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Abstract. In this work, we study ergodic and dynamical properties of symbolic dynamical
system associated to substitutions on an infinite countable alphabet. Specifically, we
consider shift dynamical systems associated to irreducible substitutions which have
well-established properties in the case of finite alphabets. Based on dynamical properties
of a countable integer matrix related to the substitution, we obtain results on existence and
uniqueness of shift invariant measures.
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1. Introduction
Let A be a countable set (called an alphabet), A∗ be the set of finite words on A, and
AZ+ be the set of infinite words on A, where Z+ = {0, 1, 2, . . .}. A substitution is a
map σ : A → A∗. We assume that for every letter a ∈ A, σ(a) is not empty. We extend
σ to A∗ and AZ+ by concatenation and, to simplify the notation, we also denote these
extensions by σ . Hence, σ(u0 . . . un) = σ(u0) . . . σ (un) for all u0 . . . un ∈ A∗ and
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σ(u0u1 . . .) = σ(u0)σ (u1) . . . for all u0u1 . . . ∈ AZ+ . We assume that there exists a
letter a in A such that the length of the finite word σn(a) converges to infinity as n goes to
infinity.

To any substitution σ , we can associate a shift dynamical system (�σ , S), where

�σ = {u ∈ AZ+ : any finite factor of u occurs in σn(a) for some n ∈ N and a ∈ A},
N = {1, 2, . . .}, and S is the shift map given by

S(u0u1 . . .) = u1u2 . . . for all u = u0u1 . . . ∈ AZ+ .

Shift dynamical systems associated to substitutions provide many important examples
in ergodic theory and they have been well studied in the literature when the alphabet is
finite (see for instance [18, 19]). It is classical that if σ is a primitive substitution on
A = {0, . . . , d − 1}, d ≥ 2, i.e., there exists k ∈ N such that for all a, b ∈ A, the letter
b occurs in the word σk(a), then the dynamical system is minimal, uniquely ergodic with
topological entropy 0 (see [16] and [19, Ch. 5]). Moreover, �σ is the closure of the orbit
of any periodic point of σ .

The unique shift invariant probability measure μ is given on cylinders [w], where
w = w0 . . . wn, wi ∈ A for i = 0, . . . , n, is a finite word that occurs in u and [w] =
{u0u1 . . . ∈ �σ , ui = wi , i = 0, . . . , n}, by μ[w] which is the frequency of occurrences
of w in the periodic point u. Moreover, the vector (μ[0], . . . , μ[d − 1]) is the normalized
left Perron eigenvector associated to the dominant Perron–Frobenius eigenvalue of the
matrix Mσ = (Mij )0≤i,j≤d−1 associated to σ , where Mij := |σ(i)|j is the number of
occurrences of the letter j in the word σ(i). However, it is known (see [2]) that if σ

is of Pisot type, then the dynamical system (�σ , S) has good geometrical properties, in
particular, it is semi-conjugated to a translation on the torus Td−1.

When the alphabet A is a topological compact set, many results are given in [4, 13, 19].
When A is countably infinite, the situation is more complicated and there are already

some work on the subject, see for instance [1, 4, 6, 13]. One of the difficulties in studying
ergodic properties of the dynamical system (�σ , S) in such cases lies in the fact that
the countably infinite matrix Mσ may present a larger number of possible behaviors.
Specifically, consider an irreducible countably infinite matrix M = (Mij )i,j∈Z+ , which
means for all i, j ∈ Z+, there exists an integer n ≥ 1 such that for all k ≥ n, Mk

ij > 0,
where for the sake of simplicity, we write (Mn)ij = Mn

ij . It is known that for all
i, j ∈ Z+, limn→∞(Mn

ij )
1/n = λ exists. We say that M is transient if and only if∑+∞

n=0(M
n
ij /λ

n) < +∞, otherwise M is said to be recurrent. It is known that if M is
recurrent, there are left and right eigenvectors l and r associated to λ, and when the scalar
product l · r is finite, we say that M is positive recurrent, otherwise M is said to be null
recurrent. Thus, for instance, if the countably infinite matrix Mσ is irreducible, then it
could be either transient or null recurrent or positive recurrent and each of these cases may
be associated to a distinct behavior of (�σ , S).

For substitutions on countably infinite alphabets, an important study was initiated by
Ferenczi in [6]. In that paper, several results were proved, in particular, it considered
the squared drunken substitution defined on A = 2Z by σ(n) = (n − 2)nn(n + 2), n ∈ A
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and proved that the dynamical system (�σ , S) is not minimal and has non-finite invariant
measure. However, it is also shown that (�σ , S) has an infinite invariant measure μ which
is shift ergodic and has Krengel entropy equal to 0.

Let us recall that σ is called left determined or determined to order 1 if there exists
a non-negative integer N such that every w of length at least N which occurs on some
element of �σ has a unique decomposition w = w1 . . . ws , where each wi = σ(ai) for
some ai ∈ A, except that w1 may be only a suffix of σ(a1) and ws may be only a prefix of
σ(as), and the ai , 1 ≤ i ≤ s − 1 are unique.

The definition of determined to order 1 was introduced in [14] (see also [17,
Definition 1]). In [6], the author used the same definition and called it left determined. It
is known that this condition is stronger than recognizability, see [17].

In [6], it is also proved that if σ is of constant length, left determined, and has an
irreducible aperiodic positive recurrent matrix Mσ , then the associated shift dynamical
system admits an ergodic probability invariant measure.

In [1], the authors constructed stationary and non-stationary generalized Bratteli–
Vershik models for left determined, irreducible, aperiodic, and recurrent substitutions on
an infinite countable alphabet. As a consequence, they proved that for a left determined
substitution σ : Z → Z with Mσ irreducible, aperiodic, and recurrent which is also of
bounded size (the letters of all σ(n) belong to the set {n − t , n − t + 1, . . . , n + t}, where
t ∈ Z is independent of n), there exists a shift invariant measure μ on �σ .

It is also worth mentioning that an arithmetic study of substitutions on countably infinite
alphabets was done in [15].

In this paper, unless explicitly indicated, we consider A = Z+ and σ : A → A∗ a
bounded length substitution (sup{|σ(a)|, a ∈ A} is finite) such that σ has a periodic point
u and M = Mσ is irreducible and aperiodic. We prove that if Mσ satisfies

lim
n→+∞ sup

i∈A

Mn
ij∑+∞

k=0 Mn
ik

= 0 for all j ∈ A, (1.1)

then the dynamical system (�σ , S) has no finite invariant measure. In particular, the last
result holds for a subclass of substitutions σ such that Mσ is transient and σ has constant
length, or Mσ is recurrent and has a left Perron eigenvector l = (li)i≥0 �∈ l1.

We also prove that if Mσ is positive recurrent, then the dynamical system (�σ , S) has
a shift invariant measure μ which is finite if and only if Mσ has a left Perron eigenvector
l ∈ l1. Moreover, if σ has constant length and Mσ has a power that is scrambling, then
(�σ , S) has a unique shift invariant probability measure μ. Let us recall that a non-negative
matrix M = (Mij )i,j≥0 is said to be scrambling if there exists a > 0 such that

+∞∑
j=0

min(Mij , Mkj ) ≥ a for all i �= k ∈ Z+.

Scrambling stochastic infinite countable matrices are very important, since a stochastic
matrix P = (Pij )i,j≥0 is strongly ergodic (see Definition 2.12) if and only if a power of P
is scrambling.
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We also consider the case where σ is not a constant length substitution. We introduce
the notions of strongly ergodic and �-strongly ergodic matrices Mσ related to the
convergence of

Mn
ij∑+∞

k=0 Mn
ik

, i, j ∈ A,

as n → ∞. Then we show that if Mσ has a right Perron eigenvector in l∞ and has a power
that is scrambling ( Mσ strongly ergodic), then (�σ , S) is minimal and has a unique shift
invariant probability measure μ.

A difference concerning substitutions on countable infinite alphabets that we should
point out is that substitutions may not have a periodic point. In this paper, we consider
Mσ irreducible and suppose the existence of a periodic point u, thus �σ is the closure
of the orbit of any periodic point of σ . However, our results will remain valid for σ that
have no periodic point, since instead of using the left determined condition, we use the
true fact that any finite word V occurring in some element of �σ has a decomposition
(not necessarily unique) as V = v0σ(Z)w0 where v0, w0, and Z finite words occurring in
some elements of �σ and max(|v0|, |w0|) ≤ sup{|σ(a)|, a ∈ A}, where for all finite word
z ∈ A∗, |z| denotes the length of z.

The paper is organized as follows. In §2, we give notation, definitions, and preliminary
results. Section 3 is devoted to the main results of the paper.

2. Preliminaries and notation
As in §1, let A be a countable set (called an alphabet), A∗ be the set of finite words on A, and
AZ+ the set of infinite words on A. We denote a finite word on A by u0 . . . un−1 for some
n ≥ 1 and we call n = |u0 · · · un−1| its length. An infinite word on A will be denoted
by u = u0u1 . . . . For U = u0 . . . un−1 and V = v0 . . . vm−1 in A∗, where n ≥ m are
positive integers, we denote

|U |V = {0 ≤ k ≤ n − m, uk . . . uk+m−1 = v0 . . . vm−1},
which is the number of occurrences of V in U. Let u = u0u1 . . . ∈ AZ+ and V ∈ A∗. We
say that V occurs in u or V is a factor of u if V = uk . . . ul for some integer 0 ≤ k ≤ l. We
denote by Fu the set of all factors of u.

On AZ+ , we consider the discrete product topology, which is metrizable and generated
by the metric d defined on AZ+ by

d(u0u1 . . . , v0v1 . . .) = 0 if u0u1 . . . = v0v1 . . .

and

d(u0u1 . . . , v0v1 . . .) = 1
2k0

where k0 = min{i ≥ 0, ui �= vi} otherwise.

A base for the discrete product topology is given by the cylinders

[w] = {u0u1 . . . ∈ AZ+ , ui = wi for all 0 ≤ i ≤ k},
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for w = w0 . . . wk ∈ A∗. The cylinders are clopen sets. When the alphabet A is finite, the
set AZ+ is compact and is homeomorphic to a Cantor set. If A is infinite, AZ+ is closed but
not compact.

Let σ : A → A∗ be a substitution. We will assume without loss of generality that
A = Z+ (and occasionally A = Z in some examples). We define the infinite matrix
Mσ = (Mij )i,j∈Z+ by Mij = |σ(i)|j . Observe that Mσ is the transpose of the substitution
matrix given in [19]. It is easy to prove by induction that for all i, j ∈ A and for all integers
n ∈ N,

|σn(i)|j = Mn
ij , |σn(i)| =

∞∑
j=1

Mn
ij .

For example, if σ(n) = 0(n + 1) for all n ∈ Z+, then

Mσ =

⎡
⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0 0 · · ·
1 0 1 0 0 0 0 · · ·
1 0 0 1 0 0 0 · · ·
1 0 0 0 1 0 0 · · ·
...

...
...

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎦

. (2.1)

We say that a substitution σ : A → A∗ is of constant length (respectively bounded
length) if there exists an integer L ≥ 1 such that |σ(a)| = L (respectively |σ(a)| ≤ L)
for all a ∈ A.

Observe that if σ has constant length L (respectively bounded length by L), then the sum
of the coefficients of each line of the matrix Mn

σ , n ∈ N equals Ln (respectively ≤ Ln).
In this paper, we will assume that σ is a bounded length substitution and there exists

a ∈ A such that |σn(a)| tends to infinity as n converges to infinity.
We define the language of a substitution σ on A as the set Fσ of finite factors of σn(a)

for some integer n ≥ 0 and a ∈ A.
We will need some classical definitions from the theory of countable non-negative

matrices, see [9, 20].

Definition 2.1. Let M = (Mij )i,j∈Z+ be an infinite non-negative matrix (not necessarily a
substitution matrix). We say that M is irreducible if for all i, j ∈ Z+, there exists an integer
k = k(i, j) ≥ 1 such that Mk

ij > 0. Let i ∈ Z+. The number

pi = gcd{n ∈ N, Mn
ii > 0}

is called the period of the state i. If M is irreducible, then there exists p ≥ 1 such that
pi = p for every i ∈ Z+ and we say that M has period p ≥ 1. We say that an irreducible
matrix M is aperiodic if p = 1 and periodic otherwise.

Observe that Mσ in equation (2.1) is irreducible and aperiodic, and σ is a constant length
substitution which has a fixed point u = limn→∞ σn(0) since σ(0) = 01 begins with 0.

Remark 2.2. (See [9]) If a matrix M = (Mij )i,j∈Z+ is irreducible and aperiodic, then for
all i, j ∈ Z+, there exists an integer n = n(i, j) ≥ 1 such that for all k ≥ n, Mk

ij > 0.
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Remark 2.3. Let σ : A → A∗ be a substitution which has a fixed point and Mσ is
irreducible. Since there exists i ∈ Z+ such that Mii > 0, we deduce that Mσ is aperiodic.

Assume that M = (Mij )i,j∈Z+ is an irreducible and aperiodic non-negative matrix until
the end of this section. It is known (see [19, 21]) that there exists λM ∈ [0, ∞], called the
Perron value of M, such that for all i, j ∈ Z+,

lim
n→∞(Mn

ij )
1/n = λM . (2.2)

For all i, j ∈ Z+, put as usual M0
ij = δij , then consider the series

Mij (z) =
+∞∑
n=0

Mn
ij z

n, z ∈ C.

Observe that the convergence radius of the series Mij (z) is equal to λ−1
M . When there is no

possibility of confusion, we will omit the subscript in λM and write simply λ.

Remark 2.4. Directly from the definition, if M̂ = CM for some C > 0, then λ
M̂

= CλM .
If σ is a substitution with constant length L, then P = M/L is a stochastic matrix and
λM = LλP . Moreover, for the stochastic matrix P, clearly λP ≤ 1 and if P ij (1) = +∞,
then λP = 1. Thus, λM ≤ L. Indeed it is enough to have σ with bounded length L, see
Lemma 2.10.

We either have Mij (1/λ) < ∞ for every i, j ∈ Z+, in this case, we say that M is tran-
sient, or Mij (1/λ) = ∞ for every i, j ∈ Z+, and we say that M is recurrent. The class of
irreducible, aperiodic recurrent matrices can be divided into two classes: positive recurrent
matrices and null recurrent ones. To present the definitions, we need to introduce the series

Lij (M , z) = Lij (z) =
+∞∑
n=0

lij (M , n)zn,

where lij (M , n) = li,j (n) is defined by: lij (0) = 0, lij (1) = Mij and

lij (n + 1) =
+∞∑
s �=i

lis(n)Msj for all n ≥ 1.

The matrix M is said to be positive recurrent if
+∞∑
n=0

nlii(n)

λn
< +∞,

otherwise we say that M is null recurrent.
An interesting result is that if M is an irreducible, aperiodic, and recurrent matrix with

finite Perron value λ > 0, then λ has strictly positive left and right eigenvectors l and r,
unique up to multiples by a constant. Moreover, the scalar product l · r is finite if and only
if M is positive recurrent.

Remark 2.5. In §3.2, we will give examples of null recurrent non-negative matrices with
constant length L having Perron value strictly smaller than L. These cases are associated
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to stochastic matrices with Perron value strictly smaller than 1, so they are transient in
probabilistic sense (see [5]), but they might be null recurrent according to the above
definition. This is not a novelty, see [9]. What is important here is also that we provide
substitution matrices in our examples.

To state the next result, we still need to introduce another important series

Rij (M , z) = Rij (z) =
+∞∑
n=0

rij (M , n)zn,

where rij (M , n) = rij (n) is defined by rij (0) = 0, rij (1) = Mi,j and

rij (n + 1) =
+∞∑
s �=j

Misrsj (n) for all n ≥ 1.

LEMMA 2.6. (See [22] and [9, p. 211]) Let M be a non-negative, irreducible, and aperiodic
matrix, with finite Perron value λ > 0. Let i, j ∈ Z+.
(1) If M is positive recurrent, then

lim
n→∞

Mn
ij

λn
= Lij (1/λ)

μ(i)
= Rij (1/λ)

μ(j)
> 0,

where μ(i) = ∑+∞
n=1 nlii(n)/λn.

(2) If M is transient or null recurrent, then limn→∞ Mn
ij /λ

n = 0.

For all i, j ∈ Z+, let

l(i) = (Lik(1/λ))k≥0 and r(j) = (Rsj (1/λ))s≥0.

LEMMA 2.7. (See [9, p. 203]) Let M be a non-negative, irreducible, aperiodic matrix, with
finite Perron value λ > 0.
(1) If M is recurrent, then for all i, j ∈ Z+,

l(i)M = λl(i) and Mr(j) = λr(j).

(2) If M is transient, then for all i, j ∈ Z+,

l(i)M ≤ λl(i) and Mr(j) ≤ λr(j).

Remark 2.8. Let M = (Mij )i,j≥0 be a non-negative, irreducible, aperiodic positive
recurrent matrix, with finite Perron value λ > 0. By item (1) of Lemma 2.6 and item (1)
of Lemma 2.7, the vector

Ti = (tij )j≥0 where tij = lim
n→∞ Mn

ij /λ
n (2.3)

is a left eigenvector for λ associated to M. Moreover, we have

lim
n→∞

Mn
i,j

λn
= lj ri∑+∞

k=0 lkrk
(2.4)

where l = (lk)k≥0 and r = (rk)k≥0 are respectively a left and a right Perron eigenvector of
M (see [20]).
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LEMMA 2.9. (See [9, Proposition 7.1.11, p. 204]) Let M = (Mij )i,j≥0 be a non-negative,
irreducible, aperiodic, and recurrent matrix with finite Perron value λ. Let Z = (zi)i≥0

be a sub invariant non-negative and non-zero eigenvector of Mσ associated to λ, that is,
(ZM)i ≤ λzi for all i ≥ 0 and Z �= 0, then Z is a left Perron eigenvector associated to M.

LEMMA 2.10. Let M = (Mij )i,j∈Z+ be a non-negative, irreducible, and aperiodic matrix
with finite Perron value λ. The following results hold.
(1) If M has line sums uniformly bounded by L > 0, then λ ≤ L.
(2) If M is positive recurrent and has constant line sums equal to L, then λ = L.

Moreover, L is the unique eigenvalue of M having non-negative probability left
eigenvector.

Proof. (1) Suppose that M has line sums bounded by L, then for all integers j ≥ 0 and
n ≥ 1, we have

Mn
jj ≤

+∞∑
k=0

Mn
jk ≤ Ln.

We deduce by equation (2.2) that λ ≤ L.
(2) If M is positive recurrent and has constant line sums equal to L, then there exists

l = (li)i≥0 ∈ l1 such that
∑∞

i=0 li = 1 and lM = λl, then
∑∞

j=0
∑∞

i=0 liMij = λ, then
L = λ. Using the same idea, we obtain that L is the unique eigenvalue of M having
non-negative probability left eigenvector.

Definition 2.11. Let M = (Mij )i,j≥0 be a non-negative matrix. We say that M is scram-
bling if there exists a > 0 such that

+∞∑
j=0

min(Mij , Mkj ) ≥ a for all i �= k ∈ Z+.

Note that a substitution matrix Mσ has a power that is scrambling if and only if for some
n ≥ 1,

for all i, k ∈ A, there exists j ∈ A which occurs in σn(i) and σn(k). (2.5)

Definition 2.12. Let P = (Pij )i,j≥0 be a non-negative stochastic matrix. We say that
P is:
• ergodic if limn→∞ P n

ij = πj > 0 for all i, j ∈ N, where (πj )j≥0 is a probability
vector;

• strongly ergodic if P is ergodic and if there exists a probability vector (πi)i≥0 of
non-negative real numbers such that limn→∞ ‖P n − Q‖s = 0, where Q is the infinite
stochastic matrix with rows equal to (πj )j≥0 and ‖N‖s = supi≥0

∑+∞
j=0 |Nij | for any

infinite complex matrix N = (Nij )i,j≥0. In other words,

lim
n→∞ sup

i≥0

∞∑
j=0

|P n
ij − πj | = 0.
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Remark 2.13. It was proved in [7] that if P is strongly ergodic, then P is uniformly
geometrically ergodic, that is, there exist β ∈ (0, 1) and a constant C > 0 such that

|P n
ij − πj | ≤ Cβn for all i, j , n ∈ Z+.

The converse is proved in [12]. In particular, it is shown that P is strongly ergodic if and
only if for some j ≥ 0 with πj ≥ 0, we have

lim
n→∞ sup

i≥0
|P n

ij − πj | = 0. (2.6)

There is a nice characterization of the strong ergodicity (see [8]). It is defined as follows.
If P = (Pij )i,j∈N is a stochastic non-negative countable matrix, then P is strongly ergodic
if and only if there exists an integer n ≥ 1 such that δ(P n) < 1, where the δ coefficient of
any non-negative countable stochastic matrix N = (Nij )i,j∈N is

δ(N) = 1
2

sup
i,k∈N

+∞∑
j=0

|Nij − Nkj |. (2.7)

The number δ(N) is called Dobrushin coefficient of N or coefficient of ergodicity of N
(see for instance [3, 7, 11, 12]). It is not difficult to show that

δ(N) = 1 − inf
i �=k

+∞∑
j=0

min(Nij , Nkj ). (2.8)

Observe that δ(N) < 1 if and only if N is scrambling. Hence, P is strongly ergodic if and
only if there exists an integer n ≥ 1, such that P n is scrambling.

3. Irreducible aperiodic substitutions
3.1. Non-existence of finite invariant measure. In [6], the author proved that if A = Z

and σ(n) = (n − 1)nn(n + 1), n ∈ A, then the dynamical system (�σ , S) has no finite
invariant measure. We will extend this result in the next theorem.

THEOREM 3.1. Let σ : Z+ → Z
∗+ be a bounded length substitution such that σ has a

periodic point u and M = Mσ is irreducible and aperiodic. If M satisfies

lim
n→+∞ sup

i∈Z+

Mn
ij∑+∞

k=0 Mn
ik

= 0 for all j ∈ Z+, (3.1)

then the dynamical system (�σ , S) has no finite invariant measure.

Remark 3.2. One natural question is if the condition in equation (3.1) can be replaced by
the weaker condition

lim
n→+∞

Mn
ij∑+∞

k=0 Mn
ik

= 0 for all i, j ∈ Z+. (3.2)

This last condition is more natural and holds for a large class of substitutions σ such that
Mσ is transient or null recurrent and σ has constant length, or Mσ is positive recurrent
with left Perron eigenvector l = (lk)k≥0 �∈ l1, see Lemma 3.4 at the end of this section and
also Remark 3.3 just below.
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Proof of Theorem 3.1. Assume without loss of generality that u = u0u1 . . . is a fixed
point of σ . By equation (3.1), we have that for all j ∈ Z+,

lim
n→+∞ sup

a∈A

|σn(a)|j
|σn(a)| = 0. (3.3)

Now, assume that (�σ , S) has a finite invariant measure, then there exists a finite
ergodic invariant measure μ. By Birkhoff’s ergodic theorem, we deduce that for μ almost
all x ∈ �u,

lim
N→∞

1
N

card{0 ≤ k ≤ N − 1 : Sk(x) ∈ [j ]} = μ[j ] for all j ∈ Z+. (3.4)

Now, let x ∈ �σ satisfying equation (3.4) and N ∈ N. Let V = um . . . um+N−1, m ∈
N be a prefix of x. The word V can be written as

V = v0σ(v1) . . . σ n−1(vn−1)σ
n(vn)σ

n−1(wn−1) . . . σ (w1)w0, (3.5)

where n ≥ 1 is an integer and vi , i ∈ {0, . . . , n}, wj , j ∈ {0, . . . , n − 1} are elements
of Fu possibly empty words of lengths smaller or equal to K = max{|σ(b)|, b ∈ A} and
vn is not empty. Equation (3.5) comes from the fact that since u = σ(u), there exists a ∈ A

and n ∈ N such that V is a factor of σn+1(a) and V is not a factor of σn(a). Hence, there
exist v0, w0, V1 in Fu such that

V = v0σ(V1)w0

and |v0|, |w0| ≤ K . We proceed analogously with V1, continuing by induction until the
process stops and we obtain equation (3.5).

With our choice of x and its prefix V, from equations (3.4) and (3.5), we have that

1
N

card{0 ≤ k ≤ N − 1, Sk(x) ∈ [j ]}

= |V |j
|V | = |σn(vn)|j + ∑n−1

k=0(|σk(vk)|j + |σk(wk)|j )
|σn(vn)| + ∑n−1

k=0(|σk(vk)| + |σk(wk)|)
.

By equation (3.3), we deduce that

lim
k→∞ sup

{ |σk(v)|j
|σk(v)| , v ∈ Fu, |v| ≤ K

}
= 0. (3.6)

Using equation (3.6) and the Stolz–Cesaro theorem, we deduce that

lim
n→∞

|σn(vn)|j + ∑n−1
k=0(|σk(vk)|j + |σk(wk)|j )

|σn(vn)| + ∑n−1
k=0(|σk(vk)| + |σk(wk)|)

= 0.

Therefore,

lim
N→∞

1
N

card{0 ≤ k ≤ N − 1, Sk(x) ∈ [j ]} = μ[j ] = 0.

Since j is arbitrary, μ(�) = 0, which yields a contradiction.

Remark 3.3. It is important to notice that the condition in equation (3.1) may or may not
hold on both the transient and the null recurrent cases. To see this, we consider examples
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where M is a multiple of an irreducible stochastic matrix P. In this situation, equation (3.1)
is equivalent to

lim
n→+∞ sup

i∈A

P n
ij = 0 for all j ∈ A. (3.7)

It is simple to find examples of stochastic matrices for which equation (3.7) does not
hold. So we start with a first example that can be adapted to both transient and recurrent
cases. Consider A = Z and set P−n,−n−1 = qn = 1 − P−n,−n+1 for n ≥ 1, where qn ∈
(0, 1) and

∑+∞
n=1 qn < ∞. Also put P0,−1 = P0,1 = 1/2 and Pm,−n = 0 for m, n ≥ 1. No

matter how we complete the definition of P to obtain a irreducible and aperiodic matrix
which may be recurrent or transient, we have that

sup
a∈A

P n
a,0 ≥ P n

−n,0 ≥
+∞∏
k=1

(1 − qk) > 0 for every n ≥ 1.

Thus, equation (3.7) does not hold. However, since limn→∞ qn = 0, there is no multiple of
P which is a matrix M associated to a substitution. Thus, we will provide another example.

Again we consider A =Z and set P−2n,0 = 1/2 = P−2n,−2n−1 and P−2n−j ,−2n−j−1 = 1
for j = 1, . . . , 2n − 1 and n ≥ 1. We can check that P 2n

−2n−1−1,0 = 1/2. Again, no matter
how we complete the definition of P, which may be recurrent or transient, we have that

lim sup
n→∞

sup
a∈A

P n
a,0 ≥ 1/2 > 0,

thus equation (3.7) does not hold. In this case, we could define M−2n,0 = 1 = M−2n,−2n−1

and M−2n−j ,−2n−j−1 = 2 and complete the definition for the other entries for M to have
an irreducible and aperiodic matrix associated to a substitution of constant length equal to
two. We have that P = M/2, thus equation (3.1) does not hold.

As a third example, we consider P as the transition matrix of a simple random walk on
Z, that is, we fix p ∈ (0, 1) and set Pn,n+1 = p = 1 − Pn,n−1 for every n ∈ Z (for basic
properties of random walks, the reader can check [5]). Notice that this Markov chain is
irreducible with period two which is null recurrent if p = 1/2 and transient otherwise.
The stochastic matrix P is irreducible and we can use P 2 instead of P for an example with
an aperiodic chain. A standard computation using the binomial distribution and Stirling
formula shows that

sup
w∈Z

P n
w,w̃ = sup

w∈Z
P n

0,w̃−w ≤ max
0≤k≤n

(
n

k

)
pk(1 − p)n−k = O(n−1/2).

Thus, equation (3.7) holds. Here, we also have P = M/2, where M is a substitution matrix
of constant length equal to 2 defined as

Mn,n+1 = Mn,n−1 = 1 for all n ∈ Z.

Thus, M satisfies equation (3.1).

Question 3.1. Under the hypothesis of Theorem 3.1, is the dynamical system (�σ , S) not
minimal?
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Question 3.2. Is the result of Theorem 3.1 still true if Mσ is transient, or recurrent with a
left Perron eigenvector l = (li)i≥0 �∈ l1 and without the condition in equation (3.1)? Even
in a little less general setting, is the result of Theorem 3.1 still true if Mσ satisfies the
weaker condition in equation (3.2)?

We finish this section proving a result with conditions that imply the condition in
equation (3.2).

LEMMA 3.4. Let M = (Mij )i,j∈Z+ be a non-negative, irreducible, and aperiodic matrix
with finite Perron value λ. If M is transient with constant line sums, or M is positive
recurrent with a left Perron eigenvector l = (lk)k≥0 �∈ l1, then

lim
n→+∞

Mn
ij∑+∞

k=0 Mn
ik

= 0 for all i, j ∈ Z+.

Proof. Assume that M is transient with constant line sums equal to L. Let i, j ∈ Z+. Since
λ ≤ L and limn→+∞ Mn

ij /λ
n = 0, then

Mn
ij∑+∞

k=0 Mn
ik

= Mn
ij

Ln
≤ Mn

ij

λn
→ 0 as n → ∞.

Now, let us suppose that M is positive recurrent and l = (lk)k≥0 �∈ l1 is a left Perron
eigenvector. Let i, j ∈ Z+. Since M is positive recurrent, we have by Remark 2.8 that

lim
n→∞

Mn
ik

λn
= clk for all k ∈ Z,

where c > 0. Using the Fatou lemma for series and the fact l = (lk)k≥0 �∈ l1, we deduce
that

lim
n→+∞

∑+∞
k=0 Mn

ik

Mn
ij

≥
∑+∞

k=0 lk

lj
= +∞

and we are done.

Question 3.3. (1) If M is transient with non-constant line sums, is

lim
n→+∞

Mn
ij∑+∞

k=0 Mn
ik

= 0 for all i, j ∈ Z+?

Note that the answer is affirmative if

lim inf
n→+∞

Mn1
λn

> 0,

which is simple to verify in the finite dimensional case from linear algebra arguments. It
is also true to check in the infinite dimensional case when M is transient and has a right
Perron eigenvector r = (ri)i≥0 ∈ l∞ such that inf{rj , j ≥ 0} > 0, since for all j ≥ 0,

infj rj

supj rj
≤ 1

λn

+∞∑
k=0

Mn
ik ≤ supj rj

infj rj
. (3.8)
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(2) Assume that M is recurrent with a left Perron eigenvector l = (lk)k≥0 ∈ l1. Does
there exist i, j ∈ A such that

lim
n→+∞

Mn
ij∑+∞

k=0 Mn
ik

> 0?

Again, from item (2) in Lemma 2.6, item (2) in Lemma 2.10, and equation (3.3), it is simple
to check that this holds when M is positive recurrent and has a right Perron eigenvector r =
(ri)i≥0 ∈ l∞ such that inf{rj , j ≥ 0} > 0. In particular, in the case of lines with constant
sums.

3.2. A class of examples. Let σ := σa,b,c be defined by

σ(0) = 0a+b1c and σ(n) = (n − 1)anb(n + 1)c for all n ≥ 1,

where a, b, c are non-negative integers such that a > 0, c > 0, and ik = ii . . . i (k times).
The matrix Mσ is irreducible and aperiodic. We have

Mσ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a + b c 0 0 0 0 0 · · ·
a b c 0 0 0 0 · · ·
0 a b c 0 0 0 · · ·
0 0 a b c 0 0 · · ·
0 0 0 a b c 0 · · ·
...

...
...

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that σ is a substitution of constant length L = a + b + c. The stochastic matrix
P = Mσ /L is the transition matrix of a homogeneous nearest-neighbor random walk in
{0, 1, 2, . . .} partially reflected at the boundary, see also the last example in Remark 3.3.
It is well known, see [5], that the random walk is (in the probabilistic sense) positive
recurrent if c < a, null recurrent if c = a, and transient if c > a. The difference for the
matrix theoretical definition is that we also have null recurrence in the case c > a, see also
[9, Example 7.1.28] for the case b = 0 and a = c.

PROPOSITION 3.5. The following properties hold:
• if c < a, then Mσ is positive recurrent;
• if c ≥ a, then Mσ is null recurrent and (�σ , S) has no finite invariant measure.

Proof. For the cases c < a and c = a, we have λP = 1, thus λMσ = L. From the
probabilistic results on transience/recurrence of random walks, we have that Mσ is positive
recurrent for c < a and null recurrent for c = a.

Before we deal with the case c > a, let us point out that we can prove the result in the
cases c < a and c = a by directly computing the Perron eigenvectors.

Let λ be the Perron value of Mσ , then by Lemma 2.10, we have λ ≤ L = a + b + c. Let
l = (li)i≥0 be a left eigenvector of Mσ associated to L. A simple computation implies that
l1 = c/al0 and

cln + aln+2 = (a + c)ln+1 for all n ≥ 0.
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Hence,

ln =
( c

a

)n

l0 for all n ≥ 1.

Assume that Mσ is positive recurrent, then by Lemma 2.10, we deduce that λ = L. Thus,
l ∈ l1 (since a right Perron eigenvector of Mσ has constant entries) and we deduce that
c < a.

Now assume that c ≤ a. If λ = L, then l is a left Perron eigenvector, and hence Mσ

is positive recurrent if c < a and null recurrent if c = a. Now suppose that λ < L and
let u = (ui)i≥0 be a non-zero non-negative left Perron sub-invariant eigenvector of Mσ

associated to λ. Thus, uM < LM . Hence,

un+1 ≤ c

a
un for all n ≥ 0,

and there exists a real number s > 0 and an integer k ≥ 1 such that uk = (c/a)uk−1 − s.
Since cuk−1 + auk+1 ≤ (a + c)uk , we deduce that uk+1 ≤ (c/a)uk − s. Thus,

un+1 ≤ c

a
un − s for all n ≥ k. (3.9)

Therefore,

un ≤
(

c

a

)n−k

uk − s for all n ≥ k + 1.

If c < a, we deduce that there exists a positive integer N such that un < 0 for all integers
n ≥ N . This is absurd, then u = u0l. Therefore, λ = L and hence Mσ is positive recurrent.

If c = a, we deduce by equation (3.9) that

un ≤ uk − (n − k)s for all n ≥ k + 1.

Then λ = L and Mσ is null recurrent.
Now consider the case c > a. We will consider a probabilistic approach to show that

λP < 1 and that P 00(1/λP ) = ∞, this implies null recurrence. Let (Xn)n≥0 be a Markov
chain with transition matrix P and P

x the distribution of (Xn)n≥0, when X0 = x for x ∈
Z+. Set p = c/(a + c), which is the conditional probability that the random walk jumps
to the right when it necessarily leaves its current position and this is not 0, that is,

p = P
x
(
Xn+1 = Xn + 1

∣∣Xn+1 �= Xn

)
for all x �= 0.

We want to estimate P n
00, that is, the probability that the random walk is visiting state 0 at

time n given that it has also started at 0. For this last event to happen, necessarily, we must
have a number of jumps to the right equal to the number of jumps to the left. Here we need
two important observations.
(i) Note that #{1 ≤ j ≤ n : Xn+1 �= Xn} counts the total number of jumps to the right

or to the left. There exist strictly positive constants c, δ ∈ (0, 1) such that

P
0(#{1 ≤ j ≤ n : Xn+1 �= Xn} ≥ cn

)
> 1 − (δq)n.

(ii) In 2k transitions to the left or to the right, the number of transitions to the right
is distributed as a binomial random variable with parameters 2k and p. Thus, the
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probability of having an equal number of jumps to the left or to the right is

P
(
Bin(2k, p) = k

) =
(

2k

k

)
pk(1 − p)k ≈ C√

k

(
4p(1 − p)

)k

(the approximation could be appropriately described using Stirling’s formula). Note
that q = 4p(1 − p) < 1.

Using observations (i) and (ii), we are able to show that P n
00 is of order O(qn/

√
n). This

implies that λP = q and P 00(1/λP ) = P 00(1/q) = ∞. Therefore, P and Mσ are null
recurrent matrices.

It is worth mentioning that Mσ satisfies equation (3.1) for every a ≤ c and b. This
follows as in the last example in Remark 3.3, in the case a = c, and from computation
as in the proof of Proposition 3.5. Indeed, one can prove that supi∈Z+ P n

i,j is of order
O(1/

√
n), which implies that Mσ satisfies equation (3.1). This can also be proved using

the local central limit theorem for simple random walks [10, Theorem 1.2.1].

Remark 3.6. It is worth mentioning that apparently small modifications on the matrix can
completely change its behavior. For instance, consider the case b = 0 and a = c which
implies that Mσ is null recurrent. Instead of σ(0) = 0a1c, put σ(0) = 1c, then, from [9, (i)
in Example 7.1.29], we have that Mσ is transient. For the case b > 0, a ≤ c, and σ(0) = 1c,
we also have transience as a consequence of our Proposition 3.5 and [9, Lemma 7.1.23].

Remark 3.7. We consider the substitution σ of [6] defined on A = Z by σ(n) =
(n − 1)nn(n + 1). The associated matrix is null recurrent and satisfies the condition in
equation (3.1). Hence, by using Theorem 3.1, we deduce that the dynamical system (�σ , S)

associated to σ has non-finite invariant measure.

Let σ := σan,bn,cn be defined by

σ(0) = 0a0+b01c0 and σ(n) = (n − 1)annbn(n + 1)cn for all n ≥ 1,

where an, bn, cn are non-negative integers such that an > 0, cn > 0 for every n ≥ 1, and
L = sup{an + bn + cn : n ≥ 1} < ∞. The matrix Mσ is irreducible and aperiodic with
bounded length L and can be represented as

Mσ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 + b0 c0 0 0 0 0 0 · · ·
a1 b1 c1 0 0 0 0 · · ·
0 a2 b2 c2 0 0 0 · · ·
0 0 a3 b3 c3 0 0 · · ·
0 0 0 a4 b4 c4 0 · · ·
...

...
...

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We will see in Proposition 3.8 below that (�σ , S) is not minimal for these substitutions. We
do not discuss the transience/recurrence in this general case, but we discuss an example.
Consider (an, bn, cn) = (2, 1, 1) for n even and (an, bn, cn) = (1, 1, 1) otherwise. Our first
step is to compute the Perron value λ. For this, we will estimate (Mn

σ )0,0. Consider a matrix
M̂n

σ which has the form above but with (an, bn, cn) = (2, 1, 1) for every n. The Perron
eigenvalue of M̂n

σ is 4, since it has constant row sums equal to 4. Now for each path of
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length n leaving and returning to n, we will have the number of jumps to the left equal to
the number of jumps to the right. So for a total of 2m ≤ n jumps with m jumps to the left
and m jumps to right (neglecting jumps from 0 to 1 and jumps from an state to itself), m/2
jumps to the left are made from an odd position and these jumps contribute with a factor
of (

4√2)2m = 2m/2 to the product of weights (M̂n
σ )0,0. This shows that

( 4√2
4

)n

(Mn
σ )0,0 ≥ (M̂n

σ )0,0

4n
,

which implies λ ≥ 4/
4√2. However, (Mn

σ )0,0 ≤ (M̂n
σ )0,0 and λ ≤ 4. Thus, λ ∈ [4/

4√2, 4].
With this bound on λ, we can show that Mσ is positive recurrence. For this, we follow the
computation in [9, Example 7.1.29(iii)] to obtain that

lim
n→∞

2n
√

	00(2n) = 25/4 < λ,

then apply [9, Lemma 7.1.25] to conclude.

PROPOSITION 3.8. Let (�σ , S) be the shift dynamical system associated to σan,bn,cn , then
it is not minimal.

Proof. For all n ≥ 2, we have

σk−1(k) = (σ k−2(k − 1))an(σ k−2(k))bn(σ k−2(k + 1))cn .

Hence, the infinite word w beginning with σk−1(k) for all k ≥ 2 is well defined and
belongs to �σ . Moreover, the letter 0 does not occur in w. Thus, the orbit of w does not
visit the cylinder [0], and hence (�σ , S) is not minimal.

Remark 3.9. The last proposition gives examples of positive or null recurrent, aperiodic
irreducible substitutions such that its shift dynamical systems are not minimal. The first
example was given by Ferenczi in [6] by considering σ(n) = (n − 1)nn(n + 1), n ∈ Z.

We will see in Theorem 3.33 that given a substitution σ on A = Z+, not necessarily
with constant length such that σ has a periodic point u and Mσ is irreducible, aperiodic,
and has a scrambling positive power, then (�σ , S) is minimal. Observe that the matrices
associated to substitutions σan,bn,cn do not have a scrambling power, since for any positive
integer k, there is no letter occurring both in the words σk

an,bn,cn
(k) and σk

an,bn,cn
(4k).

To end this section, we describe an interesting substitution whose matrix is transient.
The construction of the matrix is based on multidimensional random walks in dimension
greater or equal to 3. Thus, we set A = Z

d , let {ej : 1 ≤ j ≤ d}, and define the substitution

σ(x) = (x + e1)(x − e1)(x + e2)(x − e2) . . . (x + ed)(x − ed).

We have that Mσ is a matrix of length 2d . The stochastic matrix P = Mσ /2d is transient
with λP = 1. Indeed, from classical results in probability theory, one has that P n

00 ∼
O(n−d/2) and P 00(1) < ∞. Therefore, Mσ is a transient matrix with λMσ = 2d . Using
again the local central limit theorem [10, Theorem 1.2.1], we have that Mσ also satisfies
equation (3.1).
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3.3. Shift invariant measures and unique ergodicity. In this subsection, we prove the
following results.

THEOREM 3.10. Let σ be a bounded length substitution on A = Z+ such that Mσ is
irreducible, aperiodic, positive recurrent, then the dynamical system (�σ , S) has a shift
invariant measure μ which is finite if and only if any left Perron eigenvector l belongs to l1.

Remark 3.11. Theorem 3.10 improves [1, Theorem 7.6], where it is assumed the additional
hypothesis where σ is a bounded size left determined substitution.

THEOREM 3.12. Let σ be a constant length substitution on A = Z+ such that σ has a
periodic point u and Mσ is irreducible and aperiodic. If there exists a positive integer n
such that Mn

σ is scrambling, then there exists a unique probability shift invariant measure
of (�σ , S).

Remark 3.13. The same proof of Theorem 3.12 will show that if σ is a constant length
substitution on A = Z+ without periodic point such that Mσ is irreducible, aperiodic, and
Mn

σ is scrambling positive integer n, then there exists a unique probability shift invariant
measure of (�σ , S).

Before proving Theorems 3.10 and 3.12, we need to introduce some notation and state
some preliminary results.

Let σ : A → A∗ be a bounded length substitution, not necessarily with constant length.
Let t ≥ 2 be an integer and At be the set of finite words of length t that occur in
u. Now, consider a substitution σt on the alphabet At defined in the following way: if
w = w0 . . . wt−1 ∈ At and σ(w) = y0 . . . y|σ(w0)|−1y|σ(w0)| . . . y|σ(w)|−1, then

σt (w) = (y0 . . . yt−1)(y1 . . . yt ) . . . (y|σ(w0)|−1 . . . y|σ(w0)|+t−2). (3.10)

Considering that |σt (w)| counts letters in At (not in A), note that

|σt (w0 . . . wt−1)| = |σ(w0)|, (3.11)

and for all i1 . . . it ∈ At , we have

|σ(w0)|i1...it ≤ |σt (w0 . . . wt−1)|i1...it ≤ |σ(w0)|i1...it + t . (3.12)

We extend σt by concatenation to A∗
t and to A

Z+
t . The substitution σt was defined in

[19] (in the case of substitutions on finite alphabets).
For example, for A = {0, 1} and σ(0) = 01, σ(1) = 0. We have A2 = {00, 01, 10} and

σ2(00) = (01)(10), σ2(01) = (01)(10), σ2(10) = (00).

If A = Z+ and τ(n) = 0(n + 1) for all n ∈ A, then A2 = {0n, n0, n ≥ 1} and

τ2(0n) = (01)(10), τ2(n0) = (0(n + 1))((n + 1)0) for all n ≥ 1.
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LEMMA 3.14. The following results hold:
(1) for all integers n ≥ 1 and t ≥ 2, we have (σn)t = (σt )

n;
(2) let u = u0u1 . . . be a periodic point of σ , then for all integers t ≥ 2, the infinite word

(u0 . . . ut−1).(u1 . . . ut ) . . . (ui . . . ut+i−1) . . . is a periodic point (with the same
period) of σt ;

(3) if Mσ is irreducible and aperiodic, then so is Mσt for all integers t ≥ 2.

Proof. The proof is analogous to that for the case of a finite alphabet, which is given in
[19, pp. 138–139].

LEMMA 3.15. Let A = Z+ and σ : A → A∗ be a bounded length substitution such that
Mσ irreducible and aperiodic with Perron value λ, then for all integers t ≥ 2, the matrix
Mt = Mσt associated to σt also has Perron value λ. Moreover, if Mσ is positive recurrent
(respectively null recurrent, transient), then Mσt is also positive recurrent (respectively
null recurrent, transient).

Proof. Let t ≥ 2 be an integer and denote by λt the Perron value of Mt . First observe that
by item (3) in Lemma 3.14, Mt is irreducible and aperiodic. For i1 . . . it , j1 . . . jt ∈ At ,
we have

|σn
t (i1 . . . it )|j1...jt ≤ |σn(i1)|j1...jt + t ≤ |σn(i1)|j1 + t .

Hence,

(Mn
t )i1...it ,j1...jt ≤ (Mn)i1,j1 + t for all n ∈ N. (3.13)

We deduce by equation (2.2) that 1 ≤ λt ≤ λ.
However, let k, m ∈ N such that j1 . . . jt is a factor of σm(k). Hence,

|σn+m(i1)|j1...jt ≥ |σn(i1)|k .

Thus, for all n ∈ N, we have |σn+m
t (i1 . . . it )|j1...jt ≥ |σn(i1)|k . Therefore,

(Mn+m
t )i1...it ,j1...jt ≥ (Mn)i1,k for all n ∈ N. (3.14)

Thus, λt ≥ λ and hence λt = λ.
Assume that Mσ is positive recurrent. By equation (3.14), we have

lim inf
n→+∞

(Mn+m
t )i1...it ,j1...jt

λn+m
≥ λ−m lim

n→+∞
(Mn)i1,k

λn
. (3.15)

Hence, by equation (3.15) and Lemma 2.6, we deduce that limn→+∞((Mn
t )i1...it ,j1...jt /λ

n
t ) >

0. Thus, Mσt is positive recurrent.
Now suppose that Mσ is null recurrent, then we have by equation (3.14) that

+∞∑
n=0

(Mn
t )i1...it ,j1...jt

λn
= +∞. (3.16)

Hence, by equation (3.13), we deduce that

lim
n→∞

(Mn
t )i1...it ,j1...jt

λn
= 0. (3.17)
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By equations (3.16) and (3.17), we deduce that Mσt is null recurrent.
Finally, if Mσ is transient, we deduce by equation (3.13) that

+∞∑
n=0

(Mn
t )i1...it ,j1...jt

λn
< +∞.

Hence, Mσt is transient.

Before proving Theorem 3.10, we need the following lemma.

LEMMA 3.16. Let σ be a bounded length substitution on A = Z+ such that Mσ is
irreducible, aperiodic, recurrent, and has finite Perron value λ. Let r = (ri)i≥0 be a right
Perron eigenvector of Mσ . For all integers t ≥ 2, let r(t) = (rI )I∈At be an infinite vector
defined by

rI = ri0 for all I = i0 . . . it−1 ∈ At ,

then r(t) is a right Perron eigenvector of Mt = Mσt associated to λ.

Proof. Let I = i0 . . . it−1 ∈ At . We have

(Mtr
(t))I =

∑
J=j0...jt−1∈At

|σt (I )|J rj0 =
∑
j0∈A

rj0

∑
J ∗=j1...jt−1,j0J ∗∈At

|σt (I )|j0J ∗ .

However, for all j0 ∈ A, we have∑
J ∗=j1...jt−1,j0J ∗∈At

|σt (I )|j0J ∗ ≤ |σ(i0)|j0 = Mi0j0 .

Thus,

(Mtr
(t))I ≤

∑
j0∈A

Mi0j0rj0 = λri0 = λ(r(t))I .

Since Mt is an aperiodic, irreducible, and recurrent matrix, Lemma 2.9 implies that r(t)

is a right eigenvector of Mt associated to λ.

Proof of Theorem 3.10. Let u = u0u1 . . . = σ(u) be an element of �σ . For j ∈ A, set

μ[j ] := lim
n→∞

|σn(u0)|j
λn

= lim
n→∞

Mn
u0,j

λn
.

The last limit exists since Mσ is positive recurrent with Perron eigenvalue λ. For integers
t ≥ 2 and It = i1 . . . it ∈ At , set

μ[i1 . . . it ] = lim
n→∞

|σn(u0)|i1...it
λn

. (3.18)

Applying equation (3.12) for σn in place of σ and the fact that λ > 1, we deduce that

μ[i1 . . . it ] = lim
n→∞

|σn
t (u0 . . . ut−1)|i1...it

λn
= lim

n→∞
(Mn

t )Ut ,It

λn
,

where Ut = u0 . . . ut−1 and It = i1 . . . it . Observe that limn→∞
(Mn

t )Ut ,It
λn exists since Mt

is positive recurrent with Perron value λt = λ.
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By the Kolmogorov consistency theorem, there exists a unique measure μ with cylinder
specification in equation (3.18) if for every integer t ≥ 1 and I = i1 . . . it ∈ At , we have

μ[I ] =
∑

b∈A,Ib∈At+1

μ[Ib] (3.19)

and

μ[I ] =
∑

a∈A,aI

μ[aI ]. (3.20)

For the proof of equation (3.19), let l = (li)i≥0 and r = (ri)i≥0 be respectively left and
right Perron eigenvectors of M such that the scalar product l · r = 1. For all t ≥ 2, let
l(t) = (lI )I∈At and r(t) = (rI )I∈At be left and right Perron eigenvectors of Mt such that

ri1...it = ri1 for all i1 . . . it ∈ At and l(t) · r(t) = 1.

We could choose ri1...it = ri1 because of Lemma 3.16.
For all I = i1 . . . it , t ≥ 2, we have by equation (2.4) that

μ[I ] = rUt lI = ru0 lI .

Hence, equation (3.19) is equivalent to

lI =
∑

b∈A,Ib∈At+1

lIb. (3.21)

However, for all I = i1 . . . it ∈ At , we have by Fatou’s lemma that
∑

b∈A,Ib∈At+1

μ[Ib] ≤ lim
n→∞

1
λn

∑
b∈A,Ib∈At+1

|σn
t+1(u0 . . . ut )|Ib = lim

n→∞
1
λn

|σn
t (u0 . . . ut−1)|I .

Hence, ∑
b∈A,Ib∈At+1

μ[Ib] ≤ μ[I ],

that is, ∑
b∈A,Ib∈At+1

lIb ≤ lI . (3.22)

Since
∑

I∈At
rI lI = ∑

J∈At+1
rJ lJ = 1 and r(Ib) = r(I ) for all I ∈ At and Ib ∈ At+1,

we deduce that ∑
I∈At

rI lI =
∑
I∈At

rI
∑

b∈A,Ib∈At+1

lIb = 1.

Using this last equality and equation (3.22), we obtain equation (3.21) and hence we get
equation (3.19).

Analogously, equation (3.20) is equivalent to

lI =
∑

a∈A,aI∈At+1

laI . (3.23)
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Using Fatou’s lemma, we have for all I ∈ At ,∑
a∈A,aI∈At+1

μ[aI ] ≤ lim
n→∞

1
λn

∑
a∈A,aI∈At+1

|σn
t+1(u0 . . . ut )|aI .

Note that

βI :=
∑

a∈A,aI∈At+1

|σn
t+1(u0 . . . ut )|aI − |σn

t (u0 . . . ut−1)|I ∈ {−1, 0, 1},

indeed βI = −1 if the first letter of σn
t+1(u0 . . . ut ) begins with I and the last letter of

σn
t+1(u0 . . . ut ) does not end with I. The number βI = 1 if the first letter of σn

t+1(u0 . . . ut )

does not begin with I and the last letter of σn
t+1(u0 . . . ut ) ends with I. In the complemen-

tary case, we have βI = 0.
Since λ > 1, we deduce that

lim
n→∞

1
λn

∑
a∈A,aI∈At+1

|σn
t+1(u0 . . . ut )|aI = lim

n→∞
1
λn

|σn
t (u0 . . . ut−1)|I .

Hence, ∑
a∈A,Ia∈At+1

μ[aI ] ≤ μ(I),

that is, ∑
a∈A,Ia∈At+1

laI ≤ lI . (3.24)

However, by equation (3.21), we have
∑

J∈At+1

lJ =
∑
I∈At

( ∑
b∈A,Ib∈At+1

lIb

)
=

∑
I∈At

lI .

Thus,
∑
I∈At

( ∑
a∈A,aI∈At+1

laI

)
=

∑
I∈At

lI .

By using equation (3.24), we obtain equation (3.20). Hence, μ is an invariant measure for
(�u, S).

3.3.1. Constant length substitution and unique ergodicity. Let σ be a substitution on
A = Z+ with constant length L > 0. By equation (2.8), the stochastic matrix Mσ /L is
strongly ergodic if and only if there exists a positive power of Mσ which is scrambling.

As an example, the dyadic substitution σ defined by σ(n) = 0(n + 1) has a strongly
ergodic matrix Mσ /2 since the matrix Mσ is scrambling.

Another way to see that Mσ /2 is strongly ergodic comes from the fact that for all i,
j ∈ Z+,

lim
n→∞ sup

i∈Z+

+∞∑
j=0

∣∣∣∣ |σ
n(i)|j

|σn(i)| − 1
2j+1

∣∣∣∣ = 0. (3.25)
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Indeed, for all integers n ∈ N, i, j ∈ Z+, we have

|σn(i)|j = |σn−1(i)|j−1 = 2n−j−1 for all 0 ≤ j < n

and

|σn(i)|j = |σ(i)|j+1−n for all j ≥ n.

Thus, for all j ≥ n,

|σn(i)|j = 1 if j = i + n and 0 otherwise.

Hence,

+∞∑
j=0

∣∣∣∣ |σ
n(i)|j

|σn(i)| − 1
2j+1

∣∣∣∣ =
+∞∑
j=n

1
2j+1 +

(
1
2n

− 1
2i+n

)
for all i ≥ 0,

which implies that

sup
i∈Z+

+∞∑
j=0

∣∣∣∣ |σ
n(i)|j

|σn(i)| − 1
2j+1

∣∣∣∣ = 1
2n−1 ,

and we obtain equation (3.25).
Another example are the substitutions σa,b,c, a, b, c ∈ N and a > c. We have seen in the

proposition that for all positive integers a, b, c with a > c, the matrix Mσa,b,c is positive
recurrent. Furthermore, the stochastic matrix Mσa,b,c /(a + b + c) is not strongly ergodic
since Mσa,b,c does not have a scrambling power (see Remark 3.9).

Remark 3.17. Let σ be a substitution on A = Z+ with constant length L > 0 and a
periodic point u such that the stochastic matrix Mσ /L is strongly ergodic. Then Mσ is
positive recurrent and, by Theorem 3.10, �σ has a finite invariant measure.

LEMMA 3.18. Assume that σ is a constant length substitution on A = Z+ and Mσ is
irreducible and aperiodic. If Mσ is strongly ergodic, then for all integers t ≥ 2, Mσt is
also strongly ergodic.

Proof. Let L > 0 be the length of σ . Fix and integer t ≥ 2 and i1 . . . it , k1 . . . kt ∈ At .
Since Mσ is strongly ergodic, then equation (2.5) implies that there exists an integer n > 0
and j1 ∈ N such that

j1 occurs in σn(i1) and σn(k1).

Let m > 0 be an integer such that

m =
[

ln(2t)

ln L

]
+ 1,

then

σm(j1) = a1 . . . as where s ≥ 2t .

https://doi.org/10.1017/etds.2023.113 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.113


Invariant measures for substitutions on countable alphabets 2555

Hence, a1 . . . a2t occurs in σn+m(i1) and σn+m(k1). Thus,

a1 . . . at occurs in σn+m
t (i1 . . . it ) and σn+m

t (k1 . . . kt ),

and we are done again by equation (2.5).

Proof of Theorem 3.12. Assume without loss of generality that σ has a fixed point u =
σ(u) = u0u1 . . . = limn→∞ σ(u0) and let L > 0 be the length of σ . Recall that for all
i, j ∈ Z+ and n ≥ 0,

|σn(i)|j
|σn(i)| = Mn

ij

Ln
.

Since Mσ is irreducible, aperiodic, and strongly ergodic, we have that λ = L and

lim
n→+∞

|σn(i)|j
|σn(i)| = vj > 0

independently of i. Moreover, strong ergodicity implies that there exist c > 0 and 0 < β < 1
such that

sup
i≥0

∣∣∣∣ |σ
n(i)|j

|σn(i)| − vj

∣∣∣∣ ≤ cβn for all n ≥ 0.

To compute limn→+∞(|σn(i)|w/|σn(i)|), where w is a word of length t ≥ 2, we will
consider a substitution σt on the alphabet At . From Lemmas 3.14 and 3.18, we deduce that
Mσt is irreducible, aperiodic, and strongly ergodic. Thus, if w = w0 . . . wt−1 and B =
b0 . . . bt−1 ∈ At , then there exists dB > 0 such that limn→+∞(|σn

t (w)|B/|σn
t (w)|) = dB

independently of w. Now, since

|σn
t (w)| = |σn(w0)| = Ln and |σn(w0)|B ≤ |σn

t (w)|B ≤ |σn(w0)|B + t ,

we obtain

lim
n→+∞

|σn(w0)|z
|σn(w0)| = dB . (3.26)

Moreover, there exists ct > 0 and 0 < βt < 1 such that

sup
w0≥0

∣∣∣∣ |σ
n(w0)|B

|σn(w0)| − dB

∣∣∣∣ ≤ ctβ
n
t for all n ≥ 0. (3.27)

To finish the proof, we have to show the following claim.

Claim. Let t ≥ 2 and B = b1 . . . bt ∈ Fu. Then limN→∞(1/N)|uk . . . uk+N−1|B = dB

uniformly on k.

The proof is the same as that for a finite alphabet and σ primitive given in [19, Theorem
4.6, pp. 141–142]. Indeed, let Vk = uk . . . uk+N−1 ∈ Fu, k ∈ Z+, N ∈ N. As cited in the
proof of Theorem 3.1, the word Vk can be written as

Vk = v0σ(v1) . . . σ n−1(vn−1)σ
n(vn)σ

n−1(wn−1) . . . σ (w1)w0, (3.28)

where n ≥ 0 is an integer and vi , i ∈ {0, . . . , n}, wj , j ∈ {0, . . . , n − 1} are elements
of Fu possibly empty words of lengths ≤ L and vn is not empty.
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Since L ≥ 2, there exist C > 0 and 1 < τ < L such that Cτn ≥ ct (2n − 1)

((max(βtL, 1))n for every n ≥ 1. Now for Vk = uk . . . uk+N−1, k ∈ Z+, for N ∈ N,
and B ∈ Fu such that |B| < N , we use equations (3.28) and (3.27) to obtain that

||Vk|B − dBN | ≤
n∑

j=0

∣∣|σ j (vj )|B − dB |σ j (vj )|
∣∣ +

n−1∑
j=0

∣∣|σ j (wj )|B − dB |σ j (wj )|
∣∣

≤
n∑

j=0

ct (βtL)j +
n−1∑
j=0

ct (βtL)j ≤ ct (2n − 1)((max(βtL, 1))n ≤ Cτn.

(3.29)

Since N ≥ |σn(vn)| = Ln, we obtain that

sup
k≥0

∣∣∣∣ |Vk|B
N

− dB

∣∣∣∣ ≤ Cγ n (3.30)

for some γ < 1 and we obtain the claim.

3.3.2. Strong ergodicity for non-constant bounded length substitution

Definition 3.19. Let M = (Mij )i,j≥0 be a non-negative matrix such that M is irreducible,
aperiodic, and positive recurrent with finite Perron value λ > 0. Let P = (Pij )i,j≥0 be the
stochastic matrix defined by

Pij = Mij rj

λri
for all i, j ≥ 0,

where r = (rk)k≥0 is a right Perron eigenvector of M. We say that M is strongly ergodic if
P = (Pij )i,j≥0 is too.

Remark 3.20. (1) It is easy to see that the stochastic matrix P defined in the last definition
satisfies Pij = Mjilj /λli for all i, j ≥ 0, where l = (lk)k≥0 is a left Perron eigenvector of
M. Furthermore, we have that P n

i,j = Mn
ij rj /λ

nri for all integers n ≥ 1.
(2) Definition 3.19 appeared in [20] in the case where M is a finite irreducible, aperiodic

matrix. It is also an extension of the definition in the case where M has constant row sums
L. This comes from the fact that ri = 1 for all i ≥ 0 and λ = L.

Remark 3.21. Let M = (Mij )i,j≥0 be a non-negative, irreducible, aperiodic, and positive
recurrent matrix with finite Perron value λ > 0. Then M is strongly ergodic if and only if
there exists positive integer n and a vector of probability (πj )j≥0 such that

lim
n→∞ sup

i≥0

+∞∑
j=0

∣∣∣∣
Mn

ij rj

λnri
− πj

∣∣∣∣ = 0. (3.31)

Furthermore, πj = lj rj , where l and r are respectively Perron left and right eigenvectors
such that l · r = 1. By using Remark 2.13, we deduce that M is strongly ergodic if and only
if there exists a positive integer n and a positive constant a such that for all integers i �= k,
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we have
+∞∑
j=0

min
(

Mn
ij rj

λnri
,
Mn

kj rj

λnrk

)
≥ a. (3.32)

Remark 3.22. Let M = (Mij )i,j≥0 be a non-negative, irreducible, aperiodic, and positive
recurrent matrix with finite Perron value λ > 0. Assume that M has a right Perron
eigenvector r = (ri)i≥0 ∈ l∞ which satisfies inf{ri : i ≥ 0} > 0, then by Remark 3.21, we
deduce that M is strongly ergodic if and only if there exists a positive integer n such that
Mn is scrambling.

THEOREM 3.23. Let σ be a non-constant bounded length substitution on A = Z+ with a
periodic point u and such that M = Mσ is irreducible, aperiodic, positive recurrent and
has a finite Perron value. Assume that Mσ has a right Perron eigenvector r = (ri)i≥0 ∈ l∞
and there exists a positive integer such that Mn

σ is scrambling. Then the dynamical system
(�σ , S) has a unique invariant probability measure.

For the proof, we need the following results.

LEMMA 3.24. Let M = (Mij )i,j∈Z+ be an irreducible, aperiodic, positive recurrent
non-negative matrix such that ‖M‖ = sup{∑+∞

j=0 Mij , i ∈ Z+} < ∞ and inf{Mij :
i, j ∈ Z+, Mij > 0} > 0. Assume that there exists a positive integer such that Mn

is scrambling. Then M has a right Perron eigenvector r = (ri)i≥0 which satisfies
inf{ri : i ≥ 0} > 0.

Proof. Assume without loss of generality that M is scrambling. Let r = (ri)i≥0 be a
non-negative right Perron eigenvector of M. Since M is irreducible, ri > 0 for every
i ≥ 0. Moreover, ‖M‖ < ∞ and inf{Mij : i, j ∈ Z+, Mij > 0} > 0 imply that there
exists L > 0 such that M0k = 0 for all k > L. Since M is scrambling, then for all i ∈ Z+,
there exists ki ∈ {0, . . . , L} such that Mi,ki

> 0. Since
∑+∞

k=0 Mikrk = λri , we deduce that

ri ≥ Mi,ki
rki

λ
≥ C inf{rk : 0 ≤ k ≤ L}

λ
> 0 for all i ∈ Z+,

where C = inf{Mij : i, j ∈ Z+, Mij > 0}.
LEMMA 3.25. Let σ be a non-constant bounded length substitution on A = Z+ with a
periodic point u such that M = Mσ is irreducible, aperiodic, and has a finite Perron value.
Assume that Mσ is strongly ergodic and has a right Perron eigenvector r = (ri)i≥0 ∈ l∞
which satisfies inf{ri : i ≥ 0} > 0. Then for all integers t ≥ 2, Mσt is strongly ergodic and
has a right Perron eigenvector r(t) = (rI )I∈Al

∈ l∞ such that inf{rI : I ∈ At } > 0.

Proof. Using the same proof given in Lemma 3.18, we can show that if Mσ is strongly
ergodic, then Mσt is also strongly ergodic. Moreover, since r = (ri)i≥0 ∈ l∞ and inf{ri :
i ≥ 0} > 0, Lemma 3.16 implies that r(t) = (rI )I∈At ∈ l∞ and inf{rI : I ∈ At } > 0.

LEMMA 3.26. Let M = (Mij )i,j≥0 be a non-negative strongly ergodic matrix with finite
Perron value λ > 0. Assume that M has a right Perron eigenvector r = (ri)i≥0 ∈ l∞ which
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satisfies inf{ri : i ≥ 0} > 0. Then

lim
n→+∞ sup

i≥0

∞∑
j=0

∣∣∣∣
Mn

ij∑+∞
k=0 Mn

ik

− zj

∣∣∣∣ = 0,

where zj = lj /
∑+∞

k=0 lk and l = (li)i≥0 ∈ l1 is a left Perron eigenvector of M.

Proof. Since M is strongly ergodic, we deduce by equation (3.31) that for all i, j ∈ Z+,

lim
n→∞

Mn
ij

λn
= πj

ri

rj

and

lim
n→∞

+∞∑
k=0

Mn
ik

λn
=

+∞∑
k=0

πk

ri

rk
,

where the last two limits are finite and uniform on i. Hence,

lim
n→+∞ sup

i≥0

∞∑
j=0

∣∣∣∣
Mn

ij∑+∞
k=0 Mn

ik

− zj

∣∣∣∣ = 0,

where

zj = πj/rj∑+∞
k=0 πk/rk

= lj∑+∞
k=0 lk

for all j ≥ 0.

COROLLARY 3.27. Let M = (Mij )i,j≥0 be a non-negative strongly ergodic matrix with
finite Perron value λ > 0. Assume that M has a right Perron eigenvector r = (ri)i≥0 ∈ l∞
which satisfies inf{ri : i ≥ 0} > 0. Then

lim
n→∞

∑+∞
j=1 Mn

ij

λn
= cri

for some c > 0.

Proof of Theorem 3.23. Without loss of generality, assume that σ has a fixed point u =
σ(u) = u0u1 . . . . For all i, j ∈ Z+ and n ∈ N, we have

|σn(i)|j
|σn(i)| = Mn

ij∑+∞
k=0 Mn

ik

.

Hence, by Lemma 3.26, we have

lim
n→+∞ sup

i≥0

∞∑
j=0

∣∣∣∣ |σ
n(i)|j

|σn(i)| − lj∑+∞
k=0 lk

∣∣∣∣ = 0.

Let j ∈ Z+ and put

μ[j ] = lim
n→∞

|σn(u0)|j
|σn(u0)| = lj∑+∞

k=0 lk
.
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Let t ≥ 2 be an integer and It = i1 . . . it ∈ At , and put

μ[i1 . . . it ] = lim
n→∞

|σn(u0)|i0...it−1

|σn(u0)| .

By equation (3.12) and the fact that λ > 1, we deduce that

μ[i1 . . . it ] = lim
n→∞

|σn
t (u0 . . . ut−1)|i1...it
|σn

t (u0 . . . ut−1)| = lim
n→∞

(Mn
t )Ut ,It∑

J∈At
Mn

Ut ,J
,

where Ut = u0 . . . ut−1, It = i1 . . . it . By Lemmas 3.25 and 3.26, we have

μ[i1 . . . it ] = l
(t)
It∑

J∈At
l
(t)
J

,

where (l
(t)
I )I∈At is a left Perron eigenvector of Mσt associated to its Perron value λ.

The measure μ is the same as that given in the proof of Theorem 3.10. Hence, μ is a
shift invariant measure. The uniqueness is a direct consequence of the following claim.

Claim. Let E be a measurable subset of �σ such that μ(E) > 0. For all x ∈ E, we have

lim
N→∞

1
N

card{0 ≤ k ≤ N − 1, Sk(x) ∈ E} = μ(E). (3.33)

It remains to prove the claim. First, assume that E = [i0]. Suppose x = u = σ(u) =
u0u1 . . . and N = |σn(u0)|. Then

lim
n→∞

1
N

card{0 ≤ k ≤ N − 1, Sk(x) ∈ E} = lim
n→∞

|σn(u0)|i0
|σn(u0)| = μ(E).

Now, let x ∈ �σ and N ∈ N. Let V = uk . . . uk+N−1 ∈ Fu, k ∈ Z+ be a prefix of x.
As seen before, the word V can be written as a concatenation of at most 2n + 1 words
v0, σ(v1), . . . , σn(vn), σn−1(wn−1) . . . w0 that is

V = v0σ(v1) . . . σ n−1(vn−1)σ
n(vn)σ

n−1(wn−1) . . . σ (w1)w0,

where n ≥ 1 is an integer and vi , i ∈ {0, . . . , n}, wj , j ∈ {0, . . . , n − 1} are elements
of Fu possibly empty words of lengths ≤ K = max{|σ(b)|, b ∈ A} and vn is not empty.
Thus,

1
N

card{0 ≤ k ≤ N − 1, Sk(x) ∈ E} = |V |i0
|V |

= |σn(vn)|i0 + ∑n−1
i=0 (|σ i(vi)|i0 + |σ i(wi)|i0)

|σn(vn)| + ∑n−1
i=0 (|σ i(vi)| + |σ i(wi)|)

. (3.34)

Since Mσ is strongly ergodic, we have

lim
k→∞ sup

{ |σk(j)|i0
|σk(j)| , j ∈ A

}
= lim

k→∞ sup
{

Mk
j ,i0∑+∞

i=0 Mk
j ,i

, j ∈ A

}
= μ[i0].

We deduce that

lim
k→∞ sup

{ |σk(v)|i0
|σk(v)| , v ∈ Fu, |v| ≤ K

}
= μ[i0]. (3.35)
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Using equations (3.34), (3.35), and the Stolz–Cesaro theorem, we obtain that

lim
N→∞

1
N

card{0 ≤ k ≤ N − 1, Sk(x) ∈ E} = μ[i0] = μ(E).

Hence, we obtain the claim for E = [i0].
Now, suppose that I = i0 . . . it−1 and E = [I ]. Proceeding as in the case E = [i0], we

have

card{0 ≤ k ≤ N − 1, Sk(x) ∈ E}
N

= |σn(vn)|I + ∑n−1
i=0 (|σ i(vi)|I + |σ i(wi)|I ) + Cn

|σn(vn)| + ∑n−1
i=0 (|σ i(vi)| + |σ i(wi)|)

,

where Cn is the cardinality of times such that i0 . . . it−1 occurs in the concatenation
of at least two consecutive words among the 2n + 1 words forming V. Observe that
0 ≤ Cn ≤ 2n.

Now for all j ∈ A, we have

lim
k→∞

|σk(j)|i0...it−1

|σk(j)| = lim
k→∞

|σk
t (jz1 . . . zt−1)|i0...it−1

|σk
t (jz1 . . . zt−1)|

= μ[i0 . . . it−1],

where jz1 . . . zt−1 ∈ Fu. We deduce by using the fact that σt is strongly ergodic that

lim
k→∞ sup

{ |σk(j)|i0...it−1

|σk(j)| , j ∈ Z+
}

= μ[i0 . . . it−1].

Thus,

lim
k→∞ sup

{ |σk(v)|i0...it−1

|σk(v)| , v ∈ Fu, |v| ≤ K

}
= μ[i0 . . . it−1]. (3.36)

Using equation (3.36) and the Stolz–Cesaro theorem, we deduce that

lim
n→∞

|σn(vn)|I + ∑n−1
i=0 (|σ i(vi)|I + |σ i(wi)|I )

|σn(vn)| + ∑n−1
i=0 (|σ i(vi)| + |σ i(wi)|)

= μ[i0 . . . il−1].

Since 0 ≤ Cn ≤ 2n, limn→∞ |σn(vn)|0
λn > 0 and λ > 1, we deduce that

lim
N→∞

1
N

card{0 ≤ k ≤ N − 1, Sk(x) ∈ E} = μ[i0 . . . it−1],

and this finishes the proof.

PROPOSITION 3.28. Let σ be a bounded length substitution on A = Z+ such that σ has a
periodic point u and Mσ is irreducible and aperiodic. Assume that there exists an integer
n such that Mn

σ is scrambling. Then (�σ , S) is minimal.

Proof. Assume without loss of generality that u = u0u1 . . . is a fixed point and Mσ is
scrambling. Let V = uk . . . uk+N , k, N ∈ Z+ be a factor of u. Let us prove that V occurs
infinitely on u with bounded gaps. Indeed, let n0 ∈ N such that V occurs in σk(u0) for all
k ≥ n0 and put

σ(u0) = t0 . . . ts , s ∈ N.
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Let m0 ∈ N such that u0 occurs on σk(ti) for all k ≥ m0 and i = 0, . . . , s. Hence, V occurs
in σk(ti) for all k ≥ n0 + m0 and i = 0, . . . , s. However, since Mσ is scrambling, then for
all i ∈ N, there exists ji ∈ {0, . . . , s} such that tji

occurs in σ(ui). Hence, V occurs in
σk(ui) for all k ≥ n0 + m0 and i ∈ Z+. Since u = σk(u) = σk(u0)σ

k(u1) . . . , we are
done.

Examples.
(1) Let σ (infinite Fibonacci) be given by

σ(2n) = 0(2n + 1), σ(2n + 1) = 2n + 2 for all n ≥ 0.

We can prove by induction that

|σn(0)| = Fn and |σn(0)|0 = Fn−1 for all n ≥ 1,

where (Fn)n≥0 is the Fibonacci sequence defined by

F0 = 1, F1 = 2, Fn = Fn−1 + Fn−2 for all n ≥ 2.

The substitution matrix is given by

Mσ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 . . .

0 0 1 0 0 0 . . .

1 0 0 1 0 0 . . .

0 0 0 0 1 0 . . .

1 0 0 0 0 1 . . .
...

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It is irreducible, aperiodic, and its Perron eigenvector is the Golden number β =
(1 + √

5)/2 = limn→∞(Fn+1)/Fn. A right Perron and a left Perron eigenvector are
respectively

l = (1, 1/β, . . . , 1/βn, . . .) and r = (1, 1/β, 1, 1/β, 1, 1/β, . . .).

Hence, Mσ is positive recurrent. Furthermore, M2
σ is scrambling, r ∈ l∞, and σ

has a fixed point u = limn→∞ σn(0), thus Theorem 3.23 implies that the dynamical
system (�σ , S) has a unique probability invariant measure.

(2) Let τ be given by
τ(n) = 0an(n + 1) for all n ≥ 0,

where 0 ≤ ai ≤ C for all i ≥ 0 for some fixed C > 0 and a0 > 0, and lim sup an ≥ 1.
The substitution matrix is given by

Mτ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 1 0 0 0 0 . . .

a1 0 1 0 0 0 . . .

a2 0 0 1 0 0 . . .

a3 0 0 0 1 0 . . .

a4 0 0 0 0 1 . . .
...

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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The Perron eigenvalue of Mτ is the unique real number λ > 1 satisfying

1 =
∞∑
i=0

aiλ
−i−1.

A right Perron and a left Perron eigenvector are respectively

l = (1, 1/λ, . . . , 1/λn, . . .) and r = (1, α1, . . . , αn, . . .),

where

αn = λn −
n−1∑
i=0

aiλ
n−i−1 for all n ≥ 1.

Observe that

αn =
+∞∑
i=1

an+i−1λ
−i for all n ≥ 1.

Since l · r is finite, Mσ is positive recurrent.
If there exists k ≥ 1 such that akn ≥ 1 for all n ∈ Z+, then inf{αn, n ∈ Z+} > 0..

Moreover, Mk
τ is scrambling. Furthermore, τ has a fixed point u = limn→∞ τn(0),

thus Theorem 3.23 implies that the dynamical system (�u, S) has a unique proba-
bility invariant measure.

Question 3.4. It will be interesting to study dynamical properties of (�u, S) associated to
τ in the case where inf{αn, n ∈ Z+} = 0.

3.3.3. � strong ergodicity for non-constant bounded length substitution

Definition 3.29. Let M = (Mij )i,j≥0 be a non-negative matrix such that M is irreducible,
aperiodic, positive recurrent and ‖M‖ < +∞. We say that M is � ergodic if for all i,
j ∈ Z+,

lim
n→+∞

Mn
ij∑+∞

k=0 Mn
ik

= zj > 0, (3.37)

where the vector (zj )j≥0 has 1 as coordinates sum and that M is � strongly ergodic if there
exists a vector (zj )j≥0 of positive real numbers such that

∑+∞
j=0 zj = 1 and

lim
n→∞ supi≥0

∞∑
j=0

∣∣∣∣
Mn

ij∑+∞
k=0 Mn

ik

− zj

∣∣∣∣ = 0.

Remark 3.30. If M is � strongly ergodic, then it is clear that M is � ergodic.

Question 3.5. Is M = (Mij )i,j≥0 � ergodic equivalent to M positive recurrent with right
Perron eigenvector in l1? The last question has a positive answer when M is a multiple of
a stochastic matrix.

An important result is the following.
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PROPOSITION 3.31. Let M = (Mij )i,j≥0 be an irreducible, aperiodic matrix with finite
Perron value λ. Assume that M has a right Perron eigenvector r = (ri)i≥0 ∈ l∞ satisfying
inf{ri , i ∈ Z+} > 0. If M is strongly ergodic, then M is � strongly ergodic.

Proof. It is just Lemma 3.26.

Question 3.6. Does there exist a non-negative matrix M = (Mij )i,j≥0 which is strongly
ergodic (respectively � strongly ergodic), but not � strongly ergodic (respectively strongly
ergodic)?

LEMMA 3.32. Let M = (Mij )i,j≥0 be a � ergodic matrix with finite Perron value λ and
with right Perron eigenvector r = (ri)i≥0, then any left Perron eigenvector of M belongs
to l1. Moreover,

lim
n→∞

+∞∑
k=0

Mn
ik

λn
=

+∞∑
k=0

lim
n→∞

Mn
ik

λn
= c ri for all i ∈ Z+, (3.38)

for some c > 0, and

lim
n→+∞

Mn
ij∑+∞

k=0 Mn
ik

= lj∑+∞
k=0 lk

> 0 for all i, j ∈ Z+. (3.39)

Proof. By � ergodicity,

lim
n→+∞

Mn
ij∑+∞

k=0 Mn
ik

= zj .

Moreover, since M is positive recurrence, we have that

lim
n→+∞

Mn
ij

λn
= lj ri , (3.40)

where l = (lj )j≥1 is a left Perron eigenvector such that l · r = 1. Thus,

lim
n→+∞

+∞∑
k=0

Mn
ik

λn
= lim

n→+∞

∑+∞
k=0 Mn

ik

Mn
ij

Mn
ij

λn
= lj

zj

ri .

The left-hand side above does not depend on j, and thus l is a multiple of (zj )j≥1 ∈ l1.
Thus, l ∈ l1 and we also have equation (3.39), and equation (3.38) follows from the last
equality and equation (3.40).

THEOREM 3.33. Let σ be a bounded length substitution on A = Z+ with non-constant
length such that σ has a periodic point u and Mσ is irreducible, aperiodic. If Mσ and
Mσt , t ≥ 2 are � strongly ergodic, then the dynamical system (�σ , S) has a unique
probability shift invariant measure.

Proof of Theorem 3.33. Similar to the proof of Theorem 3.23.
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