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Abstract

Let π(f) be a nearly ordinary automorphic representation of the multiplicative group
of an indefinite quaternion algebra B over a totally real field F with associated Galois
representation ρf . Let K be a totally complex quadratic extension of F embedding in
B. Using families of CM points on towers of Shimura curves attached to B and K,
we construct an Euler system for ρf . We prove that it extends to p-adic families of
Galois representations coming from Hida theory and dihedral Zdp-extensions. When this
Euler system is non-trivial, we prove divisibilities of characteristic ideals for the main
conjecture in dihedral and modular Iwasawa theory.

1. Introduction

1.1 Motivation and set-up
1.1.1 Motivation. Let E/Q be an elliptic curve of conductor N . Let K/Q be a quadratic

imaginary extension such that all primes dividingN split inK (the so-called Heegner hypothesis).
Then the completed L-function L(E/K, s) satisfies the symmetric functional equation

L(E/K, s) = εK/F (s)L(E/K, 2− s)

with εK/F (1) equal to −1 by the Heegner hypothesis. In the celebrated work [GZ86], it is shown
that the first derivative of L(E/K, s) at s= 1 is equal up to normalization factors to the height
of a certain Heegner point z ∈ E(K). Comparing this result with the Birch–Swinnerton–Dyer
conjecture yields the following.

Conjecture 1.1 [GZ86, Conjecture (2.2)]. If z has infinite order in E(K), then it generates a
subgroup of finite index and [E(K) : z]2 •= |X(E/K)|(

∏
`|N Tam(E/Q, `))2.

Here, the bullet indicates the presence of easy normalization factors and Tam(E/Q, `) is the
Tamagawa number of E at `.

When E has good ordinary reduction at p, this conjecture was given a dihedral Iwasawa-
theoretic transcription soon thereafter in [Per87, Théorème 4.1]: one crucial ingredient being
that Heegner points give rise to universal norms for the dihedral Zp-extension of K, as
already noted in [Maz84]. At least if the GK-representation TpE has large image, a substantial
step towards Conjecture 1.1, namely that |X(E/K)[p∞]|6 [E(K)⊗ Zp : z]2, was then proved
in [Kol90] using the fact that Heegner points form an Euler system. These results were
subsequently generalized to incorporate dihedral Iwasawa theory in [Ber95, Theorem 3.2.1]
and [How04a, Theorem B]. In another direction, it was shown in [Nek07, Theorem 3.2] and
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Dihedral Iwasawa theory of nearly ordinary quaternionic automorphic forms

[Zha01, Theorem A] that the results of Gross–Zagier and Kolyvagin generalize to quaternionic
Shimura curves over totally real fields; the dihedral Iwasawa-theoretic generalization being given
in [How04b, Theorem B].

From the point of view of deformation theory, the introduction of the dihedral Zp-extension
of K corresponds to the study of the variation of Conjecture 1.1 within the universal deformation
ring of the central character of TpE. However, the philosophy of the Equivariant Tamagawa
Number Conjecture (as formulated for instance in [BF01, FP94, Kat93]) suggests that conjectures
on special values of L-functions are best studied when they take into account the action of the
largest algebra of endomorphisms acting on the object of interest, or in other words when they are
expressed with coefficients in the universal deformation ring of the residual Galois representation.
The aim of this article is to formulate a conjecture generalizing Conjecture 1.1 to this natural
setting and to prove part of it using the method of Euler systems. The situation we have in
mind is briefly the following: instead of an elliptic curve over Q and the Iwasawa algebra of the
anticyclotomic Zp-extension, we consider a nearly ordinary automorphic representation π(f) of
the adelic points of the reductive group attached to a quaternion algebra B over a totally real
field and the Hecke algebras of Hida theory which are often the universal deformation rings of the
residual Galois representation of π(f). The study of Conjecture 1.1 in Hida families of ordinary
automorphic forms was first proposed in [How07, Conjecture 3.3.1] when B× = GL2(Q). This
text grew as an attempt to generalize [How07] to totally real fields and to give proofs of some
results left as conjectures there.

1.1.2 Set-up. Let F/Q be a totally real field of degree d. Fix an Archimedean prime τ1 and a
finite place of finite places ΣB such that |ΣB| ≡ d+ 1 mod 2. Let B/F be the quaternion algebra
ramified at ΣB ∪ {τi | ∞, i > 1}. Let p > 3 be a rational prime and N be an ideal of OF prime to
p such that v|Np implies that v /∈ SB. Let U be a compact open subgroup of the adelic points B̂×

of B×. In this introduction, we assume that U =
∏
v Uv, that Uv is maximal outside Np, that it is

of type U0 at v|N and of type U1
1 at v|p (see § 2.2.1.2 for precise definitions). Let T be the Hecke

algebra generated by Hecke operators outside N ∪ SB, by the nearly ordinary Hecke operators
at v|p and by the diamond operators (see § 3 for precise definitions). Let π(f) be an automorphic
representation of B̂× arising from f , an eigencuspform for T of even weights k > 2 belonging to
Sk(U, ωf ). We assume that π(f) is nearly ordinary at p, in the sense for instance of [SW99, p. 21].
Let λf be the map sending elements of T to the corresponding eigenvalue of f (we will more
generally use the notation λg for the same map attached to a nearly ordinary eigenform g) and let
Lp be a finite extension of Qp containing the image of λf . Let O be the ring of integers of Lp and
mO and F the maximal ideal and residue field ofO. The p-adic nearly ordinary Hecke algebra Tord

∞
of Hida theory (see [Hid86, Hid88, Hid89b, SW99, SW01], we use the convention of the latter two
articles) acts on Sk(U). The inclusion of the diamond operators makes Tord

∞ into a torsion-free
Λ-module of finite type where Λ is a regular ring of dimension 2 + d+ δF,p, with δF,p the defect of
Leopoldt’s conjecture for F and p. The map λf from Tord

∞ to O defines a unique maximal ideal m

of Tord
∞ . Because the Hecke algebra is locally étale at arithmetic points, λf also defines a unique

minimal prime a⊂m. Let (V (f), ρf , Lp) (respectively (T (f), ρf ,O), respectively (T (f), ρ̄f , F))
be the GF -representation attached to f with coefficients in Lp (respectively in O after a choice
of lattice, respectively in F after reduction modulo mO). For v|p, the representation ρf |GFv is
reducible. Assume that it is GFv -distinguished for v|p, which is to say that the Jordan-Hölder
factors of ρ̄ssf |GFv are distinct (Assumption 3.5). Assume that ρ̄f is irreducible (Assumption 3.4)
and let R(a) be Tord

m /a. There then exists a GF -representation (T (f), ρm, R(a)) constructed
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by patching pseudorepresentations as in [Hid89b, Wil88] which is free of rank 2 over R(a).
The GF -representation T (a) interpolates the GF -representations attached to nearly ordinary
modular forms in the Hida family of tame level N containing f in the following sense. If S is a
complete local Noetherian domain which is an O-algebra and if Sp is a morphism of O-algebras
between R(a) and S, let TSp be the S-specialization of T (f) attached to Sp, this is to say the free
S-module T (f)⊗R(a),Sp S with GF -action through ρm on T (f) and trivial GF -action on S. Then,
if Sp is equal to λg for a nearly ordinary eigenform g, then Tλg is isomorphic as S[GF ]-module
to T (g). More generally, we call an S-module T an S-specialization of an R(a)[G]-module T ′

whenever there is a map of O-algebras Sp from R to S and T = T ′ ⊗R(a),Sp S with the natural
G-action on T ′ and trivial G-action on S.

Let {U(S)}S be a tower of compact open subgroups of U constant outside p (see § 2.2 for
precise definitions) and X(S) be the Shimura curve whose complex points are given by:

X(S)(C) =B×\(C− R× B̂×/U(S)).

When B =M2(Q), we take X(S) to be the smooth compactification of the previous curve. The
representation T (f) can often be realized geometrically as

Mord
m = lim

←−
S

H1
et(X(S)×F F̄ ,O)m ⊗Tord

m
R(a). (1.1.1)

This is true in particular when F is equal to Q or under deformation conditions on ρ̄f and is
expected to hold very generally (see § 3.2.4 for details and precise statements).

Let K be a quadratic totally complex extension of F which embeds into B. Assume that
ρ̄f does not have residual complex multiplication by K (see Assumption 5.13 for details). The
GF -representation T (f) is essentially self-dual. Assume that there exists a character χ of A×F /F

×

such that T (f)⊗ χ is self-dual (see Assumption 3.10). There then exists a specific quotient R
of R(a) of dimension 1 + d and a self-dual GF -representation T which is a quotient of T (f)
such that the specialization Tλf of T attached to λf is equal to the self-dual twist of T (f) (see
Theorem 3.1 for details and precise statements).

Let D∞ be the Zdp-extension of K which is pro-dihedral over F and let Λa be the (1 + d)-
dimensional regular ring O[[Γ]] =O[[Gal(D∞/K)]]. Let RIw be R[[Γ]] and TIw be T ⊗R RIw with
action of GK on both sides of the tensor product. For a system of well-chosen ideals and using
coherent families of CM points in the tower of Shimura curves {U(S)}, we construct an Euler
system {z(c) ∈H1(K(c), T )}c where K(c) is the ring-class field of conductor c. This Euler system
extends in the D∞-direction in the sense that:

z(cp∞) = lim
←−
n

z(cpn) belongs to lim
←−
n

H1(K(cpn), T ) =H1(K(c), TIw).

It was conjectured in [Maz84, Conjecture, p. 197] that the element z∞ = CorK(1)/K z∞(1) is not
a torsion element of H1(K, TIw) (see also [CV04, § 1]).

A natural Iwasawa-theoretic generalization of Conjecture 1.1 would strive to express Galois
cohomological invariants of TIw in terms of the index of z∞ inside H1(K, TIw), just as X(E/K)
is described using the Heegner point z. However, several technical hurdles appear here. First
of all, the first proposed generalization of Iwasawa theory to motives with coefficients in Hecke
algebras given in [Gre89, Gre94] uses characteristic ideals, so requires the coefficient rings to
be normal. The formulation given in [Kat93, Conjecture 3.2.2] covers general coefficient rings
but takes as input a lisse sheaf over Spec Z[1/p]. It is not known whether étale cohomology of
towers of Shimura curves provides such an input (and this author suspects that they don’t in
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general). Besides, when the L-function of the motive vanishes, which is our case of interest,
[Kat93, Conjecture 3.2.2] requires some semi-simplicity properties of motives or almost
equivalently the non-degeneracy of an RIw-valued height pairing. Such properties are as yet
unknown. Hence, even the statements of the conjectures we discuss in this text are quite
involved. Briefly speaking, we study the Selmer complex R Γf (KΣ/K, TIw) of TIw as introduced
in [Nek06]. Selmer complexes over Hecke algebras are not known to be perfect in general,
but the rigidity of the automorphic type in Hida families allows us to construct a (non-
canonical) modification of R Γf (KΣ/K, TIw) which is a perfect complex concentrated in degree
[0, 2]. We study two different integral structures on the one-dimensional Frac(RIw)-vector
space (DetRIw

R Γf (KΣ/K, TIw))⊗RIw
Frac(RIw): one called the Euler structure coming from

the existence of the Euler system for TIw and one called the characteristic structure coming
from the Fitting ideal of the second cohomology group of R Γf (KΣ/K, TIw). Equivalently,
the Euler and characteristic structure can be viewed as choices of bases (bEul) and (bchar)
of (DetRIw

R Γf (KΣ/K, TIw))⊗RIw
Frac(RIw). Our conjecture is that these integral structures

coincide: we refer to § 6.2.1 and especially to Conjectures 6.12, 6.13 and Question 6.15 for details.
When RIw is known to be regular and when z∞ belongs to H̃1

f (KΣ/K, TIw) and is not torsion,
our conjectures imply in particular the following equality:

charRIw
H̃2
f (KΣ/K, TIw)tors = (charRIw

H̃1
f (KΣ/K, TIw)/z∞)2. (1.1.2)

Here, H̃ i
f (KΣ/K, TIw) is the ith cohomology group of the Selmer complex R Γf (KΣ/K, TIw).

Under this hypothesis of regularity, our conjectures thus contain [How07, Conjecture 3.3.1].
For S a Cohen–Macaulay domain, let the support of a basis (b) of a free S-module of rank 1
inside Frac(S) be the set of height 1 primes such that bSP is not equal to SP . A weaker form
of our conjectures which does not require the regularity of RIw is that the support of (bEul) and
(bchar) coincide.

1.2 Statement of results

This article establishes Conjecture 6.12 for the GK-representation T ⊗ Λa and a slightly weaker
statement for TIw. The reader should note that the theorems proved in the text are somewhat
more precise and significantly more general than those stated in this section, where we have
highlighted specific important instances. We refer to Theorems 6.1–6.3, Corollaries 6.19 and 6.20
for the strongest statements we obtain. We first state our results when B× = GL2(Q), a situation
which we refer to hereafter as the classical case.

Theorem A (Classical case). Assume B× to be GL2(Q). Let s > 1. Let f ∈ Sk(Γ0(N) ∩
Γ1(ps), ωj) be a p-ordinary eigencuspform with central character a power of the Teichmüller
character. Assume 3.4, 3.5, that all primes dividing N split in K and that p - 6φ(N). Let λf
(respectively λf,∞) be the O-algebra morphism from RIw to O (respectively Λa) equal to λf on
R and the zero map on Gal(D∞/K) (respectively to λf on R and the identity on Gal(D∞/K)).
Let T and T ⊗O Λa be the corresponding specializations of TIw. Let z∞ be the non-torsion class
in H̃1

f (KΣ/K, TIw) which is the first class constructed of the Euler system of Hida-theoretic
Heegner points constructed in [How07].

(i) Let zf ∈ H̃1
f (KΣ/K, T ) be the image of z∞ under λf . Assume that zf is not O-torsion.

Then Conjecture 6.14 is true. In particular, if T is non-exceptional, then:

`OH̃
2
f (KΣ, T )tors 6 2`O(H̃1

f (KΣ/K, T )/Ozf ). (1.2.1)
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(ii) Let zf,∞ ∈ H̃1
f (KΣ/K, T ⊗O Λa) be the image of z∞ under λf,∞. Then zf,∞ is not Λa-

torsion and Conjecture 6.14 is true for T ⊗O Λa. In particular, if T is non-exceptional, then:

charΛa H̃
2
f (KΣ/K, T ⊗O Λa)tors|(charΛa H̃

1
f (KΣ/K, T ⊗O Λa)/Λazf,∞)2. (1.2.2)

(iii) The class z∞ is not RIw-torsion and H̃1
f (KΣ/K, TIw) is of rank 1. The support of the

characteristic structure is contained in the support of the Euler structure. Assume R to be a
regular ring. Then:

charRIw
H̃2
f (KΣ/K, TIw)tors| charRIw

(H̃1
f (KΣ/K, TIw)/RIwz∞)2. (1.2.3)

Remark. Because Theorem A uses [How07, Theorem 3.3.1], its hypotheses are slightly different
from those made on π(f) in the bulk of the introduction. In terms of attribution, statement
(1.2.1) goes back in essence to [Kol90]. Large parts of it can be found in [Nek92] (under slightly
different hypotheses). Many cases of both statements (1.2.1) and (1.2.2) are proved or implicit
in [Ber95, How04a, How07].1

Theorem B (General case). Assume that π(f) is a nearly ordinary automorphic form which
satisfies Assumptions 3.4, 3.5, 3.10, 5.13. Let λf (respectively λf,∞) be the O-algebra morphism
from RIw to O (respectively Λa) equal to λf on R and the zero map on Gal(D∞/K) (respectively
to λf on R and the identity on Gal(D∞/K)). Let T and T ⊗O Λa be the corresponding
specializations of TIw. Let z∞ be the first class of the Hida-theoretic Euler system of CM points
constructed in § 4.

(i) Let zf ∈ H̃1
f (KΣ/K, T ) be the image of z∞ under λf . Assume that zf is not O-torsion

and Assumption 5.10. Then Conjecture 6.14 is true for T . In particular, if T is not exceptional,
then H̃1

f (KΣ/K, T ) is of rank 1 and:

`OH̃
2
f (K, T )tors 6 2`O(H̃1

f (K, T )/Ozf ). (1.2.4)

(ii) Let zf,∞ ∈ H̃1
f (KΣ/K, T ⊗O Λa) be the image of z∞ under λf,∞. Assume zf,∞ is not Λa-

torsion. Then Conjecture 6.14 is true for T ⊗O Λa up to p. In particular, if T is not exceptional,
then H̃1

f (KΣ/K, T ⊗O Λa) is of rank 1 and there exists an α ∈ N such that:

charΛa H̃
2
f (KΣ/K, T ⊗O Λa)tors|(charΛa H̃

1
f (KΣ/K, T ⊗O Λa)/Λapαzf,∞)2. (1.2.5)

Under Assumption 5.10, α can be chosen to be zero.

(iii) Assume that z∞ is not RIw-torsion and Assumption 5.10. Then H̃1
f (KΣ/K, TIw) is of

rank 1 and the support of the characteristic structure is contained in the support of the Euler
structure. If in addition RIw is a regular ring

charRIw
H̃2
f (KΣ/K, TIw)tors| charRIw

(H̃1
f (KΣ/K, TIw)/RIwz∞)2. (1.2.6)

Remark. Statements (1.2.4) and (1.2.5) are proved or implicit in [How04b] under slightly different
hypotheses.

We make a few comments on the frequency of the assumptions we require for Theorem B.
When π(f) is a non CM automorphic representation, Assumptions 3.4 and 5.13 are satisfied for
all sufficiently large p by [Dim05]. The ring R is regular for sufficiently large p by the finiteness of
Sk(U) over Z and no example of a non-regular R is known under our working hypotheses to the
best of our knowledge. In several special cases, it is known that z∞ is not torsion. For instance,

1 All errors remaining of course entirely ours.
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if π(f) has trivial central character, this follows from a comparison of the construction of z∞ with
[AN10, Theorem 4.3.1], [CV04, Theorem 4.10] and [CV05, Corollary 2.10]. In another direction,
the class z∞ can be shown to be non-torsion under some hypotheses on the non-vanishing
of central L-functions using [YZZ08, Theorem 1.3.1]. In the absence of Assumption 5.10, the
divisibility (1.2.6) is proved in the text up to an explicit modification of the Euler system studied
which accounts for a possibly non-trivial algebraic µ-invariant.

The organization of this article is as follows. Sections 2 and 3 review the theory of nearly
ordinary Galois representations arising from the étale cohomology of towers of Shimura curves
and Hida theory for quaternionic automorphic forms. Though the results proved there are
presumably well-known, see among others [Fuj99, Hid88, MW86, NP00, Oht95, SW99], their
inclusion is necessary to ensure that all objects constructed are integral and of geometric
nature. In § 4, we construct equivariant families of CM points indexed by conductors and
levels in towers of Shimura curves. The images under the Abel–Jacobi map of these points
are equivariant classes under the action of the Galois group of well-chosen abelian extensions
of K and the action of the nearly ordinary Hecke algebra. In § 5, we show that these classes form
an Euler/Kolyvagin system with coefficients in RIw, thus extending part of the results of [How07]
from the classical case to F and B. The divisibilities of characteristic ideals which form the crux
of Theorems A and B then follow from the method of Euler systems and techniques of descent
reminiscent of [How04b, Och05] but applied at the level of complexes. The systematic use of
Selmer complexes in the descent process, which is the main novelty of this text,2 allows for the
natural incorporation of forms with exceptional zeroes as well as the treatment of non-regular
coefficient rings, and thus of Hecke algebras, see particularly Corollary 6.19 and Theorem 6.3.
This is in contrast to most of the literature on the main conjecture for modular forms (for
instance [EPW06, How04a, How04b, How07, Och05, Och06]) which relies in an essential way on
the regularity of the coefficient ring and/or treats only non-exceptional forms. It also greatly
simplifies and sharpens some of the arguments of [EPW06, Corollary 5.1.4], [How04b, § 3.3] and
[Och05, § 3]. In particular, we show that our conjectures are stable by a fairly large class of
base-change of rings of coefficients (see for instance Propositions 6.16 and 6.17) and prove that
the main conjecture is true for all specializations in a Hida family if and only if it is true for a
single one (see Corollary 6.20).

General notation. If A is a set, let |A| be its cardinal. We fix an algebraic closure F̄ of F . For
each place v, we fix an algebraic closure F̄v of Fv and an embedding of F̄ into F̄v extending
F ↪→ Fv. For p a rational prime, we fix an algebraic closure Q̄p of Qp and an embedding of
F̄ = Q̄ into Q̄p. We fix an identification of C with Q̄p extending F̄ ↪→ Q̄p. Let IF,∞ = {τj}16j6d
be the set of real embeddings of F . If v is a finite place of F , let OF,v be the ring of integers
of Fv and $v a fixed uniformizing parameter of OF,v; if L is a finite extension of F , let Lv
be L⊗F Fv and OL,v be OL ⊗OF OF,v. Let IF,v be the set of field embeddings of Fv into F̄v.
Let IF,p be the union of the IF,v for v|p. Our fixed identification of Q̄p with C identifies IF,p
with IF,∞. For E a Galois extension of F or Fv, let GE be the absolute Galois group of
E. If w is a place of E above v, let Enrw be the maximal unramified extension of Ew and
Iw = Gal(Ēv/Enrv ) be the inertia group of w. The geometric Frobenius morphism is written
Fr(w) and the Artin reciprocity map is normalized by making $w correspond to Fr(w). If R is a
complete local Noetherian ring, T is an R-module of finite type and i is an integer, let H i(E, T ),
H i(E/F, T ), H i(Ew, T ) and H1

ur(Ew, T ) be respectively the continuous Galois cohomology

2 The idea is implicit in [Kat99, § 9.6] and [Kat04, §§ 13.8 and 14.14].

361

https://doi.org/10.1112/S0010437X12000619 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X12000619


O. Fouquet

groups H i(GE , T ), H i(Gal(E/F ), T ), H i(GEw , T ) and H1(Fr(w), T Iw). A G-representation
(T, ρ, S) is an S-module T free of finite rank endowed with a continuous action of G via the
group morphism ρ.

2. Towers of Shimura curves

2.1 Generalities on Shimura curves
2.1.1 Notation. In this subsection, we fix some notation relative to quaternionic Shimura

curves, following [CV05, Del71, Mil05, Nek07]. Let SB be a finite set of finite places such that:

|SB| ≡ d− 1 mod 2.

Let Ram(B) = SB ∪ {τj}j 6=1 and B be the unique quaternion algebra over F whose set of
ramification places is Ram(B). We refer to the case B =M2(Q) as the classical case.

As in the introduction, let p> 5 be a prime such that v /∈ SB if v|p, let Lp be a finite extension
of Qp and O its ring of integers. We fix once and for all isomorphisms between Bv and M2(Fv)
for v /∈ SB. Let G be the reductive group whose set of points on a Q-algebra A is (B ⊗Q A)×. Let
Z be the center of G and nr : G(A)−→ (F ⊗Q A)× be the reduced norm. Let Ẑ be the profinite
completion of Z and for any abelian group A, let Â be A⊗Z Ẑ. In particular, the group F̂× is
the group of finite idèles of F and B̂× is the set of finite adelic points of G. If g belongs to B̂×, the
notation g = gv means that the local component of g at v is equal to gv and that g is equal to the
identity outside v. If A is a topological group, let A+ be the connected component of the identity.

Let U∞ be the centralizer of the image of

h0 : C× −→G(R)'GL2(R)×H× × · · · ×H×

x+ iy 7−→
((

x y
−y x

)
, 1, . . . , 1

)
in G(R). Let U be a compact open subgroup of B̂×. In this article, we restrict our attention to
subgroups U such that

U =
∏
v

Uv

with Uv maximal for every v in SB. To U is attached a quaternionic complex Shimura curve
X(U)an over C given by the double quotient

X(U)an =B×\G(AQ)/UU∞ =B×\(C− R× B̂×/U)

or by its smooth compactification obtained by adjoining cusps in the classical case. The curve
X(U)an is thus compact. We use the notation [a, b]U , or [a, b] when U is clear from the context,
to denote an element of X(U)an.

Definition 2.1 (Small subgroup). An open compact subgroup U is small if for any compact
open normal subgroup U ′ ⊂ U , the right action of (U ∩ Z(Q) · U ′)\U on X(U ′)an is free.

According to [Fuj99, Proposition 4.9] (see also [Car86a, Corollaire 1.4.1.3] and [Mil05,
Lemma 5.13]), a compact open group U admits a small normal subgroup of finite index. If
U ′ is a normal compact open subgroup of a compact open U , the natural projection

X(U ′)an −→X(U)an

is finite and flat. If moreover U is small, this covering is Galois.
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2.1.2 CM points and canonical model.

2.1.2.1 CM points. Let L be a totally complex quadratic extension of F . Assume that places v
in SB either ramify or are inert in L. According to [Vig80, Théorème 3.8], there then exists an
injective morphism of F -algebras q : L ↪→B which we fix. It induces embeddings qv : Lv ↪→Bv
for all places v and q̂ : L̂× ↪→ B̂×. The inclusions L× ↪→B× ↪→B× ⊗F,τ1 R ∼−→GL2(R) define an
action of q(L×) on C− R. Let z be the unique point of C− R fixed by q(L×) and with positive
imaginary part. The set of CM points of X(U)an relative to L is the set:

CM(X(U), L) = {x= [z, b] ∈B×\(C− R× B̂×/U) | b ∈ B̂×} ⊂X(U)an.

As every embedding of L in B is conjugate to q by an element of B× by the Skolem–Noether
theorem, this set does not depend on q. The set CM(X(U), L) is dense for the complex topology,
and hence for the Zariski topology. The same is of course also true for the union CM(X(U)) of
CM points relative to L for all suitable L.

2.1.2.2 Canonical model. By [Shi70], the projective system of curves {X(U)an}U indexed
by compact open subgroups admits a canonical model {X(U)}U defined over Spec F and
characterized by Shimura’s reciprocity law at CM(X(U), L):

∀ a ∈ L̂×, ∀ [z, b] ∈ CM(X(U), L), (recL a) · [z, b] = [z, q̂(a)b]. (2.1.1)

Then X(U)an = (X(U)×F,τ1 C)(C). The curve X(U) is smooth over Spec F .

Equation (2.1.1) implies that CM points relative to L are defined over Lab. By definition of
the canonical model and [Del71, Théorème 5.1], to show that a morphism of Shimura curves is
defined over a finite extension of F , it is enough to show this on CM(X(U)). In particular, the
right action of B̂× on {X(U)}U is defined over F . By [KM85, Theorem, p. 508], the quotient
X(U)/F̂× is again a smooth curve over Spec F .

2.1.2.3 Connected components. The strong approximation theorem and the norm theorem for
quaternion algebras provide us with the following descriptions of the set of connected components
of X(U)an:

π0(X(U)an) ∼−→G(Q)+\G(Q̂)/U ∼−→ Z(Q)+\Z(Q̂)/nr(U). (2.1.2)

The second isomorphism in (2.1.2) is the reduced norm. Shimura’s reciprocity law for connected
components (see for instance [Del71, § 3.4]) states that the action of GF on π0(X(U)×F F̄ )
is through its abelian quotient GabF and that it coincides with the action of B̂× through the
isomorphisms:

GabF
∼←−

recF
Z(Q)+\Z(Q̂) ∼−→G(Q)+\G(Q̂).

In particular, the action of GabF on π0(X(U)an) is transitive, and X(U) is a connected F -scheme.
The structural morphism X(U)−→ Spec F admits a Stein factorization

X(U)−→X (U)−→ Spec F

where the scheme X (U) is finite étale over Spec F and the morphism X(U)−→X (U) is proper
and smooth with geometrically connected fibers. Let F [U ] be the algebraic closure of F inside
the function field of X(U). The above implies that X (U) is equal to Spec F [U ] where F [U ] is a
finite abelian extension of F which can be considered as a subfield of C via τ1 : F ↪→ C.

363

https://doi.org/10.1112/S0010437X12000619 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X12000619


O. Fouquet

2.1.2.4 Involution. The group B̂× admits a natural involutive morphism whose local expression
is given by:

−altv : B×v −→B×v

bv 7−→
1

nr(bv)
bv.

The morphism −alt induces a morphism of Shimura curves defined as follows on complex points:

−alt : X(U)an −→X(U−alt)an

[x, b]U 7−→ [x, b−alt]U−alt .

Lemma 2.2. The morphism −alt is defined over the subfield F [U ∩ U−alt] of C.

Proof. According to the discussion of § 2.1.2.3, the field F [U ∩ U−alt] is a well-defined subfield
of C. Let L/F be a CM extension embedding in B and let x= [z, b] ∈ CM(X(U), L) be a CM
point. Let σ = recL a be an element of GabL fixing F [U ∩ U−alt] and bσ be q̂(a). Because bσ fixes
F [U ∩ U−alt], it is trivial in the abelian group G(Q)\G(Q̂)/(U ∩ U−alt) and so can be written
gu with g ∈G(Q) and u ∈ U ∩ U−alt. Hence, nr(u)−1 = u−1u−alt ∈ U−alt. Thus:

(−alt ◦ σ) · [z, b]U =
[
g−1z, ub−alt

1
nr(u)

]
U−alt

= [z, gub−alt]U−alt = (σ ◦ −alt) · [z, b]U .

Thus, −alt ◦ σ is equal to σ ◦ −alt on x ∈ CM(X(U), L). Hence, −alt is a morphism of
F [U ∩ U−alt]L-schemes. As this is true for all suitable L, it is a morphism of F [U ∩ U−alt]-
scheme. 2

2.1.3 Hecke operators. Let g be an element of B̂×. Right multiplication by g induces a finite
flat F -morphism

[·g] : X(U ∩ gUg−1)−→X(U ∩ g−1Ug)
which defines the Hecke correspondence T (g) = [UgU ] on X(U).

X(U ∩ gUg−1)
[·g]

//

��

X(U ∩ g−1Ug)

��

X(U)
[UgU ]

//_______ X(U)

(2.1.3)

A finite idèle a ∈ F̂× in particular induces a correspondence 〈a〉 called the diamond
correspondence via the isomorphism:

F̂×
∼−→ Z(Q̂) ↪→ B̂×.

The group of diamond correspondences acts on X(U) via the finite group G(U) = F̂×/F×(F̂× ∩
U) which fits in the short exact sequence:

1−→
F×Ô×F

F×(F̂× ∩ U)
−→G(U)−→ Cl(OF )−→ 1. (2.1.4)

For v /∈ SB a finite place of F and

gv =
(
$v 0
0 1

)
(2.1.5)
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we write:

T (v) = [UgvU ]. (2.1.6)

The sub-algebra of the O-algebra (see § 2.1.1) of all correspondences of X(U) generated by the
correspondences 〈a〉 and T (v) is called the full classical Hecke algebra and written h(U). As is
apparent in (2.1.5), it depends in general on our choices of $v.

2.1.3.1 Étale cohomology. The first étale cohomology group of X(U)× F̄ with coefficients in O

M(U) =H1
et(X(U)×F F̄ ,O)

is a finite O-module which is free if U is small. It is endowed with a covariant and contravariant
action of the full classical Hecke algebra h(U). Poincaré duality induces a perfect alternating
pairing:

〈·, ·〉 : M(U)×M(U)−→H2
et(X(U),O)−→O(−1)

such that:

〈〈a〉∗x, y〉= 〈x, 〈a〉∗y〉, 〈T (g)∗x, y〉= 〈x, T (g)∗y〉. (2.1.7)

Choosing the covariant action makes M(U) a h(U)[GF ]-module. Comparing the covariant and
contravariant forms of (2.1.3) shows that T (g)∗ is equal to T (g−1)∗.

2.2 Change of levels

2.2.1 Towers of levels.

2.2.1.1 A level S is an almost everywhere zero family of non-negative integers (sv) indexed by
the finite places of F . The support supp(S) of a level S is the finite set of places such that sv is
not zero. We remark that an ideal I of OF defines a level. Conversely, if S is a level, let Sp and
Sp be the ideals:

Sp =
∏
v|p

vsv , Sp =
∏
v-p

vsv .

The set of all levels is partially ordered by the relation S 6 S′ if and only if sv 6 s′v for all v.
If S 6 S′, the level S′ − S is the family (s′v − sv). A tower of levels {S} is defined to be an
infinite totally ordered family of distinct levels with fixed support. A tower of levels is said to
go to infinity at an ideal I if and only if sv goes to infinity for all v dividing I. It is said to be
ultimately constant outside a finite set of places if sv stabilizes for v outside this finite set. All
towers appearing henceforth are assumed to be of non-trivial level going to infinity at places
dividing p, constant outside p and such that supp(S) is disjoint from SB.

2.2.1.2 To a level S are attached four types of compact open subgroups called U0, U1, U1

and U1
1 . For v /∈ S, these groups are all maximal at v. For v ∈ supp(S), they are defined as

follows.

(i) The group U0,v(S) is equal to:{
g =

(
a b
c d

)
∈GL2(OF,v) | c≡ 0 mod$sv

v

}
.
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(ii) The group U1
v (S) is equal to:{

g =
(
a b
c d

)
∈GL2(OF,v) | a− 1, c≡ 0 mod$sv

v

}
.

(iii) The group U1,v(S) is equal to:{
g =

(
a b
c d

)
∈GL2(OF,v) | d− 1, c≡ 0 mod$sv

v

}
.

(iv) The group U1
1,v(S) is equal to:{
g =

(
a b
c d

)
∈GL2(OF,v) | a− 1, d− 1, c≡ 0 mod$sv

v

}
.

If {S} is a tower of levels, a tower of groups {U(S)} of type U0, U1, U
1, U1

1 is a coherent choice
of compact open groups of the given type for each level, that is to say a set of choices such
that U(S′)⊂ U(S) whenever S 6 S′. Moreover, we always assume that if S0 is the smallest level,
U(S0) is a small compact open group. Let X0(S), X1(S), X1(S) and X1

1 (S) be the Shimura curves
X(U0(S)), X(U1(S)), X(U1(S)) and X(U1

1 (S)) respectively. Let Xtw(S) be the curve X1
1 (S)/F̂×.

For a given level S, let O×F,1(S) be the subgroup of global units satisfying xv ≡ 1 mod$sv
v for all

v and O×F,+,1(S) the subgroups of totally positive units of O×F,1(S).

Example. When {S}= {Nps}s>1 in the classical case, the tower of curves {X1(S)} is equal to
the tower of modular curves {X1(Nps)} of e.g. [MW86, § 8].

2.2.2 Fields of constants and pairings.

2.2.2.1 Let S be a level. Throughout § 2.2.2, let X(S) be the Shimura curve X1(S) or X1(S)
when there is no reason to distinguish between them. The geometrically connected components
of X0(S) and X(S) are defined over the narrow class field F [0] of F because the reduced norm
is onto O×F,v for each v. However, the geometrically connected components of X1

1 (S) are defined
over an abelian extension F [S] whose Galois group over F [0] fits in the short exact sequence:

1−→
O×F,+

OF,+,1(S)
−→

∏
v∈S

(OF,v/$sv
v )× −→Gal(F [S]/F [0])−→ 1. (2.2.1)

As the tower of levels {S} goes to infinity at p and is constant outside p, the inverse limit

G(∞) = Gal(F [∞]/F ) = lim
←−
S

Gal(F [S]/F )

has a finite torsion part and G(∞)/G(∞)tors is isomorphic to Z1+δF,p
p . Beside, the curve X1

1 (S)
is endowed with an action of O×F,v ×O

×
F,v for all v|p via the diagonal subgroup of B×v . The group

T1 =
∏
v∈S(OF,v/$sv

v )× acts on X1
1 (S) as:

〈a〉1[z, b] =
[
z, b

(
a 0
0 1

)]
,

and the group T 1 =
∏
v∈S(OF,v/$sv

v )× acts on X1
1 (S) as:

〈a〉1[z, b] =
[
z, b

(
1 0
0 a

)]
.
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The curve X1
1 (S)/T1 (respectively X1

1 (S)/T 1) is equal to X1(S) (respectively to X1(S)). For
T equal to T1 or T 1, let T+ be the image of the quotient O×F,+/O

×
F,+,1(S) in T . There is a

diagram

X1
1 (S)

��

// X(S)

��

Spec F [S] // Spec F [0]

and hence a surjective morphism of F [S]-schemes X1
1 (S)−→X(S)×F [0] F [S]. The identification

of Gal(F [S]/F [0]) with T/T+ given by the reciprocity map shows that the coverings X1
1 (S)−→

X(S) and X(S)×F [0] F [S]−→X(S) have the same Galois groups. Hence X(S)×F [0] F [S] is
isomorphic to X1

1 (S)/T+.

2.2.2.2 According to Lemma 2.2, the morphism −alt on X1
1 (S) is an isomorphism of F [S]-

schemes between the schemes X1
1 (S)/T1,+ and X1

1 (S)/T 1
+, or equivalently between X1(S)×F [0]

F [S] and X1(S)×F [0] F [S]. Let wS ∈ B̂× be the element of B̂× equal to the identity at v ∈ SB
and whose local expression at v /∈ SB is given by

wS,v =
(

0 −1
$sv 0

)
(2.2.2)

using the fixed identification between B×v and GL2(Fv).

Lemma 2.3. Right multiplication by wS induces a morphism of F -schemes:

[·wS ] : X1
1 (S)−→X1

1 (S).

Proof. As U1
1 (S) = w−1

S U1
1 (S)wS , this comes from the fact recalled in § 2.1.2.2 that right

multiplication is defined over Spec F . 2

Lemma 2.4. The composition

X1
1 (S)

[·wS ]−→ X1
1 (S) −alt−→X1

1 (S)

defines an F [S]-morphism denoted by WS . Consider an element a of F̂×, an element g of B̂×

such that the correspondence T (g) is in the full classical Hecke algebra h(U1
1 (S)) and an element

σ ∈GF whose projection to GabF is equal to recF a. Then:

WS ◦ 〈a〉= 〈a−1〉 ◦WS (2.2.3)
WS ◦ T (g) = T (g−1) ◦WS (2.2.4)
σ ◦WS =WS ◦ 〈a−1〉 ◦ σ. (2.2.5)

The same properties are true for the morphisms defined by the compositions

X1(S)×F [0] F [S]
[·wS ]−→ X1(S)×F [0] F [S] −alt−→X1(S)×F [0] F [S]

and

X1(S)×F [0] F [S]
[·wS ]−→ X1(S)×F [0] F [S] −alt−→X1(S)×F [0] F [S]

except that T (g) is then viewed as an element of h(U1(S)) or h(U1(S)).

367

https://doi.org/10.1112/S0010437X12000619 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X12000619


O. Fouquet

Proof. By Lemmas 2.2 and 2.3, the morphism WS is a morphism of F [S]-schemes. Let L/F be
a CM extension embedding in B and let x= [z, b] ∈ CM(X1

1 (S), L) be a CM point. We first
prove (2.2.4). For v /∈ SB, let gv be the element of (2.1.6). Then w−1

S,vgvwS,v is equal to (g−1)−alt

so:

(w−1
S U1

1 (S)gU1
1 (S)wS)−alt = U1

1 (S)g−1U1
1 (S).

This establishes (2.2.4). Applying this to the diagonal embedding of a ∈ F̂× proves (2.2.3).
Finally, let α ∈ L̂× be such that recL α is equal to the image of σ in GabL . Then NK/Fα= a

and:

σ ◦WS · x= [z, q̂(α)b−altw−altS ] =WS ·
[
z, q̂(α)

1
NL/Fα

b

]
=WS ◦ 〈a−1〉 · x

The same proof works verbatim for X(S)×F [0] F [S]. 2

Remark. In the classical case, the morphism WS coincides with the Fricke involution and the
statements of Lemma 2.4 are well-known, see among others [MW84, p. 234].

2.2.3 Action of F×U0/F
×U .

2.2.3.1 Let U(S) be one of the group U1(S), U1(S) or U1
1 (S). The group F×U0(S) acts on the

right on the curves X(S), X1
1 (S) and Xtw(S). As S goes to infinity at p, this action gives rise

to a group-algebra Λ.
Let GU(S) be the group F×U0(S)/F×U(S). The short sequence

1−→O×F /O
×
F,1(S)−→ U0(S)/U(S)−→GU(S) −→ 1 (2.2.6)

is exact so GU(S) is isomorphic to O×FU0(S)/O×FU(S). Let Ō×F and Ō×F,+ be respectively the
p-adic closure of the image of O×F and O×F,+ in O×F,p through the diagonal embedding.

2.2.3.2 Assume first that U(S) is equal to U1(S) or U1(S). By (2.2.6), we have:

GU(S)
∼−→ (O×F /O

×
F,1(S))\

∏
v∈supp(S)

(OF,v/$sv)×. (2.2.7)

Let G∞ be the profinite inverse limit on S of the groups GU(S). There exists a finite group G(Sp)
such that:

G∞/G(Sp) ∼−→ Ō×F \
(∏
v|p

O×F,v

)
. (2.2.8)

Hence, the group G∞ is of Zp-rank 1 + δF,p. Let F∞ be the maximal Zp-extension of F . Then
Gal(F∞/F ) is isomorphic to Z1+δF,p

p and the subgroup I of Gal(F∞/F ) generated by the inertia
groups Iv at v|p is of finite index, and hence also isomorphic to Z1+δF,p

p . We fix once and for
all 1 + δF,p elements (γi)16i6δF,p in GF whose images (γ̄i)i in Gal(F∞/F ) generate I. The set of
the inverse images of the (γ̄i)i through the global reciprocity map and the isomorphism (2.2.8)
generate a direct summand Γ of G∞/G(Sp) which is free of rank 1 + δF,p. The group-algebra
Λ =O[[Γ]] is non-canonically isomorphic to the power-series ring O[[X1, . . . , X1+δF,p ]] and thus
regular of Krull dimension 2 + δF,p.
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2.2.3.3 Now assume that U(S) is equal to U1
1 (S). By (2.2.6), we have:

GU(S)
∼−→ (O×F /O

×
F,1(S))\

( ∏
v∈supp(S)

(OF,v/$sv)×
)2

.

Let G∞ be the profinite inverse limit on S of the groups GU(S). There exists a finite group G(Sp)
such that:

G∞/G(Sp) ∼−→
(
Ō×F \

(∏
v|p

O×F,v

)2)
∼−→
(
Ō×F \

∏
v|p

O×F,v

)
×
∏
v|p

O×F,v. (2.2.9)

The last isomorphism of (2.2.9) being given by (x, y) 7→ (x, x−1y). Hence, the group G∞ is of
Zp-rank 1 + δF,p + d. As in the previous paragraph, we fix once and for all 1 + δF,p elements
(γi)16i6δF,p in GF whose images (γ̄i)i in Gal(F∞/F ) generate I. We also fix once and for all d
elements:

(yvi,j) ∈
∏
v|p

O×F,v, vi|p, 16 j 6 [Fvi : Qp].

The set of the inverse images of the (γ̄i)i through the global reciprocity map and the isomorphism
(2.2.9) restricted on the first factor, together with the inverse images of the yvi,j through the
isomorphism (2.2.9) restricted on the second factor generate a direct summand Γ of G∞/G(Sp)
which is free of rank 1 + δF,p + d. The group-algebra Λ =O[[Γ]] is non-canonically isomorphic to
the power-series ring O[[X1, . . . , X1+δF,p+d]] and thus regular of Krull dimension 2 + δF,p + d.

2.2.3.4 Finally, assume that U(S) = U1
1 (S) and that we are considering the action of GU(S) and

G∞ on Xtw. Then the action of Ô×FU1
1 (S) becomes trivial. Hence the action of GU(S) factors

through its quotient O×FU0(S)/Ô×FU1
1 (S), which we denote by GtwU(S). Writing GtwU(S) as a quotient

of U0(S)/U1
1 (S) as in (2.2.6) shows the following isomorphism:

GtwU(S)
∼−→

∏
v∈supp(S)

(OF,v/$sv)×.

Let Gtw∞ be the inverse limit of GtwU(S). There exists a finite group Gtw(Sp) such that:

Gtw∞/G
tw(Sp) ∼−→

∏
v|p

O×F,v. (2.2.10)

Keeping the notation of § 2.2.3.3, the inverse images of the yvi,j through the isomorphism (2.2.10)
generate a direct summand Γtw of Gtw∞/G

tw(Sp) which is free of rank d. The group-algebra
Λtw =O[[Γtw]] is non-canonically isomorphic to the power-series ring O[[X1, . . . , Xd]] and thus
regular of Krull dimension 1 + d.

2.2.3.5 We now return to the general case and let U be equal to U1(S), U1(S) or U1
1 (S). The

canonical surjection of GF onto GabF composed with the (inverse of the) global reciprocity map
and the diagonal embedding

GF �GabF
∼−→ F̂×/F×+ → B̂×/B×+ → B̂×/B× (2.2.11)

maps GF to h(U). We write 〈rec−1
F (σ|Fab)〉 for the image of σ ∈GF through this map. We remark

that 〈rec−1
F (σ|Fab)〉 acts on X(U) through its image in GU . For a h(U)[GF ]-module M such that
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the action of σ ∈GF on x ∈M is written σx, we denote by M〈n〉 the h(U)[GF ]-module equal
to M as a h(U)-module and with σ ∈GF acting on x ∈M〈n〉 by σ · x= 〈rec−1

F (σn|Fab)〉σx.

Lemma 2.5. Let U be U1(S), U1(S) or U1
1 (S), X(S) be X(U(S)) and M(S) be H1

et(X(S)×F
F̄ ,O). Poincaré duality and WS give rise to a twisted pairing on étale cohomology defined by:

(·, ·) : M(S)×M(S) −→O(−1) (2.2.12)
(x, y) 7−→ 〈x, WSy〉.

This pairing induces an isomorphism of h(U)[GF ]-modules:

α : M(S) ∼−→HomO(M(S),O)(−1)〈−1〉.

Proof. Poincaré duality shows that α is an isomorphism of O-modules. The assertions (2.1.7)
and the remark following them together with the assertions (2.2.3) and (2.2.4) of Lemma 2.4
show that it is an isomorphism of h(U)-modules. Let σ be in GF and a be rec−1

F (σ|Fab). Let x
be in M(S). The computation

χ−1
cyc(σ)(〈a−1〉σ)α(x) = χ−1

cyc(σ)〈x, WS〈a〉σ−1 ·〉
= χ−1

cyc(σ)〈x, σ−1WS ·〉
= α(σx)

in which the second equality, which comes from the assertion (2.2.5), shows that the image of α
is the h(U)[GF ]-module HomO(M(S),O)(−1)〈−1〉. 2

2.2.4 Change of levels.

2.2.4.1 Throughout § 2.2.4, and not in accord with the conventions of § 2.2.2, the compact
open subgroups U1(S), U1(S) or U1

1 (S) are denoted by U(S), the curve X(U(S)) is denoted
by X(S) and M(S) stands for H1

et(X(S)×F F̄ ,O). We establish that the cohomology groups
M(S) together with the pairing (·, ·) of Lemma 2.5 satisfy compatibilities in towers of levels {S}
after projection to the ordinary part. Let {X(S)}S be a tower of Shimura curves endowed with
compatible choices of Hecke operators and of elements wS . Let S 6 S′ be two distinct levels,
necessarily equal outside p.

Define t ∈ B̂× and g ∈ B̂× by:

∀ v|p, tv =
(

1 0
0 $v

)
, gv = ts

′
v−sv
v . (2.2.13)

Let Γ(S) and Γ′(S) be the groups U(S) ∩ gU(S)g−1 and g−1U(S)g ∩ U(S). Then U(S′) is
included in Γ(S). The following diagram and its covariant and contravariant incarnations define
the fundamental maps between the various Shimura curves of interest and their cohomological
realizations.

X(S′)

πg
77

ι //

π1

��
<<

<<
<<

<<
<<

<<
<<

<
X(Γ(S))

[·g]
//

pr1

��

X(Γ′(S))

prg

��

X(S)
[U(S)gU(S)]

//________ X(S)

(2.2.14)
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Let eM(S) be the greatest direct summand of M(S) on which T (g−1)∗ is invertible. Let
eM(Γ′(S)) be the greatest direct summand of X(Γ′(S)) on which [Γ′(S)g−1Γ′(S)]∗ is invertible.
Let ξ denote the cohomological map pr1∗[g]∗. Comparing diagram (2.1.3) with (2.2.14) shows
that T (g−1)∗ = T (g)∗ is equal to pr1∗[·g]∗pr∗g . The map

pr∗g : eM(S)−→ eM(Γ′(S))

therefore has inverse T (g−1)−1
∗ ◦ ξ. Consequently

πg∗ = prg∗pr
∗
g(pr

∗
g)
−1[g]∗ι∗ = C(pr∗g)

−1[g]∗ι∗

where C is the cardinal of the finite quotient U(S)/Γ′(S), thus the product of the cardinals of
residue fields at v|p. The group eM(S′) has no Zp-torsion so the map

C−1πg∗ = (pr∗g)
−1[g]∗ι∗

is well-defined and satisfies:
T (g−1)∗C−1πg∗ = ξ[g]∗ι∗ = π1∗. (2.2.15)

Finally:
ι∗ι∗ = ι∗[g]∗pr∗g(pr

∗
g)
−1[g]∗ι∗ = π∗gC

−1πg∗. (2.2.16)
We now compare (·, ·)S and (·, ·)S′ . We recall that if G is a finite group and if X is a left
O[G]-module then the map

Φ : HomO(X,O) −→HomO[G](X,O[G])

f 7−→
∑
γ∈G

f(γ(·))[γ−1]

is an isomorphism of O[G]-modules. Applying this result to eM(S)and GU(S), we can and will
view (·, ·)S as being O[GU(S)]-valued.

Lemma 2.6. Let φ be the map from GU(S′) to GU(S) induced by the inclusion U0(S′)⊂ U0(S).
Then:

φ((x, y)S′) = (π1∗x, C
−1πg∗y)S .

Proof. For γ ∈GS , let GS′(γ) be the set of elements of GS′ sent to γ by φ.

φ((x, y)S′) = φ(Φ((x, ·)S′)(y)) = φ

( ∑
γ∈GS′

(x, γ∗y)S′ [γ−1]
)

=
∑
γ∈GS

((
x,

∑
γ′∈GS′ (γ)

γ′∗y

)
S

)
[γ−1] =

∑
γ∈GS

((
x,

∑
γ′∈GS′ (1)

γ′∗γ∗y

)
S

)
[γ−1].

The kernel of φ is equal to (F×U0(S′) ∩ F×U(S))/F×U(S′) = F×Γ(S)/F×U(S′). By smallness
of U(S), this last group is also the Galois group of the covering X(S′)−→X(Γ(S)). Hence:

φ((x, y)S′) =
∑
γ∈GS

((x, ι∗ι∗γ∗y)S)[γ−1] =
∑
γ∈GS

((x, π∗gC
−1πg∗γ∗y)S)[γ−1]

= 〈x, WS′π
∗
gC
−1πg∗y〉S′ .

The equality gwS = wS′ implies that π∗1WS =WS′π
∗
g . Hence:

φ((x, y)S′) = 〈x, π∗1WSC
−1πg∗y〉S′

= (π1∗x, C
−1πg∗y)S . 2
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Definition 2.7 (Hecke operators). Let S 6 S′ be two levels. Let T (S), T (−S), T (S′ − S) and
T (S − 1) denote the Hecke operators:

T (S) =
∏
v|p

T (t−svv )∗, T (−S) =
∏
v|p

T (tsvv )∗,

T (S′ − S) =
∏
v|p

T (tsv−s
′
v

v )∗, T (S − 1) =
∏
v|p

T (t1−svv )∗.

Proposition 2.8. Let Mord
∞ be the inverse limit on the level:

Mord
∞ = lim

←−
π1∗

eH1
et(X(S)×F F̄ ,O).

The Λ[Gal(F̄ /F )]-module Mord
∞ is endowed with a perfect alternating Hecke-equivariant pairing

(·, ·)Λ defined by

(·, ·)Λ : Mord
∞ ×Mord

∞ −→ Λ(−1) (2.2.17)
(x, y) 7−→ (xS , T (S − 1)yS)S .

Proof. As the Galois and Hecke actions are not affected by the inverse limit, if the formula
(2.2.17) is well-defined, then it defines a Hecke-equivariant pairing by Lemma 2.5. If π1∗yS′ = yS ,
then by (2.2.15):

C−1πg∗T (S′ − 1)yS′ = T (S − S′)π1∗T (S′ − 1)yS′ .

The group U is small so Hecke operators commute with projections. Hence:

C−1πg∗T (S′ − 1)yS′ = T (S − 1)yS .

Lemma 2.6 shows that the pairings (·, ·)S are compatible with the transition map from GU(S′)

to GU(S). 2

Remark. Though the projection πg∗ was important in the previous proofs, it does not appear
in the statement of Proposition 2.8. Accordingly, the projection between curves X(S′) and
X(S) in the tower of curves {X(S)}S is henceforth taken with respect to the natural π1 projection
and is denoted by πS′/S .

3. Hida theory

Let {U(S)}S be a tower of groups of type U1, U
1 or U1

1 , and U be a group in this tower. Let O′
be the ring of integers of a finite extension of Qp.

3.1 Ordinary Hecke algebra
3.1.1 Automorphic representations and Hecke algebras.

3.1.1.1 General definitions. A weight k is an element of Z[IF,∞]; an arithmetic weight is a weight
such that kτ > 2 for all τ ∈ IF,∞ and such that the kτ have constant parity; a parallel weight is
an integral multiple of the weight t such that tτ = 1 for all τ ∈ IF,∞; a parallel defect is a weight
ν ∈ Z[IF,∞] such that ντ is non-negative for all τ and such that one ντ at least is zero. To an
arithmetic weight k are attached (m, ν, µ) ∈ Z[IF,∞]2 × Z as follows:

m= k − 2t. (3.1.1)
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The weight ν is the parallel defect such that µ · t=m+ 2ν is a parallel weight. The integer µ is
called the parallel type of k. For k ∈ Z[IF,∞] and x ∈ CIF,∞ , let xk ∈ C be

∏
τ |∞ xkτv . If x belongs

to C, we view it as being in CIF,∞ through the diagonal embedding. If x belongs to Q̄p, we view
it as being in C via our fixed identification of these two fields.

We refer to [Nek06, § 12.3], [Shi78, § 1], [SW99, § 3.1] or [Hid06, § 2.3] for definitions and basic
properties of holomorphic cuspforms for G(AQ). For k an arithmetic weight, let Sk(U) and Sk
be respectively the C-vector space of holomorphic cuspforms of weight k and level U and the
space of all cuspforms on B of weight k. Then Sk is an admissible representation of G(Q̂)/F̂×

under the right action of G(Q̂) on f ∈ Sk. This representation decomposes into a direct sum
of irreducible admissible representations Vπ. Then Sk(U) is the direct sum of the V U

π such
that V U

π 6= 0. To f ∈ Sk(U) is thus attached an automorphic representation π(f) of G(AQ). The
conductor of f is the conductor ideal of π(f) defined as in [Cas73, Theorems 1 and 4]. At the finite
places v, the automorphic representations π(f)v are either principal series, twisted Steinberg or
supercuspidal representations (see for instance [BH06, 9.11]). We call the class containing π(f)v
the automorphic type of π(f)v. Thanks to our fixed identification of F̄v with C, the full classical
Hecke algebra h(U) acts on Sk(U) by:

[UgU ] · f(x) =
∑
gi

f(xg−1
i ), [UgU ] =

∐
gi

Ugi.

We recall that ν is the parallel defect of k. For v|p, let T0(v) be $−νv T (v), where we view $v as
belonging to C as explained above.

The Hecke algebra Tk(U, Zp) is the sub-algebra of EndC(Sk(U)) generated by the image of
G∞, by the images of the T0(v) for v|p and by the images of the T (v) for v /∈ SB ∪ supp(S), v - p.
It does not depend on our choices of $v for v - p. As Sk(U) =

⊕
V U
π , the Hecke algebra Tk(U, Zp)

acts on each V U
π . Let Tk(U,O′) be Tk(U, Zp)⊗Zp O′. When k is equal to 2t, Tk(U,O′) coincides

with the sub-algebra of End(H1
et(X(U)×F F̄ ,O′)) generated by G∞, the operators T (v) for v|p

and T (v) for v /∈ SB ∪ supp(S).
Under the central action of A×F , the space Sk(U) decomposes in the direct sum⊕

φ

Sk(U, φ)

where φ runs through all the characters of F×\A×F /(F ⊗ R)×+U satisfying φτ (−1) = (−1)kτ for
all τ ∈ IF,∞. When U = U1

1 , let Sk(U tw) be the direct sum⊕
φ0

Sk(U, φ0)

where φ0 runs through all the characters of F×\A×F /(F ⊗ R)×+U as above satisfying in addition
that φ restricted to F̂× is trivial. The Hecke algebra Tk(U tw, Zp) is the sub-algebra of
EndC(Sk(U tw)) generated by the image of G∞, by the images of the T0(v) for v|p and by the
images of the T (v) for v /∈ SB ∪ supp(S), v - p.

3.1.1.2 Nearly ordinary representations. A form f ∈ Sk(U) is called an eigenform if it is an
eigenvector under the action of all but finitely many Hecke operators. Two eigenforms f and g
in Sk(U) are said to be equivalent in the sense of Atkin–Lehner if their eigenvalues coincide
for all but finitely many Hecke operators. An eigenform f ∈ Sk(U) is a newform if for all
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eigenforms g ∈ Sk(U ′) equivalent to f in the sense of Atkin–Lehner, the conductor c(π(g)) of g is
divisible by the conductor c(π(f)) of f . A form f ∈ Sk(U tw) is called an eigenform (respectively
a newform) if f ∈ Sk(U) is an eigenform (respectively a newform).

Let f ∈ Sk(U) be a newform and let π(f) be the attached automorphic representation. Then
π(f) is said to be nearly ordinary at v|p if there exists a v-good line on V Uv

π(f)v
, this is to say a

line on which T0(v) acts via a unit in the ring of integers of Q̄p. In that case, π(f)v is either
a principal series representation π(ηv| · |−1/2

v , ξv| · |−1/2
v ) or a twisted Steinberg representation

π(ξv| · |−1/2, ξv| · |1/2) with $−νv ξv($v) a unit in the ring of integers of Q̄p (here we recall that ν
is the parallel defect of k defined in § 3.1.1.1). In both cases, the v-good line is then unique (see
for instance [Hid89a, Corollary 2.2]). The representation π(f) is said to be ordinary at v|p if the
character ξv is moreover unramified. It is said to be (nearly) ordinary if it is (nearly) ordinary at
all v|p. The form f is said to be (nearly) ordinary (at v|p) if π(f) is (nearly) ordinary (at v|p).
In the classical case, f is nearly ordinary if and only if it is a twist of an ordinary modular form
by a character of 1 + pZp identified via the cyclotomic character with the Galois group of the
unique Zp-extension of Q. For a general totally real field F , this does not hold anymore. Note
also that the property of being nearly ordinary depends on our choice of an embedding of Q̄
into Q̄p.

3.1.1.3 Nearly ordinary Hecke algebra. For each nearly ordinary automorphic representation
π, let w(π) =⊗w(π, v) ∈

⊗
v V

Uv
π,v be a vector such that for all v|p, the vector w(π, v) spans a

v-good line. The nearly ordinary subspace Sord
k (U) of Sk(U) is the span in

⊕
π V

U
π of the w(π).

The nearly ordinary subspace Sord
k (U tw) of Sk(U tw) is the intersection of Sord

k (U) with Sk(U tw).
For U = U1, U

1, U1
1 or U tw, the nearly ordinary Hecke algebra Tord

k (U, Zp) is the sub-algebra of
EndC(Sord

k (U)) generated over Zp by the same operators as the Hecke algebra. If v is such that
Uv is GL2(OF,v), the space V Uv

π,v is of dimension 1 by [Cas73, Theorem 1]. Hence, the algebra
Tord
k (U, Zp) does not depend on our choices of w(π, v).

Let Tord
k (U,O′) be Tord

k (U, Zp)⊗Zp O′. When k is equal to 2t, Tord
k (U,O′) coincides with the

sub-algebra of End(eH1
et(X(U)×F F̄ ,O′)) generated by the same elements as Tk(U,O′) (where

X(U) is understood to be Xtw(U) if U is equal to U tw). If M is a T2t(U,O′)-module, let eordM
be the greatest direct summand on which the operators T (v) act in an invertible way for all v|p.

The semi-local ring Tord
k (U,O′) is a finite, flat and reduced O′-algebra. If S′ > S, there is a

natural map from Tord
k (U(S′),O′) to Tord

k (U(S),O′). Let Tord
∞,k(U,O′) be:

Tord,k
∞ (U,O′) = lim

←−
S

Tord
k (U(S),O′).

If k and k′ are arithmetic weights, the algebras Tord
∞,k(O′) and Tord

∞,k′(O′) are isomorphic by
[Hid89b, Theorem 2.3]. When U = U1, U

1 or U1
1 , we denote them by the common symbol Tord

∞ (O′)
or sometimes Tord

∞ when U and O′ are unimportant or clear from the context. When U = U tw,
we denote them by Ttw

∞ (O). The inclusion of G∞ (respectively of Gtw∞ when U is equal to U tw)
inside Tord

∞ (O′) (respectively Ttw
∞ (O)) endows it with a structure of Λ-algebra (respectively Λtw-

algebra).

3.2 Arithmetic specializations and Galois representations

3.2.1 Arithmetic specializations of Λ. The map from GF to G∞ of equation (2.2.11) followed
by the projection to G∞/G(Sp), then the projection to the direct summand Γ and finally by the

374

https://doi.org/10.1112/S0010437X12000619 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X12000619


Dihedral Iwasawa theory of nearly ordinary quaternionic automorphic forms

inclusion of Γ inside Λ× defines a character:

χΓ : GF −→ Λ×.

As p is odd, the group Γ is uniquely 2-divisible so χ−1
Γ admits a canonical square-root χ−1/2

Γ

which we fix.
Let k be an arithmetic weight of parallel type µ. If the tower {U(S)}S is of type U1

1 , let
ν ∈ Z[IF,∞] be a weight such that k − 2t+ 2ν is a parallel weight; otherwise fix ν to be the
parallel weight 0. By our fixed identification of IF,∞ with IF,p, each τ ∈ IF,∞ is attached to a
unique στ ∈ IF,p. Let φν be the character:

φν :
∏
v|p
O×F,v −→ Q̄×p

(av)v 7−→
∏
v|p

∏
στ∈IF,v

στ (av)ντ .

In the above, we are identifying F̄v with Q̄p. If the tower {U(S)}S is of type U1 or U1, then
the character φν is trivial. In the U1

1 case, the composition of the isomorphism (2.2.9) with the
projection on the second factor allows us to view φν as a character of G∞. In both cases, we can
thus view φν as a character of G∞. Let ε be a finite character of G∞. An arithmetic specialization
λ of weight k, character ε and defect ν is an O-algebra morphism from Λ to Q̄p which induces the
character εχ−µcycφν on Γ (the minus sign coming from our choice of normalization of the reciprocity
map). The difference between ν and the parallel defect ν0 of k is called the cyclotomic twist of λ.
The set Specarith Λ of arithmetic primes of Λ is the subset of Spec Λ of the kernels of arithmetic
specializations. If p ∈ Specarith Λ is the kernel of λ, let Oλ be Λ/p.

Arithmetic specializations of Λ which factor through Λtw are called arithmetic specializations
of Λtw; the subset of their kernels is denoted by Specarith Λtw.

3.2.2 Control theorems.

Lemma 3.1. Let Mord be the Λ-module:

Mord = lim
←−
S

eordH1
et(X(S)×F F̄ ,O).

Then Mord is free of finite rank. Let λ be an arithmetic specialization of Λ of weight k, character
ε and parallel defect ν with values in Oλ. Then there exists a level S such that the following
isomorphism of Oλ[GU(S)]-modules holds:

Mord ⊗Λ,λ Oλ
∼−→ eordH1

et(X(S)×F F̄ , Fk(S))⊗Λ,λ Oλ. (3.2.1)

Here, Fk(S) is the usual sheaf of O-modules of weight k (see for instance [Car86b, § 2.1]). The
ring Tord

∞ (O) is finite and torsion-free as a Λ-module, hence semi-local. Let P ∈ Spec Tord
∞ (O) be

a prime above the kernel p of λ. Then Mord
P is free of rank 2 over Tord

∞ (O)P and Tord
∞ (O)P/Λp is

an unramified extension of regular rings.

Proof. Statement (3.2.1) is for instance [Hid07, Theorem 1.2(2)]. The fact that Mord is a free
Λ-module and that Tord

∞ (O) is a torsion-free Λ-module then follows as in [Hid07, Theorem 1.2(2)
and (4)] or [SW99, Corollary 3.4].

By [Car86b, § 2.2.24], eordH1
et(X(S)×F F̄ , Fk(S))⊗Tord

∞ (O) Tord
∞ (O)P/P is free of rank 2 over

Tord
∞ (O)P/P. Equation (3.2.1) then implies that the same is true for Mord

P /P. By the lemma
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of Nakayama–Azumaya–Krull,3 there is thus a surjection of Tord
∞ (O)P -modules from Tord

∞ (O)2
P

onto Mord
P . Let X be its kernel. The short sequence

0−→X ⊗Λp Λp/p−→Tord
∞ (O)2

P ⊗Λp Λp/p−→Mord
P ⊗Λp Λp/p−→ 0

is left-exact because Mord is Λ-free. Comparing dimensions shows that X ⊗Λp Λp/p is zero and
thus that X vanishes. Hence Mord

P is a free Tord
∞ (O)P -module of rank 2. The equation (3.2.1)

then implies that Tord
∞ (O)2

P ⊗Λp Λp/p is isomorphic to two copies of Tord(O)P/P, and thus that
Tord
∞ (O)P/p is a field. Hence Tord

∞ (O)P is an unramified extension of the regular ring Λp. 2

A comparable statement for the tower of curves {Xtw(S)} can be extracted in the same
way from the axiomatic method of [Hid07]. Once the previous lemma is granted, it can also be
deduced as follows.

Corollary 3.2. The Λtw-module M tw

M tw = lim
←−
S

eordH1
et(X

tw(S)×F F̄ ,O)

is isomorphic to Mord ⊗Λ Λtw and thus free of finite rank. Let λ be an arithmetic specialization
of Λtw of weight k, character ε and parallel defect ν with values in Oλ. Then there exists a level
S such that the following isomorphism of Oλ[GtwU(S)]-modules holds:

M tw ⊗Λtw,λ Oλ
∼−→ eordH1

et(X
tw(S)×F F̄ , π∗Fk(S))⊗Λtw,λ Oλ. (3.2.2)

Here, π∗Fk(S) is the push-forward of the sheaf Fk(S) on Xtw. The ring Ttw
∞ (O) is isomorphic

to Tord
∞ (O)⊗Λ Λtw, hence finite and torsion-free as a Λtw-module, hence semi-local. Let P ∈

Spec Ttw
∞ (O) be a prime above the kernel p of λ. Then M tw

P is free of rank 2 over Ttw
∞ (O)P and

Ttw
∞ (O)P/Λtwp is an unramified extension of regular rings.

Proof. In view of the proof of Lemma 3.1, it is enough to prove the first assertion and (3.2.2).
Both results amount to proving:

eordH1
et(X

tw(S)×F F̄ , π∗Fk(S)) ∼−→ eordH1
et(X(S)×F F̄ , Fk(S))⊗Λ Λtw. (3.2.3)

By smallness of U , the action of Z(Q) on X(S) is free. Hence the projection π from X(S)×F F̄
to Xtw ×F F̄ is an étale morphism which is a torsor under the action of Z(Q). By [SGA4, Exposé
XVII Théorème 4.3.1], there is thus an isomorphism:

R Γet(X(S)×F F̄ , Fk(S))
L
⊗Λ Λtw ∼−→ R Γet(Xtw(S)×F F̄ , π∗Fk(S)). (3.2.4)

Let Y be a quotient curve of X(S) covering Xtw(S). On the étale cohomology of degree 2, T (v)∗

acts by multiplication by the degree of the Hecke correspondence, so by multiplication by a power
of p for v|p. Hence, T (v)∗ is topologically nilpotent. The group eordH2(Y ×F F̄ , πX(S),Y ∗Fk(S))
is thus zero. Combining this with the spectral sequence of (3.2.4) establishes the isomorphism
(3.2.3). 2

3.2.3 Galois representation. Let k be an arithmetic weight of parallel type µ and cyclotomic
twist ν. Let f ∈ Sk(U) be a nearly ordinary eigenform for all Hecke operators and let O be a
discrete valuation ring containing all the Hecke eigenvalues of f as well as the images of its
central character. Let π(f) be the attached automorphic representation. Let λf be the O-algebras
morphism from Tord

∞ (O) to O sending a Hecke operator to the corresponding eigenvalue of f .

3 We follow the citation practice of H. Matsumura and abbreviate this lemma as NAK.
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By the last statement of Lemma 3.1, there is a unique maximal ideal m of Tord
∞ (O) and a unique

minimal prime ideal a⊂m such that λf factors through R(a) = (Tord
∞ )m/a.

Tord
∞

λm

��

λf
// O

R(a)

>>||||||||

The ring R(a) is a complete local Noetherian domain of dimension 2 + δF,p or 2 + d+ δF,p
depending on whether U is equal to U1, U

1 or U1
1 . Let F be the residual field of R(a). We

recall the following theorem of [Car86b, Hid89a, Oht82, Wil88].

Proposition 3.3. To π(f) is attached a two-dimensional continuous, irreducible GF -
representation (V (f), ρf , Lp) satisfying the following properties.

(i) If τ is a complex conjugation, det ρf (τ) is equal to −1.

(ii) Let v be a finite place not in SB ∪ supp(S). The GFv -representation V (f) is unramified:

det(1− Fr(v)X|V (f)) = 1− λf (T (v))X + λf (〈$v〉)NF/QvX
2.

(iii) Let v - p be a place at which V (f) is ramified. Then Iv acts through an infinite quotient
if and only if π(f)v is a Steinberg representation. Otherwise, the group GFv acts irreducibly if
and only if π(f)v is a supercuspidal representation and reducibly if and only if π(f)v is in the
principal series.

(iv) Let v - p be a finite place. To V (f)v is attached a representation of the Weil–Deligne group
of Fv which is pure of weight µ+ 2ν + 1 (see [Bla06, § 1.10]). In particular, for all lifts σ of Fr(v)
to GFv and all embeddings ι of Q̄ into C, the two eigenvalues α1 and α2 of σ acting on V (f)v are
algebraic integers such that |ι(αi)|= (Nv)(µ+2ν+1)/2 if π(f)v is principal series or supercuspidal
and such that |ι(α1)|= (Nv)(µ+2ν+2)/2 and |ι(α2)|= (Nv)(µ+2ν)/2 if π(f)v is Steinberg.

(v) Let v be a finite place dividing p. The GFv -representation V (f) fits in an exact sequence
of non-trivial GFv -representations:

0−→ V (f)+
v −→ V (f)−→ V (f)−v −→ 0. (3.2.5)

If f is ordinary, then V (f)+
v can be chosen to be unramified.

There exists a semi-simple residual representation (T (f), ρ̄m, F) satisfying the properties (i), (ii)
and (v) with λf replaced by λf mod m. If ρ̄m is irreducible, there exist irreducible representations
(T (f), ρf ,O) and (T (f), ρm, R(a)) satisfying the properties (i), (ii) and (v) with λf replaced by
λm in the latter case.

Proof. See [Car86b, Théorème A] and [SW99, § 3.3]. 2

Suppose that λf factors through Ttw
∞ , or equivalently that f belongs to Sord

k (U tw). By the last
statement of Corollary 3.2, there is a unique maximal ideal m of Ttw

∞ (O) and a unique minimal
prime ideal a⊂m such that λf factors through Rtw(a) = (Ttw

∞ )m/a.

Ttw
∞

λm

��

λf
// O

Rtw(a)

<<yyyyyyyyy
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The ring Rtw(a) is a complete local Noetherian domain of dimension 1 + d. If ρ̄m is irreducible, the
GF -representation T (f)⊗Λ Λtw is an irreducible representation (T tw(f), ρm, R

tw(a)) satisfying
the properties (i), (ii) and (v) with λf replaced by λm.

Henceforth, we make the following essential assumption.

Assumption 3.4. The GF -representation ρ̄m is irreducible.

Statement (i) of Proposition 3.3 then implies that ρ̄m is absolutely irreducible.
According to statement (v) of Proposition 3.3, there exist characters χ̄1 and χ̄2 of GFv such

that the GFv -representation ρ̄m|GFv fits in the exact sequence:

0−→ χ̄1 −→ ρ̄m −→ χ̄2 −→ 0. (3.2.6)

The representation ρ̄m|GFv is said to be distinguished if its image is not scalar. Henceforth, we
make the following assumption.

Assumption 3.5. For all v|p, the representation ρ̄f |GFv is distinguished.

Under Assumptions 3.4 and 3.5, property (v) holds for (T (f), ρm, R(a)) with T (f)+
v and

T (f)−v free of rank 1 over R(a).

3.2.4 Commutative algebra properties of R(a) and geometric realization of T (f). Let Mord
m

be defined by:
Mord

m = lim
←−
S

eord
m H1

et(X(S)×F F̄ ,O)⊗Tord
∞
R(a). (3.2.7)

Lemma 3.6. Let A be a complete local regular ring and B a local domain which is a finite
A-module. Suppose that there exists a finite B-module M satisfying the following properties.

(i) The A-module M is free and M ⊗B Frac(B) is of dimension 2.

(ii) There exists a GF -representation (M ⊗B Frac(B), ρ, Frac(B)) such that Tr(ρ) has values
in B.

(iii) There exists an absolutely irreducible GF -representation (V, ρ̄, B/mB) such that Tr(ρ̄)
is equal to Tr(ρ) mod mB

Then there exists a unique GF -representation (T, %, B) of rank 2 such that %mod mB = ρ̄ and
such that Tr(%) = Tr(ρ). Moreover B is a Cohen–Macaulay ring and a free A-module.

Proof. Under assumptions (ii) and (iii), the existence and unicity of the GF -representation
(T, %, B) of rank 2 such that %mod mB = ρ̄ and such that Tr(%) = Tr(ρ) is by [Nys96, Théorème
1]. Then M is isomorphic to a GF -stable submodule of T . According to [Car94, Théorème 4],
this implies that there exists an ideal I of B such that M is isomorphic as B[GF ]-module to I2

seen as a submodule of T identified with B2. Assumption (i) implies that M , and so I, contains
an A-regular sequence of length equal to the dimension of A, which is also the dimension of B.
The depth of B, seen either as ring or as A-module, is thus equal to its dimension so B is a
Cohen–Macaulay ring and a free A-module. 2

Lemma 3.6 applied to A= Λ or Λtw, B =R(a) or Rtw(a) and M equal to Mord
m shows that

R(a) and Rtw(a) are Cohen–Macaulay rings. When the ideal I of the previous lemma is principal,
that is to say when there is an isomorphism of R(a)[GF ]-modules

T (f) ∼−→Mord
m = lim

←−
S

eord
m H1

et(X(S)×F F̄ ,O)⊗Tord
∞
R(a) (3.2.8)
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and when R(a) is a Gorenstein ring, we say that T (f) arises geometrically. In fact, under our
hypotheses, when (3.2.8) holds, the proof of [Maz77, Lemma 15.1] shows that R(a) is a Gorenstein
ring and conversely, when R(a) is Gorenstein, the isomorphism (3.2.8) holds by [Til97, Appendix
by B. Mazur]. Consequently, T (f) arises geometrically whenever one of the two conditions is
satisfied.

There are several ways to establish (3.2.8) but none known to this author is necessarily
completely satisfying in general. The first is simply to assume this result, which has the merit
of being straightforward but has rather obvious shortcomings as well. The second is to proceed
as in [Car94] and to assume that ρ̄m has residual multiplicity 1, which means that there is an
isomorphism:

Mord
m /mMord

m
∼−→ T (f).

This implies that there exists a level S such that Mord
m (S) = eord

m H1
et(X(S)×F F̄ ,O) is a free

Tord(U(S),O)-module of rank 2 and that Tord(U(S),O) is a Gorenstein ring. By [MW86,
Lemma, p. 249] applied to the Cohen–Macaulay Λ-module Mord

m , this implies in turn that (3.2.8)
holds. Under our running hypotheses, the residual multiplicity 1 hypothesis is known to hold in
particular in the classical case when ρ̄m is ramified at p or unramified but with non-scalar image
of Fr(p), hence under hypotheses 3.4 and 3.5 thanks to [MT90, Théorème 7] (but not under
the hypothesis 3.4 alone as is apparently claimed in that same theorem, see [KW08, Appendix
B]). Finally, (3.2.8) can be established using the deformation theoretic results of [Fuj99]. We
summarize this in the next proposition.

Proposition 3.7. Assume one of the following.

(i) The ring R(a) is a Gorenstein ring and Mord
m is free of rank 2 over R(a).

(ii) The algebra B is equal to M2(Q).

(iii) There exists a level S such that:

dimF e
ord
m H1

et(X(S)×F F̄ ,O/$)[m] = 2.

In other words, the representation ρ̄m is of residual multiplicity 1.

(iv) The prime p is strictly greater than 5 or p= 5 and [F (ζp) : F ]> 2. The GF (ζp)-
representation ρ̄m is absolutely irreducible. Either the representation T (f) is minimally ramified
in the sense of [Fuj99, Definition 3.32] or Ihara’s lemma is known to hold in parallel weight
(2, . . . , 2) (in particular, this last condition is satisfied if F = Q).

Then R(a) is a Gorenstein ring and Mord
m is free of rank 2 over R(a). If in addition λf restricted

to Λ factors through Λtw, then Rtw(a) is a Gorenstein ring and M tw
m =Mord

m ⊗R(a) R
tw(a) is free

of rank 2 over Rtw(a).

Proof. Under (ii), this is [MT90, Théorème 7]. Under (iii), this is [Car94]. Under (iv), it is
shown in [Fuj99, Theorem 0.2] that the universal deformation ring of ρ̄m in the sense of [Fuj99,
Definitions 3.3, 3.13 and 3.32] is a complete intersection ring, so in particular a Gorenstein ring.
Because Ihara’s lemma (Hypothesis 5.9 of [Fuj99]) is true by [DT94, Theorem 2] when F = Q,
the last requirement of (iv) is satisfied when F = Q. Then Lemma 3.1 and [Til97, Appendix by
B. Mazur] imply as above that condition (iii) is satisfied. The results of [Car94, Fuj99, MT90]
which we quote typically establish that

M = lim
←−
S

eord
m H1

et(X(S)×F F̄ ,O)
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is free of rank 2 over Tord
m = (Tord

∞ )m and that Tord
m is a Gorenstein ring. Combining this with

Proposition 2.8 and forgetting the Galois action yields:

M
∼−→HomΛ(M, Λ) ∼−→HomTord

m
(M,HomΛ(Tord

m , Λ)) ∼−→HomTord
m

(M,Tord
m ).

Reducing modulo a shows that Mord
m is free of rank 2 over R(a) and that there is a perfect

pairing on Mord
m inducing an isomorphism between Mord

m and HomR(a)(Mord
m , R(a)). Hence R(a)

is Gorenstein by [Maz77, Lemma 15.1].

If in addition λf restricted to Λ factors through Λtw, then M tw
m =Mord

m ⊗R(a) R
tw(a) is free

of rank 2 over Rtw(a). As above, this implies that Rtw(a) is a Gorenstein ring. 2

Remark. The last requirement of condition (iv) can very probably be eliminated in view of
announcements of C. Cheng, giving a proof of Ihara’s lemma in low weight for quaternionic
Shimura curves. We are grateful to B. Howard for pointing out to us that the Gorenstein property
for Tord

m implied the Gorenstein property for R(a).

3.2.5 Specializations. Let A be a complete local Noetherian Λ-algebra. An O-algebra
morphism λ from A to a complete local Noetherian domain S with finite residue field
of characteristic p is called an S-specialization of A. If (M, ρ, A) is a GF -representation,
the GF -representation (Tλ, ρλ, S) whose underlying S-module is M ⊗A,λ S endowed with the
trivial GF -action on S and the ρ-action on M is called an S-specialization of M . For instance,
the map λf is an O-specialization of R(a) and T (f) is the corresponding O-specialization of
T (f). An arithmetic specialization λ of R(a) is a specialization of R(a) which coincides with an
arithmetic specialization after restriction to Λ. When A is a finite Λ-algebra, in particular when
A is equal to Tord

∞ or R(a), an arithmetic prime P ∈ Specarith A of A is a prime ideal P whose
restriction to Λ is in Specarith Λ. If P ∈ Specarith R(a) is over p ∈ Λ, then the last assertion of
Lemma 3.1 implies that R(a)P/Λp is an unramified extension of regular rings.

The sets of arithmetic primes (respectively of arithmetic primes containing a) and of
arithmetic primes of fixed weight (respectively of fixed weight containing a) are Zariski-dense
in Spec Tord

∞ (respectively in SpecR(a)), see for instance [SW99, Lemma 3.8]. This implies the
following lemma.

Lemma 3.8. If M is an R(a)-module of finite type such that M ⊗R(a) R(a)P/P is zero for all
arithmetic primes P of fixed weight containing a, then M is R(a)-torsion.

Arithmetic specializations of R(a) correspond by [Hid88, Corollary 3.5] to automorphic
eigenforms. For P ∈ Specarith R(a) an arithmetic prime, we write fP and π(fP) for the
corresponding eigenform and automorphic representation and V (fP) for its attached GF -
representation with coefficients in Q̄p. We use the same notation for an arithmetic
specialization λ.

Lemma 3.9. Let λ and λ′ be two arithmetic specializations of R(a) with values in S and S′

corresponding to two automorphic representations π(λ) and π(λ′). Let v - p be a finite place.
Then π(λ)v and π(λ′)v have the same automorphic type. The rank of the R(a)-module T (f)Iv is
equal to the rank of the S-module T Ivλ . The set of specializations µ such that the rank of T (f)Iv
is not equal to the rank of T Ivµ is of codimension at least 1.

Proof. Let V(f) be the GFv -representation T (f)⊗R(a) Frac(R(a)). The representation V(f) is
continuous and the residue field of R(a) is finite of characteristic p -NF/Qv. By Grothendieck’s
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monodromy theorem [ST68, p. 515], there thus exists an open normal subgroup U of the tame
inertia group Itv such that ρm|U is unipotent.

Assume first that the action of U on V(f) is trivial. In that case the action of U on Vλ
and Vλ′ is also trivial. Because Tr(ρm)(Iv) is a finite subset of Q̄p and because arithmetic primes
do not contain p, the two Iv-pseudorepresentations Tr(ρλ) and Tr(ρλ′) are both equal to Tr(ρm)
and so isomorphic. The Q̄p[Iv]-modules Vλ and Vλ′ are thus isomorphic (see for instance [Ser71,
§ 2.3, Corollaire 4] for this classical result of Frobenius). In particular, they are both reducible
or both irreducible. In the latter case, V Iv

λ is trivial so the same is true for V(f) and both π(λ)v
and π(λ′)v are supercuspidal. In the former case, by [Cli37, Theorem 1], the Iv-representation
V(f) is the sum of two one-dimensional Iv-stable subspaces which are either permuted under
the action of GFv , in which case V(f) is an irreducible GFv -representation, or fixed under the
action of GFv , in which case V(f) is a reducible GFv -representation. In both cases, the action
of Iv on an Iv-stable subspace of V(f) is given by a character of finite order. This action stays
the same after choosing the lattice T (f), localizing at an arithmetic prime and taking reduction
modulo the maximal ideal. Hence, the dimension of V (λ)Iv is equal to the dimension of V(f)Iv .
The action of GFv on the set of Iv-stable subspaces of V(f) is given by a matrix with integral
entries so it also stays the same after choosing the lattice T (f), localizing at an arithmetic
prime and taking reduction modulo the maximal ideal. The GFv -representations Vλ and Vλ′ are
thus irreducible if and only if the GFv -representation V(f) is. If they are both reducible, the
automorphic representations π(λ)v and π(λ′)v are both principal series. In the other eventuality,
they are both supercuspidal.

Assume now that V(f)|U is a non-trivial unipotent representation. Then V(f)U is of
dimension 1. If P is an arithmetic prime, T (f)UP is then a saturated torsion-free submodule
of rank 1 of a free module of rank 2 over a regular (hence factorial) ring, and thus is free of
rank 1. Moreover, there exists an arithmetic specialization λ such that V U

λ is of dimension 1 and
thus such that Vλ has non-trivial monodromy. For such a λ, the representation π(λ)v is Steinberg
so we wish to show that π(λ′)v is also Steinberg. Let N be the monodromy operator of V(f)|U ,
which is non-trivial by assumption. Let w|v be a finite place of F̄U . The GFw -representation
Vλ is pure so the eigenvalue of Fr(w) acting on Vλ/V

U
λ is non-zero. Thus the eigenvalue β of

Fr(w) acting on V(f)/V(f)U is also non-zero and the ratio of the eigenvalue α of Fr(w) acting
on V(f)U with β is well-defined. By Grothendieck’s monodromy theorem, this ratio is equal
to χΓ(Fr(w)). Hence, the eigenvalues of Fr(w) under Vλ′ have distinct weights and so Vλ′ has
non-trivial monodromy. This implies that π(λ′)v is a Steinberg representation.

Let a and b be respectively rank T (f)Iv and rank T Ivλ . The inequality 06 a6 b6 2 proves
that a= b if a= 2 or b= 0. Combined with the above, this shows that it remains to compare a
and b when π(λ)v is unramified Steinberg. Hence, we can assume that b= 1 and that the action
of Iv on T (f)U is through a finite-order character ψ which becomes trivial after specialization
by λ. Because p /∈ ker λ, the character ψ is then trivial. In that case, we have a= 1 = b.

Finally, assume that the set C of specializations µ such that a 6= b has codimension zero. The
previous paragraphs show that all arithmetic specializations of T (f) are then Steinberg at v and
that T (f)Iv is of rank 1. Choose an element e ∈ T (f) which is not fixed by Iv. Then e is not
fixed by Iv in V(f) either and this contradicts our assumption on the codimension of C. 2

3.2.6 Galois representation with coefficients in Rtw(a). Let ω be the central character of f .
The GF -representation V (f) has determinant ωχ−(µ+2ν+1)

cyc . Let ωf be the finite-order part of
ωχ
−(µ+2ν+1)
cyc . Consider the following assumption.
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Assumption 3.10. There exists a finite-order character χ of A×F /F
× such that χ2 is equal to the

finite-order part ωf of ωχ−(µ+2ν+1)
cyc .

The obstruction for Assumption 3.10 to be true is the 2-torsion in G∞. By (2.2.7),
Assumption 3.10 is thus true for instance when ωf is trivial on the 2-torsion of the right-hand
side of (2.2.7). This is the case in particular if f is of level U0 outside p and if there is only
one prime p above p in F ; indeed, ωf is then trivial on O×F,v for v - p and on {±1}, which is the
2-torsion of O×F,p.

Henceforth, we assume consistently Assumption 3.10 and fix a χ as in the assumption. Then
the central character of π(f)⊗ χ−1 factors though a group without 2-torsion so has a canonical
square-root ψ. Let f tw be the form f ⊗ χ−1ψ−1 and π(f tw) be the automorphic representation
π(f)⊗ χ−1ψ−1. Then π(f tw) has trivial central character. Let λtwf be the morphism from Tord

∞ (O)
to O attached to f tw. If f belongs to Sk(U1

1 ), then f tw belongs to Sk(U tw) so λtwf factors through
a complete local domain Rtw(a) of dimension 1 + d. If f belongs to Sk(U1) of Sk(U1), then f tw

also belongs to Sk(U tw). However, the parallel defect of the weight of f tw is a parallel weight,
or equivalently, the parallel defect of f tw is entirely accounted for by a cyclotomic twist. Hence,
λtwf restricted to Λ further factors through a power-series ring of dimension 2. In a slight abuse
of notation, we also denote this ring by Λtw. The same arguments as in Corollary 3.2 show that
there then exists a complete local Noetherian domain Rtw(a) of dimension 2 through which λtwf
factors. Likewise, Proposition 3.3 and the results of § 3.2.4 extend under the same hypotheses.

In either case, we denote by R the ring Rtw(a), which is thus of dimension 2 if f ∈ Sk(U1) or
f ∈ Sk(U1) and of dimension 1 + d if f ∈ Sk(U1

1 ).

We summarize the results of the preceding subsections in a theorem.

Theorem 3.1. Let R(a) be Tord
m /a. We assume 3.4 and 3.5. Then there is a free R(a)-module

T (f) of rank 2 unramified as GF -module outside SB ∪ supp(S). Let v be a finite place outside
SB ∪ supp(S). Then:

det(1−X Fr(v)|T (f)) = 1− λm(T (v))X + λm(〈$v〉)NF/Q$vX
2. (3.2.9)

At v|p, the R(a)[GFv ]-module T (f) fits in a short exact sequence

0−→ T (f)+
v −→ T (f)−→ T (f)−v −→ 0

whose terms are all free of positive ranks.

Assume in addition that Assumption 3.10 holds. Let R be Rtw(a). Then the R-module
T = T (f tw)(1) is self-dual:

T ∼−→HomR(T , R)(1). (3.2.10)

If moreover one of the conditions of Proposition 3.7 holds then:

T (f) ∼−→ lim
←−
S

eord
m H1

et(X(S)×F F̄ ,O)⊗Tord
∞
R(a).

The pairing of Proposition 2.8 induces an isomorphism

T (f)(1) ∼−→HomR(a)(T (f), R(a))⊗ ωχΓ (3.2.11)

which recovers (3.2.10) when f = f tw.
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4. Equivariant classes in towers of Shimura curves

4.1 CM points on X(S)
4.1.1 Galois action on CM points. We fix a totally complex quadratic extension K of F as

in § 2.1.2.1. For v a finite place of F , we write Kv for K ⊗F Fv and OK,v for OK ⊗OF,v. For a
non-zero ideal c of OF , let Oc be the OF -order of conductor c in OK :

Oc =OF + cOK .

Let x= [z, b] be a CM point. Let Z(x) and Z0(x) be the compact open subgroups of K̂×

equal to q̂−1(bUb−1) and q̂−1(bUÔ×F b−1). By definition, the group Z0(x) contains O×F,v for all
finite places v. The statement (2.1.1) implies that:

Gal(K(x)/K) ∼−→ K̂×/K×Z(x).

Let K0(x) be the abelian extension corresponding to Z0(x). The compact open group Uv is
maximal at almost every finite place, so bv is in Uv at almost every place, so Z(x) is equal to
O×K,v at almost every place. Let c(x) be the smallest ideal of OF such that Ô×c(x) ⊂ Z0(x) and let
K0(c(x)) be the corresponding extension by class field theory:

K̂×/K×F̂×Ô×c(x)

∼−→Gal(K0(c(x))/K).

Let Z be a compact open subgroup of K̂× and KZ the corresponding abelian extension. If Z ′ ⊂ Z
is an inclusion of such subgroups, then the Galois group Gal(KZ′/KZ) fits in the short exact
sequence:

1−→ K× ∩ Z
K× ∩ Z ′

−→ Z

Z ′
recK−→ Gal(KZ′/KZ)−→ 1. (4.1.1)

Definition 4.1 (Ideal of bad places). Let I0 be the intersection of the ideals generated by u− 1
with u ∈ (OK)×tors and u 6= 1.

4.2 Variation of CM points
4.2.1 Coherent families in the tower X(S).

Definition 4.2 (Coherent conductors). Let C (p) be the set of ideals cp such that places
dividing cp are above p. For x a CM point, let L

(p)
1 (x) be the set of finite places l of OF

such that l is inert in K, is not in SB ∪ supp(S), does not divide c(x) and lOK does not divide
I0. For n> 0, let Ln(x) be the set of ideals c of OF equal to the product of n distinct elements of
L

(p)
1 (x) with an ideal cp of C (p). Let L (x) be the union of Ln(x). For l ∈L

(p)
1 (x), let λ be the

unique place of K above l. The residue fields of l and λ are written k(l) and k(λ) respectively.

Remark. The set L (x) contains the ideal OF .

Definition 4.3 (Coherent families of CM points). Let {S}S>S0 be a tower of levels. Let x=
[z, b(x)] be a CM point on X(S0) with b(x) trivial at places above p and such that Z(x) is
included in Ô×c 0

with c 0 - I0. Let c be an ideal of L (x) and S a level. Let b(c, S) be the element
of B̂× defined by the following conditions.

(i) If v - c and v - p, then b(c, S)v is equal to the identity.
(ii) If v|c and v - p, then:

b(c, S)v =
(
$v 0
0 1

)
. (4.2.1)
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(iii) If v|p, let tv be ordv c. Then:

b(c, S)v =
(

1 0
0 $

s0,v−sv−tv
v

)
. (4.2.2)

Define:

x(c, S) = [z, b(x)b(c, S)] ∈ CM(X(S), K).

Remark. The point x(OF , S0) is equal to x. The definition (4.2.2) is the correct one to treat all
possible changes of levels in the tower of levels {S}S>S0 (see especially Propositions 4.5 and 4.9
below). If we were to restrict ourselves to changes of levels such that s′v − sv is equal to ordv p,
which is enough to establish the main results of this article, then we could follow the choice of
[How04b, § 1.2] and consider coherent families of CM points such that (4.2.2) is replaced by:

b(c, S)v =
(
$
sv−s0,v+tv
v 0

0 1

)
.

Henceforth, all levels S are in the tower {S}S>S0 . Let Z0(c, S), Z(c, S), K0(c, S) and K(c, S) be
respectively Z0(x(c, S)), Z(x(c, S)), K0(x(c, S)) and K(x(c, S)).

Lemma 4.4. Let c be an ideal of L (x) and S a level. Then K× ∩ Z0(c, S) =O×F and K× ∩
Z(c, S) =OF,1(S)×.

Proof. This is an adaptation of [Nek07, Proposition 2.10] to our situation. 2

Remark. Lemma 4.4 justifies the condition Z(x)⊂ Ô×c 0
of Definition 4.3. Starting with an

arbitrary CM point x and enlarging its conductor if necessary, this condition is easily achieved.
It is however only imposed for convenience of notation: in its absence, all the results of this
article remain valid after multiplying the equivariant classes z(c, S) of Definition 4.11 below by
the error term [K× ∩ Z0(c, S) :O×F ]−1.

4.2.2 Galois and Hecke actions on the points x(c, S).

Proposition 4.5. Let cl be in L (x) and S 6 S′ be two levels. Let Gc l/c and GS′/S be
respectively the relative Galois groups Gal(K(cl, S)/K(c, S)) and Gal(K0(c, S′)/K0(c, S)). Let
T (l) be the Hecke correspondence at l and T (S) be the Hecke correspondence defined in (2.7).
Then:

Gc l/c
∼−→Gal(K0(cl, S)/K0(c, S)) ∼−→ k(λ)×/k(l)× (4.2.3)

T (l) · x(c, S) =
∑

σ∈Gc l/c

σ · x(cl, S) (4.2.4)

and

GS′/S
∼−→

∏
v∈S
OF,v/$s′v−sv

v (4.2.5)

T (S′ − S) · x(c, S) = πS′/S

( ∑
σ∈GS′/S

σ · x(c, S′)
)
. (4.2.6)
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Proof. By Lemma 4.4, K× ∩ Z0(c, S) and K× ∩ Z0(cl, S) are both equal to O×F . As l belongs to
L1(x), it divides neither c(x)I0 nor p so that:

Z(c, S)
Z(cl, S)

∼−→ Z0(c, S)
Z0(cl, S)

∼−→Gal(K0(cl, S)/K0(c, S)).

The quotient Z(c, S)/Z(cl, S) is trivial outside l so we localize at l. We compute more
generally the quotient q−1

l (gUlg−1)/q−1
l (gb(c, S)lUlb(c, S)−1

l g−1) for g ∈Bl. The extension Kλ/Fl
is unramified so by [Vig80, Théorème 3.1], there exists an optimal embedding t ofOK,λ in Ul. This
embedding is conjugated to ql by the theorem of Skolem–Noether. As q−1

l (gUlg−1) = t−1(g1Ug
−1
1 )

for some g1, for the computation of the quotient q−1
l (gUlg−1)/q−1

l (gb(c, S)lUlb(c, S)−1
l g−1), we

can and do assume that ql is optimal. Then q−1
l (gUlg−1) is equal to q−1

l (gUlg−1 ∩ Ul). Let
r be ord$l(det g). Let O×K,λ,r denote the kernel of the reduction modulo $r

l from O×K,λ to
(OK,λ/$r

l )
×. Then q−1

l (gUlg−1) is equal to O×F,lO
×
K,λ,r. As ord$l(det gb(c, S)l) is equal to r + 1,

the quotient q−1
l (gUlg−1)/q−1

l (gb(c, S)lUlb(c, S)−1
l g−1) is isomorphic to O×F,lO

×
K,λ,r/O

×
F,lO

×
K,λ,r+1,

which is isomorphic to k(λ)×/k(l)×. Hence Z(c, S)/Z(cl, S) is isomorphic to k(λ)×/k(l)× and
(4.2.3) is established.

By definition of T (l), the divisor T (l) · x(c, S) contains the orbit of x(cl, S) under Gc l/c.
According to (4.2.3), these divisors contain the same number of points, and hence coincide.

Because Z0(c, S) contains O×F,v for all finite v, statements and proofs about K0(c, S) do not
depend on whether U = U1 or U1

1 . Likewise, the double coset T (S′ − S) admits an explicit set
of representative which is independent of this choice. Moreover, to prove (4.2.5) and (4.2.6), it
is enough to consider the case where S′ − S is non-zero at only one finite place v above p and
with s′v − sv equal to one. There then exists g1 and g2 with ord$v det(g−1

1 g2) = 1 such that:

Z0(c, S)v/Z0(c, S′)v = q−1
v (g1Uvg

−1
1 )/q−1

v (g2Uvg
−1
2 ).

Conjugating qv by an inner automorphism does not change ord$v det(g−1
1 g2). Hence, as above,

in order to compute this quotient, we can assume that qv is an optimal embedding of OK,w inside
GL2(OF,v) for w|v. Then q−1

v (g1Uvg
−1
1 ) is the order 1 +$sv

v OK,w and q−1
v (g2Uvg

−1
2 ) is the order

1 +$
s′v
v OK,w. So:

Z0(c, S)v/Z0(c, S′)v
∼−→OF,v/$v.

By Lemma 4.4, this proves (4.2.5).
The computation

T (S′ − S) · x(c, S) =
∑
x∈X

[
z, b(x)b(c, S)

(
1 x$−1

v

0 $−1
v

)]

= πS′/S

(∑
x∈X

[
z,

(
1 x$

−s0,v+tv+sv
v

0 1

)
b(x)b(c, S′)

])
then proves (4.2.6). 2

Proposition 4.6. Let c be in L (x) and S a level. The following short sequence is exact:

1−→
O×F
O×F,1(S)

−→
∏
v∈S

(OF,v/$sv
v )× −→Gal(K(c, S)/K0(c, S))−→ 1. (4.2.7)

Let σ be in GK fixing K0(c, S). There exists an a ∈ F̂× such that:

σ · x(c, S) = 〈a〉 · x(c, S). (4.2.8)
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Proof. The compact open subgroups Z0(c, S) and Z(c, S) differ only at places in supp(S).
According to Lemma 4.4, the short exact sequence (4.1.1) thus induces the short exact sequence
(4.2.7). The action of σ on x(c, S) factors through Gal(K(c, S)/K0(c, S)). Thus, there exists an
a ∈ F̂× such that:

σ · x(c, S) = (recK a) · x(c, S) = 〈a〉 · x(c, S). 2

Proposition 4.7. Let c be in L (x) and K0(c,∞) be
⋃
S6S′ K0(c, S′). Then Gal(K0(c,∞)/K)

is of finite torsion and of Zp-rank d. The extension K0(c,∞) does not contain a Zp-extension
of F .

Proof. See [CV05, § 3.3.2]. 2

Let D∞ be the Zdp-extension contained in K0(c,∞).

4.3 Equivariant classes and the p-adic Abel–Jacobi map

We consider again f as in § 3.2.3. Henceforth, Assumption 3.10 is assumed to hold for K and f .

4.3.1 Galois cohomology and the Abel–Jacobi map. Let E be a finite extension of F . We
recall that the p-adic cycle class map and the Leray spectral sequence for the structure morphism
X(S)−→ Spec(F ) imply the existence of the class zero map:

cl0 : CH1(X(S)×F E)−→H0(E, H2
et(X(S)×F F̄ ,O)(1))

whose kernel is written CH1(X(S)×F E)0 and of the p-adic Abel–Jacobi map:

Φ : CH1(X(S)×F E)0 ⊗Z O −→H1(E, H1
et(X(S)×F F̄ ,O)(1)).

See [Wes02, § 2] for references. As in the proof of Corollary 3.2, the action of the Hecke
operators T (v) on the group H2

et(X(S)×F F̄ ,O) is by multiplication by a power of p,
and hence topologically nilpotent. Hence, the ordinary part of H2

et(X(S)×F F̄ ,O) is zero.
The p-adic Abel–Jacobi map thus defines a map:

Φ : eord
m CH1(X(S)×F E)⊗Z O −→H1(E, eord

m H1
et(X(S)×F F̄ ,O)(1)).

Applying this construction for E equal to K(c, S) produces a map:

eord
m CH1(X(S)×F K(c, S))⊗Z O −→H1(K(c, S), Mord

m (S)(1)). (4.3.1)

Proposition 4.8. Let cl be in L (x) and S be a level. Let v be a place of K(c, S) above l and
w the unique place of K(cl, S) above v. Let Fr(l) ∈Gal(K(c, S)/F ) be the conjugacy class of the
Frobenius morphism of l. Then:

locw Φ(x(cl, S)) = Fr(l) locw Φ(x(c, S)) ∈H1(K(cl, S)w, H1
et(X(S)×F F̄ ,O)(1)).

Proof. Let O(c, S) and O(cl, S) be the ring of integers of K(c, S) and K(cl, S). Let O(c, S)v and
O(cl, S)w be the completions of those rings at v and w and let k(v) and k(w) be their residue
fields. The curve X(S)×F K(cl, S) has a smooth proper model over O(cl, S)w. Let

X(S)spe = (X(S)×F K(cl, S))×O(cl,S)w k(w)

be its special fiber. The curveX(S) has good reduction at l so the image of the p-adic Abel–Jacobi
map localized at w is unramified:

im Φ⊂H1
ur(K(cl, S)w, H1

et(X(S)×F F̄ ,O)(1)).
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The smooth and proper base change theorem shows that the cohomology group

H1
ur(K(cl, S)w, H1

et(X(S)×F F̄ ,O)(1))

is isomorphic to

H1(k(w), H1
et(X(S)spe ×k(w) k̄(w),O)(1)).

It is consequently enough to prove the result for X(S)spe. As l is inert in K, the reduction of a
CM point at l is a supersingular point by [CV05, Lemma 3.1]. The description of the stabilizer
of a supersingular point [z, b] under the action of GL2(Fl)×W (F abl /Fl) given in [Car86a, § 10.3]
implies that the reductions modulo w of elements in the support of T (l)[z, b] are all equal to the
reduction modulo w of Fr(l)[z, b]. As x(cl, S) is in the support of T (l)x(c, S), in CH1(X(S)spe)
the equality

x(cl, S)spe = Fr(l)x(c, S)spe

holds. The images of x(cl, S)spe and Fr(l)x(c, S)spe are thus the same in the cohomology group:

H1(k(w), H1
et(X(S)spe ×k(w) k̄(w),O)(1)).

This establishes the desired result by Galois equivariance of the Abel–Jacobi map. 2

4.3.2 Equivariant classes. Applying the construction (4.3.1) for E equal to K(c, S) and
composing with the projection from Mord

m (S) to M tw
m (S) = eord

m H1
et(X

tw(S)×F F̄ ,O) produces
a map:

eord
m CH1(X(S)×F K(c, S))⊗Z O −→H1(K(c, S), M tw

m (S)(1)). (4.3.2)

Let σ be an element of Gal(K(c, S)/K0(c, S)). By Proposition 4.6, there is an a ∈ F̂× such that
recK a is equal to σ in Gal(K(c, S)/K0(c, S)). The image of recF a2 in GF is equal to σ|Fab . As
σ · x(c, S) = 〈a〉 · x(c, S) and as 〈a〉 acts trivially on M tw

m (S), the image of eord
m x(c, S) under the

map (4.3.2) is in the group:

H0(K(c, S)/K0(c, S), H1(K(c, S), M tw
m (S)(1)).

By Proposition 3.3 statement (iv), the GF -representation M tw
m (S)(1) is pure of weight −1 so

has no GFv -invariants for v - p. Hence, it has no GK(c,S)-invariants and the inflation-restriction
sequence induces an isomorphism:

H1(K0(c, S), M tw
m (S)(1)) ∼−→H1(K(c, S), M tw

m (S)(1))Gal(K(c,S)/K0(c,S)).

Let K0(c) denote the extension K0(c, 1). The following composition of maps summarizes the
construction of a class y(c, S) in H1(K0(c), M tw

m (S)(1)) from eord
m x(c, S).

eord
m CH1(X(S)×F K(c, S))⊗Z O

Φ // H1(K(c, S), Mord
m (S)(1))

��

H1(K0(c, S), M tw
m (S)(1))

Corc S/c

��

H1(K(c, S), M tw
m (S)(1))res−1

oo

H1(K0(c), M tw
m (S)(1))

T (1−S)
// H1(K0(c), M tw

m (S)(1))

Note that the operator T (1− S) is well defined on M tw
m by ordinarity. Let y(c, S) be the image

of x(c, S) in H1(K0(c), M tw
m (S)(1)).
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Proposition 4.9. Let S 6 S′ be two levels. Then:

πS′/Sy(c, S′) = y(c, S). (4.3.3)

Proof. By the statement (4.2.6) of Proposition 4.5:

πS′/S Corc S′/c S Φ(x(c, S′)) = T (S′ − S)Φ(x(c, S)).

So:

πS′/ST (1− S′) Corc S′/c Φ(x(c, S′)) = T (1− S) Corc S/c Φ(x(c, S)).

After projection to M tw
m (S′) and M tw

m (S), this is the statement (4.3.3). 2

Definition 4.10 (Fundamental base fields). Let c be in Ln(x). Let cp and c p be such that:

c = cpc
p = cp

n∏
i=1

li.

Let K(c) be the sub-extension of K0(c) defined by:

K(c) =K0(cp)
n∏
i=1

K0(li).

Remark. According to Lemma 4.4 and Proposition 4.5, the Galois group Gal(K(cl)/K(c)) is
isomorphic to k(λ)×/k(l)×. Let v be a finite place of F belonging to SB ∪ supp(S) and not
above p. Let w and w′ be places of K(c) and K(ccp) above v. The extension K(ccp)w′/K(c)w is
then unramified.

Definition 4.11 (Equivariant classes). Let c be in Ln(x) and S be a level. Let Sc be the level
with the same support as S and such that sv = ordv c for v in supp(S). Define:

z(c, S) = T (−Sc) CorK0(c)/K(c) y(c, S).

Remark. By definition of L1(x), if v belongs to supp(S) and v - p, then ordv c = 0. Hence, Sc is
equal to Scp .

Proposition 4.12. Let cl be in L (x) and S 6 S′ be two levels. Then:

πS′/Sz(c, S
′) = z(c, S), (4.3.4)

CorK(cl)/K(c) z(cl, S) = T (l)z(c, S), (4.3.5)
CorK(c)/K(c p) z(c, S) = z(c p, S). (4.3.6)

Proof. Because z(c, S) and z(c, S′) have the same conductor, the assertion (4.3.4) is a restatement
of (4.3.3). For the same reason, the assertion (4.3.5) is a restatement of the assertion (4.2.4) of
Proposition 4.5.

Let S′ be the level S + Sc. According to Definition 4.3 item (iii), the points x(c, S) and
x(c p, S′) satisfy the relation:

x(c, S) = πS′/Sx(c p, S′).

So:

CorK(c)/K(c p) z(c, S) = T (1− S′) CorK0(c,S)/K(c p) πS′/Sx(c p, S′) = z(c p, S).

The last equality follows from Proposition 4.5 assertion (4.2.6). 2

Remark. Proposition 4.12 can be rephrased in the following way. The collection {z(c, S)}c,S
with c with constant c p and varying levels S and cp is a projective system for corestriction
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and change of levels. Therefore, for all c ∈L (x) the element lim←−
cp,S

z(cpc p, S) is a well-defined

element of
lim
←−
cp,S

H1(K(cpc p), M tw
m (S)(1)).

Repeating the proof of Proposition 4.7, it is easily seen that the extension K(c pp∞) contains the
Zdp-extension D∞. Let D∞(c) be the composite extension of D∞ and K(c).

Definition 4.13 (Iwasawa cohomology). Let G be a pro-finite group and H be a closed normal
subgroup ofG. Let A be a local complete Noetherian ring with residual field finite of characteristic
p and M a finitely generated A-module. Let H i

Iw(G, H;M) be the A[[Gal(G/H)]]-module:

H i
Iw(G, H;M) = lim

←−
U,Cor

H i(U, M), U ∈ {open subgroup of G containing H}.

When G=GF and H = Gal(F̄ /L) for L an extension of F , we write H i
Iw(F, L;M) for

H i
Iw(G, H;M).

Let C• be the complex lim←−
U

C•cont(G,M ⊗A A[G/U ]) viewed in the derived category. The

A[[G/H]]-module H i
Iw(G, H;M) is then isomorphic to H i(C•). This might not remain true

without the hypothesis that the residual field of A is finite.

Definition 4.14 (Universal norms). For c ∈L (x), let

z(c) ∈H1(K(c), T )

be the image of lim←−
S

z(c, S) in H1(K(c), T ). Let z be the corestriction of z(1) from K(OF )
to K.

Let
z∞(c) ∈H1

Iw(K, D∞(c); T )
be the image of lim←−

c,S
z(c, S) in H1

Iw(K, K(c pp∞); T ) under the corestriction from K(cp∞)

to D∞(c). Let z∞ be the corestriction of z∞(1) from D∞(OF ) to D∞. Then z∞ belongs to
H1

Iw(K, D∞; T ). Let RIw be R[[Gal(D∞/K)]] and TIw be T ⊗R RIw. By Shapiro’s lemma, the
cohomology class z∞ satisfies:

z∞ ∈H1(K, TIw).

5. Euler systems for TIw

5.1 Selmer structures
5.1.1 Cohomology of R-modules. We review briefly the theory of Selmer complexes and

Selmer groups referring to [Nek06] for details. Throughout 5.1, the letters A and T denote
respectively a local complete Noetherian ring of residual characteristic 0 or p and a finitely
generated A-module. Whenever a group G acts on T , the group G is assumed to be profinite and
the action is assumed to be continuous. All Galois representations are supposed to be unramified
outside a finite set of places.

Let L be a finite extension of F and T be an A[GL]-module. Let Σ denote the finite set
of finite places of L containing all places above p and all places where T is ramified. Let LΣ

be the maximal extension of L unramified outside Σ and GL,Σ be Gal(LΣ/L). For v a finite
place of L, let G be GLv or GL,Σ. Let C•cont(G, ·) be the functor of continuous cochains from
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the category of A[G]-modules to the category of bounded below complexes of A-modules and
R Γ(G, ·) its image in the derived categories. We write R Γ(Lv, ·) and R Γ(LΣ/L, ·) for R Γ(GLv , ·)
and R Γ(GL,Σ, ·) respectively.

Lemma 5.1. The complex R Γ(G, T ) is a bounded below complex of A-modules of finite type.
If v - p, the complex R Γ(Iv, T ) is a bounded below complex of A-modules of finite type.

Proof. See [NSW00, Theorem 7.1.8] and [Nek06, Proposition 4.2.3]. 2

Proposition 5.2. Let T be an A[G]-module which is a flat A-module. Let x be a regular
A-sequence. Then:

R Γ(G, T )
L
⊗A A/x

∼−→ R Γ(G, T ⊗A A/x). (5.1.1)

Assume that A and A′ have finite residual fields of characteristic p. Let φ :A−→A′ be a ring
morphism. Then:

R Γ(G, T )
L
⊗A,φ A′

∼−→ R Γ(G, T ⊗A A′). (5.1.2)

Proof. The presumably well-known proof follows from the three following facts about the
functor R Γ(G,−): it satisfies the Mittag-Leffler condition, it is triangulated and way-out.
For the convenience of the reader, we mention the following references: [SGA4, Exposé XVII,
Théorème 4.3.1] or [FK06, Proposition 1.6.5]. 2

A complex satisfying the property (5.1.1) (respectively property (5.1.2)) is said to descend
perfectly with respect to x (respectively φ).

Proposition 5.3. Let v - p be a finite place of F . Let Lw be a finite extension of Fv. Let β be
a finite order character of GLw with values in Q̄×p . Let P ∈ Specarith(R) be an arithmetic prime
of parallel even weight k. Then the complexes R Γ(Lw, V (fP)(k/2)⊗ β) and R Γ(Lw, TP) are
acyclic and the cohomology group H0(Lw, T ) is trivial.

Proof. The first two assertions are [Nek06, Propositions 12.4.8.4 and 12.7.13.3]. The R-module
H0(Lw, T ) is zero after tensor product with RP/P for all P in a dense subset of Spec(R) so is
torsion by Lemma 3.8, and thus trivial. 2

Proposition 5.4. Let Σ be a finite set of places of F or K containing all places above places
in SB and all places above the places in the support of the tower of levels S. Then:

H1(FΣ/F, T ) =H1(F, T )

and

H1(KΣ/K, TIw) =H1(K, TIw).

Proof. Let v be a finite place of F outside Σ and Lw be a finite extension of Fv. By Theorem 3.1,
the GLw -representation T is unramified. We first show that H1(Lw, T ) is equal to H1

ur(Lw, T ).
The group 〈Fr(w)〉 is of cohomological dimension 1 so the short sequence

0−→H1
ur(Lw, T )−→H1(Lw, T )−→H0(〈Fr(w)〉, H1(Iw, T ))−→ 0

is exact. As T is an unramified GLw -representation:

H1(Iw, T ) = Hom(Iw, T ).
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The finite place w is prime to p so morphisms from Iw to T factor through a cyclic pro-p group
〈σ〉 with σ satisfying the monodromy relation:

Fr(w)−1σ Fr(w) = σNF/Qw.

Consequently:

H0(〈Fr(w)〉,Hom(Iw, T )) ∼−→H0(〈Fr(w)〉, T (−1)).

According to Proposition 5.3, this last group is zero.

Let L be the finite unramified extension of K equal to the intersection of D∞ with K(1).
Let w be a place of L above v. The complex R Γ(Kw, TIw) is isomorphic to R Γ(Lw, T ⊗R
R[[X1, . . . , Xd]]). According to Proposition 5.2, there is an isomorphism of complexes:

R Γ(Lw, T ⊗R R[[X1, . . . , Xd]])
L
⊗R[[X1,...,Xd]] R

∼−→ R Γ(Lw, T ).

By a repeated application of NAK, the cohomology group H0(〈Fr(w)〉, TIw(−1)) is thus zero
and H1

ur(Lw, TIw) is equal to H1(Lw, TIw). As Lw/Kw is unramified, H1
ur(Kw, TIw) is equal to

H1(Kw, TIw). 2

5.1.2 Local conditions. Let T be an A[GL]-module and v be a place in Σ. A local condition
at v is a complex Cf (GLv , T ) and a morphism of complexes:

Cf (GLv , T )−→ C•cont(Lv, T ).

The Selmer complex R Γf (LΣ/L, T ) is the object in the derived category corresponding to:

Cone
(
C•cont(LΣ/L, T )⊕

⊕
v∈Σ

Cf (GLv , T )−→
⊕
v∈Σ

C•cont(Lv, T )
)

[−1].

Let H̃ i
f (LΣ/L, T ) be its ith cohomology groups.

Let v be a place of K dividing p. The GFv -representation T (f) is reducible. There exist two
R(a)[GFv ]-modules U+

v (T (f)) such that

0−→ U+
v (T (f))−→ T (f)−→ U−v (T (f))−→ 0

is exact. By Assumption 3.5, the R(a)-module U±v (T (f)) are free of rank 1. The action of
GabFv identified with F×v on U+

v (T (f)) is described as follows: the inertia O×F,v acts through the
character λm whereas $v acts as T ($v).

By taking quotients, localization and specialization, this defines U+
v (T ) and U−v (T ) for

specializations and localizations of TIw. We sometimes denote U+
v (T ) and U−v (T ) by T+

v and T−v .

Definition 5.5 (Greenberg’s local condition). Let L be a finite extension of K. Let T be a
specialization of RIw. The Greenberg local condition for complexes is given by the following
choices of R Γf (Lv, T ) for v ∈ Σ. If v|p, define:

Cf (Lv, T ) = C•cont(Lv, U
+
v (T ))

else define:

Cf (Lv, T ) = C•cont(L
nr
v /Lv, T

Iv).

Let R Γf (LΣ/L, T ) be the corresponding Selmer complexes.
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Define the Greenberg Selmer group H1
Gr(LΣ/L, T ) by:

H1
Gr(LΣ/L, T ) = ker

(
H1(LΣ/L, T )−→

⊕
v|p

H1(Lv, U−v (T ))⊕
⊕

v∈Σ\{v|p}

H1(Iv, T )
)
.

Remark that by functoriality of restriction, if x ∈H1(LΣ/L, T ) belongs to H1
Gr(LΣ/L, T ) and

if there is a morphism f : T −→ T ′, then f(x) ∈H1(LΣ/L, T
′) belongs to H1

Gr(LΣ/L, T
′).

5.1.3 Exceptional specializations. A specialization T of T is said to be exceptional at v|p if
there exists a finite extension Lw of Fv such that:

H0(Lw, U−v (T )) 6= 0. (5.1.3)

A specialization is said to be exceptional if it is exceptional at some places above p. According
to [Nek06, Lemma 12.5.4 and Proposition 12.5.8], an arithmetic specialization of weight k can
be exceptional at v only if k is parallel equal to 2 and if π(fP)v is a Steinberg representation.
This implies that non-exceptional arithmetic points form a Zariski-dense and mR-adically dense
subset of SpecR. The specializations T and TIw themselves are not exceptional. By [Nek06,
(6.1.3.2)], the short sequence

0−→
⊕
v|p

H0(Lw, Uv(T−))−→ H̃1
f (LΣ/L, T )−→H1

f (LΣ/L, T )−→ 0 (5.1.4)

is exact.

5.2 Local properties of z(c)and z∞(c)
5.2.1 Local properties outside p.

Definition 5.6 (Minimally ramified module). Let T be an A[GLv ]-module. When the natural
map from T Iv to (T/mAT )Iv is a surjection, we say that T is minimally ramified. Let T be an
A[GL]-module. We say that T is minimally ramified at v if T is minimally ramified as A[GLv ]-
module.

If an A-module T is minimally ramified (at v) and if B is a quotient of A, then the B-module
T ⊗A B is minimally ramified (at v). If (T, ρ, A) is a minimally ramified GLv -representation of
rank 2, then T I is a direct summand of T . Indeed, either T I is of rank zero or it contains a basis
(ei)i such that not all the coordinates of ei in a basis of T are in mR. In this eventuality T Iv/xT Iv
is isomorphic to H0(Iv, T/xT ) through the natural map for all x ∈A and thus H1(Iv, T )tors

vanishes.

Proposition 5.7. Let v be a finite place of K not dividing p. If v /∈ Σ or if v has an infinite
decomposition group in D∞(c) or if T is minimally ramified at v, then locv z(c) belongs to
H1
ur(K(c)v, T ) for all c. Moreover, if v ∈ Σ, then there exists a non-zero α ∈R such that αz(c)

belongs to H1
ur(K(c)v, T ) for all c.

Proof. If v /∈ Σ, this is the statement of Proposition 5.4 so we assume that v belongs to Σ. It
is enough to prove that the cohomology classes z(ccp, S) are all unramified at v. If v has an
infinite decomposition group in D∞(c), then this is the statement of [Rub00, Corollary B.3.5].
Now assume that v has a finite decomposition group in D∞(c). Fix a conductor c, places w
and w′ above v in K(c 0) and K(c), and an arithmetic prime P of parallel even weight. As v
does not divide c, the extension K(c)w′/K(c 0)w is unramified so Iw is equal to Iw′ . We are
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interested in the image of z(c) in H1(Iw, T ). There exists a finite order character β such that
T ⊗R RP/P is isomorphic to V (fP)(1)⊗ β. The complex R Γ(K(c)w′ , V (fP)(1)⊗ β) is acyclic
by Proposition 5.3. Thus the commutative diagram

H1(K(c)w′ , T ) //

·⊗RRP/P
��

H1(Iw, T )

·⊗RRP/P
��

H1(K(c)w′ , V (fP)(1)⊗ β) // H1(Iw, V (fP)(1)⊗ β)

shows that the image of H1(K(c)w′ , T ) in H1(Iw, T ⊗R RP) is in PH1(Iw, T ⊗R RP). The R-
module H1(Iw, T ) is of finite type by Lemma 5.1. By Lemma 3.8, the images of the z(c) in
H1(Iw, T ) therefore lie in H1(Iw, T )tors. Hence, there exists a non-zero α ∈R such that αz(c)
is zero in H1(Iw, T ) for all c. If T is minimally ramified, then T Iw/xT Iw is isomorphic to
H0(Iw, T /x) for all x ∈R so H1(Iw, T )tors vanishes. 2

5.2.2 Local properties at p.

Proposition 5.8. Let v be a place of F above p. Then z(c) is zero in H1(K(c)v, U−v (T )).

Proof. Fix a place w of K(c) over v and P an arithmetic prime of weight 2. Let V be the GFv -
representation V (fP). By [BK90, Example 3.11], the image of the p-adic Abel–Jacobi map is
in H1

f (K(c)w, V ) so z(c, S) belongs to this group. Combined with Lemma 3.8, the commutative
diagram

H1(K(c)w, T ) //

·⊗RRP/P
��

H1(K(c)w, U−v (T ))

·⊗RRP/P
��

H1(K(c)w, V ) // H1(K(c)w, U−v (V ))

shows that the image of z(c) in H1(K(c)w, U−w (T )) belongs to H1(K(c)w, U−w (T ))tors.
According to Lemma 5.1, this last R-module is of finite type so there is a cp such that
H1(K(ccp)w, U−w (T ))tors is equal to H1(K(cp∞)w, U−w (T ))tors. For greater conductors, the
corestriction map is thus multiplication by [K(cc ′p) :K(ccp)]. Since z(c) is in the image of all
corestriction maps, it is p-divisible and hence zero. 2

5.2.3 Euler systems for T and TIw.

Definition 5.9 (Euler system). Let T be T or TIw. A system of classes {z(c) ∈H1
Gr(K(c), T ) |

c ∈ C } is an Euler system if Corc l/c z(cl) = T (l)z(c).

Assumption 5.10. Assume that all primes v ∈ Σ at which T is not minimally ramified have an
infinite decomposition group in D∞.

Theorem 5.1. Let α be a non-zero element annihilating H1(Iv, T )Fr(v)=1
tors for all primes of

ramification v with a finite decomposition group in D∞/K and at which T is not minimally
ramified. Denote by zα and z∞,α the classes αz and αz∞. Then zα belongs to H1

Gr(KΣ/K, T )
and z∞,α belongs to H1

Gr(KΣ/K, TIw). The system of classes {zα(c)}c = {αz(c)}c is an Euler
system for T . The system of classes {z∞,α(c)}c = {αz∞(c)}c is an Euler system for TIw. Under
Assumption 5.10, these statements are true with α equal to one.

Proof. This is a reformulation of the Propositions 4.8, 4.12, 5.7 and 5.8. 2

393

https://doi.org/10.1112/S0010437X12000619 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X12000619


O. Fouquet

5.3 Kolyvagin systems for specializations of TIw

We construct Kolyvagin systems in the sense of [How04a, MR04] for specializations of TIw with
values in Zp-flat discrete valuation rings.

5.3.1 One-dimensional specializations of T .

5.3.1.1 Let S be a discrete valuation ring finite over O with maximal ideal mS and uniformizing
parameter $S . If Sp is an S-valued specialization, we recall that TSp is the GK-representation
with coefficients in S defined by

TSp = T ⊗R,Sp S

with trivial action of GK on S. Let VSp, ASp, U±v (VSp) and U±v (ASp) be TSp ⊗S Frac(S),
TSp ⊗S Frac(S)/S, U±v (TSp)⊗S Frac(S) and U±v (TSp)⊗S Frac(S)/S respectively. We sometimes
write X± for U±v (X) when v is clear from the context.

Lemma 5.11. Let Sp be a non-exceptional specialization and v be a place above p. Let c be in
L (x) and w be a place of K(c) above v. Then:

X = lim
←−

c ′p∈C(p)

H0(K(cc ′p)w, U
−
v (ASp)) = 0.

Proof. The specialization Sp being non-exceptional, for all finite Lw/Kv, the S-module
H0(Lw, A−Sp) embeds into H1(Lw, T−Sp) so is of finite type. The increasing sequence
H0(K(ccp)w, U−v (ASp)) thus stabilizes for c ′p large enough, after which corestriction becomes
multiplication by a power of p. Consequently, the S-module X is p-divisible and of finite type
over S, so trivial. 2

Let Sp be an S-valued specialization. The system of equivariant classes {z(c) ∈H1(K(c), T )}
defines a system {Sp(z(c)) ∈H1(K(c), TSp)} of equivariant classes for TSp.

5.3.2 Kolyvagin’s derivative.

5.3.2.1 Let Sp be a specialization with values in S.

Definition 5.12 (Kolyvagin’s derivative). Let S1 be the set of primes of l ∈L1(x) such
that the character χ is trivial on GFl . Let Sr be the product of r distinct elements of S1 and
S be the union of Sr for all integers r. For l ∈S , let Gl be the cyclic groups Gal(K(l)/K(1))
and σl be a fixed choice of generator. Let Dl be Kolyvagin’s derivative:

Dl =
|Gl|−1∑
i=0

iσil .

For c ∈S , let Gc be the group Gal(K(c)/K(1)) and Dc be the products of Dl for l|c. Let Ic be
the smallest ideal of S containing the images of (NF/Ql + 1), of λm(T (l)) and of χΓ(Fr(l))− 1
in S. Let φc be the natural map from the cohomology of TSp to TSp/IcTSp.

Remark. Though this does not appear in the notation, the ideals Ic depend on Sp. By Cebotarev
density theorem, the set S1 is of positive density. In the absence of the assumption that
Z(x)⊂ Ô×c 0

of Definition 4.3, one has to replace (NF/Ql + 1) by (NF/Ql + 1)/|O×K/O
×
F |.

394

https://doi.org/10.1112/S0010437X12000619 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X12000619


Dihedral Iwasawa theory of nearly ordinary quaternionic automorphic forms

5.3.2.2 Let l be in S1 and λ the unique place of K above l. The residue field k(λ) of λ is
of cardinal (NF/Ql)2. The place λ splits completely in K(1) and is totally tamely ramified in
K(l). Let L be the maximal p-extension of Kλ in K(l)λ. Let H1

tr(Kλ, TSp/IcTSp) be the kernel
of H1(Kλ, TSp/IcTSp) in H1(K(l)λ, TSp/IcTSp).

Let c be in Sr with l|c. According to Theorem 3.1, the characteristic polynomial of the
Frobenius morphism Fr(l) on TSp/IcTSp is X2 − 1 so Fr(λ) acts trivially on TSp/IcTSp. The
ideal Il annihilates TSp/IcTSp so the same is true for NF/Ql + 1 and consequently for |k(λ)×|.
The representation TSp/IcTSp thus satisfies the hypotheses of [MR04, Lemmas 1.2.1, 1.2.3 and
1.2.4]. Accordingly, there exists a finite-singular isomorphism

φfsl : H1
ur(Kλ, TSp/IclTSp) ∼−→H1

tr(Kλ, TSp/IclTSp)

coming from

H1
nr(Kλ, TSp/IclTSp) ∼−→ TSp/IclTSp

∼←−H1
tr(Kλ, TSp/IclTSp).

Assumption 5.13. Assume that ρ̄ restricted to GK(OF ) is irreducible.

This is equivalent to requiring that π(f) has not residual CM. According to [Dim05], if π(f)
does not acquire CM by any quadratic extension of F contained in K(OF ), then Assumption 5.13
is satisfied for sufficiently large p.

Lemma 5.14. Let r be a positive integer, c an element of Sr and c ′p an element of C (p). Then

H1(K(cc ′p), TSp/IcTSp)Gc is isomorphic to H1(K(c ′p), TSp/IcTSp) and φcc ′p(Dcz(cc ′p)) belongs to
this group.

Proof. The Assumption 5.13 implies that H0(K(c), TSp/IcTSp) is trivial for all c. The restriction
map

res : H1(K(c ′p), TSp/IcTSp)−→H1(K(cc ′p), TSp/IcTSp)Gc

is thus an isomorphism. That Dcz(cc ′p) is invariant under the action of Gc is the standard property
of Kolyvagin derived classes. 2

Definition 5.15 (Kolyvagin classes). For c ∈S , let κ(c) ∈H1(K, TSp/IcTSp) (respectively
κα(c)) be the corestriction to K of the canonical pre-image of φc(Dcz(c)) (respectively
φc(Dczα(c))) in H1(K(cp), TSp/IcTSp).

5.3.3 Local properties of the derived classes.

5.3.3.1 For c ∈S and Sp a non-exceptional specialization, let H1
f(c)(Kv, TSp/IcTSp) be the

Selmer group associated with the following local conditions.

(i) For v dividing p, let T+
Sp be U+

v (TSp). Then H1
f(c)(Kv, TSp/IcTSp) is the image in

H1(Kv, TSp/IcTSp) of H1(Kv, T
+
Sp).

(ii) For v in Σ, let H1
f(c)(Kv, TSp/IcTSp) be the image of H1

ur(Kv, TSp) in H1(Kv, TSp/IcTSp).

(iii) For v dividing c:

H1
f(c)(Kv, TSp/IcTSp) =H1

tr(Kv, TSp/IcTSp).

Lemma 5.16. Let v be a place of K above p and Sp be a non-exceptional specialization. Let c

be in S . Then locv κ(c) belongs to H1
f(c)(Kv, TSp/IcTSp).

395

https://doi.org/10.1112/S0010437X12000619 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X12000619


O. Fouquet

Proof. Let G be the absolute Galois group of Kv and let H be its inertia subgroup. Let w be
a place of K(c) above v and let Gc be the absolute Galois group of K(c)w. Then H is also the
inertia subgroup of Gc . Let M be H0(H, A−Sp). The module M is divisible so

H1(G/H, M) =M(Fr(v)− 1)M = 0, H1(Gc/H, M) =M/(Fr(w)− 1)M = 0.

The Herbrand quotients of the cyclic groups G/H and Gc/H acting on M are both equal to one
so H0(G, A−Sp) and H0(Gc, A

−
Sp) are equal respectively to NGA

−
Sp and NGcA

−
Sp. Hence the norm

map from H0(Gc, A
−
Sp) to H0(G, A−Sp) is onto. By Tate local duality, H2(Kv, T

+
Sp) thus injects

into H2(K(c)w, T+
Sp). Let κ(c)v be the localization at v of κ(c) and let res κ(c)v be the restriction

of κ(c)v to H1(K(c)w, TSp/IcTSp). In order to prove that κ(c)v is in H1
f(c)(Kv, TSp/IcTSp), it is

enough by the above to show that res κ(c)v is in the image of H1(K(c)w, T+
Sp). This is true by

construction of κ(c) and Proposition 5.8. 2

Remark. As in [How04a, Lemma 2.3.4], the proof above even shows that κ(c)v is in the image
of H1

Iw(Kv, K(p∞)w; T+
Sp) but we will not need this fact.

Lemma 5.17. Let v - p be a place of K. If v /∈ Σ, then locv κ(c) belongs to H1
f(c)(Kv, TSp/IcTSp)

for all Sp and all c not divided by v. If v belongs to Σ, let α be the non-zero element of
Proposition 5.7. For all Sp such that Sp(α) 6= 0, there exists a non-zero β in S such that for all
c ∈L (x), the classes βκ(c) belong to H1

f(c)(Kv, TSp/IcTSp). If v has an infinite decomposition

group in D∞ or if T is minimally ramified at v, then locv κ(c) belongs to H1
f(c)(Kv, TSp/IcTSp)

for all c.

Proof. Assume first that v /∈ Σ and let c be in S with v - c. The extension K(c)/K is unramified
at v so the restriction of κ(c) to Iv is equal to the restriction of Dc z(c) which is zero by
Proposition 5.7. Thus κ(c) belongs to H1

ur(Kv, TSp/IcTSp). As TSp is unramified at v, the
group H1

ur(Kv, TSp/IcTSp) is equal to the image of H1
ur(Kv, TSp) inside H1(Kv, TSp) by [MR04,

Lemma 1.1.9].
We assume henceforth that v belongs to Σ. The short exact sequence

0−→ T IvSp −→ T IvSp −→ T IvSp/IcT
Iv
Sp −→ 0

induces as in the following diagram.

H1(Kur
v /Kv, T

Iv
Sp) // H1(Kur

v /Kv, T
Iv
Sp/IcT

Iv
Sp) // H2(Kur

v /Kv, T
Iv
Sp)

As the last group is zero, in order to prove that locv κ(c) is in the image of H1
ur(Kv, TSp), it is

enough to prove that locv κ(c) is in H1(Kur
v /Kv, T

Iv
Sp/IcT

Iv
Sp). Let w be a place of K(c) above v

and z(c)w be the restriction of z(c) to GK(c)w .
First assume that v has an infinite decomposition group in D∞ or that T is minimally

ramified at v. According to Proposition 5.7, the class z(c)w is then unramified. The class
Dcz(c)w then belongs to the group H1(Knr

v /K(c)w, T IvSp) and thus the class φc(Dcz(c)w) belongs
to H1(Knr

v /K(c)w, T IvSp/IcT
Iv
Sp). Viewing this last group as a subgroup of H1(K(c)w, T IvSp/IcT

Iv
Sp)

establishes:

φc(Dcz(c)w) ∈H1(K(c)w, T IvSp/IcT
Iv
Sp).

The natural map

H1(K(c)w, T IvSp/IcT
Iv
Sp)−→H1(K(c)w, T/IcT )
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allows us to consider the image of φc(Dczw(c)) in H1(K(c)w, T/IcT ). The following diagram is
commutative.

H1(K, TSp/IcTSp) loc //

res

��

H1(Kv, TSp/IcTSp)

res

��

H1(K(c), TSp/IcTSp) loc // H1(K(c)w, TSp/IcTSp) H1(K(c)w, T IvSp/IcT
Iv
Sp)oo

The image of κ(c) under localization at v followed by restriction coincides by definition with
the image of φc(Dczw(c)). Thus, it is in H1(Knr

v /K(c)w, T IvSp/IcT
Iv
Sp) and its restriction to

Iv is zero. It follows that locv κ(c) belongs to H1(Knr
v /Kv, T

Iv
Sp/IcT

Iv
Sp) and consequently to

H1
f (Kv, TSp/IcTSp).

We now remove supplementary assumptions on v. According to Proposition 5.8, there exists
a non-zero α in R such that αz(c)w is unramified for all c. The same proof with z(c) replaced by
αz(c) shows that Sp(α)κ(c) is in H1

f (Kv, TSp/IcTSp). 2

Lemma 5.18. Let c be in S . Let λ be the unique place above l a place of F dividing c and let
Sp be a specialization. Then locλ κ(c) belongs to H1

tr(Kλ, TSp/IcTSp).

Proof. This is a very classical computation due to Kolyvagin. In this context, see for instance
[Fou07, Proposition 2.2.18]. 2

5.3.3.2 Let cl be in S and λ be the unique place of K above l. Let Sp be a specialization with
values in S. According to Lemmas 5.17 and 5.18, the classes κ(cl)λ and κ(c)λ satisfy:

locλ κ(c) ∈H1
f (Kλ, TSp/IcTSp), locλ κ(cl) ∈H1

tr(Kλ, TSp/IclTSp).

The various isomorphisms of § 5.3.2.2 induce:

H1
f (Kλ, TSp/IclTSp) ∼−→ TSp/IclTSp

∼←−H1
tr(Kλ, TSp/IclTSp).

The first isomorphism is given by evaluation at the Frobenius morphism Fr(l) while the second
is evaluation at σl.

Lemma 5.19. The image of κ(c) in TSp/IclTSp is equal to the image of −Fr(l)κ(cl).

Proof. This results from an examination of Kolyvagin’s derivative, as conducted for instance in
[Nek92, § 7]. 2

5.3.4 Kolyvagin systems for TSp.

Definition 5.20 (Bloch–Kato local condition). Let L be a finite extension of K and Sp a
non-exceptional S-specialization. Define the local compact (respectively usual, respectively
discrete) Bloch–Kato Selmer group H1

BK(Lv, TSp) (respectively H1
BK(Lv, VSp), respectively

H1
BK(Lv, ASp)) to be the pre-image (respectively the image, respectively the image) in

H1(Lv, TSp) (respectively in H1(Lv, VSp), respectively in H1(Lv, ASp)) of H1(Lv, U+
v (VSp)) if

v|p and to be the pre-image (respectively the image, respectively the image) of H1
ur(Lv, VSp)

in H1(Lv, TSp) (respectively in H1(Lv, VSp), respectively in H1(Lv, ASp)) if v ∈ Σ\{p}. For
X = TSp, VSp, ASp, define the Bloch–Kato Selmer group by:

H1
BK(LΣ/L, X) = ker

(
H1(LΣ/L, X)−→

⊕
v∈Σ

H1(Lv, X)/H1
BK(Lv, X)

)
.
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When Sp is arithmetic, [BK90] defines subgroups H1
f (LΣ/L, TSp) and H1

f (LΣ/L, VSp) with
a seemingly different condition at v|p coming from p-adic Hodge theory. When the subgroups
they define and those of Definition 5.20 are both defined, they are equal, for instance by [Nek06,
Proposition 12.5.9.2].

For c ∈S , let BK(c) be the condition on H1(K, TSp/IcTSp) locally defined to be equal
to the propagation of BK from H1(Kv, TSp) to H1(Kv, TSp/IcTSp) for v - c and equal to
H1
tr(Kv, TSp/IcTSp) for v|c. The following theorem and corollary are the generalization to our

context of the results of [How04a, How04b], themselves generalizing the classical results of [Kol90,
Theorem 10].

Theorem 5.2. Let α ∈R be the element of Theorem 5.1. Let Sp be a non-exceptional
specialization with values in a discrete valuation ring flat over Zp. Then the system of classes
{κα(c)}c∈S is a Kolyvagin system for TSp and the condition BK. Under Assumption 5.10, the
system of classes {κ(c)}c∈S is a Kolyvagin system for TSp and the condition BK.

Proof. This is a restatement of Lemmas 5.16–5.19. 2

Corollary 5.21. Let Sp be a non-exceptional specialization with values in a discrete valuation
ring S flat over Zp. Let zS,α be the class of the Kolyvagin system of Theorem 5.2 of conductor 1.
If zS,α is not zero, then H1

BK(K, TSp) is free of rank 1 and there exists a torsion module M of
finite type over S with

`SM 6 `S(H1
BK(K, TSp)/zS,α) (5.3.1)

such that:

H1
BK(K, ASp) = Frac(S)/S ⊕M ⊕M.

Proof. We show that TSp and the condition BK satisfy the five hypotheses of [How04b, § 2.2].
Hypotheses 3 to 5 are satisfied for exactly the same reasons as in [How04b]. Hypothesis 2 is
satisfied thanks to Assumption 3.10. Let us show that Hypothesis 1 holds. Let Gρ̄ be the image
of ρ̄ inside GL2(S/mS). According to [How04b, Proof of Theorem 2.3.7], it is enough to show that
H1(Gρ̄, TSp/mS) vanishes. This is the case if p - |Gρ̄| so we can assume that p||Gρ̄|. According to
Assumptions 3.4 and 5.13, the group Gρ̄ acts irreducibly on TSp/mS and so is not contained in a
Borel subgroup. Dickson’s classification of subgroups of GL2(Fq), as given for instance in [Suz82,
Theorem 6.21], then shows that the group Gρ̄ contains a non-trivial homothety. This shows that
H1(Gρ̄, TSp/mS) vanishes by Sah’s lemma [Sah68, Proposition 2.7 (b)]. Thanks to the axiomatic
system of [How04a, § 1] and [How04b, § 2], we conclude by [How04b, Theorem 2.2.2]. 2

6. Iwasawa theory

6.1 Determinants of Selmer complexes for specializations of RIw

6.1.1 Determinants. We briefly review the formalism of determinants as described first
in [KM76], see for instance [Kat93, § 2.1] and [BG03, § 2] for definitions and further properties.
The reader is advised that we use the normalization of [Kat93, § 2.1] and not that of [BG03, § 2].
We also recall that there is a notorious misprint on [KM76, p. 20] regarding signs. Let S be a
complete local reduced Noetherian ring. The determinant DetS is then defined to be the functor

DetS P =
(rankS P∧

S

P, rankS P
)
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from the category of finite free S-modules to the category of graded invertible S-modules. We
write S for the graded invertible module (S, 0) in what follows.

Assume that a in the total ring of fraction of S belongs to SP after localization at all
primes P of grade 1. Then the ideal Ia = {s ∈ S | sa ∈ S} is not contained in a prime ideal of
grade 1 and hence is of grade at least 2. Then Ext1

S(S/Ia, S) vanishes so the natural map from
HomS(S, S) to Hom(Ia, S) is onto. As multiplication by a is in Hom(Ia, S), this implies that
a belongs to S. Invertible ideals are thus determined by their localization at grade 1 primes.
Consequently, invertible ideals are determined by their localizations at height 1 primes when S
is Cohen–Macaulay.

A complex of S-modules C is said to be perfect if there exists a quasi-isomorphism between
C and a bounded complex of projective (hence free) S-modules of finite type. If C is a perfect
complex of S-modules, the S-module DetS C is defined to be

DetS C =
⊗
i∈Z

Det(−1)i

S Ci (6.1.1)

where the Ci are chosen finite and free. The determinant functor extends in this way to a
functor from the derived category of perfect complexes of S-modules with morphisms restricted
to quasi-isomorphisms to the category of graded invertible S-modules. If

C1 −→ C2 −→ C3

is a distinguished triangle of complexes in the derived category, then DetS C2 is canonically and
functorially isomorphic to DetS C1 ⊗DetS C3 by [KM76, Proposition 7] (as was noticed first by
D. Ferrand, this property is not true if S is not reduced). If an S-module is quasi-isomorphic to
a perfect complex, we say it is perfect. If H i(C) is perfect for all i, for instance if S is regular,
then there is a canonical isomorphism

DetS C
∼−→
⊗
i∈Z

Det(−1)i

S H i(C) (6.1.2)

which we take to be an identification.

A good map between perfect complexes of S-modules in the sense of Knudsen–Mumford
[KM76, p. 47] is a map between complexes which becomes an isomorphism after localization at
all minimal prime ideals.

6.1.2 Trivialization. Let S be a domain and K its field of fraction.

Let C = [M0
φ0−→M1

φ1−→M2] be a perfect complex of S-modules concentrated in degree [0, 3].
Assume that the cohomology of C is non-zero only in degree 1 and 2 and that H1(C) and

H2(C) have the same rank d. Then C
L
⊗S K can be represented by a complex [V −→ V ] and its

determinant is thus isomorphic to K through the isomorphism (6.1.1). We call this identification

the Id-trivialization of DetK(C
L
⊗S K). Inside DetK(C

L
⊗S K), we identify DetS 0 with S. Because

DetS factors through the derived category, if M is a free module of finite rank and ψ is a surjective

morphism such that DetS [M
ψ−→M ]⊂DetK(C

L
⊗S K), the identification of DetS 0 with S also

identifies the determinant of the complex [M
ψ−→M ] inside K with S. If C can be represented by

a complex C = [M
ψ−→M ] with ker ψ a direct summand of M as S[ψ]-module, then choosing an

S-basis of ker ψ and coker ψ produces a map [Sd Id−→ Sd]−→ C which becomes an isomorphism
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of complexes after tensor product with K, so is good in the sense of Knudsen–Mumford. To this
map is associated a Cartier divisor Div(C) on Spec S by the method of [KM76, p. 47].

Assume now that S is a discrete valuation ring with uniformizing parameter $S . Then the
complex C can be represented by [Sd

ψ1−→ Sd]⊕ [N
ψ2−→N ] with ψ1 an isomorphism and ψ2

an injection with torsion cokernel. Consequently, the image of DetS C inside K through Id-
trivialization is equal to $

−`S(coker ψ2)
S S. We thus see that the image of DetS C in K through

Id-trivialization coincides with the invertible ideal generated by the inverse of Div(C). This
implies that the image of the determinant of the S-module $a

SS seen as a complex placed in
degree 0 is equal to $a

SS for all a ∈ N.
Assume more generally that S is a normal Cohen–Macaulay domain; for instance that S is

a regular ring. Then height 1 and grade 1 primes coincide. If M is a torsion S-module, the ideal
charS M is defined to be:

charS M =
∏

ht P=1

P`SPMP . (6.1.3)

The image of DetS C inside K through Id-trivialization is equal to (charS H2(C)tors)−1S. Indeed,
both the image of DetS C inside K through Id-trivialization and (charS H2(C)tors)−1S are
uniquely determined by their localizations at height 1 primes, after which S can be assumed
to be a discrete valuation ring. In this case, the results of the previous paragraph apply.

We now drop our extra assumptions on S but assume that C can be represented by a complex
[M

ψ−→M ] in degree 1,2 with M free of finite rank and such that ker ψ is a direct summand of

M as S[ψ]-module. Then C can be represented by a complex [ker ψ −→ ker ψ]⊕ [N
ψ∗−→N ] with

ψ∗ injective so the image of DetS C inside K through Id-trivialization is equal to (det ψ∗)−1S.
This holds in particular if M is of rank at most 1 or if ψ is an injection.

6.1.3 Selmer complexes for specializations of RIw. Let Λtwa be Λtw[[Gal(D∞/K)]]. Let S be
a specialization of RIw or of Λtwa . Let T be the corresponding S-specialization of TIw (seen either
as RIw-module or as Λtwa -module) and K the fraction field of S. In what follows, the determinant
DetS R Γf (KΣ/K, T ) plays a crucial role. When the complex R Γf (KΣ/K, T ) is not perfect, we
therefore modify it.

Definition 6.1 (Modified Selmer complexes). Let L be a finite extension of K. The modified
local condition at v - p for complexes is given by the choice of the zero complex. Let R Γc(LΣ/L, T )
be the corresponding Selmer complexes and H̃ i

f,c(LΣ/L, T ) its cohomology groups.

We collect necessary facts about R Γf (KΣ/K, T ) and R Γc(KΣ/K, T ).

Proposition 6.2. (i) The complexes R Γf (KΣ/K, T ) and R Γc(KΣ/K, T ) are acyclic outside
degree 1, 2.

(ii) The S-modules H̃1
f (KΣ/K, T ) and H̃1

f,c(KΣ/K, T ) are torsion-free.

(iii) The complex R Γc(KΣ/K, T ) is perfect with amplitude [0, 2]. If T Iv is a free S-module
for all v - p or if S is regular, the complex R Γf (KΣ/K, T ) is perfect with amplitude [0, 2].

(iv) The S-modules H̃1
f (KΣ/K, T ) and H̃2

f (KΣ/K, T ) have the same S-ranks. The same is

true of the S-modules H̃1
f,c(KΣ/K, T ) and H̃2

f,c(KΣ/K, T ).

(v) The complexes R Γf (KΣ/K, T ⊗S K) and R Γc(KΣ/K, T ⊗S K) are isomorphic except
possibly if there is a v ∈ Σ such that T Iv 6= 0 and Fr(v) has an eigenvalue equal to 1.
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Proof. (i) The p-cohomological dimension of GKv and GK,Σ is 2 so R Γf (KΣ/K, T ) is acyclic
outside [0, 3]. The S-module H̃0

f (KΣ/K, T ) is included in the GK,Σ-invariants of T so is zero.
As ρ̄f is absolutely irreducible, the Pontryagin dual D(T ) of T also has no GK,Σ-invariants and
thus H̃3

f (KΣ/K, T ) is zero by [Nek06, (8.9.6.1)]. The complex R Γf (KΣ/K, T ) is thus acyclic
outside i= 1, 2. The exact same proof with [Nek06, (8.9.6.1)] replaced by [Nek06, Theorem 5.4.5]
establishes the same assertions for R Γc(KΣ/K, T ).

(ii) By (5.1.4), it is enough to show that H1
Gr(KΣ/K, T ) is torsion-free, and so to show

that H1(KΣ/K, T ) is torsion-free. Let x ∈ S be a non-zero element. The complex R Γ(KΣ/K, T )
descends perfectly with respect to x so H1(KΣ/K, T )[x] is the cokernel of the map:

H0(KΣ/K, T )/xH0(KΣ/K, T )−→H0(KΣ/K, T/x)

and so vanishes by irreducibility of T and T/x.
(iii) When G has bounded cohomological dimension, the functor R Γ(G,−) takes perfect

complexes to perfect complexes, see for instance [Nek06, Proof of Proposition 4.2.9] or [Kat93,
Theorem 3.1.3]. By construction, the complex R Γc(KΣ/K, T ) is the cone of a morphism between
complexes of the form R Γ(G, N) with N a free module. Thus, it is perfect. If T Iv is free for all
v - p, the complex R Γf (KΣ/K, T ) is likewise the cone of a morphism between complexes of the
form R Γ(G, N) with N a free module. If S is regular, the complex R Γf (KΣ/K, T ) is perfect
by the theorem of Auslander–Buchsbaum and Serre. The statement about amplitudes follows
from (i).

(iv) The equality of rank H̃1
f (KΣ/K, T ) and rank H̃2

f (KΣ/K, T ) is [Nek06, (8.9.6.2)
and (8.9.6.4.3)] together with self-duality of T . The equality of rank H̃1

f,c(KΣ/K, T ) and
rank H̃2

f,c(KΣ/K, T ) is [Nek06, Corollary 7.8.7] together with the self-duality and the oddness
of T .

(v) If for all v - p, either T Iv is zero or Fr(v)− 1 is injective, then R Γf (Kv, T ⊗S K) is the
zero complex for all v so R Γf (KΣ/K, T ⊗S K) and R Γc(KΣ/K, T ⊗S K) are equal. 2

For φ a morphism of O-algebras between S and S′, we say that R Γc(KΣ/K, T ) descends

perfectly with respect to φ if R Γc(KΣ/K, T )
L
⊗S,φ S′ is isomorphic to R Γc(KΣ/K, T

′).

Lemma 6.3. Let φ : S −→ S′ be a morphism between two specializations of RIw or of Λtwa . Let
T ′ be T ⊗S,φ S′.

(i) The complex R Γc(KΣ/K, T ) descends perfectly with respect to φ.

(ii) If the complex R Γf (Kv, T ) descends perfectly with respect to φ for all v - p, then the
complex R Γf (KΣ/K, T ) descends perfectly with respect to φ. This is the case if T Iv ⊗S,φ S′ is
equal to (T ′)Iv .

Proof. (i) The complex R Γc(KΣ/K, T ) is the cone of a morphism of complexes between
complexes which all descend perfectly with respect to φ by (5.1.2). Hence, it descends perfectly
with respect to φ.

(ii) Assume that R Γf (Kv, T ) descends perfectly with respect to φ for all v - p. Then
R Γf (KΣ/K, T ) descends perfectly with respect to φ by the same arguments as in the proof
of the first assertion. If T Iv ⊗S,φ S′ is equal to (T ′)Iv , then R Γf (Kv, T ) descends perfectly with
respect to φ by (5.1.2). 2

Proposition 6.4. Let α be such that z∞,α belongs to H1
Gr(KΣ/K, TIw). Let zS,α be the

image of z∞,α under the map from H1
Gr(KΣ/K, TIw) to H1(KΣ/K, T ). There exists a
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unique z̃S,α ∈ H̃1
f (KΣ/K, T ) such that the natural projection from H̃1

f (KΣ/K, T ) to

H1
f (KΣ/K, T ) sends z̃S,α to zS,α. Under Assumption 5.10, this assertion is true with α equal

to 1.

Proof. As remarked after Definition 5.5, the class zS,α belongs to H1
Gr(KΣ/K, T ). The short

exact sequence

0−→
⊕
v|p

H0(Kv, Uv(T−))−→ H̃1
f (KΣ/K, T )−→H1

Gr(KΣ/K, T )−→ 0

shows that zS,α belongs to the image of H̃1
f (KΣ/K, T ) inside H1

Gr(KΣ/K, T ). Because zS,α is
a universal norm under corestriction in the extension D∞/K and because H0

Iw(K, D∞; U−v (T ))
vanishes for all v|p, there is a unique pre-image z̃S,α to zS,α. Under Assumption 5.10, z∞ belongs
to H1

Gr(KΣ/K, TIw) so these assertions hold with α equal to 1. 2

The definition of zS,α given in the proposition coincides with the definition given in
Corollary 5.21 when S is a discrete valuation ring flat over Zp. Because z̃S,α is uniquely
determined by zS,α, we denote both classes by the same symbol in the following. Proposition 6.4
applies in particular for α as in Theorem 5.1.

Proposition 6.5. Let r be the number of place v|p such that U−v (T ) is invariant under the
action of GKv . If S is a discrete valuation ring or of dimension at least 2 and if zS,α is not zero,
then the common rank of H̃1

f (KΣ/K, T ) and H̃2
f (KΣ/K, T ) is equal to 1 + r.

Proof. Assume S to be a discrete valuation ring, then H̃1
f (KΣ/K, T ) is free of rank 1 + r by

Corollary 5.21 and Proposition 6.2.

Now assume S is of dimension d> 2. The ring S is a complete local Noetherian domain.
Consequently, the regular locus of S is a non-empty open set by [Gro65, Lemme (6.12.4.1)], and
hence is Zariski-dense. From this statement and the Hauptidealsatz, there exists a prime ideal
P of height d− 1 such that SP is regular, such that the rank of T Iv is equal to the rank of
(TP/P)Iv for all v - p, such that pzS,α /∈ P and such that P does not belong to the support of
H̃2
f (KΣ/K, T )tors. The complex R Γf (KΣ/K, TP) then descends perfectly with respect to P by

Lemma 6.3. Hence H̃2
f (KΣ/K, TP)/P is isomorphic to H̃2

f (KΣ/K, TP/P). Because SP/P is a
finite extension of Qp, the dimension of H1

Gr(KΣ/K, TP/P) is equal to 1 by Corollary 5.21.
Because U−v (TP/P) is of dimension 1, its GKv -invariants are either 0 or itself. Hence, the
dimension of H̃1

f (KΣ/K, TP/P) is equal to 1 + r by (5.1.4). Consequently, the SP -module
H̃1
f (KΣ/K, T )P is generated by 1 + r elements. As it is torsion-free, it is free of rank 1 + r.

Hence, the rank of H̃ i
f (KΣ/K, T ) is equal to 1 + r for i= 1, 2. 2

6.1.4 Integral structures. We say that T or S is a good specialization if R Γf (KΣ/K, T ⊗S K)
and R Γc(KΣ/K, T ⊗S K) are isomorphic. According to the last assertion of Propositions 6.2
and 5.3, arithmetic specializations are good specializations. Let S be a good specialization.
According to Proposition 6.2, there exist free S-modules C0, C1, C2 such that the complex
R Γc(KΣ/K, T ) can be represented by [C0

φ−→ C1
ψ−→ C2] in degree 0, 1, 2. Let V be C2 ⊗S K.

Then C1 ⊗S K splits in a direct summand isomorphic to the K-vector space generated by im φ
and a vector space V ′ of the same dimension as V . A choice of a basis b of V induces a choice
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of a basis of V ′ by taking the dual basis for the duality:

R Γc(KΣ/K, T ⊗S K) ∼−→D(R Γc(KΣ/K, T ⊗S K))[−3].

Here, we use the isomorphism between R Γf (KΣ/K, T ⊗S K) and R Γc(KΣ/K, T ⊗S K). Hence,
we can identify V and V ′ and the discussion of § 6.1.2 applies.

Definition 6.6 (Integral structure). An integral structure X on DetK R Γf (KΣ/K, T ⊗S K) is
a couple (M, triv) where triv is an identification of DetK R Γf (KΣ/K, T ⊗S K) with K and M
is a S-module of rank 1 inside DetK R Γf (KΣ/K, T ⊗S K) identified with K. To emphasize the
dependency on T , we sometimes write XT = (MT , trivT ).

We consider the three following integral structures. For each v ∈ Σ not dividing p, let Mv be
a free sub-module of T Iv of maximal rank. The K-vector space

DetK R Γf (KΣ/K, T ⊗S K)

is canonically isomorphic to

DetK R Γc(KΣ/K, T ⊗S K)⊗
⊗

v∈Σ\{p}

DetK R Γ(Fr(v), T Iv ⊗S K).

Let Id be the identification of

DetK R Γc(KΣ/K, T ⊗S K)⊗
⊗

v∈Σ\{p}

DetK R Γ(Fr(v), T Iv ⊗S K)

with K given by Id-trivialization on each term of the tensor product.

Definition 6.7 (Canonical structure). The canonical structure is the choice of (Mcan, Id)
where Mcan is the image of

DetS 0⊂DetS R Γc(KΣ/K, T )⊗
⊗

v∈Σ\{p}

DetS R Γ(Fr(v), Mv)

inside K through Id.

Definition 6.8 (Characteristic structure). The characteristic structure is the choice of
(Mchar, Id) where Mchar is the image of

DetS R Γc(KΣ/K, T )⊗
⊗

v∈Σ\{p}

DetS R Γ(Fr(v), Mv)

inside K through Id.

When zS,α is non-zero, its existence defines a third integral structure, which we call the α-
Euler structure, in the following manner. The class zS,α is an element of H̃1

f,c(KΣ/K, T ⊗S K),
so induces a morphism of complexes

K[−1]zS,α −→ R Γc(KΣ/K, T ⊗S K)

and hence a morphism

DetK K[−1]zS,α −→DetK R Γc(KΣ/K, T ⊗S K).

Let Eulα be the image of DetS S[−1]zS,α inside DetK R Γf (KΣ/K, T ⊗S K) through this
morphism.
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Definition 6.9 (Euler structure). The α-Euler structure is the choice of (MEul, Id) where MEul

is the tensor product of the image of Eulα inside K through Id with M−1
char. We refer to the 1-Euler

structure simply as the Euler structure.

Note that the α-Euler structure is defined even when zS,α is not known to be an element of
H̃1
f,c(T, S).

Lemma 6.10. The three integral structures do not depend on the choices of the Mv.

Proof. Let X be one of the three integral structures under discussion. Let v - p be a finite place.
The choice of Mv impacts X only because it impacts the Id-trivialization of R Γ(Fr(v), Mv).
Because Mv is free of rank at most 1, the discussion of § 6.1.2 applies. The Id-trivialization of

R Γ(Fr(v), Mv) = [Mv
Fr(v)−1−→ Mv] thus does not depend on the choice of Mv. 2

Henceforth, all specializations are assumed to be good specializations, even when this is not
explicitly mentioned.

6.1.5 Comparisons. Let (X, t) and (Y, s) be two integral structures on DetK R Γf (KΣ/K,
T ⊗S K). Let y ∈ K be a generator of Y as S-module and let Z be the invertible ideal y2S inside
K. If Z contains X, or equivalently if X ⊗S Z−1 ⊂ S, we say that the square of Y contains X. If
there exists a multiplicative set E such that Z ⊗S E−1S contains X ⊗S E−1S, we say that the
square of Y contains X up to E.

Proposition 6.11. Let S be a normal Cohen–Macaulay ring. Assume zS,α to be non-zero
and let β ∈ K× be such that βzS,α belongs to H̃1

f (KΣ/K, T ). If we identify the canonical
structure MT,can with S inside K, then the characteristic structure is equal to the invertible
ideal char−1

S H̃2
f (KΣ/K, T )tors and the α-Euler structure is equal to the invertible ideal

β char−1
S (H̃1

f (KΣ/K, T )/βzS,α)tors.

Proof. Because invertible ideals are uniquely determined by their localization at height 1 primes
and because S is normal, we can and do assume that S is a discrete valuation ring. The complex
R Γf (KΣ/K, T ) is then perfect. By Lemma 6.10, we can choose Mv to be equal to T Iv for all finite
v - p. Then the canonical structure (respectively the characteristic structure, respectively the
α-Euler structure) is canonically isomorphic to the one defined by replacing R Γc(KΣ/K, T ) by
R Γf (KΣ/K, T ) and by deleting the complexes R Γ(Fr(v), Mv) in Definition 6.7 (respectively 6.8,
respectively 6.9).

By Proposition 6.2 and the structure theorem for discrete valuation rings, there exists a free
S-module N such that the complex R Γf (KΣ/K, T ) can be represented by [N

ψ−→N ] with ψ
semi-simple. According to the discussion of § 6.1.2, the invertible ideal charS H̃2

f (KΣ/K, T )tors

is then equal to the image of DetS R Γf (KΣ/K, T ) inside K.
Because S is a discrete valuation ring, the S-module H̃1

f (KΣ/K, T ) is free. The class
zS,α ∈ H̃1

f (KΣ/K, T ⊗S K) can thus be written zS,α = λe with λ ∈ K× and with e an element
of an S-basis of H̃1

f (KΣ/K, T ). Moreover, because β char−1
S (H̃1

f (KΣ/K, T )/βzS,α)tors does not
depend on our choice of β, we can take β to be λ−1. The S-module H̃1

f (KΣ/K, T )/βzS,α is then
free so we have to show that the α-Euler structure is equal to λ−1S. As above, the complex
R Γf (KΣ/K, T ) can be represented by a complex [Se⊕M ψ−→ Se⊕M ] with ψ semi-simple
and with the first summand included in ker ψ. Then, the α-Euler structure is the image of
DetS [SzS,α ⊕M −→ Se⊕M ] inside K through the identification of DetS R Γf (KΣ/K, T ) with S.
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Because the determinant of [Se⊕M ψ−→ Se⊕M ] is sent to S in this identification, the α-Euler
structure is equal to the image of DetS [Se λ−→ Se] seen as an S-submodule inside K by Id-
trivialization, and so to λ−1S. 2

6.2 Tamagawa numbers and the Iwasawa main conjecture
6.2.1 A formulation of the equivariant Tamagawa number conjecture (ETNC). We are now

in position to formulate a variant of the ETNC adapted to our purpose. A specialization
RIw −→ S or Λtwa −→ S is said to contain a specialization φ with values in S′ if there
exists an O-algebra map S −→ S′ such that the composite map is equal to φ. We use
the same terminology for specializations of TIw. Of particular interest to us is the case of
specializations containing arithmetic specializations. The specializations TIw and T themselves
contain arithmetic specializations. Because specializations are O-algebra morphisms, if Fr(v)
with v - p acts on T with an eigenvalue equal to 1, the same is true for a specialization of T .
Hence, if T contains an arithmetic specialization, it is necessarily good.

Conjecture 6.12. Let T be a specialization of TIw containing a non-exceptional arithmetic
specialization and such that zS is non-zero. Then the square of the Euler structure contains the
characteristic structure.

According to Propositions 6.5 and 6.11, when S is normal and Cohen–Macaulay,
Conjecture 6.12 implies that

charS H̃2
f (KΣ/K, T )tors|(β−1 charS H̃1

f (KΣ/K, T )/βzS)2 (6.2.1)

where β ∈ K× is such that βzS belongs to H̃1
f (KΣ/K, T ). As the left-hand side of (6.2.1) is a

principal ideal of S, Conjecture 6.12 implies that the class zS belongs to H̃1
f (KΣ/K, T ) and that:

charS H̃2
f (KΣ/K, T )tors|(charS H̃1

f (KΣ/K, T )/zS)2. (6.2.2)

A historically important case of Conjecture 6.12 is the following.

Conjecture 6.13. Let T be a non-exceptional arithmetic specialization of T such that zS is
non-zero. Then:

charΛa H̃
2
f (KΣ/K, T ⊗ Λa)tors|(charΛa H̃

1
f (KΣ/K, T ⊗ Λa)/zΛa)2. (6.2.3)

A crucial feature of the ETNC is that it should be compatible with base-change, see for
instance [Kat93, Conjecture 3.2.2 (i)]. This leads to the following conjecture, in which we relax
the assumption that T should be non-exceptional.

Conjecture 6.14. Let T be a specialization of TIw containing an arithmetic specialization.
Let T ′ be a non-exceptional specialization containing T and such that zS′ is non-zero. Let XS′

be the characteristic structure of T ′ and ZS′ the square of the Euler structure of T ′. Then
(XS′ ⊗S′ Z−1

S′ )⊗S′ S is included in S.

Proposition 6.17 below establishes that the statement of Conjecture 6.14 does not depend on
the choice of T ′ and that Conjectures 6.12 and 6.14 are compatible when both apply. In concrete
cases, it is often known that TIw is such that zRIw

is non-zero, so that Conjecture 6.14 can be
applied with T ′ = TIw. We also raise the following question.

Question 6.15. Let T be a specialization of TIw containing an arithmetic specialization. Let
T ′ be a non-exceptional specialization containing T and such that zS′ is non-zero. Let XS′
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be the characteristic structure of T ′ and ZS′ the square of the Euler structure of T ′. Is
(XS′ ⊗S′ Z−1

S′ )⊗S′ S equal to S?

For reasons which are discussed at length below, we do not explicitly conjecture the veracity
of the previous statement. Nonetheless, for simplicity, we refer henceforth to this question as a
conjecture. As above, when S is regular and T non-exceptional, Question 6.15 is equivalent to:

charS H̃2
f (KΣ/K, T )tors = (charS H̃1

f (KΣ/K, T )/zS)2. (6.2.4)

The remainder of this subsection is devoted to a discussion of the form and history of
Conjectures 6.12, 6.13 and Question 6.15, as well as arguments and speculations in support
of them.

First, the ETNC should link an integral structure in the determinant of the cohomology
with special values of L-functions, here presumably with the derivatives of a p-adic L-function.
Second, the resort to the square of the Euler structure seems artificial and should be eliminated.
These two points would be simultaneously dealt with if we knew the p-adic height pairing on
H̃1
f (KΣ/K, T ) to be non-degenerate, or almost equivalently if we knew the derivative of the

p-adic L-function to be non-zero. In that case, the class zS ∈ H̃1
f (KΣ/K, T ⊗S K) is also a

non-zero element z∗S of HomK(H̃1
f (KΣ, T ⊗S K),K) and hence a non-zero element of

H̃2
f (KΣ/K, T ⊗S K). Using zS and z∗S , we can define an integral structure Eul∗ whose comparison

with the canonical structure is equal to the square of the Euler structure. Beside z∗S(z) could
then be conjectured to be equal to L′p and the complex R Γf (KΣ/K, T ) would be semi-simple in
the sense of [Bur09, Definition 5.1]. In other words, the complete apparatus needed to formulate
the ETNC would be in place. Unfortunately, such a non-degeneracy statement seemingly lies in
the world of transcendence and is apparently out of reach.

Historically, Question 6.15 has been first proposed in [Per87, Conjectures A, B] (though part
of the idea is there attributed to B. Mazur) in the simplest possible Iwasawa-theoretic situation,
that it to say when the following hypotheses are satisfied: the representation π(f) comes from
a rational elliptic curve E/Q with good ordinary reduction; Hypothesis 5.10, which in that
case is the Heegner hypothesis, holds; the ring S is equal to Λa; the p-adic height pairing is
known to be non-degenerate. In the same setting but with the hypothesis on the p-adic height
pairing replaced by an explicit consideration of the Euler system, it is mentioned in [How04a]
in a form equivalent to ours via Proposition 6.11. In [How04b], it is conjectured that, possibly
up to a power of p, Question 6.15 holds for S = Λa and π(f) of parallel weight 2 with trivial
central character. The first explicit version of Question 6.15 incorporating Hida theory known
to this author is in [How07, Conjecture 3.3.1] under the hypothesis that B× = GL2(Q), that
Hypothesis 5.10 holds and that S =RIw is a regular ring. Question 6.15 was proposed in [LV11,
Conjecture 10.8] for S =RIw a regular ring and B a quaternion algebra over Q. An ubiquitous
feature of all these formulations is that they require the specialization T to be non-exceptional
and that they formulate the conjecture only for S regular and maximal with respect to the
situation considered, that is to say for S = Λa or S =RIw.

In contrast, we only require S to contain an arithmetic specialization and we do not
distinguish between the case of good ordinary reduction and the case of exceptional zero in
Conjecture 6.14 and Question 6.15.

Finally, we explain why we do not propose Question 6.15 explicitly as a conjecture. Let KIw

be the fraction field of RIw. Assuming the conjectural framework of the ETNC and of Iwasawa
theory, we should expect the RIw-valued height h(z∞, z∞) to provide an integral structure
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on DetKIw
R Γf (KΣ/K, TIw ⊗RIw

KIw) and this integral structure to be equal to the one provided
by L′p via conjectures on special values. By definition the element L′p is the derivative of a function
interpolating the special values of the L-function divided by a suitable period so as to obtain an
algebraic number. However, there are several choices of periods possible and it is conceivable that
the integral structures coming from different choices of L′p corresponding to different choices of
periods are not the same. For instance, it is shown in [Vat03, Theorem 1.1] that this phenomenon
occurs in classical dihedral Iwasawa theory of quaternionic automorphic forms when the sign ε of
the functional equation is equal to +1, rather than−1 as in this text. In that case, the discrepancy
between the different integral structures is equal to the product of Tamagawa numbers at primes
for which Assumption 5.10 is not satisfied. In other words, the discrepancy measures the difference
in ramification between TIw and ρ̄ at primes which do not satisfy Assumption 5.10. Because we
have not investigated which choice of periods should correspond to the Euler integral structures
and because we do not assume systematically Assumption 5.10, it seems to us not impossible
that the Euler and characteristic structure could differ, for instance by a power of p. Nonetheless,
what we prove below of Conjectures 6.12, 6.14 and Question 6.15 combined with the vanishing of
the µ-invariant of the characteristic and Euler structure in the classical Iwasawa-theoretic case
seems to weigh heavily in favor of Question 6.15. Alternatively, it seems that the way our Euler
system was constructed forces it to record congruences with forms of lower level at primes which
do not satisfy Assumption 5.10.

6.2.2 Compatibilities. Let φ : S −→ S′ be a morphism between two good specializations of
RIw and let T ′ be T ⊗S,φ S′. We say that the integral structure (M, ψ) descends perfectly with
respect to φ if MT ⊗S,φ S′ is equal to MT ′ .

Proposition 6.16. Let φ : S −→ S′ be a morphism between two specializations of RIw and let
T ′ be T ⊗S,φ S′. For all v ∈ Σ not dividing p, let Mv and M ′v be maximal rank free submodules of
T Iv and (T ′)Iv respectively. Let ST be the image of DetS R Γ(Fr(v), Mv) through Id-trivialization
and likewise for T ′.

(i) The canonical structure descends perfectly with respect to φ.

(ii) Assume that Mv ⊗S S′ and M ′v have the same S′-ranks. Then ST ⊗S,φ S′ is equal to ST ′ .
If Mv and M ′v have the same ranks for all v, then the characteristic structure descends perfectly
with respect to φ. This statement holds in particular if both T and T ′ contain an arithmetic
specialization.

(iii) Let P ∈ Spec(S) be such that SP is a regular ring. Assume that Fr(v)− 1 is invertible
on TP/P for all v - p at which T is ramified. Then the characteristic structure on TP descends
perfectly with respect to reduction modulo P. This statement holds in particular for T = TIw

and P ∈ Specarith(RIw) an arithmetic prime of even parallel weight.

Proof. (i) By definition, both ST ′ and ST ⊗S S′ are equal to S′ inside K′.
(ii) According to (5.1.2), the complex R Γc(KΣ/K, T ) descends perfectly with respect to φ.

Assume T Iv ⊗S,φ S′ and T ′Iv have the same S′-ranks. If this rank is 2, then T and T ′ are
actually unramified at v, and so the complex R Γf (GKv , T ) descends perfectly with respect to φ.
In particular, ST and ST ′ are then equal. Otherwise, the discussion of the end of § 6.1.2 applies.
Then, both ST ⊗S,φ S′ and ST ′ are the module det−1(Fr(v)− 1)∗S′. So they are equal. Hence,
the characteristic structure descends perfectly. If both T and T ′ contain arithmetic specialization
TSp and T ′Sp, then the ranks of Mv and M ′v are both less than the rank of T IvIw and greater than
the ranks of T IvSp and (T ′Sp)Iv . So all these ranks are equal by Lemma 3.9.
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(iii) Localizing at P, we can assume that S is a regular ring. Let v - p be a place of ramification
of T . The assumption on Fr(v) implies that Fr(v)− 1 is invertible on T Iv for all v - p at which T
is ramified. The Id-trivialization of DetS R Γf (GKv , TP) is thus S. The characteristic structure is
then entirely determined by DetS R Γc(KΣ/K, T ). Because mS is generated by a regular sequence,
the complex R Γc(KΣ/K, T ) descends perfectly with respect to reduction modulo m by (5.1.1).
If T = TIw, so that S =RIw, and if P belongs to Specarith(S), then SP is regular by Lemma 3.1
and Fr(v)− 1 is invertible on TP/P by purity or Proposition 5.3. The hypotheses of the statement
are thus verified. 2

We record the following compatibility property of Conjecture 6.12 and Question 6.15.

Proposition 6.17. Let φ : S −→ S′ be an O-morphism between good specializations such that
the diagram

RIw

��

// S′

S

φ

=={{{{{{{{
(6.2.5)

commutes. Assume that the characteristic structure descends perfectly with respect to φ and
that Conjecture 6.12 (respectively Question 6.15) holds for T . Then Conjecture 6.12 (respectively
Question 6.15) holds for T ′. In particular, if T is an arithmetic specialization of T and if
Conjecture 6.12 (respectively Question 6.15) holds for T ⊗O Λa or TIw, then it holds for T .
If Conjecture 6.12 holds for TIw and if Question 6.15 holds for an arithmetic specialization T ,
then Question 6.15 holds for TIw.

Proof. Because the diagram (6.2.5) commutes, φ(zS) is equal to zS′ and so the diagram (6.2.6)
is commutative.

DetS S[−1]zS

−⊗SS′
��

Id // K

��

DetS′ S′[−1]zS′
Id // K′

(6.2.6)

This combined with the assumption that the characteristic structure descends perfectly
with respect to φ implies that the Euler structure descends perfectly with respect to φ. If
Conjecture 6.12 (respectively Question 6.15) holds then the characteristic structure of T in
K is contained in (respectively is equal to) the square of the Euler structure of T in K. The same
relation then holds between the characteristic and Euler structures for T ′ in K′.

In order to prove the second assertion, it is thus enough to satisfy that the pair of
specializations (T ⊗O Λa, T ) and (TIw, T ) satisfy the hypotheses of the first assertion. The
commutativity of (6.2.5) is by construction. According to Lemma 3.9, the pair (TIw, T ) satisfies
the hypotheses of Proposition 6.16 and thus both integral structures descend perfectly. In order
to prove the same result for the pair (T ⊗O Λa, T ), it is enough for the same reason to prove
that the hypotheses of Proposition 6.16 hold. If v - p, then Λ is unramified at v so (T ⊗O Λa)Iv
is equal to T Iv ⊗O Λa.

As both the characteristic and Euler structures descend perfectly with respect to arithmetic
specializations, if the characteristic structure is contained in the square of the Euler structure
for TIw and if their images are equal for T , then they are equal for TIw. 2
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6.3 Main results

6.3.1 Descent. Let p ∈ Spec S be a prime of height r − 1. We say that a height r − 1 prime
p′ ∈ Spec S is n-close to p if and only if p 6= p′, p does not belong to p′ and `OS/(p, p′) = n.

Lemma 6.18. Let S be a specialization of RIw of dimension at least 2. Let I = aS and J = bS
be invertible ideals.

(i) Assume that there exists a prime p such that I belongs to p but b does not belong to p.
Then there exists a specialization A of RIw which is a discrete valuation ring flat over Zp and
such that I ⊗S A is not contained in J ⊗S A. Moreover, the set of kernels of these specializations
is a Zariski-dense subset of Spec S.

(ii) Assume that S is regular and that I 6⊂ J . Then, for all N > 0 there exists a discrete
valuation ring A flat over Zp with uniformizing parameter $A such that $N

A (I ⊗S A) is not
contained in J ⊗S A. Moreover, the set of kernels of these specializations is a Zariski-dense
subset of Spec S.

Proof. (i) Under the assumptions of (i), by Krull’s Hauptidealsatz, there is a height r − 1 prime
p containing I, which does not contain p and such that b does not belong to p. For all n > 0, let
En be the set of height r − 1 primes of S which do not contain p and which are at least n-close
to p. There is an N such that for all n>N , if b ∈ r, then r is not in En. Let n be greater than N .
For all p′ ∈ En and all r containing b, there exists x ∈ r such that x /∈mn

S/p′ . Hence, there exists a
Zariski-dense subset E′n of En such that if p′ ∈ E′n, then b /∈mn

S/p′ . On the other hand, a belongs
to p so a belongs to mn

S/p′ . For all p′ ∈ E′n, the normalization A(p′) of S/p′ is a discrete valuation
ring of unequal characteristic such that I ⊗S A is not included in J ⊗S A.

(ii) Assume that S is regular and that I 6⊂ J . Then, up to multiplication of I and J by a
common invertible ideal if necessary, we can assume that there exists an irreducible element π
dividing a such that b does not belong to p = (π)S. Let X ∈mS be an element not contained
in p. For all n > 0, let φX,n be the surjection from S to SX,n = S/(π −Xn). Then φX,n(I)
belongs to (Xn) for all n> 0. For n large enough, φX,n(b) 6= 0. Because b /∈ p, for n large enough
φX,n(J) /∈ (Xn). Consequently, for all n0 > 0, there exists an n1 such that for all n> n1 the
following properties are true: the element π −Xn is part of a system of generators; φX,n(J) is
not zero; Xn0 ⊂ φX,n(I) and Xn0 6⊂ φX,n(J). Because the previous procedure can be carried on
with an arbitrary X ∈mS , we can ensure that SX,n has residual characteristic p. Proceeding by
descending induction on dimension if necessary, we construct in this way a discrete valuation
ring A and specializations φn such that I ⊗S,φn A is an invertible ideal and such that for all n0,
there exists an n1 such that $n0

A I⊗S,φnA does not belong to J⊗S,φnA for all n> n1. The set of
kernels of the φn is of codimension 0. 2

6.3.2 Results over regular rings. We reformulate the result of Corollary 5.21. Let S be a
discrete valuation ring and T be a good non-exceptional specialization of TIw. Let A be the
GK,Σ-representation T ⊗S K/S. Then H̃1

f (KΣ/K, T ) is free of rank 1 by Proposition 6.5. By
[Nek06, (8.9.6.2)], the Pontrjagin dual of H̃2

f (KΣ/K, T ) is equal to H̃1
f (KΣ/K, A). The short

sequence

0−→
⊕
v|p

H0(Kv, A
−
v )−→ H̃1

f (KΣ/K, A)−→H1
Gr(KΣ/K, A)−→ 0
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is exact. The diagram

0 // H1
Gr(KΣ/K, A) //

��

H1(KΣ/K, A) //

��

⊕
v∈Σ

H1(KΣ/K, A)/H1
Gr(KΣ/K, A)

��

0 // H1
BK(KΣ/K, A) // H1(KΣ/K, A) //

⊕
v∈Σ

H1(KΣ/K, A)/H1
BK(KΣ/K, A)

(6.3.1)
shows that:

`SH
1
Gr(KΣ/K, A)tors 6 `SH

1
BK(KΣ/K, A)tors +

∑
v-p

`SH
1(Iv, T )Fr(v)=1

tors +
∑
v|p

`SH
0(Kv, A

−
v ).

Hence:

`SH̃
2
f (KΣ/K, T )tors 6 `SH

1
BK(KΣ/K, A)tors +

∑
v-p

`SH
1(Iv, T )Fr(v)=1

tors + 2
∑
v|p

`SH
0(Kv, A

−
v ).

Let Tam(T )max be the index of p in the factorization of the cardinal of the largest of the S-
modules H1(Iv, T )Fr(v)=1

tors for v - p and H0(Kv, A
−
v ) for v|p. Let Tam(T )(p)

max be the index of p in
the factorization of the cardinal of the largest of the S-modules H1(Iv, T )Fr(v)=1

tors for v - p and v
has a finite decomposition group in D∞. Then:

`SH
1
BK(KΣ/K, T )/zS 6 `SH1

Gr(KΣ/K, T )/zS + Tam(T )max.

Corollary 5.21 then translates to:

`SH̃
2
f (KΣ/K, T )tors 6 2`SH̃1

f (KΣ/K, T )/zS +
∑
v-p

`SH
1(Iv, T )Fr(v)=1

tors

+ 2
∑
v|p

`SH
0(Kv, A

−
v ) + 2 Tam(T )max. (6.3.2)

We improve upon this result in the following theorem.

Theorem 6.1. Let T be a good non-exceptional specialization of TIw with coefficients in a
discrete valuation ring S. Let T ⊗ Λa denote the specialization T ⊗S (Λa ⊗O S) and let zΛa be

the image of z∞ under this specialization. Assume that zΛa is not zero. Let α be Tam(T )(p)
max.

Then the square of the α-Euler structure contains the characteristic structure of T ⊗ Λa. If
moreover zS is non-zero, then the square of the α-Euler structure contains the characteristic
structure of T . In other words, if zΛa is non-zero then:

charΛa H̃
2
f (KΣ/K, T ⊗ Λa)tors|(charΛa H̃

1
f (KΣ/K, T ⊗ Λa)/zα,Λa)2. (6.3.3)

If moreover zS is non-zero, then:

`SH̃
2
f (KΣ/K, T )tors 6 2`SH̃1

f (KΣ/K, T )/zα,Λa . (6.3.4)

If Assumption 5.10 is in force, then α can be taken to be 1 in (6.3.3) and (6.3.4).

Proof. Assume that the square of the α-Euler structure does not contain the characteristic
integral structure of T ⊗ Λa. By case (ii) of Lemma 6.18, for all N > 0, there is a specialization
T ′ of T ⊗ Λa with coefficients in a discrete valuation ring S′, such that zS′ is not zero and such
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that:

`S′H̃
2
f (KΣ/K, T

′)tors >2`S′H̃1
f (KΣ/K, T

′)/zS′ +N.

In order to derive a contradiction with (6.3.2), it is thus enough to show that∑
v-p

`S′H
1(Iv, T ′)

Fr(v)=1
tors + 2

∑
v|p

`S′H
0(Kv, U

−
v (A′)) + 2 Tam(T ′)max

is bounded independently of T ′. If v - p, then Λa is not v-ramified so `S′H
1(Iv, T ′) is equal

to `S′H
1(Iv, T )⊗S (S ⊗O Λ)⊗S S′ and hence is bounded independently of T ′. If v|p, the

cardinal of H0(Kv, U
−
v (A′)) is bounded unless there exists a quotient T ′′ of T ⊗ Λa such that

H0(Kv, U
−
v (T ′′)) is non-zero. This implies that the action of GK on U−v (V ′′) factors through D∞.

Because the subgroup of Gal(D∞/K) generated by the union of the inertia subgroups at places
above p is of finite index, the image of the inertia group Iv is of finite index in the image of GKv
in End(V ′′). Hence, a character of GKv which factors through a finitely ramified extension of K
inside D∞/K with values in End(U−v (V ′′)) factors through a finite extension. This is in particular
the case for unramified characters and for characters factoring through the Zp-extensions of F .
Applying this to the character giving the action of GKv on U−v (V ′′) and remarking that the
character giving the action of GKv on U−v (V ) is a product of characters unramified in a finite
extension of the maximal Zp-extension of F , we deduce that Fr(v) and Iv act on U−v (V ) through
a finite group. Thus T is exceptional, contrary to our assumption.

The statement for T then follows by Proposition 6.17. If Assumption 5.10 is true, then α can
already be taken as equal to 1 in Theorem 5.1. 2

Remark. We explain why it is in fact likely that α can be taken to be 1 in Theorem 6.1 even in
the absence of Assumption 5.10. By definition, the integer α is the largest power of p dividing the
Tamagawa number of T at a place of bad reduction with a finite decomposition group in D∞. It
makes an appearance in Theorem 6.1 because z is not known to belong to H̃1

f (KΣ/K, T ⊗ Λa).
Moreover, it impacts Conjecture 6.12 only at the primes above p, or through the µ-invariant part
of the main conjecture in classical language. However, the µ-invariant of H̃2

f (KΣ/K, T ⊗ Λa) is
actually a quantity within reach. Indeed, a computation of the respective µ-invariants of branches
of Hida families as conducted in the cyclotomic case in [EPW06] shows that the µ-invariant of
H̃2
f (KΣ/K, T ⊗ Λa) is equal to the sum of the p-adic valuation of α and of the µ-invariant

of H̃2
f (KΣ/K, T

′ ⊗ Λa) with T ′ the GK-representation coming from a congruent automorphic
representation with minimal ramification, and in particular with level lowered at the places with
a finite decomposition group in D∞. For the level-lowered representation T ′, the divisibility
of Theorem 6.1 holds with α equal to 1 because a minimally ramified representation satisfies
Assumption 5.10. Hence the µ-invariant of H̃2

f (KΣ/K, T
′ ⊗ Λa) vanishes provided that the µ-

invariant of the Euler class z′ ∈ H̃1
f (KΣ/K, T

′ ⊗ Λa) vanishes. This in turn follows from the
results of [AN10, CV04, CV05, Vat03]. Putting everything together, we see that the µ-invariant
of H̃2

f (KΣ/K, T ⊗ Λa) is equal to α, and in particular that z belongs to H̃1
f (KΣ/K, T ⊗ Λa).

Theorem 6.2. Let Λtwa be the 1 + 2d-dimensional regular ring Λtw[[Gal(D∞/K)]]. We consider
TIw as a free Λtwa -module. Let α be as in Theorem 5.1. Assume z∞,α to be non-zero.
Then, the square of the α-Euler structure of TIw contains the characteristic structure of TIw.
In other words:

charΛtwa
H̃2
f (KΣ/K, TIw)tors|(charΛtwa

H̃1
f (KΣ/K, TIw)/z∞,α)2. (6.3.5)
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Proof. Let I be the invertible ideal of Λtwa equal to the square of α-Euler structure and let J be
the characteristic structure. Assume that J is not included in I. By case (ii) of Lemma 6.18, there
then exists a Zariski-dense set of specializations of Λtwa with values in a discrete valuation ring A
such that J ⊗Λtwa

A is not contained in I ⊗Λtwa
A. Among these specializations, we choose a good

specialization φ of Λtw such that the specializations ψ of RIw inducing φ on Λtw all have the
following properties. First, we require that if ψ with values in Sψ is a specialization of R which
induces φ on Λtw, then ψ is good not exceptional and ψ(z∞,α) is not zero. Second, we require
that T Ivψ has the same Sψ-rank as T IvIw ⊗RIw

Sψ for all v - p. Then both the characteristic and
α-Euler structures descend perfectly with respect to ψ. Let B be a discrete valuation ring finite
and flat over O containing all the Sψ. Then (TIw ⊗Λa,φ A)⊗A B is the direct sum of the B[GK ]-
modules Tψ ⊗B B[[Gal(D∞/K)]]. The fact that I ⊗Λtwa

A does not contain J ⊗Λtwa
A implies that

(I ⊗Λtwa
A)⊗A B does not contain (J ⊗Λtwa

A)⊗A B, which then contradicts Theorem 6.1. 2

Corollary 6.19. Let T be an arithmetic specialization of TIw with values in discrete valuation
ring S. Assume z∞ to be non-zero. Then Conjecture 6.14 is true up to p for T ⊗ Λa =
T ⊗S (Λs ⊗O S). If Assumption 5.10 is in force, then Conjecture 6.14 is true for T ⊗ Λa and
for T .

Proof. Let Z be the square of the Euler structure, Zα the square of the α-Euler structure and X
the characteristic structure of TIw seen as Λtwa -module. Under the assumptions of the corollary,
Zα contains X thanks to Theorem 6.2. Hence X ⊗Λtwa

Z−1 is included in Λtwa [1/α]. The second
statement of Proposition 6.17 then shows that (X ⊗Λtwa

Z−1)⊗Λtwa
Λa is included in Λa[1/p] so

Conjecture 6.14 is true up to p. If Assumption 5.10 is in force, then X ⊗Λtwa
Z−1 is included in

Λtwa so (X ⊗Λtwa
Z−1)⊗Λtwa

Λa is included in Λa and (X ⊗Λtwa
Z−1)⊗Λtwa

S is included in S. 2

6.3.3 Results over Hecke algebras.

Theorem 6.3. Assume z∞ to be non-zero. Let α be as in Theorem 5.1. Then the support
of the characteristic structure of TIw is contained in the support of the α-Euler structure of
TIw. If moreover RIw is a regular ring, then the square of the α-Euler structure contains the
characteristic structure of TIw.

Proof. Assume the statement to be false. Let I be the invertible ideal of RIw equal to the square
of α-Euler structure and let J be the characteristic structure. By case (i) of Lemma 6.18, there
then exists a Zariski-dense set of specializations of RIw with values in a discrete valuation ring
A such that I ⊗RIw

A does not contain J ⊗RIw
A. By Zariski-density, we can choose an element

φ of this set which is good, such that zA is not zero, which is not exceptional and such that the
associated specialization T of TIw has the property that T Iv has the same A-rank as T IvIw ⊗RIw

A
for all v - p. Then both the characteristic and α-Euler structure descend perfectly with respect to
φ. The fact that I ⊗RIw

A does not contain J ⊗RIw
A then means that the square of the α-Euler

structure for T does not contain the characteristic structure, which contradicts Theorem 6.1.
The proof of the second assertion is similar to the proof of Theorem 6.2 but easier. 2

We recall that the assumption that z∞ is non-zero is known to hold when F = Q and
B =M2(Q) by [How07, Theorem 3.3.1] and should hold for general F and B thanks to [CV04,
Theorem 4.10], [CV05, Corollary 2.10] and [AN10, Theorem 4.3.1].

Corollary 6.20. Assume that RIw is a regular ring. Assume that there exists an arithmetic
specialization T such that Question 6.15 is true for T . Then Question 6.15 is true for TIw.
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Proof. This follows from Theorem 6.3 and the last assertion of Proposition 6.17. 2

Concluding remarks. Because normalization is used in an essential way in the proof of (i) of
Lemma 6.18 and because normalization can destroy non-integrality, it is of course easy to
manufacture abstract examples of invertible ideals which are not integral and such that all
specializations to discrete valuation rings are integral. When the coefficient ring is not normal,
our methods are thus intrinsically unable to prove that the characteristic structure of TIw is
contained in the square of the α-Euler structure of TIw. However, in the common situation where
RIw can be written A/x with A a regular ring and x an A-regular sequence, i.e. when RIw is a
complete intersection, it is likely that one can prove Conjecture 6.14 for TIw by proving it first
for a deformation of TIw with coefficients in the regular ring A.
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complet, in p-adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA,
1991), Contemporary Mathematics, vol. 165 (American Mathematical Society, Providence, RI,
1994), 213–237.

Cas73 W. Casselman, On some results of Atkin and Lehner, Math. Ann. 201 (1973), 301–314.

413

https://doi.org/10.1112/S0010437X12000619 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X12000619


O. Fouquet

Cli37 A. H. Clifford, Representations induced in an invariant subgroup, Ann. of Math. (2) 38 (1937),
533–550.

CV04 C. Cornut and V. Vatsal, Non-triviality of Rankin–Selberg L-functions and CM points, in
L-functions and Galois representations (Durham, July 2004), London Mathematical Society
Lecture Note Series, vol. 320 (Cambridge University Press, Cambridge, 2004).

CV05 C. Cornut and V. Vatsal, CM points and quaternion algebras, Doc. Math. 10 (2005), 263–309
(electronic).
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Ann. Sci. École Norm. Sup. (4) 38 (2005), 505–551.

EPW06 M. Emerton, R. Pollack and T. Weston, Variation of Iwasawa invariants in Hida families,
Invent. Math. 163 (2006), 523–580; MR 2207234(2007a:11059).

FP94 J.-M. Fontaine and B. Perrin-Riou, Autour des conjectures de Bloch et Kato: cohomologie
galoisienne et valeurs de fonctions L, in Motives (Seattle, WA, 1991), Proceedings of Symposia
in Applied Mathematics, vol. 55 (American Mathematical Society, Providence, RI, 1994),
599–706.

Fou07 O. Fouquet, Tour de courbes de Shimura, systèmes de Kolyvagin et théorie d’Iwasawa des formes
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NP00 J. Nekovář and A. Plater, On the parity of ranks of Selmer groups, Asian J. Math. 4 (2000),
437–497.

NSW00 J. Neukirch, A. Schmidt and K. Wingberg, Cohomology of number fields, Grundlehren der
Mathematischen Wissenschaften, vol. 323 (Springer, Berlin, 2000).

Nys96 L. Nyssen, Pseudo-représentations, Math. Ann. 306 (1996), 257–283.

415

https://doi.org/10.1112/S0010437X12000619 Published online by Cambridge University Press

http://www.ams.org/mathscinet-getitem?mr=1727298(2000k:11076)
http://www.ams.org/mathscinet-getitem?mr=1727298(2000k:11076)
http://www.ams.org/mathscinet-getitem?mr=1727298(2000k:11076)
http://www.ams.org/mathscinet-getitem?mr=1727298(2000k:11076)
http://www.ams.org/mathscinet-getitem?mr=1727298(2000k:11076)
http://www.ams.org/mathscinet-getitem?mr=1727298(2000k:11076)
http://www.ams.org/mathscinet-getitem?mr=1727298(2000k:11076)
http://www.ams.org/mathscinet-getitem?mr=1727298(2000k:11076)
http://www.ams.org/mathscinet-getitem?mr=1727298(2000k:11076)
http://www.ams.org/mathscinet-getitem?mr=1727298(2000k:11076)
http://www.ams.org/mathscinet-getitem?mr=1727298(2000k:11076)
http://www.ams.org/mathscinet-getitem?mr=1727298(2000k:11076)
http://www.ams.org/mathscinet-getitem?mr=1727298(2000k:11076)
http://www.ams.org/mathscinet-getitem?mr=1727298(2000k:11076)
http://www.ams.org/mathscinet-getitem?mr=1727298(2000k:11076)
http://www.ams.org/mathscinet-getitem?mr=1727298(2000k:11076)
http://www.ams.org/mathscinet-getitem?mr=1727298(2000k:11076)
http://www.ams.org/mathscinet-getitem?mr=1727298(2000k:11076)
http://www.ams.org/mathscinet-getitem?mr=1727298(2000k:11076)
http://www.ams.org/mathscinet-getitem?mr=1727298(2000k:11076)
http://www.ams.org/mathscinet-getitem?mr=1727298(2000k:11076)
http://www.ams.org/mathscinet-getitem?mr=1727298(2000k:11076)
http://www.ams.org/mathscinet-getitem?mr=1727298(2000k:11076)
http://www.ams.org/mathscinet-getitem?mr=2813438
http://www.ams.org/mathscinet-getitem?mr=2813438
http://www.ams.org/mathscinet-getitem?mr=2813438
http://www.ams.org/mathscinet-getitem?mr=2813438
http://www.ams.org/mathscinet-getitem?mr=2813438
http://www.ams.org/mathscinet-getitem?mr=2813438
http://www.ams.org/mathscinet-getitem?mr=2813438
http://www.ams.org/mathscinet-getitem?mr=2813438
http://www.ams.org/mathscinet-getitem?mr=2813438
http://www.ams.org/mathscinet-getitem?mr=2813438
http://www.ams.org/mathscinet-getitem?mr=804682(87a:11054)
http://www.ams.org/mathscinet-getitem?mr=804682(87a:11054)
http://www.ams.org/mathscinet-getitem?mr=804682(87a:11054)
http://www.ams.org/mathscinet-getitem?mr=804682(87a:11054)
http://www.ams.org/mathscinet-getitem?mr=804682(87a:11054)
http://www.ams.org/mathscinet-getitem?mr=804682(87a:11054)
http://www.ams.org/mathscinet-getitem?mr=804682(87a:11054)
http://www.ams.org/mathscinet-getitem?mr=804682(87a:11054)
http://www.ams.org/mathscinet-getitem?mr=804682(87a:11054)
http://www.ams.org/mathscinet-getitem?mr=804682(87a:11054)
http://www.ams.org/mathscinet-getitem?mr=804682(87a:11054)
http://www.ams.org/mathscinet-getitem?mr=804682(87a:11054)
http://www.ams.org/mathscinet-getitem?mr=804682(87a:11054)
http://www.ams.org/mathscinet-getitem?mr=804682(87a:11054)
http://www.ams.org/mathscinet-getitem?mr=804682(87a:11054)
http://www.ams.org/mathscinet-getitem?mr=804682(87a:11054)
http://www.ams.org/mathscinet-getitem?mr=804682(87a:11054)
http://www.ams.org/mathscinet-getitem?mr=804682(87a:11054)
http://www.ams.org/mathscinet-getitem?mr=804682(87a:11054)
http://www.ams.org/mathscinet-getitem?mr=804682(87a:11054)
https://doi.org/10.1112/S0010437X12000619


O. Fouquet

Och05 T. Ochiai, Euler system for Galois deformations, Ann. Inst. Fourier (Grenoble) 55 (2005),
113–146.

Och06 T. Ochiai, On the two-variable Iwasawa main conjecture, Compositio Math. 142 (2006),
1157–1200.

Oht82 M. Ohta, On l-adic representations attached to automorphic forms, Japan. J. Math. (N.S.) 8
(1982), 1–47.

Oht95 M. Ohta, On the p-adic Eichler–Shimura isomorphism for Λ-adic cusp forms, J. Reine Angew.
Math. 463 (1995), 49–98.
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Vig80 M.-F. Vignéras, Arithmétique des algèbres de quaternions, Lecture Notes in Mathematics,

vol. 800 (Springer, Berlin, 1980).
Wes02 T. Weston, Algebraic cycles, modular forms and Euler systems, J. Reine Angew. Math. 543

(2002), 103–145.
Wil88 A. Wiles, On ordinary λ-adic representations associated to modular forms, Invent. Math. 94

(1988), 529–573.
YZZ08 X. Yuan, S. Zhang and W. Zhang, Heights of CM points I, Gross–Zagier formula, Preprint

(2008) (available at http://www.math.columbia.edu/∼szhang/).
Zha01 S. Zhang, Heights of Heegner points on Shimura curves, Ann. of Math. (2) 153 (2001), 27–147.

Olivier Fouquet olivier.fouquet@polytechnique.org
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