
Ergod. Th. & Dynam. Sys. (1981), 1, 9-31
Printed in Great Britain

Non-wandering sets of the powers
of maps of the interval

ETHAN M. COVENt AND ZBIGNIEW NITECKI

Department of Mathematics, Wesley an University, Middletown, Conn.; and
Department of Mathematics, Tufts University, Medford, Mass.

(Received 6 June 1980 and revised 8 December 1980)

Abstract. We show that, for maps of the interval, the non-wandering set of the map
coincides with the non-wandering set of each of its odd powers, while the non-
wandering set of any of its even powers can be strictly smaller.

Introduction
In the study of the dynamics of a continuous map g : X -* X of a metrizable space to
itself, a central role is played by the various recursive properties of the points of X.
One such property is periodicity: x is periodic if g" (x) = x for some n > 1. A weaker
property is that of being non-wandering: x is non-wandering if for every neighbour-
hood U of x, gn(U) n U # 0 for some n > 1; equivalently, x is non-wandering if
there exist x, -* x and kt -» oo such that gk'(xi) -» x. Intermediate recursive properties
(which we shall not consider here) include almost periodicity and recurrence.

This paper investigates the non-wandering sets of the powers (under composition)
of a map g, particularly when the underlying space is a compact interval. Throughout
this paper, / : / - » / will be understood to denote such a 'map of the interval'.

Let P - P(g) denote the set of periodic points and ft = fi(g) the set of non-
wandering points of g. In general, fl is closed, invariant and, if X is compact,
non-empty. By contrast, P need be only invariant, although for maps of the interval,
P is non-empty.

In general, Pc.fl. Equality holds Cr-generically ( l<r<oo) for maps of the
interval [15]. When equality fails for a map of the interval, the difference set ft-P is
small. It is nowhere dense and has invariant measure zero [4] and, for piecewise
monotone maps, it consists entirely of isolated points [11].

It is clear that P(g) = P(gn) for all n > l . (The corresponding results hold for
almost periodicity and recurrence as well [6] [7].) It is well-known, however, that
ft(g) = ft(g") does not hold in general. In fact, it can fail even for diffeomorphisms of
surfaces [12]. If ft(/) ^ il(f) for some n > 2 , then this phenomenon must be
exhibited by some point in the pathological set ft - P.

We shall prove:

MAIN THEOREM. For maps of the interval, ft(/) = ft(/") whenever n is odd.

It follows from the main theorem that if n = 2km with m odd, then ft(/") = fi(/2fc).
t Address for correspondence: Ethan M. Coven, Department of Mathematics, Wesleyan University,
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10 E.M. Coven and Z. Nitecki

Thus all the possible sets fl(/") appear in the nested sequence

We shall indicate how any sequence of equalities and strict containments in (*) may
be realized.

The main theorem is an immediate corollary of the following two results.

THEOREM 1. If x e fl has an infinite orbit, then x e fl(/"") for all n > 1.

THEOREM 3. If x e fl has a finite orbit, then x e fl(/") for all odd n > 1.

For light maps, i.e. maps which do not collapse any interval to a point, we establish
the following result.

THEOREM 2. For light maps, if xe fl(/N) and the f-orbit of x contains a fixed point of
f , then x 6 n(/") for alln>l.

We include a number of examples, sprinkled throughout the paper, which
illuminate some of the high points of the theory, as well as showing its necessity.
Taken together, these examples illustrate the delicate nature of the set fl - P.

We also include a section at the end which indicates some of the obstructions to
extending our results to spaces of dimension greater than one.

1. An example
In [15], L.-S. Young constructed an example of a map of the interval with P # fl. It
can be checked that in Young's example fl(/) = fl(/n) for all n > 1. (In fact, it is a
simple application of theorem 2 of this paper.)

The following example is similar to Young's, but in this case fl(/) = fl(/") for all
odd n s 1 and fl(/2) = fl(/4) = fl(/6) = • • • is a proper subset of fl(/).

Let / : [0, l]->[0, 1] be differentiate and let 0<xo<p<q<c<\ satisfy
(figure 1):

(1) f(x0) = p, f(p) = q, f(q) = p, f{c) = xo.
(2) f'(xo)>0,f'(p)<-l,f'(q)<-l,f'(c) = 0.
(3) f[0, xo]^[xo, p], / [x o ,p]£[p , l ] , f[p,q] = [p,ql f[q, c] = [x0, p], /[c,l] =
[x0, Pi
(4) For every neighbourhood V of q, c ef2"(V) for some n > 0.

It is clear that there exist arbitrarily smooth, in fact analytic, maps satisfying

(D-(4).
(1.1) PROPOSITION. With notation as above, xQe fl(/n) if and only if n is odd.

Proof. We consider neighbourhoods of x0 of the form U = [xo-e, xo + e]. It suffices
to show that for s > 0 small enough, f2n(U)nU = 0 for all n > 1 and (since every
odd number has arbitrarily large odd multiples) f2n+1(U)n C/# 0 for sufficiently
large n.

Let e > 0 be small enough so that
(5) f(xo-e)>xo + e.
(6) f[xo-e, xo] = [f(xo-e), p].
(7) f[x0, xo + e]z[p, q].
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P

FIGURE 1

Since f2(U)s[p, l]and/2[p, l ] c [p , 1], the statement about'the even powers of/
follows. On the other hand, since f{U) is a neighbourhood of q, (4) implies that
cef2n(U) for sufficiently large n. For any such n, x0ef2n+1(U)nU. •

We shall prove the main theorem by showing that, in some sense, the behaviour of
any point in il(f) but not in ft(/") for some n > 2 must mimic the behaviour of the
point x0 in this example.

2. Some technical facts
In this section we set down some useful facts about non-wandering points and maps
of the interval. The most important of these is (2.6) which asserts that, as in the
example of § 1, if x e ft, then for every neighbourhood U of x, there exists n > 1 such
that f(U) n U is not only non-empty, but actually contains x.

The first two facts are immediate consequences of the definitions, and hold for all
continuous maps.
(2.1) If m divides n, then n(gn) £ fi(gm).
(2.2) cl[P(g)]cil(g

n) for all n>l.
Thus if fi(/) 5̂  ft(/") for some n > 2, this behaviour must be exhibited by some point
inf l -P .

The next two facts are immediate consequences of the intermediate value
theorem.
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12 E.M. Coven and Z. Nitecki

(2.3) If J c. I is a closed interval and either / ( /) £ / orf(J) 2 /, then f has a fixed point
inJ.
(2.4) If J c.1 is an interval containing no periodic points, then for every n > 1, either
f"(x)<xforallxeJorf"(x)>xforallxeJ.

(2.5) LEMMA. LetJ ^Ibe an interval, open in I, such that for every n a 1, no endpoint
of J (other than endpoints of I) lies in int [/" (/)]. Then either /" (/) n / = 0 for all
n > 1, or there exists N > 1 such that /" (/) n / # 0 on/y if n is a multiple of N, and
in this case / = / " ( / ) 3f2N(I) 2 • • •.
Proof. Let N be the least positive integer such that fN (J) n / # 0 , if such exists. Then
/ N ( / ) c / and the sequence of containments follows.

If l < r < A T - l , then fkN+r(J)^cl[fr(J)] which fails to meet / since / is open
in/. •

The following result was proved for piecewise monotone maps by Young [15].

(2.6) LEMMA. If X e Cl(f), then there exist x, -» x awd fc, -» oo SHC/I thatfk'(xi) = x.

Proof. It suffices to show that there exist x,- -* x and fc, > 1 such that fk' (*,) = x. For if
{&,} were bounded, then x would be periodic and the conclusion of the lemma would
hold with x[ = x and k'i = ni where n is the period of x. Thus we need to show that
X 6 C1[U /""(*)]•

Suppose that x£cl [U/""(*)]• Let / be the component of /-cl[LJ/""(*)]
containing x. Then / satisfies the hypotheses of (2.5). Let N be the integer given by
(2.5). Then x € Cl(fN), for if U £ / is a neighbourhood of x, then f"(U) n 1/ * 0 for
some n > 1, which by (2.5) is a multiple of N.

We claim that x£fN{J). For if x =fN(y) where y e / , then the three points y,
fN(y), f2Niy) are distinct points of / and hence at least one of them belongs to /. But
all three points are in cl [U/"(*)]> and so the claim follows.

Since x£f3N(J), there is a neighbourhood V g / of x such that Vnf3N(J) = 0 .
But t h e n / k " ( V ) n V = 0 for all k >3 . This implies that x£ft(/N), a contradiction.

•
(2.7) LEMMA. NO endpoint of I is in 0,-P.

Proof. Let / = [a, b]. If a € H-P, then there is an interval J = [a, a+e] such that
JnP=0. Since f"(a)>a for all « > l , it follows from (2.4) that/"(x)>x for all
x e / a n d all n > l . Then by (2.6), a£&.

The proof that 6£ Cl - P is similar. •

3. Theorem 1
In this section, we prove

THEOREM 1. If x € Cl has an infinite orbit, then x e Cl(f") for alln>\.

We shall find it convenient throughout the remainder of this paper to use the
notion of one-sided 'neighbourhoods'. An L-neighbourhood of x is a subinterval of /
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of the form VL = [x—e,x] for some e > 0 . R-neighbourhoods are defined anal-
ogously: VR=[X,X + E].

If x is an endpoint of /, then the appropriate one-sided neighbourhoods form a
neighbourhood base at x. If x is not an endpoint, then every closed, connected
neighbourhood V of x is the union of two non-degenerate one-sided neighbour-
hoods: V= VL<J VR.

To prove theorem 1, suppose x e Q has an infinite orbit and let n > 2. We show that
xeil(f). By (2.2), if xeP, then x e f l ( f ) . Suppose then that x £ P and let V be a
closed, connected neighbourhood of x. We may assume that V n ? = 0 .

By (2.6), there exist x,-»x and m,--»oo such that /""'(*,•) = *. Without loss of
generality, V*. contains infinitely many x,. It suffices to show that the set of 'return
times' of VL to x, i.e. {m > l|x e/*"( VL)}, contains multiples of n.

To do this, let R denote the set of residue classes modulo n which include infinitely
many return times of VL to x.

R = {[r]|x efm( VL) for infinitely many m e [r]}.

We show that [0]e R. Since R is finite, by shrinking V and taking subsequences,
we may assume that if [r] 6 R, then there exist x, 6 VL and mt € [r] with x; -» x, m, -> oo
and/m'(x,) = x.

(3.1) PROPOSITION. If f'n(x)e int[ fkn+r(VL)] for some j , k, r>0 , tfien [r + s]eRfor
every [s] € /?.

Proof. There exists an L- neighbourhood WL S V̂ . of x such that /'" (WL) s /fc"+r (VJ.
Let [s]e /?. There are infinitely many y e WL and m e [5] with /m(y) = x. For any

such y and m = /n +s with /> / , we have x =/'"+s(y)e/
('~'+'t)"+(r+s)(Vz.). Therefore

. D

(3.2) PROPOSITION. [0]e R.

Proof. Since there are only finitely many residue classes, R # 0 . Thus it suffices to
show that the hypotheses of (3.1) are satisfied for every [r] e R.

Let [r]eR. Choose kx <k2<k3 so that x £ V, =f'n+r(VL) for / = 1, 2, 3. If x e V?
for some /, then the hypotheses of (3.1) are satisfied with / = 0 and k = kt. Hence we
assume that x is an endpoint of each V(. Since fk'n+'(zi) = x > z,- for some z, e Vi., it
follows from (2.4) that /k'"+r(x)>x. Therefore x is the left endpoint of each V,-.

Now consider the three points x, =fk'~k*)n(x)e V). Since the orbit of x is infinite,
these points are distinct and hence one of them lies between the other two. Since
xi = x is the left endpoint of both V2 and V3, either x\ < x2 < x3 or x\ < x3 < x2. In the
first case, x2€ V3 and the hypo theses of (3.1) are satisfied with/= k2-ki and k = k3.
In the second case, x3 € V2 and the hypotheses of (3.1) are satisfied with j = k3- ki
and k = k2. •

This completes the proof of theorem 1.

4. Denjoy maps of the interval
One might well try to prove theorem 1 by establishing the following conjecture: if
x € fl has an infinite orbit, then x e P. In this section, we construct an example which
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14 E. M. Coven and Z. Nitecki

shows this conjecture to be false. The fact that the example, unlike the example in
§ 1, is relatively complicated, illustrates the delicate nature of the set Q.-P. The
reader interested primarily in the development of the theory required to prove the
main theorem is advised to skip this section for now, and return to it after § 10.

The existence of smooth maps of the interval with 'homtervals' has aroused some
interest of late [8] [9]. A homterval is a non-degenerate, closed subinterval / which is
(i) not contained in the domain of attraction of any periodic orbit, (ii) for which
{f"(J)\n sO} is a collection of pairwise disjoint, non-degenerate, closed intervals,
and (iii) such that/"|/ is a homeomorphism for every n > 1. With a little extra care in
the construction of our example, we can make it C1 (but not C2) and have
homtervals.

Our examples are adapted from the classical Denjoy example [5] (also see [10]) of
a non-transitive C1 diffeomorphism h : S1 -* Sl of the circle with no periodic points.
The property of the Denjoy map which we shall use is the following: there is a doubly
infinite sequence {Ik\k = 0, ±1, ± 2 , . . . } of pairv.ise disjoint, non-degenerate, closed

oo

intervals such that h(Ik) = Ik+i for all k and U dlk £ limsup Ik; i.e. if z 6 U dlk, then
—OO fc-»—OO

every neighbourhood of z meets infinitely many Ik with k < 0.
CO OO

Actually, U h is dense and cl [LJ dlk] is a Cantor set which is the unique minimal
—OO —OO

set of h. However, we shall not make use of these facts.
Let 7T: [0,1 ] -» Sl be a quotient map such that IT (0) = 77 (1) lies in 70 and n identifies

no other pairs of points. Let z € 7_i be the unique point such that h(z) = ir(0). We can
'lift' h to a (non-continuous) map h : [0,1 ] -»[0, 1 ] such that TT ° h = h ° n, h~(0) = h (1)
and h has a single (jump) discontinuity at n~1(z) (figure 2).

Let Jk = Tr~^{Ik). Except for / 0 , each Jk is a non-degenerate, closed subinterval.
The collection {Jk\k > 1} is pairwise disjoint, h~(Jk) = Jk+i for all k > 1, and

OO

U 3/fc c limsup Jk.
- 0 0 fc-»— 00

(Here d means 'boundary in [0,1]', so that 0, 1 & (J dJk.)
We now modify h to eliminate the discontinuity at ir~1(z), changing h only in the

interior of / 1. Let g : [0, l]-» [0, 1] denote the resulting map (figure 3).

Since h and g disagree only in / _ i , it follows that whenever x£ U Jk, then
ks-l

g"(x) = h"{x) for all n >0. In particular, g(Jk) = Jk+i for all i > l .
We shall show in (4.2) that g may be constructed so as to have homtervals.
We now define/: [ -1, l]-» [-1,1]. Let xoe (-1,0) and let V=VLu VRc (-1,0)

be a closed, connected neighbourhood of Xo- Define / o n V so that:
(1) f(x0) is the left endpoint of Ju

(2) f(VR)<=Jx.
(3) f(Vl)nJt = 0.

Define / on [0, 1] by f(x) = g(x) except for modifying g on J-\ so that:

(4) V R c / ( /_ , ) sUo, 1].
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Finally, extend / to all of [-1, 1] so that (figure 4):
(5)/[- l , l]nVl=0.

Then
(6) {Jk |k s 1} is a collection of pairwise disjoint, non-degenerate, closed subintervals
such that f(Jk) = Jk+1 for all k > 1.

CXI

(7) U dJk £ Hmsup Jk.
—oo k-*—oo

(8) For every n> l , r (V / R ) c / " - 1 ( / 1 ) c [0 , 1].
Let We V be a closed, connected neighbourhood of x0. By (1) and (3), f(WL)

contains an endpoint of J\ as well as points not in J\. Hence by (7), there exist
arbitrarily large n such that /_„ c /(WL). (If this were not the case, then the lengths of
the intervals /_„ would not approach zero.) Applying /" J to this containment, we
obtain:
(9) If W £ V is a closed, connected neighbourhood of x0, then there exist arbitrarily
large n such that /_i c /"( WL).

(4.1) PROPOSITION. With notation as above, xo€Cl-Phas an infinite orbit.

Proof. Since f(x0) e Ju it follows from (6) that x0 has an infinite orbit.
By (9) and (4), there are points arbitrarily close to x0 whose orbit enters /_i and

then returns arbitrarily close to x0. Hence xoe fi.
By (8), any orbit which enters VR never returns to V, and by (9) and (4), any orbit

which enters VL and then returns to V returns in VR. Thus no orbit enters V more
than twice. Hence xfLP. •

We now return to the construction of / and insert conditions which will ensure that /
is C1 and has homtervals.

It is clear from the construction of h (see [5] or [10]) that we may assume that:
(10) / i '> lon/ f c if fc<0.
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We construct h as before, noting that h has no periodic points and that h is C1

everywhere except at the discontinuity. Thus when we modify h to obtain g we may
require that g be C1 and that:
(11) I f x e / l ! andg0c)£/O)theng'(jc)<-2.

Then every g-periodic orbit is a source. For any such orbit enters /_i but not Jo.
Therefore \g'\ > 1 everywhere on the orbit and |g'| > 2 somewhere on the orbit.

Finally, construct/ as before, taking care that it be C1.

(4.2) PROPOSITION. The C1 maps f and g have homtervals.

Proof. We show that /x is a homterval for / and, a fortiori, for g.
If / i were contained in the domain of attraction of an /-periodic orbit, then by (8),

this orbit would lie entirely in [0,1]. However, all/-periodic orbits contained in [0,1]
are g-periodic orbits as well, and all g-periodic orbits are sources. Thus / t cannot be
contained in the domain of attraction of any periodic orbit for / or g.

It now follows from (6) that / i is a homterval for / and for g. •

Since a C2 diffeomorphism of the circle without periodic points must be transitive
[5], the Denjoy example cannot be C2. Thus our example cannot be C2 either. It is
unknown whether there are C2 maps of the interval with homtervals.

5. Unstable sets for fixed points
We now turn our attention to non-wandering points with finite orbits. We shall see
that any such point which is not itself periodic is homoclinic to a periodic point. By
means of an analysis of the 'unstable sets' of the periodic point, we shall obtain
information about the return times of any neighbourhood of the original point to
itself. In this section, we concentrate on the properties of unstable sets which we shall
find useful in the sequel.

Let p be a fixed point of /. The unstable set of p (under /) is

where the intersection is taken over all (basic) neighbourhoods of p. For S = L or R,
the one-sided unstable set of p (under /) is

where the intersection is taken over all S- neighbourhoods of p.
We shall use abbreviated notation such as A(p) or A whenever there is no danger

of confusion.
It is easy to see that A(p) and As(p) are closed (possibly degenerate) intervals

containing p. Since f(p) = p, in either definition the union over n > 0 may be replaced
by the union over n > TV for any pre-assigned N. It is clear that A = AL u AR.

We caution the reader that A(p) need not be a neighbourhood (or even a one-sided
neighbourhood) of p, and that Ai. need not be the 'left side' of A. In particular, any of
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18 E.M. Coven and Z. Nitecki

the following kinds of behaviour may be observed: AL(p) is an R-neighbourhood of
p, Ai. = AR = A, AR is a proper subset of Ai., etc.

In terms of sequences:
(5.1a) x e A(p,/) if and only if there exist y,-»p and fe,-»oo such that fkl{yi)-*x.

(5.1b) x e As(p, f) if and only if there exist y, -*p and fe, -»<x> such thatf '(y,) -* x.

(Here y, -»p means that y, -» p and y, < p for sufficiently large /; y, »̂p is analogously
denned.)

Using (5.1a) we see that A is the (first) prolongation set (or equivalently in this
case, prolongation limit set) of p, as defined by T. Ura [14] (also see [1] [2]).

Using the notation A°(p,f) for the interior of A(p, /) , we have:

(5.2a)

(5.2b)
Vs n>0

(The sets on the right side of (5.2) are the unstable manifolds used by L. Block [3] in
his work on maps of the interval.)
(5.3) Except possibly forx=p,xe A°(p, f) if and only ifxe A°L(p, f) u AR(p, /)•

(5.4) LEMMA. /[As(p,/)] = As(p,/) and hence f[A(p, f)] = A(p,f).

Proof. If y, %p, kt-*oo and fk'(yi)-*x, then /**'(y,)-»/(*). Thus /[As(p)]c As(p).
On the other hand, let y e As(p). We find xeAs(p) with f(x) = y. We may assume

that y^p (otherwise choose x=p) . There exist y, ^*p and ki-*ao such that
/fc'(y<)-*y- Let {/'} be a subsequence such that Z*1""1 (y,-) converges, say to x. Then
xeAs(p)and/(x) = y. D

The property described in (5.5a) below clearly holds when p is a source. The more
careful argument required in the general case also gives a one-sided version (5.5b)
which will be crucial in the proof of theorem 3.

(5.5) LEMMA, (a) / / x e A°(p, /) , then for every neighbourhood V of p, there exists
N >0 such thatxefn(V) for all n>N.

(b) If x € A°s(p, / ) , then for every S-neighbourhood Vs of p, there exists N>0 such
thatxef2n+N(Vs) for all n >0.

Proof. We shall show
(b1) If x € Al(p, f), then one of the following statements holds:
(i) For every closed, connected neighbourhood V = Vs u VT of p, there exists

N > 0 such that x e /" (Vs) for all n > N.
(ii) For every closed, connected neighbourhood V = Vs u VT of p, there exists

N>0 such that x efln+N(Vs) and xef2n+N+1(VT) for all n >0.
Clearly (b1) implies (b) and, by (5.3), (a) as well.
To prove (b1), let A: e As(p). We may assume that x #p, for otherwise there is

nothing to prove. Let Vo be a neighbourhood of p such that *£ Vo. We consider only
neighbourhoods V of p small enough so that V u / ( V) c Vo.
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Let V = Vs u VT be such a closed, connected neighbourhood of p.
Then /(Vs) £ Vs, for otherwiseU /"(Vs) £ Vo and hence by (5.26), x e Vo. There-
fore one of the following statements holds:
(1) /(VS)2VS.
(2) f(Vs) = Ws u WT where Ws c Vs and WT is non-degenerate.

If there are arbitrarily small V for which (1) holds, then (i) holds for all V. Suppose
then that (2) holds for all sufficiently small V. Since Vs u WT c V u / ( V) c v0, then
as above, /(Vs u WT) £ Vs u WT and, in particular, f(WT) £ Vs u Wr. Therefore
one of the following statements holds:

(4)
Suppose there are arbitrarily small V for which (3) holds. For any such V, since

x£ Vs and x efN(Vs) for some AT > 1, it follows from (2) that x efn(WT) for all
n^N-1, and hence that xefn(Vs) for all n>N. Thus there are arbitrarily small V
for which (i) holds. Hence (i) holds for all V.

Suppose then that (2) and (4) hold for all sufficiently small V. For any such V,
/2(Vs)2Vs. Since xefN(Vs) for some N>1, it follows that (ii) holds for all
sufficiently small V and hence for all V. •

6. Light maps
We will prove theorem 3 by induction on the period of the periodic point in the orbit
of x. The first step is to show that if x e fl and the orbit of x contains a fixed point of/,
then x £ il(f) for all odd n > 1. The argument is simpler and the result stronger ('all
odd' becomes 'all') when / is a 'light' map. We devote this section to a digression on
such maps. The results of this section will not be used elsewhere in the paper.

Recall that a map is light if inverse images of points are totally disconnected. For
maps of the interval, / is light if for every non-degenerate subinterval / c /, / ( / ) is
non-degenerate; equivalently, / is light if for every x el and every neighbourhood U
of x, f(U) contains a one-sided neighbourhood of f(x).

We call / open at x if for every neighbourhood U of x, f( U) is a neighbourhood
of/(x).

The following result was proved in [11] for piecewise monotone maps, which are
open at all points except (possibly) critical points and endpoints.

(6.1) LEMMA. / / / is light and x efl — P, then every power of f is open at x.

Proof. If /" is not open at x for some B S I , then there is a closed, connected
neighbourhood U of x, disjoint from P, such that either f(U) is degenerate orf{x)
is an endpoint of f"(U). Since /, and hence /", is light, the first case cannot occur.

In the second case, fn(U) is a one-sided neighbourhood of /"(*), and in fact /"
maps both sides of U = UL u UR to the same side of/" (x). Since x e £1 - P, by (2.7), x
is not an endpoint of / and hence neither UL nor UR is degenerate. By shrinking U,
we may assume that f"(U) =f"(UL) =fn(UR).

By (2.6), there exist y e t / and m>n such that fm(y) = x. Without loss of
generality, yeUL. Then there exists zsUR such that f"(y)=f"(z), and hence
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fm(z) = x as well. But then fm(y)<y and fm(z)>z. By (2.4), UnP*0, a
contradiction. •

(6.2) LEMMA. For light maps, ifx e Q and the orbit of x contains a fixed point of f, then
x€Q.(f)foralln>l.

Proof. If x e P, there is nothing to prove. So we assume that x e fi - P.
Let p =fm(x) be the (unique) fixed point in the orbit of x. Since i e ( l , there exist

Xi -> x and kt -> oo such that fk> (Xi) -> X. Then y,- = /m(x,) -» p and /*'~m (y,) -> x. There-
fore x € A(p).

Now let U be a neighbourhood of x. It suffices to show that /'(U) n (/ 5* 0 for all
sufficiently large /. Since x # p and A(p) is an interval containing both x and p, it
follows that £/ n A°(p) # 0 . Let z e £/ n A°(p). By (6.1), /m( t / ) is a neighbourhood
of p, hence by (5.5a) applied to z and fm(U), there exists N > 1 such that
z €/'[/m(Uj\ for all />N. Hence f'(U)nU*0 for all j>N + m. D

As an easy consequence of (6.2), we have the following.

THEOREM 2. For light maps, ifx€ Cl(fN) and the f-orbit of x contains a fixed point of
fN, then x e fl(/") for a//« > 1.

Proo/. Since / is light, so is fN. Hence by (6.2), x £ n(/nJV) for all n > 1. Therefore
x €(!(/") for all n > l . D

7. Another example
The example of § 1 is typical of light maps with il(f) # H(/") for some n > 2. The
following example shows that more complicated behaviour may occur for non-light
maps (figure 5).

Let / : [0, 1 ] -»[0, 1 ] be differentiable and let 0 < xL < xR < p < c < 1 satisfy:
(1) / (*J = p, f(xR) = p, f(p) = p, f(c) = xL.
(2) / is increasing in some L- neighbourhood of xL and some /?-neighbourhood of

(3) /[0, xL] s [JCR, p], f[xL, xR] = p, f[xR, p] s [p, 1], /[p, c] = [xt, p], /[c, 1] c
[xL,xR\
(4) For every L-neighbourhood Vz. of p, ce/2n+1(Vj.) for some « ^ 0 .

(7.1) PROPOSITION. With notation as above, xLeCl(f)-n(f2).

Proof. Let U be a closed, connected neighbourhood of xL small enough so that / is
increasing on UL and UR ^[xL, xR]. Then f(U) is an L-neighbourhood of p and
hence f2(U) £/[xR, p] s [p, 1]. Since /2[p, 1] s [p, 1], it follows that xL£ O(/2).

On the other hand, by (4) cef2n(U) for some n > l . Hence xLef2n+\U) and so

•
It is easy to see why (6.2) fails for this example: / is not open at xL (the image of a
small neighbourhood of xL is only an L-neighbourhood of p) and so we cannot apply
(5.5a) to conclude that x e £!(/") for all n > 1. However, we could apply (5.5&) and
discover that x e il(f) for all odd n > 1. Our proof of theorem 3 will reduce to such
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FIGURE 5

an argument. The reduction is based on a more detailed study of the unstable sets
As( P, fN) of fixed points of fN.

8. Unstable sets for periodic points
In this section, we shall prove some technical results about the relations among the
various unstable sets As{p, fN) as p ranges over the /-orbit of a fixed point of fN.
These results will be used in the proof of theorem 3 in the next section. For notational
convenience, in the proofs we will abbreviate As(p, f ) to As(p).

Throughout this section, p and q will denote fixed points of fN.

(8.1) LEMMA. Let q =/r(p). If for every S-neighbourhood Vs ofp, f(Vs) contains a
T-neighbourhood of q, then f[As(p, fN)]^AT(q, fN). If, furthermore, for every
sufficiently small such Vs, f(Vs) is a T-neighbourhood of q, then fr[As(p, f )] =
AT(q,fN).
Proof. To prove the first statement, let y e AT(q). Without loss of generality, y # p.
There exists y, ?*q and it, -»• oo such that/fc|Ar(y,-) -» y. Choose x, ->p with/r(x,) = y,. By
passing to a subsequence, we may assume that fk'N(xi) converges, say to x. Then
xeAs(p)ar\df(x) = y.

To prove the second statement, let x e As(p). There exist JC, -»p and kt -* oo such
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We remark that for piecewise monotone maps, if the first condition holds, then so
does the second.

(8.2) LEMMA. Let q = f'(p). If As(p, fN) is non-degenerate, then there exists a side T
such that

(i) For every S-neighbourhood Vs ofp, f(Vs) contains a T-neighbourhood ofq.
(ii) fr[As(p, /") ] = AT(q, fN) is non-degenerate.

Proof. At least one side T satisfying (i) must exist, for otherwise \s(p) would be
degenerate. Furthermore, it follows from (5.4) that f[As(p)] is non-degenerate.
Thus it suffices to show that f[As{p)] = AT(q) for some T satisfying (i).

If for every sufficiently small S-neighbourhood Vs of p, f(Vs) is a T-neighbour-
hood of q, then by (8.1), /r[As(p)] = AAq).

We therefore suppose that for every S-neighbourhood V$ of p, f(Vs) is a
neighbourhood of q. Then both T = L and T = R satisfy (i). Furthermore, by
applying the argument in the proof of the second statement of (8.1) to A(q) rather
than AT(q), we may conclude that f[As{p)] = A(q). Therefore
(1) fr[As(p)] = AL(q)uAR(q)-

Choose m > 0 so that r + m is a multiple of N. Then at least one of the following
statements is true.
(2) For at least one choice of T, fm[AT(q)] contains an S-neighbourhood of p.
(3) For both choices of T, fm[AT(q)] contains no S-neighbourhood of p.

If (2) holds, then /m[AT(<7)]2 As(p). Applying/' to this containment and using
(5.4), we get AT(q) sf[As(p)]. The equality in (ii) then follows from (1).

If (3) holds, then the intervals fm[AL(q)] and fm[AR(q)] have p as their common
S-endpoint. Therefore, one is contained in the other. Let T correspond to the larger
set. Again the equality in (ii) follows from (1). •

(8.3) LEMMA. Iff(p) e A°s(p, fN), then f[As(p, / " ) ] = As(p, fN).

Proof. It suffices to show that / r[As(p)]sAs(p). For then, applying f to this
containment N — 1 times, we obtain

frN[As(p)]^ • • • s r [ A s ( p ) ] s As(p).

Since the ends are equal by (5.4), f[As(p)] = As(p).
So, let x ef[As(p)] = AT(q), where q =f(p) and T is given by (8.2). Let U be a

neighbourhood of x and let Vs be an S-neighbourhood of p. Since q 6 AJ(p), there
exists ifc>0 such that fkN(Vs) contains a neighbourhood of q and, in particular,
contains a T-neighbourhood WT of q. Since x e AT(q), there exists / > 0 such that
UnfiN(WT) ;*0. Then Unfi+kw(Vs)* 0 and hence x e As(p). •

(8.4) LEMMA. Let l < r < A T - l . If q=f(p)eAs(p,fN), then either f2r(p) = p or
As(p, fN) = AT(q, fN) where Tis as in (8.2).

Proof. We first prove (8.4) assuming that q is the left-most point of the /-orbit of p.
We may assume that p, q, f(q) are distinct, for otherwise f2r(p) = p. Then one of

the following statements holds:
(4) q<p<fr(q).
(5) q<f{q)<p.
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Suppose (4) holds. Since fr (q) £ fr[As(p)] = AT(q) and q eAT(q), it follows that
p e A°T(q). Since p =fs~'(q), it follows from (8.3) that/Ar"r[AT(?)] = AT{q). By (8.2),
fN'r[AT(q)] = As(p). Therefore As(p) = AT{q).

Suppose (5) holds. Then fr{p)=fr{q) e AJ(p). Then by (8.3), /2r[As(p)] = As(p).
By (8.2), f2r[As{p)] = fr[AT(q)l Therefore A s (p )=f [AT(q)l and hence p =
fN~r(q)efN-r[As(p)] = AT(q). Thus f (g)e A\(q). By (8.3), f [AT(q)] = AT(q) and
hence As(p) = AT(q).

This completes the proof when q is the left-most point of the /-orbit of p.
To prove (8.4) in general, let q' = fr(p')e As(p') where p' is an arbitrary point of

the /-orbit of p. We show that either fr{p') = p' or As(p') = AT{q') where T is given
by (8.2) using p' in place of p and S' in place of S.

There exists r ' , 0 < r ' s J V - l , such thatp =f(p') and q =fr(q'). We may assume
that r' # 0, for otherwise p = p' and there is nothing more to prove. Let 5" be given by
(8.2) using p' in place of p, r' in place of r, and S' in place of S. Then
(6) As»(p)=f[As.(p')].

Since qe As»(p), either /2r(p) = p, in which case /2'(p') = p'> or As-(p) = AT"(<7)
where T" is given by (8.2) using 5" in place of S. Then
(7) Ar{q)=fr'[AT{q')l

Since fN~r'[AS;(p)] = fN~r'[AT'(q)], it follows from (6) and (7) that As{p') =
AT{q'). O

9. Theorem 3
In this section, we prove

THEOREM 3. If x e fl has a finite orbit, then x € fl(/") for all odd n > l .

The proof of theorem 3 is by induction (on N) in the following statement:

If x e ft and the /-orbit of x contains a fixed point of fN, then x e ft(/") for all odd
na=l. (*)

For N = 1, 2, (indeed for any power of 2), (*) is a consequence of the following
result.

(9.1) LEMMA. Ifx e Hand the orbit of x contains a fixed point offN, thenx eil(fn)for
all n relatively prime to 2N.

Proof. We may suppose that x e Q-P , for if x e P, then x e ft(/") for all n s 1.
As in the proof of (6.2), let q =f'(x) be a fixed point of/N in the/-orbit of x. Since

jcefl, there exist *,-»* and fc,-»oo such that /k|(*;)-»*. Then y,-=/'(*,•)-»4 and
fk' '(yd •* x. By choosing a subsequence, we may assume that all the fc, lie in the same
residue class modulo N, say fc, = A: >/. Then z, =/*(*,)-»/fc0O = p, and/fci~'c(z,)^x.
By choosing a further subsequence, we can find a side S such that z, -»p. Hence
xeAs(p, /N) .

Summarizing, we have found p, k and 5 such that:
(1) fk(x) = p.
(2) fN(p) = p.
(3) x€As(p,/N).
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(4) For every neighbourhood U of x, fk (U) contains an 5- neighbourhood of p.
It is crucial here that S be the same in (3) and (4).
Now let U be a neighbourhood of x. Since As(p,fN) is an interval, which by (3)

contains x, U n A°s(p, fN) ^ 0 . Let z be any point in this intersection. By (4), fk(U)
contains an 5-neighbourhood of p. Then by (5.5b) applied to z e AJ(p, fN) and
fk(U), there exists M > 0 such that z ef2m+M)N[fk(U)] for all m >0. Therefore
Unf2mNHk+MN)(U)*0 for all m > 0 . Since {2m7V + (A;+A/N)|m >0} contains
multiples of all n relatively prime to 2N, it follows that x e ft(/") for all such n. •

To complete the proof of theorem 3, suppose that (*) is true for all maps of the
interval and all M < N - 1 where N s 3. We prove (*) holds for N.

Let x € ft(/) and suppose that the /-orbit of x contains a fixed point oifN. We may
assume that N is the least /-period of this point. As in the proof of (9.1), there is a
point p, an integer k > 1, and a side S such that:
(5) fk(x) = p.
(6) f"(p) = p.
(7) xeA s (p , / N ) .
(8) For every neighbourhood U of x, fk(U) contains an 5-neighbourhood of p.

Suppose that k and N have a common factor m s 2. Let A: = ml, N = mM and
g = / m T h e n
(5') g'(x)=p.
(6') gM(p) = p.
(T) xe\s(p,gM).
(8') For every neighbourhood U of x, g'{U) contains an S-neighbourhood of p.

It follows from (7') and (8') that x e ft(g), and from (5') and (6') that the g-orbit of x
contains a fixed point of gM. But M < N -1, so by the inductive hypothesis, x e Cl(g")
for all odd n > 1. Therefore * € fl(/") for all o d d n > l .

Suppose then that k and TV are relatively prime. Let jN be the least multiple of N
greater than k. Then jN = k + r where 1</-<AT-1, and r and N are relatively
prime. Let q =f'N(x). Then
(9) qefiN[As(p,fN)] = As(p,fN).

Since <? =fN~'(p), by (8.2) there exists a side T such that:
(10) For every S-neighbourhood Vs of p, fN~r(Vs) contains a T-neighbourhood
of q.
(11) fN'r[As(p,n] = AT(q,fN).

Then by (8.4), either f'(p) = p or As(p) = AT(<?). lif'ip) = P, then, since JV is the
least /-period of p, N = 2r. But r and JV are relatively prime, so N = 2. However, we
have assumed that N s 3. Therefore As(p) = AT(q) and
(5") fiN(x) = q.
(6") fN(q) = q.
(7") xeAT(q,fN).
(8") For every neighbourhood U of x,f'N(U) contains a T-neighbourhood of q.

Thus x e tt(fN) and the /'"'-orbit of x contains a fixed point of f . Then by (9.1),
x e n(/n /v) for all odd n > 1 and hence JC e n(/") for all odd n > 1. •
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This completes the proof of theorem 3 and hence of the main theorem.

25

10. The sets il{fn)
It follows from the main theorem that if n =2fcm where m is odd, then O(/n) =
il(f2k). Thus all the possible sets £!(/") appear in the nested sequence

In this section, we shall show how to realize any pre-assigned sequence of
equalities and strict containments in (*).

Our main tool is the 'return time doubling' construction of P. Stefan [13]. Starting
with a map / : / -* / , it produces a map g:J -» / where / 2 / and g2\l = f. We illustrate
this construction with / = [0, 1] and / = [0, 3]. Define g as follows:

+ 2 i fxe[0, l ]
x - 2 if x e[2, 3]

and linearly on [1, 2] (figure 6).

f
l

FIGURE 6
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Then H(g) = H(/) u {x + 2\x e H(/)} u {p} where p is the unique fixed point of g in
(1,2). Furthermore, the return times under g of the non-wandering points in [0, 1]
are twice the return times under /.

Now consider the map / = /0 of § 1. By theorem 2:

Applying Stefan's construction to f0, we obtain a map /i satisfying:
(2) n(/i) = n(/?)an(/?) = n(/S) = • • •

Iterating this construction n times, we obtain a map /„ with exactly one strict
containment in the sequence (*):
(3) £!(/„) = • • - = n(/;")3"(/2"+I) = - • •

It is now easy to construct a map / with any finite set of strict containments in (*).
Suppose that the strict containments are to follow the sets £1(/2") for n = nu ..., nm.
Let I\,... ,Im be pairwise disjoint, closed intervals (for convenience, let 7t+i lie to
the right of Ik) and define / so that f\lk is conjugate to the map fnk defined above.
Then define / linearly between the /ks (figure 7).

FIGURE 7

Suppose we wish to construct a map / with an infinite set of strict containments in
(*), occurring after the sets il(f2") for n=nun2, Choose the intervals Iu I2, • • •
so that the sum of their lengths and the lengths of the intervals between them
converges. (This can be done by 'scaling down' the intervals on which the maps/nk are
defined.) Let gm:Jm^> Jm be the map defined in the preceding paragraph for the finite
set consisting of the first m strict containments. Then Ji^J2Z---. Let / = cl [ U / m ]
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and extend each gm to all of / by letting the right-hand endpoint of / be a fixed point
and defining gm linearly between the right-hand endpoints of Jm and /. Then the
sequence of functions {gm} converges uniformly to a function / which has the
required sequence of strict containments in (*) (figure 8).

h h h ...

The reader will have observed that Stefan's construction creates a 'corner' at x = 2
(and possibly one at x = 1 as well), thus destroying whatever smoothness the original
map possessed. However, this corner can be smoothed if we allow J to be somewhat
larger, say / = [-e, 3], and define g as in figure 9. (A similar construction will smooth
a corner at x = 1.) This can be done without creating additional non-wandering
points.

We can use the smooth version of Stefan's construction to construct smooth
examples for any finite set of strict containments in (*). If there are infinitely many
strict containments in (*), then this procedure yields a map which is neither piecewise
monotone nor smooth, although it fails to be smooth only at the right-hand endpoint.

11. Maps of higher-dimensional spaces
In this section, we briefly examine to what extent our results carry over to maps of
higher-dimensional spaces. K. Sawada [12] has recently constructed an example of a
diffeomorphism g of the 2-sphere for which ft(g) ^ O(g2). This example leaves open
the possibility that the conclusion of our main theorem (O(g) = n(g") for all odd
« s l ) holds for maps of compact manifolds of dimension greater than one.
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FIGURE 9

We shall show that for any n > 2, there is an orientation-preserving diffeomor-
phism g of the closed 2-disk such that il(g) * H(g"). Such a diffeomorphism can be
extended to any compact surface and then to any compact manifold of dimension
greater than one.

Consider a flow on the square [0, 1] x [0, 1] with the orbit picture shown in figure
10. Each edge is invariant. There are eight fixed points, one at each corner and four
others - a, = (/, a) and o, = (/, b) (i = 0,1) - lying on the vertical edges. These last
four fixed points are of saddle-node type. We assume for definiteness that a, lies
above bt. For example, define the flow near a, and o, by

\a-x2 near a,
I *2 — 0 near o,.

X2
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FIGURE 10

Then there is a unique orbit with a-limit set {a0} and a unique orbit with w- limit set
{bi}. We assume these orbits are the same saddle-connection orbit y. Finally, we
assume that

xi>0 for 0 < X i < l .

The time-one map of such a flow can be modified near some point of y so that for
the resulting diflfeomorphism tj/, Wu(a0, <A) intersects Ws{bi, i//) transversally (figure
11). (See, for example, [10, pp. 207-208].)

Then [10, p. 192],
(1) cl[W{but)]3Wu(ao,ili).

Since the invariant manifolds of a fixed point of a map are the same for any positive
power of the map, we may, for any n >2 , replace ip with tpn in (1). In particular,
(2) For any n > 2 and any x = (0, c) and y = (1, d) with c and d between a and b,
there exist JC, -* x and jfc,- -> +oo such that t//k'"(JC,-) -» y.

Now glue together n copies of the square (identifying ao in each cell with a\ in the
next cell in the clockwise direction, etc.) to form an annulus, and extend i// to the
annulus in the obvious way. Let T be an orientation-preserving diffeomorphism of
the annulus, commuting with </», which translates each cell clockwise by one cell. Let
g = tp°T. Finally, extend g to the (small) disk inside the annulus, so as to obtain an
orientation-preserving diffeomorphism of the (large) disk (figure 12).

(11.1) PROPOSITION. With notation as above, H(g) ̂  fl(g").

Proof. On the annulus, g" = ip". Therefore any point of ft(g") which is an interior
point of the annulus must also be in n(i^") £ O.(i//). But it is easy to see that Cl(t(t)
contains only the fixed points of ip.
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FIGURE 11
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We show that every point lying between a and b on a radial segment is in il(g). Let
x be such a point. Then g~l(x) lies between a and b on the next radial segment in the
counter-clockwise direction. Since g" = if/" on the annulus, by (2) there exist *,-»*
and ki -* +oo such that g*'" (*,-)-»• g~\x). Then gfc'n+1(xj) -» x and hence x e H(g). •

The argument used in the proof of (11.1) can be used to show that fi(g)#fl(gfc)
unless k and n are relatively prime. Is this a general phenomenon? More specifically,
if g:M-*M where dimAf>2 and if xeil(g) — fl(g"), then must there exist
m=m{x) such that x E Cl(gk) if and only if k and m are relatively prime? Cf. (9.1).
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