St- and Lx/Ly-scalings both occur around
CG ≈ 0.5 (see figure 16b,c), indicating a strong correlation between them.

It is noteworthy that the range of St in the present study agrees broadly with that
observed in prior research on flapping flexible bodies (Taylor et al. 2003; Shelley
et al. 2005; Connell & Yue 2007; Huang & Sung 2010), specifically falling within
St ∈ [0.15, 0.6]. Moreover, considering St ∼ C2/3

G ∼ U4/3, it follows that f1 ∼ U7/3,
implying a rapid increase in f1 with increasing U. In simpler terms, the ribbon undergoes
high-frequency vibration when U (or Reu) is large. This high-frequency vibrational state is
inherently unstable and can potentially result in self-collision of the ribbon. As discussed
in §§ 4.1.1 and 4.1.3, critical values of Reu and CG (i.e. Rec

u and Cc
G) exist, below which the

system remains stable.

4.2. Analysis of three-dimensional results
In the preceding discussions of 2-D ribbon simulations, we uncovered significant
differences compared with the results obtained from the 3-D experiments conducted
by Barois & de Langre (2013), such as the uplift of ribbons (θl > 0) at high Reu and
the emergence of the VIV phenomenon. To elucidate the underlying reasons for these
phenomena and gain a deeper understanding of the distinctions between 2-D simulations
and 3-D experiments, we conducted 3-D simulations of the ribbons. In this context, we
primarily focused on exploring the influences of the aspect ratioA (set to values of 0.25,
0.5 and 1) and inflow Reynolds number Reu (ranging from 50 to 600 with intervals of 50),
while maintaining Mt = 1. The following sections provide a detailed examination of the
reconfiguration, forces acting on the ribbons, and the associated flow fields in the context
of these 3-D simulations.

4.2.1. Reconfiguration and forces
In the present 3-D simulations, the ribbon undergoes primarily chordwise bending
deformations, exhibiting minimal twisting or spanwise bending deformations. The ribbon
profile remains almost identical at different spanwise positions. Figure 17 presents the
equilibrium configurations of ribbons on the z = 0 section (symmetry plane), showing a
gradual upward deflection as U (or Reu) increases, similar to the 2-D results (see figure 5
or the dashed lines in figure 17a). An intriguing observation is that, in the case of 3-D
ribbons, θl experiences a significant reduction (figure 17), particularly whenA is small.
This reduction is more apparent in figure 18(a), which depicts θl as a function of Reu for
various A. Specifically, for A = 1, the maximum value of θl (i.e. θl,max) is 22.6◦; for
A = 0.5, θl,max = 13.6◦; while for A = 0.25, θl,max = 4.7◦ (see figure 18a), which is
notably small. It is worth noting that, for the 2-D ribbons withA = ∞, θl,max reaches up
to 36◦ (see figures 18(a) or 7(a)). Therefore, asA decreases, θl,max tends to approach zero,
consistent with experimental findings by Barois & de Langre (2013) whereA ≈ 0.1 for
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(a) (b) (c)= 0.25 = 0.5 = 1

Reu

Figure 17. The equilibrium configurations of ribbons on the z = 0 section (symmetry plane) for (a)A = 0.25,
(b)A = 0.5 and (c)A = 1 with Reu ranging from 100 to 600. Each curved line represents the equilibrium
state of a case. If the ribbon exhibits periodic oscillation, i.e. when the leading-edge vibration amplitude Al
is non-zero (refer to figure 21), the curve represents a time-averaged configuration. From bottom to top, Reu
gradually increases in increments of 100. For comparison, the equilibrium configurations of the 2-D ribbon
(i.e. the dashed lines) for Mt = 1 and Reu = 100–400 (as shown in figure 5a) are also presented in (a).
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Figure 18. (a) Leading-edge inclination angle θl, (b) drag Fd , (c) lift Fl and (d) leading-edge tension Tl of the
3-D ribbons as functions of Reu for variousA. For comparison, the corresponding 2-D results with Mt = 2
are also presented, see the double dots lines.

rectangular ribbons resulted in θl,max = 0◦. This phenomenon is attributed to 3-D effects,
as elaborated in § 4.2.3.

The forces (i.e. Fd, Fl and Tl) for various A are also displayed in figure 18. It can
be observed that, similar to the 2-D results in figures 18(b) or 7(b), when Reu is small,
the 3-D ribbon’s Fd is well approximated by U2 growth due to the small deformations
(figure 18b). However, as Reu increases further, Fd continues to rise at a reduced rate,
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Figure 19. The G-normalized (a) drag Fd/G and (b) lift Fl/G as functions of θl for variousA. The
dash-dotted lines are the theoretical lines given by (4.5) and (4.6).

ultimately surpassing the weight G (figure 18b). This increase is attributed to the drag
contributed by skin friction or tangential force, which is evident in figure 18(d), where
Tl/G significantly exceeds 1. It is worth noting that when skin friction is negligible,
Tl/G ≈ 1.

Concerning the lift shown in figure 18(c), similar to the 2-D results, the changing trend
of Fl aligns with that of θl (see figure 18a,c). Moreover, for narrow cases (i.e.A = 0.25)
and large Reu, the G-normalized lift Fl/G ≈ 1 (see figure 18c) since θl ≈ 0◦, considering
that Fl = Tl sin θl + G.

It is essential to note that all the data in figure 18 closely depend onA, a key parameter
determining 3-D effects. For wide ribbons, the results will be akin to those of 2-D cases
(see figure 18); for instance, θl forA = 1 closely resembles the 2-D data (see figure 18a).
However, for narrow cases, the ribbons exhibit higher Fd/G and Tl/G but lower Fl/G
and θl. Due to these opposing effects, introducing a single correction parameter that can
collapse all the data proves challenging. In the subsequent sections (§§ 4.2.2 and 4.2.3),
we will focus on the 3-D effects in detail by analysing the flow field.

To assess the suitability of the theoretical model in 3-D scenarios, we examine the
G-normalized drag Fd/G and lift Fl/G as functions of θl for various A in figure 19.
Similar to the 2-D results in figure 11(b), the theoretical model accurately predicts the lift
Fl for all 3-D cases (see figure 19b). However, for the drag, the theoretical model proves
accurate only within a narrower range of θl or Reu (see figure 19a) and when θl or Reu is
large, a significant discrepancy emerges between theoretical and simulated values of Fd,
particularly for narrow ribbons (figure 19a). In 3-D cases, the theoretical model does not
perform as well as it does in 2-D cases.

We aim to explore the potential reasons for this observation. We present the drag (Fd),
lift (Fl) and the total x- and y-components of normal and tangential forces (Fn,x, Fτ,x, Fn,y
and Fτ,y) as functions of Reu forA = 0.25 in figure 20. The analysis reveals a substantial
increase in the drag provided by the tangential force (i.e. Fτ,x) at high Reu. For instance,
at Reu = 600 andA = 0.25, Fτ,x constitutes 39 % of the total drag Fd (see figure 20a),
whereas it accounts for only approximately 15 % at most in the 2-D cases (see figure 12a).
A plausible explanation for the elevated tangential force or skin friction at small A
is as follows. When A = 0.25 and Reu is large, the front and middle portions of the
ribbons are oriented horizontally (see figure 17a). In this configuration, the direction of the
tangential force is parallel to that of Fd, implying that all the tangential force contributes
to drag. Conversely, in the case of 2-D ribbons or 3-D ribbons with largerA, where the
body curves upwards (see figures 5 and 17b,c), only the x-component or a portion of the
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Figure 20. (a) The drag Fd , the x-component of f n and f τ (i.e. Fn,x and Fτ,x) and (b) the lift Fl, the
y-component of f n and f τ (i.e. Fn,y and Fτ,y) as functions of Reu withA = 0.25. The forces are normalized
by G.
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Figure 21. The leading-edge vibration amplitude Al of the 3-D ribbons as a function of Reu for variousA.

tangential force contributes to drag. Consequently, for narrow cases (i.e.A = 0.25), the
tangential force contributes a higher proportion to drag. It is noteworthy that the tangential
force is disregarded in the theoretical model, leading to a smaller theoretical value for drag
compared with Fd. This difference is more pronounced for narrow ribbons (see figure 19a).
The equilibrium configuration is associated with the fluid flow and pressure on the ribbon,
which will be discussed in detail in § 4.2.3.

For the lift, as shown in figure 20(b), it is observed that the tangential force generates a
small negative lift contribution, denoted by Fτ,y < 0, primarily due to the sagging of the
trailing edge. Consequently, Fn,y in figure 20(b) and the theoretical lift value in figure 19(b)
are slightly larger than Fl. However, the negative lift is relatively small and decreases
with the increase ofA. Therefore, the theoretical model performs exceptionally well in
predicting the lift, particularly for wide ribbons, such asA = 1 in figure 19(b).

4.2.2. Three-dimensional effects stabilize ribbon motion
The VIV phenomenon may also occur in 3-D scenarios. Figure 21 displays the
leading-edge vibration amplitude Al as a function of Reu for variousA. It is evident that,
in comparison with the 2-D results presented in figure 16, the vibrations of the 3-D ribbons
are significantly suppressed, particularly for narrow cases. More specifically, at Reu = 300,
forA = 1, the maximum value of Al (i.e. Al,max) is notably reduced to approximately 5◦,
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Figure 22. Snapshots of (a,d,g) vortical structures visualized by an isosurface of the Q criterion, (b,e,h)
pressure contours at the spanwise symmetry plane z = 0 of the ribbon and (c, f,i) transverse velocity contours
at the horizontal section y = −0.3 for the cases with Reu = 300 (the top views of the ribbons are also drawn).
From top row to bottom row,A = 0.25, 0.5 and 1, respectively. The isosurface of the Q criterion is coloured
by streamwise velocity u.

in contrast to the Al,max ≈ 45◦ observed for the 2-D cases. Here, Al,max generally decreases
with A: Al,max ≈ 2◦ and 0 for A = 0.5 and 0.25, respectively (see figure 21). Hence,
it appears that the 3-D effects contribute to making the ribbons more stable compared
with their 2-D counterparts. Consequently, the St scalings observed for 2-D ribbons in
figure 16(b) are no longer applicable in 3-D scenarios.

The vibration characteristics of the ribbons may be closely associated with flow
structures. Figure 22 presents snapshots of the vortical structures around the ribbons
visualized by an isosurface of the Q criterion, pressure contours at the spanwise symmetry
plane z = 0 and transverse velocity contours at the horizontal section y = −0.3 for various
A with Reu = 300. In the cases ofA = 0.5 and 1, the snapshots are at the instant when
θl is at its maximum. It is observed that the vortical structure forA = 0.25 demonstrates
a steady pattern with two long antennae extended downstream (figure 22a). In contrast,
for A = 0.5 and 1, there is regular shedding of a hairpin-shaped vortex structure due
to the vibration of the ribbon (see figure 22(d,g) or supplementary movies). Moreover,
the vortical structure for larger A (i.e. A = 1) appears stronger than that for smaller
A (i.e. A = 0.5). These differences can be explained by analysing the velocity and
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Figure 23. Same as figure 22, but Reu = 500 and the position of the horizontal section for the transverse
velocity contours (c, f,i) is y = 0.

pressure fields. Examination of the velocity and pressure fields reveals that the fluid near
the two side edges of the ribbon exhibits a significant upward velocity (see figure 22(c, f,i),
where the transverse velocity v > 0 near the two sides). In other words, the flow can leak
from the two side edges, alleviating the high pressure below the ribbons and decreasing
the pressure difference across the ribbon (Gosselin et al. 2010), especially for cases with
smallA. As shown in figure 22(b,e,h), the pressure difference across the ribbon is clearly
reduced as A decreases, further suppressing the generation and shedding of vortices.
Consequently, whenA = 0.25, the boundary layer is completely attached to the ribbon
without flow separation (figure 22a). In summary, the leakage of flow from the two sides
of the ribbon is a key 3-D effect mechanism that stabilizes the ribbon’s motion.

4.2.3. Three-dimensional equilibrium configuration and fluid flow
For cases with larger Reu (i.e. Reu > 300), the vibration amplitude Al of the ribbon
decreases, and in some instances, the ribbon does not vibrate at all (see figure 21).
Figure 23 presents the corresponding vortical structures, pressure and velocity contours for
Reu = 500. It is evident that the fluid near the two sides exhibits larger transverse velocity
(figure 23c, f,i), resulting in a significant reduction of the high-pressure region below the
ribbon. For instance, in the narrow case (i.e. A = 0.25 in figure 23b), high pressure is
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concentrated mainly ahead of the leading and trailing edges, accompanied by a negative
pressure distribution behind them, indicating a high pressure difference near the leading
and trailing edges. This configuration is beneficial for increasing drag but not lift. It is
also noted that the wider ribbon exhibits a broader range of positive and negative pressure
regions compared with the narrow ribbon, resulting in a higher overall pressure difference.
This leads to increased total drag (Fd) and lift (Fl) for the wider ribbon. However, it is
important to consider the influence of the weight (G = Wmtg) added at the trailing edge,
which is proportionally larger for the wider ribbon due to its increased span length W. As
a result, the narrower ribbon may achieve a higher drag-to-weight ratio (Fd/G) but a lower
lift-to-weight ratio (Fl/G), as depicted in figure 18(b,c).

Additionally, for the front half of the ribbon, the pressure is nearly the same above and
below due to flow leakage from the two sides, resulting in a very small corresponding
pressure difference (figure 23b). As a result, the front half of the ribbon is approximately
horizontal, implying θl ≈ 0 for large Reu. This aligns well with our findings in figure 18(a)
and the experimental results of Barois & de Langre (2013) for narrow ribbons. As
A increases (i.e. A = 0.5 and 1), the negative pressure range extends forward, and
a considerable pressure difference across the front half of the ribbon is generated
(figure 23e,h), causing the ribbon to bend upwards. Hence, for wide ribbons, θl is evidently
greater than 0 when Reu is large (see figure 18a).

From the above analysis, we observe that the effects of side edge flow leakage are
more pronounced for high Reu (i.e. Reu = 500). Consequently, ribbons with different
A remain stable, and the corresponding vortical structures are similar to those shown
in figure 22(a) – a steady wake pattern with two long antennae (figure 23a,d,g). However,
as the inflow speed (or Reu) increases further, reaching a sufficiently high value, the
pressure difference can induce instability in the system, overriding the stabilizing effect of
the 3-D dynamics. This effect becomes more pronounced, particularly for wider ribbons.
Hence, for the case withA = 1.0 (green line in figure 21), the ribbon exhibits noticeable
vibration at Reu = 600, resulting in a peak value of the leading-edge vibration amplitude
Al.

5. Concluding remarks

In this study, we investigate the dynamics of 2-D and 3-D weighted flexible ribbons in a
uniform flow. As Reu or inflow speed U increases in the 2-D cases, ribbons are lifted, with
θl rising and Ly decreasing. At small Reu, Fd ∼ U2, and at high Reu, bending deformations
become pronounced. At higher Reu, the skin friction gradually increases, compensating
for the reduced form drag and Fd ≈ G. To better understand the underlying mechanisms, a
simplified theoretical model is established based on assumptions that the tangential force
or skin friction is ignored and the normal force is approximately evenly distributed along
the ribbon. Our simplified theoretical model accurately predicts lift and effectively predicts
equilibrium shapes and drag. The scaling parameter CG, first introduced by Barois & de
Langre (2013), successfully collapses forces and angle data for all 2-D cases.

In 2-D scenarios, ribbons undergo significant vibrations, exhibiting VIV with frequency
f1 increasing alongside oncoming flow velocity. The Strouhal number St = f1L/U follows
scaling laws with respect to CG: for small CG, St is constant, and for large CG, St ∼ C2/3

G ,
confirmed through an analysis of the balance between fluid reaction force and pressure
difference moments.

In 3-D cases, ribbons experience chordwise bending without obvious spanwise
deformations, maintaining similarity to 2-D shapes. The theoretical model effectively
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Figure 24. Time history of (a) leading-edge inclination angle θl and (b) streamwise force Fx of the 2-D
ribbon for different θ0 with Mt = 1 and Reu = 200.

predicts lift, while drag, influenced by tangential force or skin friction, is accurately
modelled for small Reu only. Compared with 2-D ribbons, 3-D vibrations are suppressed.
Side edge flow leakage effects reduce the pressure difference across ribbons, enhancing
stability, particularly for narrow ribbons. This prevents uplift in narrower ribbons, keeping
the front half nearly horizontal (θl ≈ 0) at large Reu, consistent with prior experimental
results. These insights contribute to a deeper understanding of the flexible body dynamics
in a uniform flow.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.512.
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Appendix A. Initial angle independence

For the study on initial angle independence, we conducted tests with three different initial
angles: θ0 = 0◦, −45◦ and −90◦, corresponding to the initial horizontal, inclined and
vertical placement of ribbons, respectively. Figure 24 presents the time history of the
leading-edge inclination angle θl and streamwise force Fx for the 2-D ribbon with Mt = 1
and Reu = 200 under different θ0. It is observed that, despite a certain phase difference,
the mean, amplitude and period of θl and Fx remain identical for different θ0. We have
also conducted tests for the 3-D cases (not shown here), and the results were consistent.
Therefore, in our simulations, we set θ0 to −90◦, representing the natural drooping state.

Appendix B. Simplified theoretical model based on force decomposition

To establish a simplified model, we first decompose the force acting on the ribbon. As
illustrated in figure 25(a), the Lagrangian force f s exerted on the ribbon by the surrounding
fluid can be broken down into two distinct components: the first is the normal force f n,
where the pressure component predominantly contributes; the second is the tangential
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Figure 25. (a) Schematic diagram of force decomposition. Here, τ and n denote the local tangential and
normal vectors, respectively, θl is the leading-edge (s = 0) inclination angle, Tl is the leading-edge tension and
G is the weight added at the trailing edge (s = L). (b,c) Depict the distributions of normal and tangential forces
on the ribbon, respectively, with Mt = 2 and Reu = 350.
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Figure 26. Distributions of (a) normal force fn and (b) tangential force fτ along the ribbon for various Reu
with Mt = 2.

force f τ , primarily arising from viscous effects. The definitions of these forces are as
follows (Peng, Huang & Lu 2018; Liu, Huang & Lu 2020; Liu et al. 2022):

f s = [−pI + Tμ] · n = f n + f τ , (B1)

f n = ( f s · n)n = fnn = ( fn,x, fn,y), (B2)

f τ = ( f s · τ )τ = fττ = ( fτ,x, fτ,y), (B3)

where I represents the unit tensor, Tμ stands for the viscous stress tensor, fn and fτ
denote the magnitudes of f n and f τ , respectively. Additionally, τ indicates the unit
tangential vector directed towards the trailing edge, n represents the unit normal vector
and [·] signifies the jump in a quantity across the immersed boundary. As an illustrative
example, figure 25(b,c) shows the distributions of normal and tangential forces on the
ribbon, respectively, for Mt = 2 and Reu = 350.

Figure 26 displays the normal and tangential forces ( fn and fτ ) along the ribbon for
various Reu with Mt = 2. It is evident that fn generally increases with the rise in Reu
(figure 26a). This is attributed to a larger oncoming flow speed U, resulting in an increased
pressure difference, as the pressure difference across the ribbon scales with ρU2 (Ristroph
& Zhang 2008; Gao et al. 2020). Moreover, when Reu is not excessively large, fn is
approximately evenly distributed along the ribbon, except near the edges. Regarding the
tangential force fτ , it is notably small for Reu ≤ 400 and becomes relatively large for larger
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Reu (figure 26b). Consequently, skin friction or fτ is negligible for small Reu but may play
a role for larger Reu, consistent with our analysis in figure 7.

For higher Reu, the trends of fn and fτ are closely linked to θl. Notably, the pressure
contours around the ribbon for Reu > 400 with Mt = 2 resemble those for Reu > 300
with Mt = 1, as illustrated in figure 8. Consequently, as Reu exceeds 400, the decrease
in θl signifies a reduction in the pressure difference near the leading edge of the ribbon.
This observation aligns with the significant decrease in fn near the leading edge (s/L = 0)
evident in figure 26(a), indicating an uneven distribution of fn under these conditions.
Furthermore, the decrease in θl coupled with the increase in Reu promotes the generation
of skin friction, resulting in a notable increase in the tangential force fτ at higher Reu
values (figure 26b).

The preceding analysis lays the foundation for two key assumptions in establishing a
simplified model, i.e. fn ≈ C and fτ ≈ 0, where C is a positive constant. However, it is
crucial to note that these assumptions are valid only when Reu is not excessively large.

Based on the force balance of a infinitesimal element, we can easily obtain the following
equations about the normal and tangential forces (Barois & de Langre 2013):

Ts
dθ

ds
= −fn, (B4)

dTs

ds
= −fτ , (B5)

where Ts the local tension magnitude and θ is the local inclination angle of the ribbon. The
negative sign in (B4) is attributed to the clockwise change in θ along the ribbon, which is
opposite to the positive direction.

Since fτ ≈ 0, (B5) becomes dTs/ds ≈ 0, which indicates that Ts is approximately
constant. Considering the boundary condition at the trailing edge, i.e. Ts,s=L = G, we have
Ts ≈ G along the ribbon. Therefore, (B4) is simplified as

dθ

ds
= − fn

G
, (B6)

where the left side is the local curvature of the ribbon and the right side is a constant, i.e.
(B6) represents a circular arc. The entire equilibrium shape of the ribbons with relatively
small and moderate Reu indeed resembles perfect circular arcs (see figure 5). Integrating
(B6) and considering θ = −π/2 at ŝ = 1 yields

θ(ŝ) = −π

2
+ fnL

G
(1 − ŝ), (B7)

where ŝ = s/L is the dimensionless curvilinear coordinate along the ribbon, fnL represents
the total normal force and fnL/G is the G-normalized total normal force. Equation (B7) is
similar to the result of Barois & de Langre (2013). Further, in § 4.1.2, we demonstrate that
the model can also be used to predict the forces on the ribbons.
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