A GENERALIZATION OF THE PAPPUS CONFIGURATION

GERALD BERMAN

1. Introduction. A configuration is a system of m points and n lines such that each point lies on μ of the lines and each line contains ν of the points. It is usually denoted by the symbol (m_{μ}, n_{ν}), with $m \mu=n \nu$. Two configurations corresponding to the same symbol are said to be equivalent if there exist $1 \mathbf{1}$ mappings of the points and lines of one onto the points and lines of the other which preserve the incidence relations. It is a combinatorial problem to determine whether a given set of integers m, n, μ, ν with $m \mu=n \nu$ corresponds to an abstract configuration, and a geometric problem to determine whether the configuration exists in a given geometry. For example, there are two inequivalent configurations corresponding to the symbol $\left(12_{4}, 16_{3}\right)$, both of which exist in the real projective plane. A configuration is said to be inscriptible in a plane cubic if there exists an equivalent configuration whose points lie on the cubic. For such a configuration $\nu=3$.

A family of configurations K_{n} corresponding to the symbol $\left(3 n_{n}, n^{2}{ }_{3}\right)$ ($n=1,2, \ldots$) will be studied in this paper. K_{1} is a line containing three distinct points, K_{2} is the complete quadrilateral, K_{3} is the Pappus configuration, and K_{4} is a configuration studied by Zacharias [5]. In section 2 it will be shown that K_{n} contains configurations of the type K_{q} if n is a multiple of q. In section 3 it will be shown that K_{n} is inscriptible in the plane cubic curve as a real configuration with two degrees of freedom, and consequently exists in the real projective plane. This generalizes a result proved by Feld [2] for the Pappus configuration.
2. The family of configurations K_{n}. Let A_{i}, B_{i}, and $C_{i}(i=0,1, \ldots, n-1)$ be called points, and let ($i j$) $(i, j=0,1, \ldots, n-1$) be called lines, where ($i j$) represents the triple of points A_{i}, B_{j}, C_{k} subject to the condition

$$
i+j+k \equiv 0
$$

$(\bmod n)$.
K_{n} is defined abstractly as the system of $3 n$ points $A_{i}, B_{i}, C_{i}(i=0,1, \ldots$, $n-1$) and n^{2} lines ($\left.i j\right)(i, j=0,1, \ldots, n-1)$. It can easily be verified that each of the $3 n$ points lie on n of the lines, and each of the n^{2} lines contains 3 of the points, so that the configuration has the symbol $\left(3 n_{n}, n^{2}{ }_{3}\right)$. The $3 n$ points of K_{n} are the vertices of $3 n$-gons in perspective in pairs from the vertices of the third, the n^{2} lines of K_{n} being the lines of perspectivity. K_{n} can also be visualized as a $2 n$-gon $A_{0} B_{0} A_{1} B_{1} \ldots A_{n-1} B_{n-1}$ with the lines $A_{i} B_{j}$ passing through the point $C_{k}(i+j \equiv-k \bmod n ; k=0,1, \ldots, n-1)$.

If n is not a prime number, the configuration K_{n} has non-trivial components

[^0]which are configurations belonging to the same family. In the proof of the following theorem the matrix $\left(a_{i j}\right)(i=1,2 ; j=1,2, \ldots, f)$ will represent the f^{2} lines $\left(a_{1 r} a_{2 s}\right)(r, s=1,2, \ldots, f)$.

Theorem 2.1. If n is a multiple of q, K_{n} contains $(n / q)^{2}$ distinct configurations K_{q} no two of which have a line in common. Each line of K_{n} is a line of one of the K_{q}, and each point of K_{n} is a point of n / q of the K_{q}.

Consider the r^{2} matrices

$$
K(i j) \equiv\left(\begin{array}{cccc}
i r+i & 2 r+i & \ldots & (q-1) r+i \\
j & r+j & 2 r+j & \ldots
\end{array}(q-1) r+j\right)(i, j=0,1, \ldots, r-1)
$$

where $r=n / q$. The lines represented by $K(i j)$ are the lines of a K_{q} for all $i, j=0,1, \ldots, r-1$. To see this define

$$
2.2 \quad A_{k r+i} \equiv A^{*}{ }_{k}, \quad B_{k r+j} \equiv B_{k}^{*}{ }_{k}, \quad C_{k r-i-j} \equiv C_{k}^{*} \quad(k=0,1, \ldots, q-1)
$$

The $3 q$ points 2.2 are the only points on the lines represented by $K(i j)$. From the condition 2.1 for collinearity it follows that the points $A^{*}{ }_{k}, B^{*}{ }_{l}, C^{*}{ }_{m}$ will be collinear if and only if
$2.3 \quad r(k+l+m) \equiv 0 \quad(\bmod n)$.
Since $r q=n, 2.3$ holds if and only if
2.4

$$
k+l+m \equiv 0
$$

$$
(\bmod q)
$$

The points 2.2 and the lines $A^{*}{ }_{k}, B^{*}{ }_{l}, C^{*}{ }_{m}$ subject to the condition 2.4 form a K_{q} by definition.

The r^{2} configurations K_{q} represented by $K(i j)(i, j=0,1, \ldots, n-1)$ are all distinct. By a consideration of the matrices $K(i j)$ it is seen that no two have a line in common. Furthermore, any point of K_{n} occurs in exactly r of the K_{q}. The $q^{2} r^{2}=n^{2}$ lines of the $r^{2} K_{q}$ make up all the lines of K_{n}.

Corollary 1. The 16 lines of K_{4} can be divided into four sets of four lines which form complete quadrilaterals.

This result was obtained by Zacharias [5].
Corollary 2. $K_{3 q}$ contains q^{2} distinct Pappus configurations.
3. The inscription of K_{n} in the non-singular plane cubic curve. Any real non-singular cubic C^{C} may be transformed into the Weierstrass canonical form by a suitable choice of the triangle of reference. Then the co-ordinates of any point on \mathfrak{C} can be expressed parametrically in the form ($\wp u, \wp^{\prime} u, 1$) where $\wp u$ is the Weierstrass elliptic function. The point having the parameter u will be denoted by u. The necessary and sufficient condition that the points u, v, w be collinear is that

$$
u+v+w \equiv 0
$$

where 2ω and $2 \omega^{\prime}$ are the periods of $\wp u$. The real plane cubics fall into two classes, unipartite and bipartite, depending upon whether they have one or two real circuits. For the bipartite cubic 2ω and $2 \omega^{\prime} / i$ are real and positive, while for the unipartite cubics 2ω and $2 \omega^{\prime}$ are conjugate complex. The points on the even branch of the bipartite cubic are given by values of the parameter of the form $u+\omega^{\prime}$ where u is real. Points on the odd branch of either type are given by real values of the parameter.

The conditions that the $3 n$ points

3.2

$$
A_{i}, B_{i}, C_{i}
$$

$$
(i=0,1, \ldots, n-1)
$$

of \mathfrak{C} should be points of a K_{n} are
3.3

$$
A_{i}+B_{j}+C_{k} \equiv 0 \quad\left(\bmod 2 \omega, 2 \omega^{\prime}\right)
$$

with
3.4

$$
i+j+k \equiv 0
$$

Sum those equations of 3.3 having A_{i} in common:

$$
\sum_{j, k=1}^{n-1}\left(A_{i}+B_{j}+C_{k}\right) \equiv 0 \quad\left(\bmod 2 \omega, 2 \omega^{\prime}\right)
$$

so that

$$
n A_{i} \equiv-\sum_{j=0}^{n-1}\left(B_{j}+C_{j}\right) \quad\left(\bmod 2 \omega, 2 \omega^{\prime}\right)
$$

for $i=0,1, \ldots, n-1$. Thus

$$
n A_{0} \equiv n A_{1} \equiv \ldots \equiv n A_{n-1} \quad\left(\bmod 2 \omega, 2 \omega^{\prime}\right)
$$

Similarly
3.6

$$
3.7
$$

3.7

$$
\begin{aligned}
n B_{0} \equiv n B_{1} \equiv \ldots \equiv n B_{n-1} & \left(\bmod 2 \omega, 2 \omega^{\prime}\right) \\
n C_{0} \equiv n C_{1} \equiv \ldots \equiv n C_{n-1} & \left(\bmod 2 \omega, 2 \omega^{\prime}\right)
\end{aligned}
$$

The equation $n u \equiv v\left(\bmod 2 \omega, 2 \omega^{\prime}\right)$ has n^{2} distinct solutions

$$
u \equiv v / n+2\left(r \omega+s \omega^{\prime}\right) / n \quad\left(\bmod 2 \omega, 2 \omega^{\prime}\right)(r, s=0,1, \ldots, n-1)
$$

If \mathfrak{C} is unipartite and v real, u will be real if and only if $r=s$. This leaves n distinct real solutions

$$
u \equiv v / n+2 r\left(\omega+\omega^{\prime}\right) / n \quad\left(\bmod 2 \omega, 2 \omega_{0}\right) \quad(r=0,1, \ldots, n-1)
$$

Thus, since the points $A_{i}(i=0,1, \ldots, n-1)$ are all distinct and since 3.5 holds we may take

$$
A_{i} \equiv A+2 i\left(\omega+\omega^{\prime}\right) / n \quad\left(\bmod 2 \omega, 2 \omega^{\prime}\right) \quad(i \equiv 0,1, \ldots, n-1)
$$

with A real. Similarly we may take
with B, C real. The condition 3.3 will be satisfied by the points 3.2 if and only if
3.12

$$
A+B+C \equiv 0 \quad\left(\bmod 2 \omega, 2 \omega^{\prime}\right)
$$

The configuration will degenerate if any two of the sets of points 3.9, 3.10. 3.11 are the same. Thus $n A, n B$ and $n C$ must be different modulo $2 \omega, 2 \omega^{\prime}$.

If \mathbb{C} is bipartite and v real, u will be real if and only if $s=0$. This leaves n distinct real solutions

$$
u \equiv v / n+2 r \omega / n \quad\left(\bmod 2 \omega, 2 \omega^{\prime}\right) \quad(r=0,1, \ldots, n-1)
$$

Thus we may take
3.16

$$
\begin{array}{llll}
3.14 & A_{i} \equiv A+2 i \omega / n & \left(\bmod 2 \omega, 2 \omega^{\prime}\right) & (i=0,1, \ldots, n-1) \\
3.15 & B_{i} \equiv B+2 i \omega / n & \left(\bmod 2 \omega, 2 \omega^{\prime}\right) & (i=0,1, \ldots, n-1)
\end{array}
$$

$$
3.15
$$

with A, B, and C real satisfying condition 3.12. Thus $n A, n B$, and $n C$ must be different, as before, so that the configuration will not degenerate.

If \mathfrak{C} is bipartite and $u-\omega^{\prime}$ real, then the points 3.13 will all be real and on the even branch. Thus if any one of the points 3.14 lies on the even branch, i.e. if $A-\omega^{\prime}$ is real, all the points 3.14 lie on the even branch. A similar statement holds for the points 3.15 and 3.16 . By condition 3.12 which must be satisfied by the points of K_{n}, either none or exactly two of the sets of points $3.14,3.15,3.16$ lie on the even branch.

We have proved
Theorem 3.1. $\quad K_{n}$ may be inscribed in a non-singular plane cubic © with two degrees of freedom. Any two real points u, v such that $n u, n v$, and $-n(u+v)$ are different $\left(\bmod 2 \omega, 2 \omega^{\prime}\right)$ may be selected as a pair of points of the configuration, and the remaining points are uniquely determined. If \mathbb{C} is bipartite the $3 n$ points of K_{n} fall into three sets of n points such that either two or none of the sets lie on the even branch.

We have also proved
Theorem 3.2. K_{n} exists in the real projective plane for all n.

References

[1] H. S. M. Coxeter, Self-dual configurations and regular graphs, Bull. Amer. Math. Soc., vol. 56 (1950), 413-455.
[2] J. M. Feld, Configurations inscriptible in a plane cubic curve, Amer. Math. Monthly, vol. 43 (1936), 549-555.

$$
\begin{aligned}
& 3.10 \\
& 3.11 \quad C_{i} \equiv C+2 i\left(\omega+\omega^{\prime}\right) / n \quad\left(\bmod 2 \omega, 2 \omega^{\prime}\right) \\
& \begin{array}{l}
(i=0,1, \ldots, n-1), \\
(i=0,1, \ldots, n-1),
\end{array}
\end{aligned}
$$

[3] O. Hesse, Über Curven dritter Ordnung und die Kegelschnitte welche diese Curven in drei verschiedenen Punkten berühren, J. Reine Angew. Math., vol. 36 (1848), 143-176.
[4] Th. Reye, Das Problem der Configurationen, Acta Math., vol. 1 (1882), 97-108.
[5] M. Zacharias, Untersuchungen über ebene Konfigurationen $\left(12_{4}, 163\right)$, Deutsche Math., vol. 6 (1941), 147-170.
[6] ———, Eine ebene Konfiguration $\left(12_{4}, 16_{3}\right)$ in der Dreiecksgeometrie, Monatsh. Math. Phys., vol. 44 (1936), 153-158.
[7] _- Über den Zusammenhang des Morleyschen Satzes von den winkeldrittelnden Eckenlinienen eines Dreiecks mit den trilinearen Verwandtschaften in Dreieck und mit einer Konfiguration (124, 16_{3}) der Dreiecksgeometrie, Deutsche Math., vol. 3 (1938), 36-45.

Illinois Institute of Technology

[^0]: Received April 25, 1950.

