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Geometry of Uniform Spanning Forest
Components in High Dimensions

Martin T. Barlow and Antal A. Járai

Abstract. We study the geometry of the component of the origin in the uniform spanning forest of

Z
d and give bounds on the size of balls in the intrinsicmetric.

1 Introduction

_e uniform spanning tree (UST) on a ûnite graphG is a random spanning tree ofG,
chosen uniformly among all spanning trees of G. Motivated by questions of Lyons,
Pemantle [Pem91] considered the weak limit of the USTs on an increasing sequence

of subgraphs Vn ↑ Zd , and showed that the limit exists. _e limiting random object

is a random spanning forest of Zd , and is called the uniform spanning forest (USF).
Implicit in Pemantle’swork is the result that an alternative choice of boundary condi-
tion yields the same limit. Namely, form the “wired” graph GW

n = (Vn ∪{rn}, En), by
collapsing all vertices in Z

d ∖Vn into rn , and removing self-loops created at rn . _en
the weak limit of the USTs on GW

n coincides with the USF. One of Pemantle’s results
was that the USF is connected almost surely in dimensions 1 ≤ d ≤ 4, but it consists
of inûnitely many (inûnite) trees almost surely in dimensions d ≥ 5.

A fundamental tool in the study of the UST/USF is Wilson’s algorithm [W, LP],
which allows one to construct the UST/USF from Loop-Erased Random Walks
(LERWs). All the necessary background about the UST/USF that we do not give in
this paper can be found in [LP].

Masson and Barlow studied the geometry of the LERW and the UST in two di-
mensions, and compared the sizes and geometry of balls in the intrinsic metric with
Euclidean balls [Mas, BM1, BM2]. Combined with resistance estimates, this gave a
detailed understanding of random walks on the UST. In this note we make similar
estimates on the geometry of the LERW and the USF in dimensions d ≥ 5. We are
interested in properties such as the length of paths and volumes of balls, both with
respect to Euclidean distance and the intrinsic metric of the tree components. As
well as its interest from the point of understanding the USF in high dimensions, our
_eorem 5.4 is used in work of Bhupatiraju, Hanson, and Járai [BHJ] on sandpiles.
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LetU = UZd be the USF in Z
d , viewed as a random subgraph of the nearest neigh-

bour integer lattice. Write U(x) for the connected component of U containing x. Let

dU(x , y) ∶= graph distance between x and y in U,

where if y /∈ U(x), we set dU(x , y) = ∞. We denote balls in diòerent metrics as
follows:

BE(x , r) = {y ∈ Zd ∶ ∣x − y∣ ≤ r}, Bn = BE(0, n)

Q(x , n) = {y ∈ Zd ∶ ∥x − y∥∞ ≤ n}, Qn = Q(0, n),

BU(x , r) = {y ∈ Zd ∶ dU(x , y) ≤ r},

Ourmain result is the following.

_eorem 1.1 Let d ≥ 5. _ere exist constants c, C, depending only on d such that for
n ≥ 1, λ ≥ 1,

P(∣BU(0, n)∣ ≥ λn2) ≤ Ce−cλ ,(1.1)

P( ∣BU(0, n)∣ ≤ λ−1n2) ≤ Ce−cλ
1/5

.(1.2)

An outline of this paper is as follows. Section 2 introduces our notation. In Sec-
tion 3we begin by recalling some basic properties of LERW[La2,Mas,BM1]. We then
obtain estimates on the probability that a LERW hits a point (Lemma 3.10 and (3.15)).
In particular (_eorem 3.13) we obtain a natural bound on the length of dU(x , y). In
Section 4, using tree-graph inequalities, we use the estimate in_eorem 3.13 to obtain
the upper bound (1.1). In Section 5 we prove the lower bound (1.2).

2 Notation

For any of the cases of Zd , or D ⊂ Zd ûnite or inûnite, we let

dU(x , y) ∶= graph distance between x and y in U,

where, if y /∈ U(x), we set dU(x , y) = ∞. _emeaning of U will always be clear from
context.

2.1 Notation for Sets

For A ⊂ Zd we deûne

∂A = {x ∈ Zd − A ∶ x ∼ y for some y ∈ A},
∂ iA = {x ∈ A ∶ x ∼ y for some y ∈ Ac}.

Let π i be projection onto the i-th coordinate axis, and letHn be the hyperplane

Hn = {x ∶ π1(x) = n}.

Let Rn = {n} × [−n, n]d−1 denote the “right-hand face” of [−n, n]d , in the ûrst coor-
dinate direction.
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2.2 Notation for Processes

We write Sx = (Sxk , k ≥ 0) for a simple random walk with Sx0 = x, and P
x for its law.

We let S = S0, and P = P
0. When we discuss random walks Sx and S y with x /= y,

they will always be independent.

A path γ is a (not necessarily self avoiding) sequence of adjacent vertices inZd , i.e.,
γ = (γ0 , γ1 , . . . ) with γ i−1 ∼ γ i . (Sometimes we will write γ(i) for γ i .) Paths can be

either ûnite or inûnite. Wewill o�en need to consider the beginning or ûnal portions
of paths with respect to the ûrst or last hit on a set. To this end, we deûne a number

of operations on paths. Let γ = (γ0 , γ1 , . . . ) be a path. Given a set A ⊂ Z
d deûne

k1 =min{k ≥ 0 ∶ γk ∈ A}, k2 =max{k ≥ 0 ∶ γk ∈ A}, and set

B
F
Aγ = (γk1 , γk1+1 , . . . , ), B

L
Aγ = (γk2 , γk1+1 , . . . , ),

E
F
Aγ = (γ0 , . . . , γk1), E

L
Aγ = (γ0 , . . . , γk2),

Θkγ = (γk , . . . ), Φkγ = (γ0 , . . . , γk),
HA(γ) =∑

i

1(γ i∈A) .

_usBF
Aγ is the path γ ‘Beginning’ at the ‘First’ hit on A, andEL

Aγ is the path γ ‘Ended’
at the ‘Last’ hit on A, etc. If γ is a ûnite path, we write ∣γ∣ for the length of γ. HA(γ)
is the number of hits by γ on the set A. Let Lγ be the chronological loop erasure of
γ [La1,Law99]. If γ = (γ0 , . . . , γn) is a ûnite path, let Rγ = (γn , γn−1 , . . . , γ0) be the
time reversal of γ.

We deûne hitting times τA = inf{ j ≥ 0 ∶ S j /∈ A}, TA = inf{ j ≥ 0 ∶ S j ∈ A},
T+A = inf{ j ≥ 1 ∶ S j ∈ A}. When we need to specify the process, we write TA[S], etc.

Given a domain D ⊂ Zd , we denote the Green’s functions

GD(x , y) = Ex( ∑
0≤k<τD

1(Sx
k
=y)) , G(x , y) = GZd (x , y).

Note _roughout this paper, c and C will denote positive ûnite constants that only
depend on the dimension d, and whose valuemay change from line to line, and even
within a single string of inequalities.

3 Properties of the LERW

In this section we derive a number of auxiliary estimates on LERW in dimensions
d ≥ 5. Some of these will be used in Sections 4 and 5, where we give upper and lower
bounds on the volume of balls in the intrinsicmetric. Two results of this section are
of interest in themselves. Proposition 3.12 gives a large deviation upper bound on the
lower tail of thenumber of steps in aLERWup to its exit from a large box_eorem 3.13

gives an upper bound on the probability that x , y ∈ Zd are in the same component of
U and the path between them has length atmost n.

_e papers [Mas,BM1] give a number of properties of LERW inZ2, some ofwhich
hold formore general graphs. A fundamental fact about LERWs is the followingDo-
main Markov property [La2].
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Lemma 3.1 Let D ⊂ Z
d , let γ = (γ0 , . . . , γn) be a path from x = γ0 to Dc . Set

α = Φkγ, β = Θkγ. Let Y be a random walk started at γk conditioned on the event{τD(Y) < T+α (Y)}. _en

P(L(EF
Dc S) = γ∣Φk(L(EF

Dc S)) = α) = P(L(EF
DcY) = β).

A key result in [Mas] is a separation lemma when d = 2 [Mas, _eorem 4.7]. Let

S , S′ be independent SRW in Z
d with S0 = S

′
0 = 0, and Tn , T

′
n be the hitting times of

∂Qn . Set

Fn = {S[1, Tn] ∩ S′[1, T ′n] = ∅},
Zn = d(S(Tn), S′[1, T ′n]) ∨ d(S′(T ′n), S[0, Tn]).

Lemma 3.2 (Separation lemma) Let d ≥ 5. _ere exists c1 > 0 such that

P(Zn ≥
1
2
n∣Fn) ≥ c1 .

Proof Let e1 = (1, 0, . . . , 0). Let X be a SRW started at 2ke1, and

Ak = { je1 , k ≤ j ≤ 2k}.
Since d ≥ 5, two independent SRWs intersect with probability less than 1, and thus
there exists k (depending on d) such that P0(S hits X ∪ Ak) ≤ 1

16
d−2. Now ûx this

k, and let G1 = {S i = −ie1 , S′i = ie1 , 0 ≤ i ≤ k}. So P(G1) = (2d)−2k . _en, writing
G2 = {S[1, Tn/2] ∩ S′[1, T ′n/2] /= ∅},
P(G2 ∣ G1) ≤ P(S[k + 1, Tn/2] ∩ S′[1, T ′n/2] /= ∅ ∣ G1)

+ P(S[1, Tn/2] ∩ S′[k, T ′n/2] /= ∅ ∣ G1) ≤ 1
8
d−2 .

Let H± be the le� and right faces (in the e1 direction) of the cube Qn/2. We have

P(STn/2
∈ H− ∣ G1) ≥ (2d)−1 .

So if G3 = G
c
2 ∩ {STn/2

∈ H− , S
′
T′
n/2
∈ H+}, then

P(G3 ∣ G1) ≥ P(STn/2
∈ H− , S

′
T′
n/2
∈ H+ ∣ G1) − P(G2 ∣ G1)

≥ (2d)−2 − (8d2)−1 = (8d2)−1 .
If G3 occurs, then let G4 be the event that S′ then (i.e., a�er time T ′n/2) leaves Qn

before it hits hits H0, and S leaves Qn before it hits H0. By comparison with a one-
dimensional SRW, each of these events has probability at least 1/3, so P(G4∣G3) ≥ 1/9.
On the event G1 ∩ G3 ∩ G4 the path S[0, Tn] is contained in [−n, 0] × [−n, n]d−1 ∪
Qn/2, and π1(S′T′n = n), so that d(S′T′n , S[0, Tn]) ≥ n/2. _e same bound holds if we

interchange S′ and S, and so we deduce that

P(Zn ≥
1
2
n∣Fn) ≥ P({Zn ≥

1
2
n} ∩ Fn) ≥ P(G1 ∩G3 ∩G4) ≥ (2d)−2k(8d2)−19−1 .

Remark 3.3 _e result in d ≥ 5 ismuch easier than d = 2, since with high probabil-
ity S and S′ do not intersect. _e proof for d = 2 uses the fact that if the two processes
get too close, then by the Beurling estimate they hit with high probability.
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Figure 1: Setup and notation for the piece of the LERW in the shell Qn+m ∖ Qn .

In the remainder of this section we give some estimates on the length of LERW

paths in Z
d with d ≥ 5. We ûx D ⊂ Zd and N ≥ 1 such that QN = Q(0,N) ⊂ D. We

will be interested in the number of steps the LERW from 0 to ∂D takes up to its ûrst

exit from QN . Let S be SRW on Z
d with S0 = 0. Let L = L(EF

Dc(S)). In words, L is
the loop erasure of S up to its ûrst hit on the boundary of D.

Our estimate will be broken down into studying L in “shells” Qn+m ∖Qn . Fix n,m
such that 16 ≤ n < n + m ≤ N , with m ≤ n/8. Let α = EF

∂ iQn
L, and L′ = BF

∂ iQn
L. So

α is the path L up to its ûrst hit on ∂ iQ(0, n), and L′ is the path of L from this time
on (see Figure 1). Let us condition on α, and write x0 ∈ ∂ iQn for the endpoint of α.
When x0 ∈ Hn , we let x1 = x0 + (m/2)e1 and set

A = A(x0) = Q(x1 ,m/4), A∗ = Q(x1 , 3m/8).
When x0 lies on one of the other faces ofQn , we replace e1 by the unit vector pointing
towards that face to deûne x1 and A(x0).

Set β = E
F
∂ iQ(x0 ,m)

L′; thus β is the path L′ run until its ûrst exit from the cube

Q(x0 ,m). Let X̃z be Sz conditioned on {τD < T+α }. Note that while the law of the

process X̃z depends on α, our notation does not emphasize this point. Write X̃ for

X̃x0 , and G̃D(x , y) for theGreen’s function for X̃x . By Lemma 3.1, the domainMarkov
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property, we have (conditional on α) that L′
(d)
= L(EF

∂D X̃). _at is, L′ is distributed as

the loop-erasure of X̃ ended on the ûrst hit of ∂D. We write T̃ , τ̃, etc. for hitting and

exit times by X̃. Set h(x) = Px(τD < Tα). _en

(3.1) G̃D(x , y) = h(y)
h(x)GD(x , y), x , y ∈ D − α.

_e standardHarnack inequality [La2] gives

(3.2) h(y) ≍ h(x1), y ∈ A∗,

and thus

(3.3) G̃D(x , y) ≍ GD(x , y), x , y ∈ A∗ .

Lemma 3.4 Let d ≥ 3. For any α and y ∈ Awe have

P(y ∈ β∣α) ≤ c1m2−d ,(3.4)

E(HA(β)∣α) ≤ c1m2 ,(3.5)

E(HA(β)2∣α) ≤ c1m4 .(3.6)

Proof _is is a standard computation with Green’s functions. Let B = Q(x0 ,m).
_en, since β is a subset of the path of X̃, we have

HA(β) ≤ τ̃B

∑
k=0

1(X̃k∈A)
= HA(EF

∂ iB
X̃) =∶ H̃.

_en for p = 1, 2,

E
x0(H̃p ∣α) = Ex0( 1(T̃A∗<τ̃B)

E
X̃ T̃

A∗ (H̃p)) ≤ max
z∈∂ iA∗

E
zH̃p .

Let z ∈ ∂ iA
∗. _en using (3.3)

(3.7) E
z(H̃ ∣ α) = ∑

y∈A

G̃B(z, y) ≤ c∣A∣max
y∈A

GB(z, y) ≤ c′mdm2−d
= c′m2 .

Also since we have G̃B ≍ GB ≤ G on A∗,

E
z(H̃2∣α) ≤ 2 ∞∑

k=0

∞

∑
k= j

1(k≤τ̃B)1( j≤τ̃B)1(X̃k∈A)
1(X̃ j∈A)

≤ 2∑
x∈A

∑
y∈A

G̃B(z, x)G̃B(x , y)
≤ c∣A∣m2−d max

x∈A
∑
y∈A

G̃(x , y) ≤ c′m4 .

_is proves (3.5)–(3.6); (3.4) follows easily from (3.7) by just considering hits on y.

Remark 3.5 _e same argumentworks if we considerE(HQ(x1 ,λm)(β)p ∣α), p = 1, 2,
for any λ ∈ (0, 1

2
). Likewise for a rectangular box A′′ whose boundary is at distance

≥ cm from the boundary of Qn+m ∖ Qn . _is minor extension will be needed in
Section 5: see Figure 4 for a picture of the set A′′ that we will need.
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We now turn to the harder problem of obtaining a lower bound on EHA(β), and
begin with an inequality, similar to a boundary Harnack principle, which extends
[Mas, Proposition 3.5] to higher dimensions. In what follows Rm = Hm ∩ Qm is the
right-hand face of Qm .

Lemma 3.6 Assume d ≥ 1. LetK be an arbitrary nonempty subset of [−m + 1, 0] ×[−m + 1,m − 1]d−1. For all m ≥ 1 and allK we have

P
0(S(τQ(0,m−1)) ∈ Rm ∣ τQ(0,m−1) < T+K) ≥ (2d)−1 .

Proof Let h(z) = P
z(SτQ(0,m−1) ∈ Rm) , z ∈ Q(0,m − 1). By symmetry we have

h(0) = 1/2d. We ûrst show that

(3.8) h(z) ≤ h(0) for all z ∈ ([−m + 1, 0] × [−m + 1,m − 1]d−1) ∩Zd .

Let z′ = (0, z2 , . . . , zd). Let Xz and Xz′ be simple random walks with starting
points z and z′, respectively; we have h(z) = P(Xz

τA
∈ Rn), with a similar expression

for h(z′). We couple these random walks by taking Xz
= z + S, Xz′

= z′ + S, where S
is a SRWwith S0 = 0. _en {Xz

τA
∈ Rn} ⊂ {Xz′

τA
∈ Rn}, and so h(z) ≤ h(z′).

To prove that h(z′) ≤ h(0), we use a coupling of continuous time random walks
Y , Y ′ with Y0 = 0, Y

′
0 = z

′; these have the same exit distribution as the discrete time
walk S. Recall that π j is the projection onto the j-th coordinate axis, so that π j(Yt)
gives the j-th coordinate of Yt ; each coordinate is a continuous time simple random
walk (run at rate 1/d) on Z.

_e coupling is as follows. If at time t we have π j(Yt) = π j(Y ′t ), then we run the
two j-th coordinate processes together, so π j(Yt+s) = π j(Y ′t+s) for all s ≥ 0

Note that we have ∣π j(Yt)∣ ≤ ∣π j(Y ′t )∣ when t = 0; the coupling will preserve this
inequality for all t ≥ 0. If ∣π j(Yt) − π j(Y ′t )∣ ≥ 2, then we use re�ection coupling, so
that π j(Yt) and π j(Y ′t ) jump at the same time, and in opposite directions. Finally,
suppose that ∣π j(Yt) − π j(Y ′t )∣ = 1, and let a = π j(Yt), a + 1 = π j(Y ′t ). We take three
independent Poisson processes on R+, P1 ,P2 ,P3; each with rate 1/2d, andmake the
ûrst jump of either π j(Y) or π j(Y ′) a�er time t to be at time t+T ,where T is the ûrst
point in P1 ∪P2 ∪P3. If T ∈ P1, we set π j(Yt+T) = a − 1, π j(Y ′t+T) = a + 2. If T ∈ P2,

then we set π j(Yt+T) = a + 1, π j(Y ′t+T) = a + 1, and if T ∈ P3, then π j(Yt+T) = a,
π j(Y ′t+T) = a. With this coupling we have {Y ′τA(Y ′) ∈ Rn} ⊂ {YτA(Y) ∈ Rn}, and so

h(z′) ≤ h(0).
Stopping the bounded martingale h(S(k)) at τQ(0,m−1) ∧ TK and using (3.8), we

get

h(0) = ∑
y∈K

h(y)P0(S(τQ(0,m−1) ∧ T+K) = y)
+ P0( τQ(0,m−1) < T+K , S(τQ(0,m−1)) ∈ Rm)

≤ h(0)P(τQ(0,m−1) > T+K) + P(τQ(0,m−1) < T+K , S(τQ(0,m−1)) ∈ Rm).
Rearranging gives the statement of the lemma.

We will need a more general conditioning than is given in Lemma 3.6. First we
give a preliminary estimate.
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Lemma 3.7 Assume d ≥ 3. Let N ≥ 1 and Q4N ⊂ D ⊂ Z
d . Let 8 ≤ m ≤ N/2 and

n ≤ N. Suppose that K is an arbitrary nonempty subset of Qn and x0 ∈ K ∩Hn . Let
z0 = x0 +me1. _ere exists a constant c = c(d) > 0 such that

P
z0(TQ(x0 ,m/2) > τD ∣ TK > τD) ≥ c.

Proof It is easy to see that the statement holds when m ≥ n/8, since then
P
z0(TQn+m/2

> τD) ≥ Pz0(TQn+m/2
=∞) ≥ c.

Henceforth, we assume that m < n/8.
Let f (z) = Pz(TK > τD) and g(z) = Pz(TK ∧ TQ(x0 ,m/2) > τD), so that wemust

prove f (z0) ≤ Cg(z0). Let z1 = x0 + 8me1. Due to the Harnack inequality, it is
suõcient to show that f (z1) ≤ Cg(z1).

We ûrst show that for all y ∈ ∂Q(x0 , 8m) we have g(y) ≤ Cg(z1). Let us write
H for the hyperplane Hn+4m , and H

′ for the hyperplane Hn+2m . Observe that H and
H
′ are both disjoint from K ∪ Q(x0 ,m/2), and they both separate K ∪ Q(x0 ,m/2)

from z1.
If y ∈ ∂Q(x0 , 8m) lies on the same side of H′ as z1, then y is at least distance m

fromK∪Q(x0 ,m/2), and this is comparable to the distance between y and z1. Hence
for such y, theHarnack inequality implies g(y) ≤ Cg(z1).

Suppose now thatH′ separates y from z1. Let Q
(1) and Q(2) be cubes that are both

translates of Q2N , such that

● the right-hand face of Q(1) and the-le� hand face of Q(2) coincide;
● the common set R = Q(1) ∩ Q(2), is contained inH;
● the center of R (viewed as a (d − 1)-dimensional cube), is the point x0 + 4me1.

Write τ i = τQ(i) .
Since g(Sn∧τ1) is a submartingale under Py , we have

(3.9) g(y) ≤ Ey(g(Sτ1)) = ∑
w∈∂Q(1)∖R

g(w)Py(Sτ1 = w) + ∑
u∈R

g(u)Py(Sτ1 = u).
Since g(Sn∧τ2) is amartingale under Pz1 , we also have

(3.10) g(z1) = Ez1(g(Sτ2)) = ∑
w′∈∂Q(2)∖R

g(w′)Pz1(Sτ1 = w)+∑
u∈R

g(u)Pz1(Sτ1 = u).
_e re�ection symmetry between Q(1) and Q(2), as well as the Harnack inequality,
imply that

P
y(S(τQ(1)) = u) ≤ CPz1(S(τQ(2)) = u),

P
y(S(τQ(1)) = w) ≤ CPz1(S(τQ(2)) = w′),

where w′ is the mirror image of w ∈ ∂Q(1) ∖ R in the hyperplane H. We also have

g(w) ≤ 1, w ∈ ∂Q(1) ∖ R, and g(w′) ≥ c, w′ ∈ ∂Q(2). _ese observations and (3.9)
and (3.10) together imply g(y) ≤ Cg(z1).

Wenow show the desired inequality f (z1) ≤ Cg(z1). Let 1 ≤ R <∞denote the ran-
dom variable that counts the number of times Sz1 makes a crossing from ∂Q(x0 , 8m)
to Q(x0 ,m/2) before TK ∧ τD . We have

P
z1(R ≥ ℓ) ≤ ( max

y∈∂Q(x0 ,8m)
P
y(TQ(x0 ,m/2) <∞)) ℓ ≤ pℓ
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with some p = p(d) ∈ (0, 1).
Using the strongMarkov property at the timewhen the ℓ-th crossing has occurred,

we can write

f (z1) = ∞∑
ℓ=0

P
z1(R = ℓ, TK > τD) = g(z1) + ∞∑

ℓ=1

P
z1(R = ℓ, TK > τD)

≤ g(z1) + ∞∑
ℓ=1

P
z1(R ≥ ℓ) max

z∈Q(x0 ,m/2)
P
z((TQ(x0 ,m/2) ∧ TK) ○ΘτQ(x0 ,8m)

> τD)
≤ g(z1) + ∞∑

ℓ=1

γℓ max
y∈∂Q(x0 ,8m)

g(y)
≤ g(z1) + Cg(z1).

_is completes the proof of the Lemma.

Lemma 3.8 Assume d ≥ 3. Let N ≥ 1 and Q4N ⊂ D ⊂ Z
d . Let 8 ≤ m ≤ N/2 and

n ≤ N. Suppose that K is an arbitrary nonempty subset of Qn , and x0 ∈ K ∩Hn . Let
Rn ,m denote the right-hand face of Q(x0 ,m). _ere exists a constant c = c(d) > 0 such
that Px0(S(τQ(x0 ,m)) ∈ Rn ,m ∣ T+K > τD) ≥ c.
Proof Let K0 = K ∩ Q(x0 , 2m) and K1 = K ∖ K0 = K ∖ Q(x0 , 2m). Due to
Lemma 3.6 we have

(3.11) P
x0(S(τQ(x0 ,m)) ∈ Rn ,m ∣ T+K > τQ(x0 ,m)) ≥ (2d)−1 .

Let Z denote the process that is S conditioned on TK1
> τD . _en (3.11) and an appli-

cation of theHarnack inequality imply that

P
x0(Z(τQ(x0 ,m)) ∈ Rn ,m ∣ T+K[Z] > τQ(x0 ,m)[Z]) ≥ c.

_is in turn implies that

(3.12) P
x0(S(τQ(x0 ,m)) ∈ Rn ,m , T

+
K > τQ(x0 ,m), TK1

> τD)
≥ cPx0(T+K > τQ(x0 ,m), TK1

> τD) ≥ cPx0(T+K > τD).
Let z0 = x0 + 4me1. Using the Harnack inequality, the le�-hand side of (3.12) can be

bounded from above by

(3.13) P
x0(S(τQ(x0 ,m)) ∈ Rn ,m , T

+
K > τQ(x0 ,m)) max

z∈Rn ,m

P
z(TK1

> τD)
≤ CPx0(S(τQ(x0 ,m)) ∈ Rn ,m , T

+
K > τQ(x0 ,m))Pz0(TK1

> τD).
An application of Lemma 3.7 (with 2m playing the role of m/2) shows that

P
z0(TK1

> τD) ≤ C ,Pz0(TK1∪Q(x0 ,2m) > τD) ≤ CPz0(TK > τD).
Substituting this into (3.13), and using the Harnack inequality again, we get that the
right-hand side of (3.13) is bounded above by

CPx0(S(τQ(x0 ,m)) ∈ Rn ,m , T
+
K > τQ(x0 ,m))Pz0(TK > τD)(3.14)

≤ CPx0(S(τQ(x0 ,m)) ∈ Rn ,m , T
+
K > τQ(x0 ,m)) min

z∈Rn ,m

P
z(TK > τD)

≤ CPx0(S(τQ(x0 ,m)) ∈ Rn ,m , T
+
K > τD).
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_e inequalities (3.12), (3.13), and (3.14) together imply the claim of the lemma.

We now return to the task of giving a lower bound for E(HA(β)), the expected
number of points of β in A.

Lemma 3.9 Assume d ≥ 3. Let z ∈ A. _en G̃D(x0 , z) ≥ cm2−d .

Proof _is uses Lemma 3.8. Let Vz be the number of hits on z by X̃ before τ̃D .

Let T̃ = T̃∂ iQ(x0 ,m/8). Note that Q(x0 ,m/8) and A∗ intersect on one of the faces of

Q(x0 ,m/8). _en since T̃ < τ̃D ,

G̃D(x0 , z) = Ex0Vz = E
x0(EX̃

T̃Vz) ≥ Ex0(1(X̃
T̃
∈A∗) min

y∈∂ iA∗
E

yVz)
= P

x0(X̃T̃ ∈ A
∗) min

y∈∂ iA∗
G̃D(y, z).

Using (3.1) and (3.2), we have G̃D(y, z) ≍ GD(y, z) ≍ m2−d if y ∈ ∂ iA
∗. Let T =

T∂ iQ(xo ,m/8) (for S). Lemma 3.8 implies Px0(X̃T̃ ∈ A
∗) = Px0(ST ∈ A∗∣T+α > τD) ≥ c,

and the lemma follows.

_e key estimate for the lower bound is the following.

Lemma 3.10 Assume d ≥ 5. _en E(HA(β)∣α) ≥ cm2.

Proof It is enough to prove that if z ∈ A, then

(3.15) P(z ∈ β∣α) ≥ cm2−d .

Let Y be X̃ conditioned to hit z before T̃+α ∧ τ̃D , and let X̃z be independent of Y . Let

Y ′ = EL
z (EF

∂D(Y)),
so Y ′ is the path of Y up to its last hit on z before its ûrst exit from D. Let also X′ =

Θ1E
F
∂D X̃

z . (We need to applyΘ1 since the last point of Y
′ and the ûrst point of X̃z are

both z.) _en as in of [BM1, Lemma 6.1] we have

P(z ∈ β ∣ α) = G̃D(x0 , z)P(LY ′ ∩ X′ = ∅,LY ′ ⊂ Q(x0 ,m)).
Due to Lemma 3.9, it remains to show that the probability on the right-hand side is
bounded away from 0. We will in fact prove the stronger statement:

(3.16) P(Y ′ ∩ X′ = ∅,Y ′ ⊂ Q(x0 ,m)) ≥ c > 0.
_is result is not surprising, since two independent SRW in Z

d (with d ≥ 5) intersect
with probability strictly less than 1.

Let us denote Az = Q(z,m/16), B = Q(x0 ,m), and B′ = Q(x0 ,m/16). Note that
Y ′ starts at x0 and ends at z. We decompose Y ′ into four subpaths, deûned below, and
give separate estimates for these subpaths that togetherwill imply the lower bound on
the probability in (3.16). We deûne

Y ′1 = E
F
∂B′(Y ′), Y ′2 = E

L
∂Az
(BF

∂B′(Y ′)), Y ′3 = B
L
∂Az
(Y ′).

_at is, Y ′1 ends at the ûrst exit from B′, Y ′3 begins at the last entrance to Az and Y ′2
is the portion in between. We let y1 = Y

′
1 (∣Y ′1 ∣) = Y ′2(0) and y2 = Y

′
2(∣Y ′2 ∣) = Y ′3(0).

We further decompose Y ′2 into the pieces Y ′2,1 = E
F
y2
(Y ′2) and Y ′2,2 = B

F
y2
(Y ′2). _at
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is, Y ′2,1 is the piece from y1 to the ûrst hit on y2, and Y ′2,2 is the remaining loop at y2.
Observe that conditional on y1 and y2, the paths Y

′
1 ,Y

′
2,1 ,Y

′
2,2 ,Y

′
3 are independent.

We now state our estimates for each piece. Our notation will assume that x0 ∈ Hn ;

trivial modiûcation can bemade when this is not the case.

Claim 1. _ere is a constant probability that Y ′1 exits B
′ on the right-hand face. _at

is, we have P(y1 ∈ Rn ,m/16) ≥ c > 0, where Rn ,m/16 = Hn+m/16 ∩ Q(x0 ,m/16).
Proof Using Lemma 3.8, we have

P(y1 ∈ Rn ,m/16) = P
x0(X̃(τ̃B′) ∈ Rn ,m/16 , T̃z < τ̃D)

Px0(T̃z < τ̃D)
≥

G̃D(z, z)
G̃D(x0 , z) P

x0(X̃(τ̃B′) ∈ Rn ,m/16) min
w∈Rn ,m/16

P
w(T̃z < τD)

≥ c min
w∈Rn ,m/16

G̃D(w , z)
G̃D(x0 , z) ≥ c.

In the next three claims we will use the notation B′′ = x0 + ([0, z1 + m/32] ×[−m,m]d−1) ∩Zd .

Claim 2. _ere is a constant probability that the following six events occur.

(i) Y ′3 starts on the le�-hand face of Az ;

(ii) Y ′3 ⊂ z + ([−m/16,m/32] × [−m/16,m/16]d−1) ∩Zd ;

(iii) X′ exits Az on the right-hand face;

(iv) X′ ∩ Az ⊂ z + ([−m/32,m/16] × [−m/16,m/16]d−1) ∩Zd ;

(v) Y ′3 ∩ (X′ ∩ Az) = ∅;
(vi) B

F
∂Az
(X′) isdisjoint from B′′, that is, X′ doesnot visit B′′ a�er itsûrsthit on ∂Az .

Proof Let S̃z be the process deûned as Sz conditioned to hit on x0 before

Tα∖{x0} ∧ τD . _e time-reversal of Y ′ has the law of S̃z . _erefore, the time-reversal

of Y ′3 has the law of EF
∂Az
(S̃z). _e proof of Lemma 3.2 (Separation Lemma), shows

that for independent simple randomwalks, Sz and S′z , there is probability ≥ c > 0 that
the analogues of the events (i)–(v) all hold. An application of theHarnack inequality
then shows that in fact (i)–(v) hold with constant probability.

It is le� to show that conditionally on (i)–(v), we also have (vi)with constant prob-
ability. Since X′ is S conditioned on Tα > τD , this can be proved in the same way as
Lemma 3.7. For this wemerely need to replace Q(x0 ,m/2) in that lemma by B′′, and
make straightforward adjustments. Hence Claim 2 follows.

Claim 3. Conditional on y1 being in the right-hand face of B′ and y2 being in the
le�-hand face of Az , there is constant probability that Y

′
2,1 ⊂ B

′′.

Proof Condition on y1 and y2. _en Y ′2,1 has the law of S y1 conditioned to hit on
y2 before Tα ∧ τD (stopped at the ûrst hit on y2). Since y1 and y2 are at least distance
cm from the boundary of B′′, such a path has constant probability to stay inside B′′.
(One way to see this is to use an argument similar to that of Lemma 3.7, where we let
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R count the number of crossings by the walk from Q(z,m/64) to ∂B′′ before time

Tz ∧ Tα ∧ τD .) Hence the claim follows.

Claim 4. Conditional on y2 being in the le�-hand face of Az , there is constant prob-
ability that Y ′2,2 ⊂ B

′′.

Proof Condition on y2. _e probability that Y ′2,2 consists of a single point is

GD∖α(y2 , y2)−1 ≥ G(y2 , y2)−1 ≥ c > 0.
When all the events in Claims 1–4 occur, the event in (3.16) occurs. Hence the

lemma follows.

An application of Lemmas 3.4 and 3.10 and the one-sided Chebyshev inequality
give the following corollary.

Corollary 3.11 When d ≥ 5, there exists a constant c0 > 0 such that

P(HA(β) ≥ c0m2∣α) ≥ c0 .
Proposition 3.12 Assume d ≥ 5. Let N ≥ 1 and Q4N ⊂ D ⊂ Z

d . Let L = LEF
∂DS be a

loop erased walk from 0 to ∂D, andMN = ∣EF
∂ iQN

L∣ be the number of steps in L until its

ûrst hit on ∂ iQN . _en, for all λ > 0, we have

(3.17) P(MN < λN
2) ≤ C exp(−cλ−1).

Proof Suppose k ≥ 1 and m ≥ 4 such that N/2 ≤ km < N −m. For j = 1, . . . , k, let

α j = E
F
∂ iQ(0, jm)

L, F j = σ(α j).
Let Yj = α j(∣α j ∣) be the last point in α j , and β j = E

F
∂ iQ(Yj ,m)

(BF
∂ iQ(0, jm)

L) be the
path L between Yj and its ûrst hit a�er Yj on ∂ i(Yj ,m). We haveMN ≥ ∑k

i=1 ∣β j ∣. Let
G j = {∣β j ∣ < c0m2}; then byCorollary 3.11P(G j ∣ F j) ≤ 1−c0._erefore,MN stochas-

tically dominates a sum of k independent random variables that take the values c0m
2

and 0 with probabilities c0 and 1 − c0, respectively. Hence P(MN ≤ (1/2)kc20m2) ≤
C exp(−ck). We now take k ≍ λ−1 and m ≍ λN and we obtain (3.17).

In the following theorem, we obtain a lower bound on the length of paths in the
USF.We deûne the event

(3.18) F(y, x , n) = {Tx[S y] <∞ and ∣LEF
x(S y)∣ ≤ n};

note that on the event {Tx[S y] <∞} the path LE
F
x(S y) is the loop erasure of a SRW

path starting at y and ending at x

_eorem 3.13 For every x , y ∈ Zd we have

(3.19) P(F(y, x , n)) ≤ C(1 + ∣x − y∣)2−d exp[−c ∣x − y∣2
n
] .

Proof Using translation invariance, we can assume that y = 0. If ∣x∣2/n ≤ 1, then the
term in the exponential in (3.19) is of order 1, so

P(F(0, x , n)) ≤ P(Tx <∞) ≤ (1 + ∣x∣)2−d ≤ ec(1 + ∣x∣)2−d e−c∣x ∣2/n .
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Now assume ∣x∣2 > n, and let N = ∥x∥∞/4, and Q = Q(0,N). Let X′ be S con-

ditioned on {Tx < ∞}. _en if h(z) = P
z(Tx[S] < ∞), we have h(z) ≍ N2−d on

Q(0,N), and thus the processes S and X′ have comparable laws inside Q(0,N). _e

explicit law of a section of the loop-erased random path given in [Law99] (see also
[Mas, (5)]) then implies that the loop erasures of S and X′ also have comparable laws
inside Q.

Let F1(x , n) = {∣EF
∂ iQ
(LEF

x S)∣ ≤ n, Tx(S) <∞}. _us F(0, x , n) ⊂ F1(x , n). _en

P(F(0, x , n)) ≤ P(F1(x , n))
= P(∣EF

∂ iQ
L(EF

x S)∣ ≤ n ∣ Tx <∞)P(Tx <∞)
≤ C∣x∣2−dP(∣EF

∂ iQ
L(EF

xX
′)∣ ≤ n)

≤ C∣x∣2−dP(∣EF
∂ iQ

L(EF
x S)∣ ≤ n).

Taking n = λN2, so that λ−1 ≥ c∣x∣2n−1, and using Proposition 3.12 completes the
proof.

4 Upper Bound on ∣BU(0, n)∣

Recall that U(x) is the component of the USF containing x ∈ Zd . It is well known

[Pem91,_eorem 4.2] that for d ≥ 5 and x /= y ∈ Zd we have

(4.1) c∣x − y∣4−d ≤ P(y ∈ U(x)) ≤ C∣x − y∣4−d .
A corollary of this bound is that the volume of U0 ∩ B(r) grows as r4 in expectation.
Ourmain result in the previous section,_eorem 3.13, is a variant of the upper bound
in (4.1) that gives control over the length of the path connecting x and y. Since that
boundwas formulated in terms of a single LERW, the exponent 4−d changes to 2−d.
In this section we extend_eorem 3.13 to control the volume of balls in the intrinsic
metric.

_eorem 4.1 Assume d ≥ 5, and letU = UZd . _ere exists a constant C1 such that for
all k ≥ 0 we have

(4.2) E(∣BU(0, n)∣k) ≤ Ck
1 k!n

2k .

Hence there are constants c1 > 0 and C2 such that

(4.3) P(∣BU(0, n)∣ ≥ λn2) ≤ C2e
−c1λ , λ > 0, n ≥ 1.

Proof _e bound (4.3) follows easily from (4.2) using Markov’s inequality and the
power series for ex .

We prove (4.2) by induction on k. _e case k = 0 holds trivially. We ûx k ≥ 1

and y1 , . . . , yk ∈ Z
d , and estimate the probability P(y1 , . . . , yk ∈ BU(0, n)). _is

can be done similarly to the “tree-graph inequalities” known in percolation [AN]. To
facilitatenotation, wewrite y0 = 0. On the event y1 , . . . , yk ∈ U0 consider theminimal
subtree T(y0 , . . . , yk) ⊂ U0 that contains the vertices y0 , . . . , yk . _is tree is ûnite.
Since U0 has one end [BLPS, LP], there is a unique inûnite path in U0 whose only
vertex in T(y0 , . . . , yk) is its starting vertex. Let us write T(y0 , . . . , yk ,∞) for the
inûnite subtree of U0 obtained by adding this inûnite path to T(y0 , . . . , yk).
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y0 = 0y0 = 0

y0 = 0y0 = 0y0 = 0

y1y1

y1y1y1

y2y2

y2
y2

y2

y3

y3

∞∞

∞∞∞

z1z1

z1z1z1

z2z2

z2z2

z2

z3

z3

Figure 2: All three labelled tree graphs with k = 2, and two of the ûve possible labelled tree

graphs with k = 3.

Now let us consider the topology of T(y0 , . . . , yk ,∞). In the case k = 1, it is easy to
see that there exists a vertex z1 ∈ T(y0 , y1 ,∞) such that the paths T(y0 , z1), T(y1 , z1),
and T(z1 ,∞) (some of which may degenerate to a single vertex) are edge-disjoint. In
the general case k ≥ 1, we have k branch points z1 , . . . , zk . We use a ûxed rule for
indexing the z i in requiring that for every i ≥ 1 the path T(y i , z i) is edge-disjoint
from T(y0 , . . . , y i−1 ,∞). See Figure 2.

We can formalize the construction via the following recursive procedure. Let T(0)
denote the set containing the unique tree with vertex set {0,∞}. Assume that the

collection T(k − 1) of trees with vertex set {0, . . . , k − 1} ∪ {∞} ∪ {1̄, . . . , k − 1} has
been deûned for some k ≥ 1. Let T(k) denote the collection of trees with vertex set{0, . . . , k} ∪ {∞} ∪ {1̄, . . . , k̄} that can be obtained in the following way. Pick some
τ′ ∈ T(k− 1), and pick one of the edges of τ′. Split this edge into two by introducing a
new vertex k̄ on the edge, and add the new edge {k, k̄} to τ′. It is easy to see that any
τ ∈ T(k) has the following properties (see Figure 2):
● degτ(∞) = 1 = degτ(y i), i = 0, . . . , k,
● degτ(ī) = 3, i = 1, . . . , k.

With the above deûnitions, the event {y1 , . . . , yk ∈ U0} implies that there exist
z1 , . . . , zk ∈ T(y0 , . . . , yk ,∞) and τ ∈ T(k) such that T(y0 , . . . , yk ,∞) is the edge-
disjoint union of paths T(φ(r), φ(s)), where {r, s} ∈ E(τ), and φ∶V(τ)→ Z

d ∪{∞}

1310

https://doi.org/10.4153/CJM-2017-054-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-054-x


Geometry of Uniform Spanning Forest Components in High Dimensions

s0 =∞

r0 = s1 = s3

r1 = s2 = s6

r2 = 0

r3 = s4 = s5

r4

r5

r6

s′0 =∞
s′1

s′2

s′3 = r
′
1 = r

′
2s′4 = r

′
0 = r

′
3

s′5

s′6 = r
′
4 = r

′
5

r′6 = 0

(a) (b)

Figure 3: (a) A possible enumeration of edges for the application of Wilson’s method. (b) A

possible enumeration of edges for performing the summations using (4.2) in the order j =
1, 2, . . . , 2k. Summing over the spatial location φ(s′1) eliminates the factor involving the edge

{s′1 , r
′

1}. Following this, it is possible to sum over φ(s′2), etc.

is deûned by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
φ(i) = y i i = 0, . . . , k,

φ(∞) =∞,

φ(ī) = z i i = 1, . . . , k.

Note that the choice of τ is not unique, due to possible coincidences between the
vertices y0 , . . . , yk , z1 , . . . , zk . We neglect the overcounting resulting from this, for an
upper bound.

If the additional restriction dU(0, y i) ≤ n, i = 1, . . . , k is in place, we must also
have dU(φ(r), φ(s)) ≤ n for all {r, s} ∈ E(τ) such that r, s /=∞. We deûne the event

E(y1 , . . . , yk , z1 , . . . , zk , τ, n)
=

⎧⎪⎪⎨⎪⎪⎩
T(y0 , . . . , yk ,∞) = ⋃{r ,s}∈E(τ) T(φ(r), φ(s)) as an edge-

disjoint union and dU(φ(r), φ(s)) ≤ n for all {r, s} ∈ E(τ)
such that r, s /=∞

⎫⎪⎪⎬⎪⎪⎭ .
Considering all possible choices of τ and z1 , . . . , zk , we get

E( ∣BU(0, n)∣k) = ∑
y1 , . . . ,yk∈Zd

P( y1 , . . . , yk ∈ BU(0, n))
≤ ∑

τ∈T(k)

∑
y1 , . . . ,yk∈Zd

∑
z1 , . . . ,zk∈Zd

P(E(y1 , . . . , yk , z1 , . . . , zk , τ, n)) .
We use Wilson’s algorithm [W,LP] to replace the complicated event E(y1 , . . . ) by

a slightly larger event that is easier to handle. For this, enumerate the edges of τ as

{r0 , s0}, {r1 , s1}, . . . , {r2k , s2k},
where the labelling is chosen in such a way that the following two properties are sat-
isûed (see Figure 3(a)):

(a) s0 =∞.
(b) For every j = 1, . . . , 2k, the set of edges {{rℓ , sℓ} ∶ ℓ = 0, . . . , j− 1} spans a subtree
of τ, and s j is a vertex of this subtree.
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UsingWilson’smethod with random walks started at φ(r0), . . . , φ(r2k), we see that
(4.4) E(y1 , . . . , yk , z1 , . . . , zk , τ, n) ⊂ 2k

⋂
j=1

F(φ(s j), φ(r j), n).
Here F( ⋅ , ⋅ , n) are the events deûned in (3.18). Importantly, the events on the right-
hand side are independent. _eorem 3.13 and the inclusion (4.4) imply that

(4.5) P(E(y1 , . . . , yk , z1 , . . . , zk , τ, n))
≤

2k

∏
j=1

C(1 + ∣φ(s j) − φ(r j)∣)2−d exp[−c ∣φ(s j) − φ(r j)∣2
n

] .
It remains to estimate the sum of the right-hand side of (4.5) over all choices of the
y i and z i . For this it will be convenient to use a diòerent enumeration of E(τ). Sup-
pose that {r′0 , s′0}, {r′1 , s′1}, . . . , {r′2k , s′2k} satisûes the following properties (see Figure
3 (b)).

(a′) s′0 =∞ and r′2k = 0.
(b′) For every j = 1, . . . , 2k, the set {{r′ℓ , s′ℓ} ∶ ℓ = j, . . . , 2k} induces a connected
subtree of τ, and s′j is a leaf of this subtree.

For ease of notation, let us write u j = φ(r′j) and w j = φ(s′j). With the new enumera-

tion the right-hand side of (4.5) takes the following form:

(4.6) P(E(y1 , . . . , yk , z1 , . . . , zk , τ, n))
≤

2k

∏
j=1

C(1 + ∣w j − u j ∣)2−d exp[−c ∣w j − u j ∣2
n

] .
Note again that the w j and u j are z i and y i , determined implicitly by τ. Importantly,
property (b′) of the enumeration implies that ifw j = φ(s′j) = z i for some i , j, then the

variable z i does not occur in the product

2k

∏
ℓ= j+1

C(1 + ∣w j − u j ∣)2−d exp[−c ∣w j − u j ∣2
n

] .
Similar considerations apply if w j = φ(s′j) = y i for some i , j. _e summation over

y1 , . . . , yk and z1 , . . . , zk can be accomplished using the following elementary lemma.

Lemma 4.2 For any u ∈ Zd , we have

∑
w∈Zd

(1 + ∣w − u∣)2−d exp[−c ∣w − u∣2
n
] ≤ Cn.

WeapplyLemma 4.2 successively to the factorswith j = 1, . . . , 2k on the right-hand
side of (4.6). See Figure 3 (b) for an example of how the edges of τ are successively

removed by the summations. We obtain E(∣BU(0, n)∣k) ≤ ∑τ∈T(k)(Cn)2k . Since the
number of trees in T(k) is 1 ⋅ 3 ⋅ ⋅ ⋅ (2k − 1) ≤ 2kk!; this proves (4.2).
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n

n +m

x0

AA′A′′

α

β

x1

A∗

x2

Figure 4: Boxes for the cycle popping argument.

Remark 4.3 _e statements of _eorem 4.1 still hold, with essentially the same

proof, when U is replaced by UD , the USF on a subset D ⊂ Zd . Note that U0 still has
one end. _is follows from [LMS, Proposition 3.1], and the fact that the component of

0 under themeasureWSFo in the domain D is stochastically smaller then it is in Z
d .

_erefore, a decomposition into events E(y1 , . . . , yk , z1 , . . . , zk , n) still holds (with
U = UD), where now all vertices are in D. _e inclusion (4.4) still holds, with the
events F having the same meaning as before. _is allows bounding the summations

in exactly the same way as in Z
d .

5 Lower Bounds on Volumes

In this section we return to the setup of Section 3, in order to give a lower bound on
the volume ofU0. We ûrst estimate the number of vertices ofU0 in shells Qn+m ∖Qn .
Recall that QN ⊂ D ⊂ Zd , and n,m satisfy 16 ≤ n < n + m ≤ N , with m ≤ n/8. We
have L = L(EF

Dc(S)), a loop-erased walk from 0 to ∂D. We denote by α = EF
∂ iQn

L the

portion of L ending when it reaches the interior boundary of Qn , and x0 ∈ ∂ iQn is
the endpoint of α. _e remaining piece of L is L′ = BF

∂ iQn
L, and β = EF

∂ iQ(x0 ,m)
L′ is

the part of L′ until the ûrst exit from the box of radius m centred at x0. See Figure 4.
Recall that when x0 ∈ Hn , we deûne A = A(x0) = Q(x0 + (m/2)e1 ,m/4) and

x1 = x0 + (m/2)e1, with appropriate rotations applied if x0 is on a diòerent face of
Qn . We will now also need a point x2 ∈ Qn+m ∖Qn of orderm away from A, and also
boxes contained in Qn+m ∖ Qn that we deûne as follows. If x0 ∈ Hn and the second
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coordinate of x0 is negative, let

(5.1)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x2 = x1 +me2 ,

A′ = A′(x0) = Q(x1 + 2me2 ,m/4),
A′′ = A′′(x0) = x1 + [−3m/8, 3m/8] × [−m, 3m] × [−m,m]d−2 ∩Zd .

If x0 ∈ Hn and the second coordinate of x0 is positive, we replace e2 by −e2 and[−m, 3m] by [−3m,m]. If x0 is on a diòerent face of Qn , we replace e1 and e2 by two
other suitable unit vectors.

_e key technical estimate is to show that β ∩ A has capacity of order m2 with
probability bounded away from 0, which we do in the next section.

5.1 A Capacity Estimate

Let Sx2 be a random walk with Sx2(0) = x2, independent of S, X̃, etc.
Proposition 5.1 Assume N ≥ 1, Q4N ⊂ D ⊂ Z

d , and the setup of Section 3.

(i) _ere exists c1 = c1(d) > 0 such that
(5.2) m2−d

ECap(A∩ β∣α) ≥ cP(Sx2 hits (A∩ β) ∣ α) ≥ c1m4−d .

(ii) We have

(5.3) P(c1m2
≤ Cap(A∩ β) ≤ C1m

2 ∣ α) ≥ c > 0.
Proof (i) For ease of notation, we omit the conditioning on α. _e ûrst inequality

in (5.2) is clear since G(x2 , ⋅) ≍ m2−d on A. To prove the second inequality let

U ∶=∑
z∈A

I[z ∈ β] I[Sx2 hits z],
so that P(Sx2 hits (A∩ β)) = P(U > 0). Using Lemma 3.10, we have

E(U) =∑
z∈A

P(z ∈ β)P(Tz[Sx2] <∞) ≥ cmdm2−dm2−d
= cm4−d .

On the other hand,

(5.4) E(U2) = ∑
x ,y∈A

P(x , y ∈ β)P(Tx[Sx2] <∞, Ty[Sx2] <∞).
Since the process X̃ generating L′ must pass through ∂A∗ in order for the event x , y ∈
β to occur, we have

P(x , y ∈ β) ≤ max
z∈∂A∗
[G̃D(z, x)G̃D(x , y) + G̃D(z, y)G̃D(y, x)]

≤ Cm2−dG(x , y).
For the other term in the right-hand side of (5.4) we have

P(Tx[Sx2] <∞, Ty[Sx2] <∞) ≤ [G(x2 , x)G(x , y) +G(x2 , y)G(y, x)]
≤ Cm2−dG(x , y).

Since d ≥ 5, we have∑x ,y∈AG(x , y)2 ≤ Cmd , which gives E(U2) ≤ Cm4−d .
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_e Paley–Zygmund inequality then gives

P(Sx2 hits (A∩ β)) = P(U > 0) ≥ E(U)2
E(U2) ≥ cm4−d .

(ii) Since Cap(A∩ β) ≤ C∣A∩ β∣ = CHA(β), by Lemma 3.4 we have for λ ≥ 1 that
P(Cap(A ∩ β) > λcm2) ≤ λ−1. On the other hand, using (3.6) and the lower bound
in (i), the secondmomentmethod gives that there exists c1 > 0 such that

P(Cap(A∩ β) > c1m2) > c1 .
Taking λ large enough then gives (5.3).

Assume now, similarly to Proposition 3.12, that k ≥ 1 and m ≥ 4 such that N/2 ≤
km < N − m. Recall that for j = 1, . . . , k we denote α j = E

F
∂ iQ(0, jm)

L, which is the

initial piece of L ending with the ûrst point at radius jm. Let Yj = α j(∣α j ∣) be the
last point in α j , and β j = E

F
∂ iQ(Yj ,m)

(BF
∂ iQ(0, jm)

L) be the path L between Yj and its

ûrst hit a�er Yj on ∂ iQ(Yj ,m). Let Yj,1 and Yj,2 be the points x1 and x2 deûned with
respect to x0 = Yj , respectively. Deûne the following event, measurable with respect
to L:

(5.5) G(c1 , c2 ,C1) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
there are at least c2k indices j with 1 ≤ j ≤ k such

that P(TA(Yj)∩β j
[SYj,2] < ∞ ∣ L) ≥ c1m

4−d and

∣A′′(Yj) ∩ β j ∣ ≤ C2m
2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

Proposition 5.1 and an argument similar to that of Proposition 3.12 gives the following
corollary.

Corollary 5.2 Under the assumptions of Proposition 5.1, there exist c1 , c2 > 0 and C2

such that we have P[G(c1 , c2 ,C2)] ≥ 1 − exp(−ck).
Proof Let F j = σ(α j), and let I j be the indicator

I j = [c1m2
≤ Cap(A(Yj) ∩ β j) and HA′′(Yj)(β j) ≤ C2m

2].
Note that I j is measurable with respect to F j+1 ⊂ σ(L). Due to Proposition 5.1 and
Remark 3.5, we have

(5.6) P[I j = 1 ∣ F j] ≥ c > 0.
When the path L is such that I j = 1 holds, then we have

P(TA(Yj)∩β j
[SYj,2] <∞ ∣ L) ≥ c1m4−d ,

and ∣A′′(Yj) ∩ β j ∣ ≤ C2m
2. _erefore, we have G(c1 , c2 ,C2) ⊃ {∑k

j=1 I j ≥ c2k}, and
the claim follows from (5.6).

Remark 5.3 We note the followingminor extension of Corollary 5.2. Assuming still
that Q4N ⊂ D, let w ∈ ∂D be ûxed, condition S to exit D at w, and let L′ = L(EF

Dc S)
be its loop-erasure. Masson [Mas] proved that the law of EF

Q c
N
L′ is comparable, up to

constants factors, to the law of EF
Q c

N
L. Since the eventG(c1 , c2 ,C2) ismeasurablewith

respect to EF
Q c

N
L, the statement of the corollary follows also for L′.
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5.2 Lower Bound on ∣QN ∩U0∣
We continue with the setup of the previous section. Our argument will use the cycle
popping idea of Wilson [W]; see also [LP]. _e main result of this section is the
following lower bound on U0.

_eorem 5.4 Assume N ≥ 1, Q4N ⊂ D ⊂ Z
d , and let U = UD . _ere exist constants

C , c, such that P(∣QN ∩U0∣ ≤ λN4) ≤ C exp(−cλ−1/3).
Proof Condition on L, and assume that the event (5.5) occurs. Let J = J(ω) be the
set of indices 1 ≤ j ≤ k (a σ(L)-measurable random set) satisfying the requirements
in this event. For each j ∈ J, let A′( j) = A′(Yj) and A′′( j) = A′′(Yj). _e deûnitions
of A′ and A′′ made in (5.1) ensure that A′′( j), j ∈ J are disjoint.

We now deûne stacks as in [W]. For each z ∈ Z
d
− L we deûne an i.i.d. stack

r.v. (ηz , i , i ≥ 0) taking values uniformly on the vertices z′ ∈ Zd with z′ ∼ z. For j ∈ J
and z ∈ (L − β j) ∩ A′′( j) we deûne additional stack r.v. (η′z , i , i ≥ 0), again taking
values uniformly on the neighbours of z. We call Stacks I the stack r.v. given by the
η . , . , and Stacks II the stack r.v. given by the Stack I r.v. and the additional stack r.v.
η′. , . .

Assume that j ∈ J. Workingwith either Stacks I or Stacks II, we consider the eòect
of popping all cycles that are entirely contained in A′′( j). _at is, if a cycle starts in
A′′( j), but part of it lies outside A′′( j), we do not pop it. It is important to note that
the order of popping cycles does not aòect the ûnal conûguration on the top of the
stacks.

For each j ∈ J, let

V I

j = {y ∈ A′( j) ∶ cycle popping using Stacks Ireveals a path from y to L
} ,

V II

j = {y ∈ A′( j) ∶ cycle popping using Stacks IIreveals a path from y to A′′( j) ∩ β j
} .

Lemma 5.5 We have V I

j ⊃ V
II

j , for all j ∈ J.

Proof Let y ∈ V II

j , and consider Stacks II. Starting from y, follow the arrows in

Stacks II, until A′′( j)∩β j is hit. Removing cycles chronologically from this path pops
some cycles entirely contained in A′′( j), and reveals a path from y to A′′( j)∩β j . Now
if we follow the arrows in Stacks I instead, then the same arrows are used until the
ûrst time L is hit. _is guarantees that a path from y to L is revealed, which does not
leave A′′( j), and hence y ∈ V s f I j .

Lemma 5.6 Assume d ≥ 5. For some c3 > 0 we have P( ∣V II

j ∣ ≥ c3m4 ∣ L) ≥ c > 0 on
the event { j ∈ J}.
Proof Set N j = ∣V II

j ∣; we estimate the ûrst and secondmoments of N j .

Fix y ∈ A′( j). Following the arrows from y in Stacks II, we perform a random
walk until either we exit A′′( j) or we hit A′′( j) ∩ β j . _erefore, on the event { j ∈ J},
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we have

P(y ∈ V II
j L) = P(TA′′( j)∩β j

[S y] < τA′′( j)[S y] ∣ L)(5.7)

≥ P(TA( j)∩β j
[S y] < τA′′( j)[S y] ∣ L)

≥ cP(TA( j)∩β j
[S y] <∞ ∣ L).

_e ûnal inequality is proved by an argument similar to that of Lemma 3.7, where
we let R count the number of crossings by thewalk from a box A∗∗ ⊂ A′′( j) to ∂A′′( j)
before hitting β j ∩ A( j), and where each face of ∂A∗∗ is at distance m/16 away from
the corresponding face of ∂A′′( j).

Summing over y in (5.7), the Harnack inequality and Proposition 5.1 give that on

the event { j ∈ J} we have E(N j ∣ L) ≥ cc1mdm4−d
= cm4.

We also have on the event { j ∈ J} that
P(y ∈ V II

j ∣ L) ≤ P(TA′′( j)∩β j
[S y] <∞ ∣ L) ≤ cm2−d Cap(A′′( j) ∩ β j)

≤ cm2−d ∣A′′( j) ∩ β j ∣ ≤ cm2−dm2
= cm4−d ,

so that summing over y ∈ V II
j , we obtain E(N j ∣ L) ≤ cm4, on { j ∈ J}.

We now bound the second moment of N j . For x ∈ V
II
j , write γ j(x) for the path

from x to β j . Given x , y ∈ A′( j) with x , y ∈ V II
j , let Fx y be the event that the paths

γ j(x) and γ j(y) intersect. _en

E(N2
j ∣ L) = ∑

x∈A′( j)

∑
y∈A′( j)

P(x ∈ V II
j , y ∈ V II

j , F c
x y ∣ L)(5.8)

+ ∑
x∈A′( j)

∑
y∈A′( j)

P(x ∈ V II
j , y ∈ V II

j , Fx y ∣ L).
Note that as

P(y ∈ V II
j , F c

x y ∣ x ∈ V II
j , L) ≤ P( y ∈ V II

j ∣L) ,
the ûrst sum above is bounded by E(N j ∣ L)2, which is in turn dominated by cm8 on
the event { j ∈ J}.

It remains to bound the sum in (5.8). If x , y ∈ V II
j and Fx y occur, then there exists

a unique w ∈ A′′( j) with the property that cycle popping reveals three edge-disjoint
paths: one from w to A′′( j) ∩ β j , a second from x to w and a third from y to w. (We
allow having x = w or y = w or both.) When this event happens with a ûxed w, we
can reveal the paths by ûrst following the arrows starting from w until A′′( j) ∩ β j is
hit, then following the arrows starting from x untilw is hit, then following the arrows
starting from y until w is hit. _is shows that

(5.9) P(x , y ∈ V II
j ∣ L)

≤ ∑
w∈A′′( j)

P(TA′′( j)∩β j
[Sw] <∞ ∣ L)P(Tw[Sx] <∞)P(Tw[S y] <∞).

Let Ã( j) = Q(Yj,1 , (3m/2)), and note that ∂Ã( j) has distance at least cm from
A′′( j) ∩ β j , and also distance at least cm from A′( j). We estimate separately the cases

(a) w ∈ A′′( j) ∖ Ã( j) and (b) w ∈ A′′( j) ∩ Ã( j).
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On the event { j ∈ J}, the sum of the terms in the right hand side of (5.9) corre-
sponding to case (a) is atmost

m2−d Cap(A′′( j) ∩ β j) ∑
w∈A′′( j)∖Ã( j)

∑
x ,y∈A′( j)

G(x ,w)G(y,w)
≤ Cm2−dm2m2m2md

= Cm8 .

_e sum for case (b) is atmost

Cm2−dm2−dmdmd ∑
w∈A′′( j)∩Ã( j)

P(TA′′( j)∩β j
[Sw] <∞)

≤ Cm4 ∑
w∈Ã( j)

P(TA′′( j)∩β j
[Sw] < τÃ( j))

≤ Cm4m2 Cap(A′′( j) ∩ β j) ≤ Cm8 .

Here the last line follows from j ∈ J and Proposition 5.1.

_emoment estimates for ∣V II
j ∣ and the one-sided Chebyshev inequality yield

P(∣V II
j ∣ ≥ cm4 ∣ L) ≥ c > 0 on the event { j ∈ J}.

_is completes the proof of the lemma.

We can now complete the proof of_eorem 5.4. Choose k ≍ λ−1/3 so that λN4
≍

km4._enusingCorollary 5.2, the conditional independenceof (V II
j ) j∈J , andLemma

5.5, for a suitably small c4 > 0 we have

P(∣QN ∩U0∣ ≤ λN4)
≤ C exp(−ck) +E(P( V II

j ≥ c3m
4 for fewer

than c4k indices j ∈ J
∣ L) I[G(c1 , c2 ,C2)])

≤ C exp(−cλ−1/3).
_is completes the proof of the theorem.

_eorem 5.7 Assume d ≥ 5 and let U = UZd . _ere exist c > 0 and C such that for

all λ > 0 we have P(∣BU(0, n)∣ ≤ λn2) ≤ C exp(−cλ−1/5).
For the proof of this theorem, we assume the setting of Proposition 3.12, with

D = Z
d . Recall that MN = ∣EF

∂ iQN
L∣, that is, the number of steps of L until it reaches

the boundary of QN .

Lemma 5.8 We have E(Mk
N) ≤ Ck

2 k!N
2k . Consequently, there exist c > 0 and C

such that for all λ > 0 we have

(5.10) P(MN ≥ λN
2) ≤ C exp(−cλ).

Remark 5.9 IfMS
N is the length of a simple random-walk path run until its ûrst exit

from QN , then it is well known that MS
N/N2 has an exponential tail. However we do

not have MN ≤ M
S
N , so we need an alternative argument to obtain the bound (5.10).
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Proof We have

E(Mk
N) ≤ E(∣S[0,∞) ∩ QN ∣k)
= k! ∑

x1 , . . . ,xk∈QN

G(0, x1)G(x1 , x2) ⋅ ⋅ ⋅G(xk−1 , xk)
≤ k!( ∑

z∈Q2N

G(0, z)) k = Ck
2 k!N

2k .

To see the second statement,

P(MN ≥ λN
2) ≤ exp(−λtN2)E(e tMN ) ≤ exp(−λtN2) 1

1 − C2 tN2
.

Choosing t = 1/(2C2N
2) completes the proof of the Lemma.

Proof of_eorem 5.7 It is suõcient to prove the statement for 0 < λ < λ0 for some
ûxed λ0. Let us choose N = λ

α
√
n with some exponent α > 0, whichwe will optimize

over at the end of the proof. We have

P(MN ≥ n/2) ≤ C exp(−c n

2N2
) = C exp(−cλ−2α).

Condition on L, as in the proof of_eorem 5.4, and assume the event

G̃ = G(c1 , c2 ,C1) ∩ {MN < n/2}.
We set λn2

= c3km
4
≍ Nm3, which means we pick m to be m ≍

√
nλ(1−α)/3. Hence

N/m ≍ k ≍ λ(4α−1)/3. Note that this implies that

P(G(c1 , c2 ,C1)c) ≤ C exp(−c(N/m)) = C exp(−cλ(4α−1)/3).
Since we want N/m ≫ 1, we impose the condition 0 < α < 1/4 on α.

For each j ∈ J, let

Ṽ I

j = {y ∈ A′( j) ∶ cycle popping using Stacks I revealsa path from y to L of length ≤ n/2 } ,
Ṽ II

j = {y ∈ A′( j) ∶ cycle popping using Stacks II revealsa path from y to A′′( j) ∩ β j of length ≤ n/2 } .
As in Lemma 5.5 we have Ṽ I

j ⊃ Ṽ
II

j for all j ∈ J.

In estimating E(Ṽ II) from below, we write

(5.11) P(y ∈ Ṽ II

j ∣ L) ≥ P(TA′′( j)∩β j
[S y] < τA′′( j)[S y] ∣ L)

− P(∣EF
∂A′′( j)(S y)∣ > n/2, TA′′( j)∩β j

[S y] ○Θn/2 <∞).
On the event { j ∈ J}, the ûrst termon the right-hand side is ≥ cm4−d due to (5.7). We

now show that the subtracted term is ≤ C exp(−cn/m2)m4−d .
Note that wemay restrict to n/2 > 2m2 for convenience (although not needed for

the claim), since our choice of m implies that n ≍ m2λ−2(1−α)/3, and we are consid-
ering small λ. Using the Markov property at time n/2 − m2, the second term in the
right-hand side of (5.11) is atmost

P
y(τA′′( j) > n/2−m2) ∑

z∈A′′( j)

P
z(TA′′( j)∩β j

<∞)Py(S(n/2) = z ∣ τA′′( j) > n/2−m2).
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_e ûrst probability can be bounded by C exp(−cn/m2) by considering stretches of
the walk of length m2 in each of which there is probability ≥ c > 0 of exiting from

A′′( j). _e conditional distribution of S(n/2) is bounded above by cm−d , due to the
local CLT applied to S(n/2 −m2), . . . , S(n/2). Hence, it remains to show that

∑
z∈A′′( j)

P
z(TA′′( j)∩β j

<∞) ≤ m4 .

Let uswrite β̃ j = A
′′( j)∩β j , and h(z) = Pz(Tβ̃ j

<∞). By a last exit decomposition

h(z) = ∑u∈β̃ j
G(z, u)eβ̃ j

(u), where eβ̃ j
(u) = Pu(T+

β̃ j
=∞). _erefore, we have

∑
z∈A′′( j)

h(z) = ∣β̃ j ∣ + ∑
z∈A′′( j)∖β̃ j

h(z) ≤ Cm2
+ ∑

u∈β̃ j

∑
z∈A′′( j)

G(z, u)eβ̃ j
(u)

≤ Cm2
+ Cm2 ∑

u∈β̃ j

eβ̃ j
(u) = Cm2

+ Cm2 Cap(β̃ j) ≤ Cm4;

here we used the fact that when j ∈ J, then ∣β̃ j ∣ ∨Cap(β̃ j) ≤ Cm2.
Hence we obtain that there exists λ0 = λ0(d) > 0, such that when 0 < λ ≤ λ0, the

right-hand side of (5.11) is at least

cm4−d
− C exp(−cn/m2)m4−d

≥ cm4−d
− C exp(−cλ−2(1−α)/3)m4−d

≥ cm4−d .

It follows that E(∣Ṽ II
j ∣ ∣ L) ≥ cm4 on the event { j ∈ J}.

For the secondmoment, we simply estimate

E(∣Ṽ II
j ∣2 ∣ L) ≤ E(∣V II

j ∣2 ∣ L) ≤ Cm8 on the event { j ∈ J}.
_e one-sided Chebyshev inequality yields that for some c4 = c4(d) > 0 we have

P(∣Ṽ II
j ∣ ≥ c4m4 ∣ L) ≥ c > 0 on { j ∈ J}.

_erefore ,

P(∣BU(0, n)∣ ≤ λn2)
≤ P(G̃c) + P( G̃ ,∑

j∈J

Ṽ I
j ≤ λn

2)
≤ P(MN > n/2) + P(G(c1 , c2 ,C1)c) +E(P(∑

j∈J
Ṽ II

j < c3km
4 ∣ L) ; G̃)

≤ C exp(−cλ−2α) + C exp(−cλ(4α−1)/3) + exp(−cλ(4α−1)/3).
We choose α, so that −2α = (4α − 1)/3, so α = 1/10. _is completes the proof of the
theorem.

Remark 5.10 We note the following minor extension of _eorem 5.4, which was
needed in [BHJ]. Similarly to Remark 5.3, since the arguments of _eorem 5.4 only
rely on properties of EF

Q c
N
L, the result extends to the case when the component of the

origin is connected to a ûxed vertex w ∈ ∂D.

1320

https://doi.org/10.4153/CJM-2017-054-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-054-x


Geometry of Uniform Spanning Forest Components in High Dimensions

References

[AN] M. Aizenman and C. M. Newman, Tree graph inequalities and critical behavior in percolation
models. J. Stat. Phys. 36(1984), nos. 1/2, 107–143. http://dx.doi.org/10.1007/BF01015729

[BM1] M. T. Barlow and R. Masson, Exponential tail bounds for loop-erased random walk in two
dimensions. Ann. Probab. 38(2010), no. 6, 2379–2417. http://dx.doi.org/10.1214/10-AOP539

[BM2] , Spectral dimension and random walks on the two dimensional uniform spanning tree.
Comm. Math. Phys. 305(2011), 23–57. http://dx.doi.org/10.1007/s00220-011-1251-8

[BLPS] I. Benjamini, R. Lyons, Y. Peres, and O. Schramm, Uniform spanning forests. Ann. Probab.
29(2001), 1–65.

[BHJ] S. Bhupatiraju, J. Hanson, and A. A. Járai, Inequalities for critical exponents in d-dimensional
sandpiles. Electron. J. Probab. 22(2017), paper no. 85, 1–51.
http://dx.doi.org/10.1214/17-EJP111

[La1] Gregory F. Lawler, A self-avoiding random walk. DukeMath. J. 47(1980), no. 3, 655–693.
http://dx.doi.org/10.1215/S0012-7094-80-04741-9

[La2] , Intersections of random walks. Probability and its Applications. Birkhäuser Boston,
Boston,MA, 1991.

[La3] ,_e logarithmic correction for loop-erased walk in four dimensions. In: Proceedings
of the Conference in Honor of Jean-Pierre Kahane. J. Fourier Anal. Appl. (1995) Special
Issue, 347–361.

[Law99] , Loop-erased random walk. In: Perplexing problems in probability. Progress in
probability, 44. Birkhäuser Boston, Boston,MA, 1999.

[LL] Gregory F. Lawler and Vlada Limic, Random walk: a modern introduction. Cambridge
University Press, 2009.

[LMS] R. Lyons, B. J. Morris, and O. Schramm, Ends in uniform spanning forests. Electron. J.
Probab. 13(2008), no. 58, 1702–1725. http://dx.doi.org/10.1214/EJP.v13-566

[LP] R. Lyons, and Y. Peres, Probability on trees and networks. Cambridge Series in Statistical and
ProbabilisticMathematics, 42. Cambridge University Press, New York, 2016.

[Mas] Robert Masson,_e growth exponent for planar loop-erased random walk. Electron. J.
Probab. 14(2009), no. 36, 1012–1073. http://dx.doi.org/10.1214/EJP.v14-651

[Pem91] R. Pemantle, Choosing a spanning tree for the integer lattice uniformly. Ann. Probab. 19(1991),
no. 4, 1559–1574. http://dx.doi.org/10.1214/aop/1176990223

[W] D. B.Wilson, Generating spanning trees more quickly than the cover time. Proceedings of the
Twenty-eighth Annual ACM Symposium on the _eory of Computing. ACM, New York,
1996, pp. 296–303.

Department ofMathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
e-mail: barlow@math.ubc.ca

Department ofMathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
e-mail: a.jarai@bath.ac.uk

1321

https://doi.org/10.4153/CJM-2017-054-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-054-x

