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Fluid interfacial instability induced by gravity or external acceleration, known as the
Rayleigh–Taylor instability, plays an important role in both scientific research and
industrial application. How to control this instability is challenging. Researchers have
been actively exploring the suppression method of applying electric fields parallel to
dielectric fluid interfaces. The instability is characterized by the penetration of fingers at
the interface. The velocities at the finger tips are the most important quantities since they
characterize how fast the penetration occurs. The dynamics of the fingers is nonlinear.
We present a nonlinear perturbation procedure for determining the amplitude and velocity
of fingers at a Rayleigh–Taylor unstable interface between two incompressible, inviscid,
immiscible and perfectly dielectric fluids in the presence of a horizontal electric field in
two dimensions. The analytic formulas are displayed explicitly up to the third order of
the initial disturbance. The comparison with the data from numerical simulations based
on the vortex sheet method shows the theoretical formulas can capture well the nonlinear
behaviour of the fingers. It is known that the interplay between the electric field and the
fluids can lead to the suppression of interfacial instability. We further analyse the electrical
force along the interface and show how this force leads to the instability suppression in
our setting. It has been reported numerically in the literature that switching the electric
permittivities of the fluids leads to quantitative differences in finger velocity. We show
theoretically this phenomenon can only be explained by the nonlinear behaviour of the
system.
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1. Introduction

When a light fluid supports a heavy fluid under gravitation or external acceleration, the
material interface between these two fluids is unstable. The penetration between the
two fluids leads to fluid mixing. Any small disturbances at the initial material interface
grow into finger-shaped large nonlinear structures. This instability is known as the
Rayleigh–Taylor instability (RTI). It was first studied by Rayleigh (1883) for gravity and
later extended by Taylor (1950) to fluids in acceleration. The research on the RTI has
been continuously active over the past century due to its great importance and prevalence
in both nature and industry. In particular, the ability to suppress and control the growth
of fingers at the unstable interface is of immense merit due to its industrial applications
in fluid mixing. In this paper we study a Rayleigh–Taylor (RT) unstable interface between
two perfectly dielectric fluids in the presence of an electric field whose direction is parallel
to the unperturbed interface (see figure 1). We investigate the mechanism of how such an
electric field leads to the suppression of interfacial instability, a phenomenon discovered in
Eldabe (1989). Our focus is on the nonlinear behaviour of fingers at the material interface.

Ever since the pioneering works by Rayleigh (1883) and Taylor (1950), the RTI
has attracted substantial attention from mathematicians, physicists and engineers.
Comprehensive reviews in this field can be found in Sharp (1984), Zhou (2017a,b). In
particular, theoretical research on the single-mode RTI is actively conducted due to its
fundamental importance, not only in understanding the nature of the single-mode RTI
dynamics but also in the bubble merger process and chaotic turbulent mixing at later times.
Fingers at the material interface have the form of bubbles and spikes. A bubble is the
portion of the light fluid penetrating into the heavy fluid, and a spike is the portion of the
heavy fluid penetrating into the light fluid. They are the dominant features of the material
interface. Linear theories of finger growth were first developed by Rayleigh (1883) and
Taylor (1950). The linear theories can also be found in (Bernstein & Book 1983) for infinite
domains and in Gardner et al. (1988) for finite domains. A second-order weakly nonlinear
theory was given by Haan (1991). For the nonlinear stage of finger development, Layzer
(1955) proposed a method to study the dynamics of bubbles in systems with an infinite
density ratio, namely vacuum bubbles. This method was later extended by Mikaelian
(1998) to vacuum bubbles in cylindrical geometry, and by Zhang (1998) to spikes in
systems with an infinite density ratio. Layzer’s approach was further extended to systems
with a finite density ratio by several researchers (Goncharov 2002; Sohn 2003; Zhang &
Guo 2016).

In the classical RTI, namely in the absence of external electric fields, the material
interface is always unstable if the gravity points from the heavy fluid to the light fluid.
The finger growth at the unstable interface leads to the mixing of the two fluids. In
the view of industrial applications, the ability to control the degree of fluid mixing is
highly desirable. Therefore, using external effects, such as shear (Babchin et al. 1983),
transverse oscillations (Halpern & Frenkel 2001), magnetic fields (Rudraiah et al. 2004)
and electric fields (Melcher & Warren 1966; Michael 1968; Mohamed & El Shehawey
1983a,b; Eldabe 1989; Korovin 2011; Barannyk, Papageorgiou & Petropoulos 2012),
to control such an unstable interface has been extensively investigated. The effects of
external electric fields on fluid dynamics were systematically reviewed by Melcher &
Taylor (1969). They established the governing equations and boundary conditions in
electrohydrodynamics. Linear stability analysis of a material interface between two fluids
in the presence of electric fields was carried out in Melcher (1961), Taylor & McEwan
(1965), Eldabe (1989), and Barannyk et al. (2012). Melcher (1961) and Taylor & McEwan
(1965) showed that an electric field that is perpendicular to the material interface can
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(density ρ̂1, permittivity ε̂1)

Fluid 2
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Êx
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Figure 1. Schematic of the Rayleigh–Taylor mixing problem in the presence of a horizontal electric field.
Two fluids of different densities and different electric permittivities are under the driving forces of a vertical
gravitation field and a uniform horizontal electric field.

induce interfacial instability. On the other hand, an electric field tangential to the interface
gives rise to a stabilizing effect and can suppress gravity-induced interfacial instability
(Eldabe 1989; Barannyk et al. 2012). Joshi, Radhakrishna & Rudraiah (2010) derived the
dispersion relation for perturbation at RT unstable interfaces in several situations. Studies
on the effects of the stability of the material interface were conducted for an alternating
current (AC) time-dependent electric field in the horizontal direction by Moatimid &
El-Bassiouny (2007) and in the vertical direction by Roberts & Kumar (2009) and
Bandopadhyay & Hardt (2017). Cimpeanu, Papageorgiou & Petropoulos (2014) carried
out numerical simulations on the RTI controlled and suppressed by a horizontal electric
field, and focused on the effects of electric fields on the finger velocities. Yang et al. (2016)
conducted a numerical analysis of an RT unstable interface in a horizontal/vertical electric
field and investigated the effects on the interfacial morphology by electric fields. Yang, Li
& Xu (2017) later extended their numerical method to the leaky dielectric fluids (Taylor
1966; Saville 1997) and studied the effects of the free charges at the material interface.
The RTI in leaky dielectric fluids is also investigated numerically using an incompressible
smoothed particle hydrodynamics method in Rahmat et al. (2014) and Tofighi et al. (2016).
Numerical simulations for a liquid–air interface destabilized by a vertical electric field and
a gravitational field were conducted in Liu et al. (2021), in which the charge transport and
the flow pattern were systematically investigated. Experimentally, the continuum feedback
control of a stable RT-type interface was demonstrated by Melcher & Warren (1966).

Several important research works are conducted on the nonlinear interfacial dynamics
of thin fluid films under the effects of gravity and external electric fields (Tseluiko
& Papageorgiou 2007; Roberts & Kumar 2009; Barannyk et al. 2012, 2015; Anderson
et al. 2017; Pillai & Narayanan 2020; Broadley & Papageorgiou 2022). Anderson et al.
(2017) investigated the electrostatic stabilization of a viscous thin film under a surface
in the presence of a horizontal electric field. They carried out the long-wave asymptotic
analysis and derived a nonlinear equation for the evolution of the material interface, which
captures the effects of competing forces and bounding surfaces. The results are in good
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agreement with direct numerical simulations. Barannyk et al. (2012) and Barannyk et al.
(2015) investigated the nonlinear dynamics and the wall touch-up phenomenon in thin
fluid layers in a horizontal channel under the horizontal electric field theoretically and
numerically. Tseluiko & Papageorgiou (2007) investigated the nonlinear dynamics of a
perfectly conducting viscous thin film under a vertical electric field. Roberts & Kumar
(2009) applied the lubrication theory to the thin films under AC vertical electric fields
to explore the possibilities of controlling the interfacial instability. By the linear analysis,
they showed that the effects of the AC field can be understood by an effective direct current
(DC) field. The nonlinear evolution of an interface between leaky dielectric fluids under
a periodic or steady vertical electric field was analysed with the long-wave approximation
by Pillai & Narayanan (2020), who focused on the resonant instability due to the AC
electric forcing and the long-time dynamics due to the DC electric forcing. Broadley
& Papageorgiou (2022) investigated nonlinear gravity electrocapillary waves and their
stability in thin-film systems in a vertical electric field. The instability of thin films
driven by electrical forcing in the absence of gravity is also studied in Chappell & O’Dea
(2020), Kochurin, Zubareva & Zubarev (2019), Thaokar & Kumaran (2005) and Shankar
& Sharma (2004). In these works, the focus is on the dynamics of the thin fluid film, and
the other fluid is often considered hydrodynamically passive (zero velocity and uniform
pressure). Such settings are important in microfluidics and certain industrial applications.
Extensive reviews on the dynamics and instabilities in thin films can be found in Craster
& Matar (2009) and Papageorgiou (2019).

In this paper we consider the classical setting of RTI, in which both the light and heavy
fluids have infinite thickness. For this setting of RTI in horizontal electric fields, only
linear analysis is available in the literature (Eldabe 1989). The linear theory only considers
the linear mode at the material interface and provides good predictions for the behaviour
of fingers when the amplitude of the finger is small. However, there are cases in which
nonlinear effects are essential in the interfacial dynamics and nonlinear analysis leads to
qualitatively different behaviours of the material interface from the linear theory. Here
are two examples that will be discussed in the later sections. The first example is what
happens if one switches the electric permittivities of the two fluids but keeps all other
physical parameters the same. The linear theory predicts that the growth of the fingers will
not be affected by the switching. However, the numerical simulations carried out by Yang
et al. (2016) showed that the amplitudes of fingers grow at different rates before and after
the switching of electric permittivities (see figure 9 in Yang et al. (2016) and figure 10
in this paper). Such a difference is absent in the linear theory. The second example is
a case in which the linear theory predicts that the spike and the bubble have identically
zero velocities for the entire time, but the numerical simulation shows that the bubble
and the spike still have non-zero velocities and the material interface is in an oscillatory
motion (see figure 8). This qualitative difference is due to the nonlinear effects, namely
the contribution from the electric field and that from gravity exactly cancel in the linear
theory, but their nonlinear contributions do not. Both examples show that it is necessary
to develop a theory that can capture the nonlinear behaviour of fingers at the interface. In
this paper we carry out such a study. We will perform theoretical analysis in the nonlinear
regime for the classical RTI setting, and investigate the nonlinear behaviours of an RT
interface between two perfectly dielectric fluids in the presence of an electric field parallel
to the unperturbed material interface. We will analyse the effects of electric permittivities
on the material interface and show how the interchange of electric permittivities affects the
growth of fingers for our system. By analysing the analytical expressions for the electrical
force along the material interface, we will identify the component of the force that leads
to the stabilization of the interface and the nonlinear effects of electric permittivities.
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Nonlinearity of dielectric RTI in tangential electric fields

This paper is structured as follows. In § 2 we describe the governing equations and the
boundary conditions for an RT system in the framework of electrohydrodynamics and
conduct the non-dimensionalisation of these equations and the physical parameters. In
§ 3 the general expressions for the nonlinear perturbation solutions are given, and the
explicit expressions are displayed up to the third order in terms of the amplitude of initial
perturbation at the material interface. Section 4 presents the analytical solutions for the
amplitude and velocity of fingers. In § 5 we validate the derived nonlinear perturbation
solution with numerical simulations by exploring various physical parameters in the phase
space. We show the necessity of expanding the solution up to the third order to get an
accurate prediction. In § 6 we analyse the effects of electric fields. In § 7 we study the
nonlinear effects of electric permittivities of the fluids and provide an understanding of
how a horizontal electric field suppresses interfacial instability for our system. In § 8 we
summarise our findings. A detailed derivation for the perturbation procedure and solutions
is given in the appendices.

2. Mathematical model

We consider a two-dimensional incompressible, irrotational and inviscid RT system
comprised of two perfectly dielectric and immiscible fluids (see figure 1). Fluid 1 is on
top of fluid 2, and in each phase i (i = 1, 2) the fluid has a constant density ρ̂i and a
constant electrical permittivity ε̂i. The circumflex symbol (̂·) on a variable denotes that the
variable is dimensional. The physical domain is periodic in the horizontal direction and
infinite in the vertical direction. The fluids are static at the vertical far field. A gravitational
field ĝ = −ĝj and an external horizontal electric field with uniform strength Êx = Êhi are
applied in the entire physical domain. Here i and j are the unit vectors in the horizontal and
vertical directions, respectively. Following the conventional setting for the RTI, gravity
points downwards (ĝ > 0), the upper fluid is heavier than the lower fluid (ρ̂1 > ρ̂2) and
surface tension is neglected.

2.1. Governing equations
In the interior regions of the fluids, the hydrodynamics of the system is governed by the
Euler equations

ρ̂i

(
∂ûi

∂ t̂
+ ûi · ∇̂ûi

)
= −∇̂p̂i − ρ̂iĝj, i = 1, 2, (2.1)

where ∇̂ ≡ (∂/∂ x̂, ∂/∂ ẑ) is the dimensional spatial differential operator, and ûi and p̂i are
the velocity and pressure of the fluid in phase i (i = 1, 2), respectively. Since both fluids
are incompressible and irrotational, we have

∇̂ · ûi = 0, i = 1, 2, (2.2)

∇̂ × ûi = 0, i = 1, 2. (2.3)

For a perfectly dielectric fluid, the electrical conductivity is zero. This means that no free
charges exist in the bulk of fluids and only polarized charges need to be counted. In this
case, the dynamic current is very small and the induced magnetic fields are negligible.
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Consequently, Faraday’s law reduces to

∇̂ × Êi = 0, i = 1, 2, (2.4)

where Êi is the electric field in fluid i (i = 1, 2). Due to the absence of free charges,
Gauss’s law can be written as

∇̂ · (ε̂iÊi) = 0, i = 1, 2. (2.5)

At the vertical far fields, the velocities of the fluids are zero, i.e.

û1(ẑ = ∞) = û2(ẑ = −∞) = 0, (2.6)

and the electric fields are constant in each fluid phase, i.e.

Ê1(ẑ = ∞) = Ê2(ẑ = −∞) = Êhi. (2.7)

At the material interface, the fluid velocity is continuous in the normal direction, i.e.

û1 · n = û2 · n = ∂X̂
∂ t̂

· n at ẑ = η̂, (2.8)

where X̂ ≡ (x̂, η̂(t̂, x̂)) denotes the location of the material interface at time t̂ and n =
(−∂η̂/∂ x̂, 1)/

√
1 + (∂η̂/∂ x̂)2 denotes the normal unit vector at the material interface (see

figure 1). Other than the bound charges due to polarization, there are no unbounded
surface charges at the material interface. Therefore, the normal component of the electric
displacement field ε̂Ê is continuous across the material interface, and so is the tangential
component of the electric field Ê. These conditions lead to[

ε̂Ê · n
]1

2
= 0 at ẑ = η̂, (2.9)[

Ê · s
]1

2
= 0 at ẑ = η̂, (2.10)

where s = (1, ∂η̂/∂ x̂)/
√

1 + (∂η̂/∂ x̂)2 is the tangential unit vectors at the material
interface (see figure 1). The normal stress at the material interface is also continuous,
i.e.

n · T̂ 1 · n = n · T̂ 2 · n at ẑ = η̂, (2.11)

where
T̂ i = −p̂iI + ε̂Êi ⊗ Êi − 1

2 ε̂i|Êi|2I (2.12)

is the stress tensor for fluid i and I is the identity matrix. We comment that, on the
right-hand side of (2.12), the first term is the hydrodynamic component, and the second and
third terms are the electrodynamic components. The expressions of the electrodynamic
components come from the Maxwell stress tensor. Here we have used the condition of
constant permittivity.

For our system, (2.1)–(2.5) are the governing equations in the interior regions of the
fluids, (2.6) and (2.7) are the boundary conditions at the far fields and (2.8)–(2.11) are
the boundary conditions at the material interface. We comment that (2.1)–(2.3), (2.6) and
(2.8) do not involve electric fields and are identical to the equations for the classical RTI.
Since our system contains electric fields, it requires additional equations, namely (2.4),
(2.5), (2.7) and (2.9)–(2.11).
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Nonlinearity of dielectric RTI in tangential electric fields

2.2. Non-dimensional parameters and equations
The governing equations for our system given by (2.1)–(2.11) are expressed in terms of
dimensional variables. Here we non-dimensionalize these governing equations and all
physical parameters. In the paper, all dimensionless quantities are denoted by notations
without the circumflex symbol.

We introduce the Atwood number for the fluid density

A = ρ̂1 − ρ̂2

ρ̂1 + ρ̂2
. (2.13)

Since in our setting the top fluid (fluid 1) is always heavier than the bottom fluid (fluid 2)
and the gravity points downwards, A > 0 and gravity always acts as a destabilizing factor.
Similarly, we introduce the ‘Atwood number’ for the electric permittivity, namely

Aε = ε̂1 − ε̂2

ε̂1 + ε̂2
. (2.14)

Note that when ε̂1 > ε̂2, i.e. Aε > 0, the top fluid (fluid 1) has higher permittivity and,
therefore, yields a higher degree of polarization in response to the external electric
field than the bottom fluid (fluid 2). When ε̂1 < ε̂2, i.e. Aε < 0, the top fluid has lower
permittivity and yields a lower degree of polarization in response to the external electric
field than the bottom fluid.

The length is non-dimensionalised by the wavenumber k̂, namely

x = x̂k̂, z = ẑk̂, η = η̂k̂. (2.15a–c)

It is easy to check that n = (−∂η/∂x, 1)/
√

1 + (∂η/∂x)2 and s = (1, ∂η/∂x)/√
1 + (∂η/∂x)2. There are two driving forces in the system: gravity ĝ with ĝ > 0,

and the electrical force caused by the external electric field characterized by f̂E =
Ê2

hk̂(ε̂1 + ε̂2)/(ρ̂1 + ρ̂2). The former generates the interfacial instability and the latter
suppresses it (Eldabe 1989). It is the competition between these two driving forces that
governs the evolution of the material interface. To quantify the relative strength of these
two driving forces, we introduce the dimensionless gravity

g = ĝ

ĝ + f̂E
, (2.16)

and the dimensionless horizontal electric field

Eh = sgn(Êh) ×
√

f̂E
ĝ + f̂E

, (2.17)

where sgn(·) is the sign function. We comment that g denotes the fraction of the driving
forces due to gravity, and E2

h denotes the fraction of the driving forces due to the electrical
force. Hence, when the system is mostly driven by gravity and the electrical force is
negligible, we have g → 1 and E2

h → 0. On the other hand, when the electrical force is
dominating, we have g → 0 and E2

h → 1.
The presence of the two different driving forces gives two distinctive characteristic time

scales: one is the time scale (ĝk̂)−1/2 due to gravity alone, and the other is the time scale
(f̂Ek̂)−1/2 due to the electrical force alone. This complicates the non-dimensionalisation
of time. We introduce a combined characteristic time t̂c = (ĝk̂ + f̂Ek̂)−1/2, which includes
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both the gravitational and electrical force time scales. This combined form avoids the
characteristic time becoming zero when one of the driving forces is absent, i.e. when ĝ = 0
or Êh = 0. Therefore, t̂c can serve as the characteristic time of our system for all cases.
Then the time, the pressure, the velocity field and the electric field are non-dimensionalised
as

t = t̂/t̂c, pi = p̂ik̂2 t̂2c/(ρ̂1 + ρ̂2), ui = ûik̂t̂c, Ei = Êi/Êh. (2.18a–d)

The dimensionless stress tensors are expressed as

T 1 = −p1I + 1 + Aε

2
E2

hE1 ⊗ E1 − 1 + Aε

4
E2

h|E1|2I, (2.19)

T 2 = −p2I + 1 − Aε

2
E2

hE2 ⊗ E2 − 1 − Aε

4
E2

h|E2|2I. (2.20)

The dimensional governing equations and boundary conditions given by (2.1)–(2.11) can
be expressed in terms of the non-dimensional quantities defined by (2.15a–c)–(2.18a–d)
and the results are

1 + A
2

(
∂u1

∂t
+ u1 · ∇u1

)
= −∇p1 − 1 + A

2
gj, (2.21)

1 − A
2

(
∂u2

∂t
+ u2 · ∇u2

)
= −∇p2 − 1 − A

2
gj, (2.22)

∇ · ui = 0, i = 1, 2, (2.23)

∇ × ui = 0, i = 1, 2, (2.24)

∇ · Ei = 0, i = 1, 2, (2.25)

∇ × Ei = 0, i = 1, 2, (2.26)

u1(z = ∞) = u2(z = −∞) = 0, (2.27)

E1(z = ∞) = E2(z = −∞) = i, (2.28)

u1 · n = u2 · n = ∂X
∂t

· n at z = η, (2.29)

(1 + Aε)E1 · n = (1 − Aε)E2 · n at z = η, (2.30)

E1 · s = E2 · s at z = η, (2.31)

n · T 1 · n = n · T 2 · n at z = η, (2.32)

where ∇ ≡ (∂/∂x, ∂/∂z) = 1/k̂(∂/∂ x̂, ∂/∂ ẑ) is the non-dimensional spatial differential
operator and X ≡ (x, η(t, x)) is the location of the material interface in terms of
dimensionless length.

In the following sections all analyses and results are presented in terms of
non-dimensional quantities unless explicitly stated.

3. General solution procedure by perturbation expansion

Here we derive the perturbation solutions for the single-mode RTI in the presence of a
horizontal electric field. We consider a perturbed material interface with the initial shape
given by η(t = 0, x) = a0 cos(x) and the initial velocity given by η̇(t = 0, x) = 0, where
a0 > 0 is the dimensionless amplitude of the initial disturbance. The linear theory only
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considers the solutions up to the first order of a0. To study the nonlinear behaviour of
fingers, in §§ 3.1–3.3 we derive the general solution procedure in terms of the perturbation
expansion of a0. The explicit solutions up to the third order are presented in § 3.4.

3.1. Governing equations in terms of potentials
Since the fluids in our system are incompressible and irrotational (see (2.23) and (2.24)),
there exists a velocity potential in each fluid phase. Furthermore, the electric fields in our
system are both divergence free and rotation free in the interior of the fluids (see (2.25)
and (2.26)), and there also exists a voltage potential for each fluid. In this subsection we
rewrite the governing equations (2.21)–(2.32) in terms of these potentials. In terms of the
dimensionless velocity potential φi, the dimensionless velocity field in the interior of each
fluid phase i can be expressed as ui = −∇φi. Therefore, (2.23) can be rewritten as the
Laplace equation for φi,

∇2φi = 0, i = 1, 2. (3.1)

Similarly, in terms of the dimensionless voltage potentials Vi, the dimensionless electric
fields in the interior of the fluids can be expressed as Ei = −∇Vi. Then (2.25) leads to a
Laplace equation for Vi,

∇2Vi = 0, i = 1, 2. (3.2)

The boundary conditions at the far fields, i.e. (2.27) and (2.28), are also rewritten in
terms of dimensionless velocity potentials φi and dimensionless voltage potentials Vi as

∇φ1(z = ∞) = ∇φ2(z = −∞) = 0, (3.3)

∇V1(z = ∞) = ∇V2(z = −∞) = −i. (3.4)

Since the dimensionless voltage potentials have been normalized by the strength of the
external horizontal electric field Êh, in (3.4) the boundary conditions no longer explicitly
depend on the strength of the electric field.

At the material interface, after expressing ui and n in terms of φi and η, the kinematic
condition (2.29) becomes

∂η

∂t
− ∂φi

∂x
∂η

∂x
+ ∂φi

∂z
= 0 at z = η (i = 1, 2). (3.5)

Similarly, (2.30) and (2.31) are rewritten in terms of Vi and η as

2∑
i=1

(−1)i−1
[
(1 + (−1)i−1Aε)

(
∂Vi

∂z
− ∂Vi

∂x
∂η

∂x

)]
= 0 at z = η, (3.6)

2∑
i=1

(−1)i−1
[
∂Vi

∂x
+ ∂Vi

∂z
∂η

∂x

]
= 0 at z = η. (3.7)

Due to the incompressible and irrotational properties of the fluids, the Euler equations,
i.e. (2.21) and (2.22), can be integrated into the Bernoulli’s equation

2∑
i=1

(−1)i−1

[
1 + (−1)i−1A

2

(
−gη + ∂φi

∂t
− 1

2

[(
∂φi

∂x

)2

+
(

∂φi

∂z

)2
])

− pi

]
= h, at z = η, (3.8)
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where h is a constant that only depends on the initial conditions. After expressing Ei and
n in terms of Vi and η, (2.32) becomes

2∑
i=1

(−1)i−1

⎡⎢⎢⎣−pi + 1 + (−1)i−1Aε

2

[
1 +

(
∂η

∂x

)2
]E2

h

(
∂Vi

∂z
− ∂Vi

∂x
∂η

∂x

)2

− 1 + (−1)i−1Aε

4
E2

h

((
∂Vi

∂x

)2

+
(

∂Vi

∂z

)2
)⎤⎥⎥⎦ = 0 at z = η. (3.9)

Combining (3.8) and (3.9), we obtain

2∑
i=1

(−1)i−1

⎡⎢⎣(1 + (−1)i−1A)

(
−gη + ∂φi

∂t
− 1

2

[(
∂φi

∂x

)2

+
(

∂φi

∂z

)2
])

−1 + (−1)i−1Aε

1+
(

∂η

∂x

)2 E2
h

(
∂Vi

∂z
− ∂Vi

∂x
∂η

∂x

)2

+ 1 + (−1)i−1Aε

2
E2

h

((
∂Vi

∂x

)2

+
(

∂Vi

∂z

)2
)⎤⎥⎦

= 2h at z = η. (3.10)

Therefore, in terms of the velocity potentials φi and the voltage potentials Vi, our system is
governed by (3.1)–(3.7) and (3.10), the forms of which are more convenient for theoretical
analysis.

3.2. Unperturbed solutions
We first show the solutions for an unperturbed system (a0 = 0), which is the base for our
expansion. The governing equations for the unperturbed system are

∇2V(0)
i = 0, i = 1, 2; (3.11)

(1 + Aε)
∂V(0)

1
∂z

− (1 − Aε)
∂V(0)

2
∂z

= 0 at z = 0; (3.12)

∂V(0)
1

∂x
− ∂V(0)

2
∂x

= 0 at z = 0; (3.13)

1 + Aε

2
E2

h

⎛⎝(
∂V(0)

1
∂x

)2

−
(

∂V(0)
1

∂z

)2
⎞⎠ − 1 − Aε

2
E2

h

⎛⎝(
∂V(0)

2
∂x

)2

−
(

∂V(0)
2

∂z

)2
⎞⎠

= 2h at z = 0. (3.14)
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Nonlinearity of dielectric RTI in tangential electric fields

These equations give the unperturbed voltage potentials V(0)
1 and V(0)

2 ,

V(0)
1 (t, x, z) = V(0)

2 (t, x, z) = −x. (3.15)

Due to a0 = 0, the governing equations give a trivial solution for the velocity potentials,
namely φ

(0)
i = 0 (i = 1, 2).

3.3. General expansion solutions
For a material interface with a small initial perturbation, i.e. a0 � 1, we expand all
physical quantities in terms of powers of a0. This means that, for a function f , we expand
it as

f =
∑

n

f (n), (3.16)

where the term f (n) is proportional to an
0. In particular, the material interface is expanded

as

η(t, x) =
∞∑

n=1

η(n)(t, x). (3.17)

The derivation for the perturbation expansion procedure is given in Appendix A. Here we
show the general perturbation solutions up to any order.

The governing equations for the nth-order (n � 1) perturbation solutions are listed in
Appendix A (see (A7)–(A13)). In terms of perturbation expansion, the solutions to these
equations are in the form of

η(n)(t, x) =
∑

0�j�n

a(n)
j (t) cos(jx), (3.18)

φ
(n)
1 (t, x, z) =

∑
0�j�n

b(n)
j (t) cos(jx)e−jz, (3.19)

φ
(n)
2 (t, x, z) =

∑
0�j�n

b̃(n)
j (t) cos(jx)ejz, (3.20)

V(n)
1 (t, x, z) =

∑
0�j�n

d′(n)
j (t) sin(jx)e−jz, (3.21)

V(n)
2 (t, x, z) =

∑
0�j�n

d̃′(n)
j (t) sin(jx)ejz. (3.22)

We define the following notations that will appear frequently in our expansion:

W− = −A2
εE2

h, (3.23)

W+ = A3
εE2

h, (3.24)

σj =
√

j
(
Ag + jW−) =

√
j
(
Ag − jA2

εE2
h
)
. (3.25)

The coefficient a(n)
j (t) in (3.18) for the interface η is

a(n)
j (t) = eσjt

2σj

∫ t

0
F(n)

j (τ )e−σjτ dτ − e−σjt

2σj

∫ t

0
F(n)

j (τ )eσjτ dτ + a0 cosh(σ1t)δ1jδ1n,

(3.26)
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which is the solution for the governing equation

d2a(n)
j

dt2
− σ 2

j a(n)
j = F(n)

j , (3.27)

and σj given by (3.25) is the eigenvalue of this equation. The source term F(n)
j is

F(n)
j = 1 + A

2

dR(n)
j

dt
+ 1 − A

2

dR̃(n)
j

dt

+ j
[

U(n)
j − E2

hAεS′(n)
j + 1 − A2

ε

2
E2

hT(n)
j

]
. (3.28)

The explicit expressions for R(n)
j , R̃(n)

j , S′(n)
j , T(n)

j and U(n)
j can be determined from

(A16)–(A20) given in Appendix A. We comment that the right-hand side of (3.28),
namely R(n)

j , R̃(n)
j , S′(n)

j , T(n)
j and U(n)

j , only contains solutions of order lower than n (see

Appendix A). Therefore, starting from the first order, a(n)
j can be solved from (3.27) order

by order.
The coefficients b(n)

j (t) in (3.19) and b̃(n)
j (t) in (3.20) for fluid velocity potentials can

then be determined from a(n)
j (t), i.e.

b(n)
j (t) = 1

j

(
da(n)

j (t)

dt
− R(n)

j (t)

)
, (3.29)

b̃(n)
j (t) = −1

j

(
da(n)

j (t)

dt
− R̃(n)

j (t)

)
. (3.30)

The coefficients d′(n)
j (t) in (3.21) and d̃′(n)

j (t) in (3.22) for voltage potentials can also be

determined from a(n)
j (t). The results are

d′(n)
j (t) = −

[
Aεa(n)

j (t) + 1
j

(
S′(n)

j (t) − 1 − Aε

2
T(n)

j (t)
)]

, (3.31)

d̃′(n)
j (t) = −

[
Aεa(n)

j (t) + 1
j

(
S′(n)

j (t) + 1 + Aε

2
T(n)

j (t)
)]

. (3.32)

The detailed derivation for the perturbation solutions shown in this subsection can be
found in Appendix B.

3.4. Explicit expressions for perturbation solutions
Equations (3.26)–(3.32) provide us with a general procedure to obtain perturbed solutions
up to any order. Here we show the expressions for the perturbed interface up to the third
order in terms of a0. As we will show later, to give an accurate prediction for the perturbed
interface, one must include all terms up to the third order.

The shape of the interface at time t, up to the order of a3
0, can be described by

η(t, x) = η(1)(t, x) + η(2)(t, x) + η(3)(t, x) + O(a4
0), (3.33)

where the nth-order component η(n)(t, x) (n = 1, 2, 3) are given below.
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Nonlinearity of dielectric RTI in tangential electric fields

The first-order component is

η(1)(t, x) = a(1)
1 (t) cos(x), (3.34)

with

a(1)
1 (t) = a0 cosh(σ1t). (3.35)

The second-order component is

η(2)(t, x) = a(2)
2 (t) cos(2x), (3.36)

with

a(2)
2 (t) = a2

0 [(c1 + c2) cosh(σ2t) − c1 − c2 cosh(2σ1t)] . (3.37)

The third-order component is

η(3)(t, x) = a(3)
1 (t) cos(x) + a(3)

3 (t) cos(3x), (3.38)

with

a(3)
1 (t) = a3

0 [c3t sinh(σ1t) + (c4 + c5 + c6) cosh(σ1t)

−c4 cosh(3σ1t) − c5 cosh((σ1 − σ2)t) − c6 cosh((σ1 + σ2)t)] , (3.39)

a(3)
3 (t) = a3

0 [(c7 + c8 + c9 + c10) cosh(σ3t) − c7 cosh(σ1t) − c8 cosh(3σ1t)

−c9 cosh((σ1 − σ2)t) − c10 cosh((σ1 + σ2)t)] . (3.40)

Here the constants cm (m = 1, 2, . . . , 10) in (3.37), (3.39) and (3.40) are given by the
following expressions:

c1 = 1
2σ 2

2
(Aσ 2

1 − W+), (3.41)

c2 = − 1
2(σ 2

2 − 4σ 2
1 )

(Aσ 2
1 + W+), (3.42)

c3 = 1
2σ1

[
−1

8
σ 2

1 + Aσ 2
1

(c2

2
− c1

)
+ W+

(c2

2
+ c1

)
− 3

8
W−

]
, (3.43)

c4 = − 1
8σ 2

1

[
−1

8
σ 2

1 − 3c2

2
Aσ 2

1 + c2

2
W+ − 1

8
W−

]
, (3.44)

c5 = 1
2σ2(2σ1 − σ2)

[
Aσ1(σ1 − σ2)(c1 + c2) − W+(c1 + c2)

]
, (3.45)

c6 = − 1
2σ2(2σ1 + σ2)

[
Aσ1(σ1 + σ2)(c1 + c2) − W+(c1 + c2)

]
, (3.46)

c7 = 3
σ 2

3 − σ 2
1

[
1
16

σ 2
1 − Aσ 2

1 c2 + W+(2c1 + c2) + 3
16

W−
]

, (3.47)
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c8 = 3
σ 2

3 − 9σ 2
1

[
− 1

16
σ 2

1 + Aσ 2
1 c2 + W+c2 + 1

16
W−

]
, (3.48)

c9 = 3
σ 2

3 − (σ1 − σ2)2

[
1
2

Aσ1σ2(c1 + c2) − W+(c1 + c2)

]
, (3.49)

c10 = 3
σ 2

3 − (σ1 + σ2)2

[
−1

2
Aσ1σ2(c1 + c2) − W+(c1 + c2)

]
. (3.50)

The terms that are not displayed in (3.36) and (3.38) vanish. More specifically,

a(2)
1 (t) = a(3)

2 (t) = 0. (3.51)

The derivation of the governing equations and the corresponding perturbation solutions
for the first, second and third orders are given in Appendices C, D and E, respectively.

Taking the derivative of (3.33) with respect to t gives the explicit expression for the
velocity of an arbitrary point on the material interface up to the order of a3

0,

η̇(t, x) = η̇(1)(t, x) + η̇(2)(t, x) + η̇(3)(t, x) + O(a4
0), (3.52)

where the three leading-order components η̇(n)(t, x) (n = 1, 2, 3) are as follows.
The first-order component is

η̇(1)(t, x) = ȧ(1)
1 (t) cos(x), (3.53)

with
ȧ(1)

1 (t) = a0σ1 sinh(σ1t). (3.54)

The second-order component is

η̇(2)(t, x) = ȧ(2)
2 (t) cos(2x), (3.55)

with
ȧ(2)

2 (t) = a2
0 [σ2 (c1 + c2) sinh(σ2t) − 2σ1c2 sinh(2σ1t)] . (3.56)

The third-order component is

η̇(3)(t, x) = ȧ(3)
1 (t) cos(x) + ȧ(3)

3 (t) cos(3x), (3.57)

with

ȧ(3)
1 (t) = a3

0 [c3 sinh(σ1t) + σ1c3t cosh(σ1t) + σ1 (c4 + c5 + c6) sinh(σ1t)

− 3σ1c4 sinh(3σ1t) − (σ1 − σ2)c5 sinh((σ1 − σ2)t)

−(σ1 + σ2)c6 sinh((σ1 + σ2)t)] , (3.58)

ȧ(3)
3 (t) = a3

0 [σ3 (c7 + c8 + c9 + c10) sinh(σ3t) − σ1c7 sinh(σ1t)

− 3σ1c8 sinh(3σ1t) − (σ1 − σ2)c9 sinh((σ1 − σ2)t)

−(σ1 + σ2)c10 sinh((σ1 + σ2)t)] . (3.59)

Here the constants cm (m = 1, 2, . . . , 10) in (3.56), (3.58) and (3.59) are given by
(3.41)–(3.50).
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Nonlinearity of dielectric RTI in tangential electric fields

4. Main results

The velocities and amplitudes of fingers (spikes and bubbles) at the material interface are
very important quantities in the RTI dynamics. They represent the dominant features of
an RT interface. Therefore, accurate predictions for the behaviour of spikes and bubbles
are highly desirable in the theoretical studies of RT instability. In this section we will
provide theoretical formulas for predicting the nonlinear behaviours of RT-type fingers in
the presence of a horizontal electric field. We will present examples in which the nonlinear
solutions are essential for accurate predictions of finger dynamics.

In our system, A > 0 (ρ̂1 > ρ̂2), namely the fluid on top is heavier than the fluid at the
bottom. The material interface is unstable if the external horizontal electric field is absent,
since gravity provides a destabilizing factor to the system. Now we consider this system
with a horizontal electric field. By putting x = π (for spikes) and x = 0 (for bubbles) into
(3.33), we obtain the explicit expressions for the bubble amplitude ampbb and the spike
amplitude ampsp. Up to the third order, the results are

ampbb(t) = a(1)(t) − a(2)(t) + a(3)(t) (4.1)

and

ampsp(t) = −a(1)(t) − a(2)(t) − a(3)(t), (4.2)

where

a(1)(t) = a0C(σ1t) (4.3)

is the first-order (linear) component,

a(2)(t) = a2
0 [c1 + c2C(2σ1t) − (c1 + c2) C(σ2t)] (4.4)

is the second-order component and

a(3)(t) = a3
0 [c3tS(σ1t) + (c4 + c5 + c6 − c7) C(σ1t)

+ (c7 + c8 + c9 + c10) C(σ3t) − (c4 + c8) C(3σ1t)

− (c5 + c9) C((σ1 − σ2)t) − (c6 + c10) C((σ1 + σ2)t)] (4.5)

is the third-order component. In (4.3)–(4.5), for a complex number ξ = p + qi (where p
and q are real),

C(ξ) = cosh( p) cos(q) + i sinh( p) sin(q), (4.6)

S(ξ) = sinh( p) cos(q) + i cosh( p) sin(q). (4.7)

Particularly, when ξ is real, we have C(ξ) = cosh(ξ) and S(ξ) = sinh(ξ); when ξ = qi
is imaginary, we have C(ξ) = cos(q) and S(ξ) = i sin(q). We comment that when an
eigenvalue σj is not real, the values of C and S will be complex. Then the corresponding
coefficients cm will also be complex. This leads to a(n)(t) being real.
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After taking the derivatives of (4.1) and (4.2) with respect to t, we obtain the explicit
expression for the velocity of bubbles and that of spikes (up to the third order),

vbb = v(1)(t) − v(2)(t) + v(3)(t), (4.8)

vsp = −v(1)(t) − v(2)(t) − v(3)(t), (4.9)

where
v(1)(t) = a0σ1S(σ1t) (4.10)

is the first-order (linear) component,

v(2)(t) = a2
0 [2σ1c2S(2σ1t) − σ2 (c1 + c2) S(σ2t)] (4.11)

is the second-order component and

v(3)(t) = a3
0 [c3S(σ1t) + σ1c3tC(σ1t) + σ1 (c4 + c5 + c6 − c7) S(σ1t)

+ σ3 (c7 + c8 + c9 + c10) S(σ3t) − 3σ1 (c4 + c8) S(3σ1t)

−(σ1 − σ2) (c5 + c9) S((σ1 − σ2)t) − (σ1 + σ2) (c6 + c10) S((σ1 + σ2)t)]
(4.12)

is the third-order component. In (4.10)–(4.12), the expression of C(ξ) and that of S(ξ) are
given by (4.6) and (4.7), respectively. We comment that expressions (4.3) and (4.10) are
the linear theory derived in Eldabe (1989). The additional contributions from (4.4), (4.5),
(4.11) and (4.12) are the nonlinear effects, which play an important role in our study.

5. Validation studies

In this section we will provide a comparison between the predictions from the nonlinear
perturbation solution derived above, the predictions from the linear theory and the results
from numerical simulations. We describe briefly the numerical method used in the
simulations first, and then present the results for validation studies.

5.1. Numerical method
To conduct validation studies, we need the numerical solution of the governing equations
given by (2.21)–(2.26) with the boundary conditions given by (2.27)–(2.32). Solving
these equations directly requires performing numerical computations in two dimensions.
However, it is the evolution of the material interface that we are interested in, not the
solution in the interior of the fluids. For our system, the evolution of the material interface
can be formulated in terms of vortex dynamics that only needs to solve a one-dimensional
vortex sheet that coincides with the material interface, and no computation in the interior
regions is needed. This is possible because the fluids are inviscid, incompressible and
perfect dielectric. Therefore, there is no vorticity or bulk charge in the interior regions of
the fluids. We will take the vortex sheet method in our numerical simulations.

The vortex sheet method is one of the numerical methods designed to tackle the
problems that involve multi-phase fluids (Moore 1981; Baker, Meiron & Orszag 1982;
Shin, Sohn & Hwang 2018). This method has been successfully adapted in the study of the
classical RTI (Baker, Meiron & Orszag 1980; Kerr 1988; Sohn 2004; Shin, Sohn & Hwang
2022), which does not involve electric fields. For inviscid and incompressible fluids, based
on the Biot–Savart law, the vortex sheet method formulates the dynamics of the entire
system into the evolution of vorticity confined to the material interfaces between the fluids
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Nonlinearity of dielectric RTI in tangential electric fields

(Baker et al. 1980; Moore 1981; Kerr 1988; Sohn 2004). Then one can determine the
evolution of the material interface by solving a boundary integral equation at the material
interface.

Our system is more complicated. It involves two inviscid, incompressible and perfect
dielectric fluids in the presence of both gravitational force and external electric fields.
Even so, we are still able to extend the vortex method to our system. Such an extension
can be achieved due to the fact that the fluid velocity field and the electric displacement
field in our system share the following important properties: Both of them are rotation free
and can be expressed in terms of potentials; they are both divergence free and governed
by the Laplace equation in the interior of fluids; both fields are continuous in the normal
direction at the material interface. Therefore, similar to the fluid velocity field, the electric
displacement field in our system can also be formulated in terms of a ‘vortex sheet’ and
determined from a boundary integral equation. In the case of the classical RTI, one only
needs to solve the boundary integral equation for fluid vorticity. In our case, one needs
to solve two coupled boundary integral equations, one for fluid vorticity and the other
for ‘vorticity’ in the electric displacement field. Although two vortex sheets exist in our
system (one for the fluid velocity and the other for the electric field), both vortex sheets
are confined to the same material interface and, therefore, have the same location. In
other words, all physical quantities are only evaluated and evolved at the one-dimensional
material interface during the computation.

Here we provide the key steps for the vortex dynamics formulation of our system. The
vortex strength, which is the jump in the dimensionless tangential velocity across the
material interface, is defined as

γ = (u2 − u1) · s. (5.1)

Since the velocities of the two fluids are not identical at the material interface (u1 /= u2),
the motion of the material interface follows the average velocity

Ū = (u1 + u2)/2. (5.2)

Due to the incompressible and irrotational properties of the fluids, i.e. (2.23) and (2.24),
the velocity of the material interface Ū can be expressed in terms of the vortex strength γ

based on the Biot–Savart law,

Ū(s, t) = 1
2π

p.v.
∫

L

k̃ × [X (s, t) − X (s̃, t)]
|X (s, t) − X (s̃, t)|2 γ (s̃, t) ds̃. (5.3)

Here L denotes the whole material interface that contains an infinite number of periods,
p.v. denotes the Cauchy principal value of an integral, s denotes the dimensionless
arclength coordinate at the material interface and k̃ is the unit vector perpendicular to the
two-dimensional plane of the fluid system. Since the horizontal boundaries of the system
are periodic, (5.3) can be simplified as

Ūx − iŪz = 1
4πi

p.v.
∫

l
cot

(
ξ − ξ̃

2

)
γ̃ ds̃, (5.4)

where ξ = x + iz is the complex notation of the interface location, Ūx and Ūz are the
horizontal and vertical components of Ū , l is one period of the material interface (due to
the property of periodicity, it can be any period), and the notation (̃·) ≡ (·)(s̃) denotes the
dummy variables in the integration along the interface. We comment that the velocity field
given by (5.4) satisfies the far-field boundary condition given by (2.27).
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The electric displacement field in our system can be formulated similarly. For the
electric displacement field, we define the dimensionless electric displacement in fluid 1
by

D1 = ε̂1Ê1/(ε̂1 + ε̂2)Êh = (1 + Aε)E1/2, (5.5)

and the dimensionless electric displacement in fluid 2 by

D2 = ε̂2Ê2/(ε̂1 + ε̂2)Êh = (1 − Aε)E2/2. (5.6)

Similar to the velocity field, we define the ‘vortex strength’ for the dimensionless electric
displacement field by

β = (D2 − D1) · s, (5.7)

which is the jump in the tangential component of the dimensionless electric displacement
field at the material interface. The electric displacement field at the material interface is
defined by the average electric displacement of the two fluids

D̄ = (D1 + D2)/2. (5.8)

Due to (2.25) and (2.26) and the Biot–Savart law, we have

D̄(s, t) = 1
2π

p.v.
∫

L

k̃ × [X (s, t) − X (s̃, t)]
|X (s, t) − X (s̃, t)|2 β(s̃, t) ds̃ + Dext, (5.9)

where Dext is the contribution of the external electric field. Based on (5.5) and (5.6)
and the boundary condition given by (2.28), the horizontal component of Dext is Dext

x =
1
2 [(1 + Aε)/2 + (1 − Aε)/2] = 1

2 , namely the average electric displacement due to the
external electric field, and the vertical component is Dext

z = 0. Due to the periodicity of
our system in the horizontal direction, (5.9) can then be simplified as

D̄x − iD̄z = 1
4πi

p.v.
∫

l
cot

(
ξ − ξ̃

2

)
β̃ ds̃ + 1

2
, (5.10)

where D̄x and D̄z are the horizontal and vertical components of D̄, respectively.
Based on the vortex dynamics formulation for the velocity and electric displacement

fields, the evolution of the material interface can then be represented by the following
one-dimensional integral equations along the material interface in terms of dimensionless
variables:

dX
dt

= Ū; (5.11)

dΓ

dt
= 2A

∫ s+

s−

dŪ
dt

· s ds + (
2Agz − Fγ − Fe

)∣∣∣∣∣
s+

s−
for any segment (s−, s+); (5.12)
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Nonlinearity of dielectric RTI in tangential electric fields

β + 2 AεD̄ · s = 0; (5.13)

Ūx(x, z) = − 1
4π

p.v.
∫

l

sinh(z − z̃)
cosh(z − z̃) − cos(x − x̃)

γ̃ ds̃, (5.14)

Ūz(x, z) = 1
4π

p.v.
∫

l

sin(x − x̃)
cosh(z − z̃) − cos(x − x̃)

γ̃ ds̃; (5.15)

D̄x(x, z) = − 1
4π

p.v.
∫

l

sinh(z − z̃)
cosh(z − z̃) − cos(x − x̃)

β̃ ds̃ + 1
2
, (5.16)

D̄z(x, z) = 1
4π

p.v.
∫

l

sin(x − x̃)
cosh(z − z̃) − cos(x − x̃)

β̃ ds̃, (5.17)

where

Γ =
∫ s+

s−
γ (s, t) ds, (5.18)

Fγ = −A
4

γ 2, (5.19)

Fe = 4Aε

1 − A2
ε

E2
h

(
D̄2

x + D̄2
y − β2

4

)
, (5.20)

In (5.11), X = (x, z) is the location of the material interface. In (5.12) and (5.18), s− and
s+ denote the dimensionless arclength coordinates of the starting and ending points of an
arbitrary segment at the material interface, and Γ is the dimensionless vorticity residing in
the segment. The Atwood number for fluid densities A and that for electric permittivities
Aε in (5.12), (5.13), (5.19) and (5.20) are defined in (2.13) and (2.14).

We comment that the formulation given by (2.21)–(2.32) and the vortex sheet
formulation given by (5.11)–(5.17) are equivalent. More specifically, (5.14) and (5.15) given
by the Biot–Savart law for the velocity field satisfy (2.23), (2.24), (2.27) and (2.29); (5.16)
and (5.17) given by the Biot–Savart law for the electric displacement field satisfy (2.25),
(2.26), (2.28) and (2.30). Equation (5.13) corresponds to the boundary condition given
by (2.31). Equation (5.12) can be obtained by taking the difference between (2.21) and
(2.22) and simplifying the resulting equation by the boundary condition (2.32). Equation
(5.11) simply comes from the definition. Therefore, although the two formulations are
different, they both solve exactly the same system and have the same solution. There
is no simplification between these two formulations. However, conducting numerical
simulations based on the vortex sheet method has the following three distinct advantages
for our system. (1) The vortex sheet method only needs to perform one-dimensional
computation along the material interface, rather than two-dimensional computation based
on solving (2.21)–(2.32). This leads to a saving in computing time. (2) The key issue
for the RTI is to determine how fast the fingers at the material interface grow with time.
Therefore, an accurate determination of the shape and location of the material interface
is very important. In the vortex sheet method, its data structure directly represents the
shape and location of the material interface. On the other hand, the usual numerical
methods for solving (2.21)–(2.32) in the two-dimensional physical space need to construct
or estimate these quantities from the two-dimensional grid-based data. Such constructions
or estimations usually contain more numerical diffusion. Therefore, the vortex sheet
method can compute the velocity of fingers more accurately. (3) The domain of our
system is infinite in the vertical direction. However, the numerical simulation based

958 A36-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.105


W. Guo, Q. Zhang and D. He

on a two-dimensional computation of (2.21)–(2.32) can only be performed in a finite
computational domain, and one must introduce the upper and lower boundaries for the
finite computational domain and impose certain boundary conditions at these numerical
boundaries. Such numerical boundaries are not needed in the vortex sheet method, since
the computation is solely and directly performed at the material interface.

Evaluations of (5.14)–(5.17) encounter singularities when (x̃, z̃) approaches (x, z).
Krasny introduced a desingularization parameter δ > 0 in the equations of the Biot–Savart
law (Krasny 1986). Linear stability analysis showed that this desingularization method
diminished the short wavelength instability and yielded numerically more tractable
equations (Krasny 1986). Applying Krasny’s method, we introduce the desingularization
parameter δ in the Biot–Savart law for computing the average velocity and the average
electric displacement at the material interface,

Ūx(x, z) = − 1
4π

p.v.
∫

l

sinh(z − z̃)
cosh(z − z̃) − cos(x − x̃) + δ2 γ̃ ds̃, (5.21)

Ūz(x, z) = 1
4π

p.v.
∫

l

sin(x − x̃)
cosh(z − z̃) − cos(x − x̃) + δ2 γ̃ ds̃; (5.22)

D̄x(x, z) = − 1
4π

p.v.
∫

l

sinh(z − z̃)
cosh(z − z̃) − cos(x − x̃) + δ2 β̃ ds̃ + 1

2
, (5.23)

D̄z(x, z) = 1
4π

p.v.
∫

l

sin(x − x̃)
cosh(z − z̃) − cos(x − x̃) + δ2 β̃ ds̃. (5.24)

The introduction of the desingularization parameter δ2 in Krasny’s method removes the
singularities in the Biot–Savart law, but it also reduces the numerical solution. We have
used δ2 = 0.02 in all our simulations. Although the error due to the desingularization
parameter δ2 is small, by applying the technique of repeated Richardson extrapolation we
further reduce the error (Richardson 1910). More specifically, we applied the Richardson
extrapolation technique twice. All results in our validation studies are obtained with this
repeated Richardson extrapolation technique. We have implemented this vortex sheet
method with the repeated Richardson extrapolation technique and conducted validation
studies to verify the consistency and accuracy of this numerical method. Since the
derivation and the implementation details of this numerical method are lengthy, the details
will be presented in a separate paper focused on the numerical method.

5.2. Validation studies of the nonlinear perturbation solutions
The central issue in the study of the RTI is to predict how the overall mixing layer between
the two fluids grows with time. The overall mixing layer is characterized by the vertical
distance between the tip of the spike and that of the bubble. A half of this distance is known
as the overall amplitude of the fingers. This is the most important and widely considered
quantity for the RTI. Researchers are interested in how the overall amplitude changes with
time and at what speed it changes, namely the overall velocity. Due to the symmetry in
the functional form given by (3.18), all even-order terms in the perturbation solutions do
not contribute to the overall amplitude or the overall velocity. Therefore, the first-order
solution and the solution up to the second order give the same prediction for the overall
amplitude/velocity. Similarly, the solution up to the third order and that up to the fourth
order give the same prediction for the overall amplitude/velocity. From (4.8) and (4.9),
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Nonlinearity of dielectric RTI in tangential electric fields

we have the overall velocity

vov = 1
2(vbb − vsp)

= v(1)(t) + v(3)(t) + O(a5
0), (5.25)

where v(1)(t) and v(3)(t) are given by (4.10) and (4.12), respectively. From these two
equations, (5.25) can be rewritten as

vov = ȧ(1)
1 (t) + ȧ(3)

1 (t) + ȧ(3)
3 (t) + O(a5

0), (5.26)

where ȧ(1)
1 (t), ȧ(3)

1 (t) and ȧ(3)
3 (t) are given by (3.54), (3.58) and (3.59), respectively. As we

stated earlier, since the second-order solution does not enter vov , one needs to include at
least the third-order solution to exploit the nonlinear effects of the overall velocity.

Now we compare the predictions for the overall velocity from the first-order solution
(namely the linear theory) and those from the solution up to the fourth order given by
(5.26) with the data from numerical simulations. Our system involves four fundamental
physical parameters: the dimensionless initial amplitude a0, the fraction of the driving
forces due to the horizontal electric field E2

h, the dielectric Atwood number Aε and the
Atwood number A. This is a four-dimensional phase space. We will set a base point in the
phase space, and vary one parameter at a time in the phase space to conduct our validation
studies. Since our solution is based on the perturbation expansion of the dimensionless
initial amplitude a0, a0 should be small. We choose a0 = 0.1 as the base point. In our
system, two competing forces act on the material interface, the strengths of which are
represented by the fraction of the driving forces due to gravity g and the fraction of the
driving forces due to the external horizontal electric field Eh

2. Since g + Eh
2 = 1, we

choose g = Eh
2 = 1/2 as our base point. Both |A| and |Aε | vary from 0 to 1. Therefore,

we choose A = 0.5 and Aε = 0.5 as our base point. In figures 2–5 we plot the normalized
overall velocity of fingers vov/a0 versus the dimensionless time t. In each figure we vary
one of the four physical parameters aforementioned, namely a0 in figure 2, Eh

2 in figure 3,
Aε in figure 4 and A in figure 5. If we kept all three remaining parameters at the base
point in each figure, there would be repeated subfigures among figures 2–5. To avoid such
repetitions and maximize the information extracted from the phase space, we will choose
one or two of the remaining parameters to deviate away from the base point. The rest of
the remaining parameters are located at the base point.

In figure 2 we set g = Eh
2 = 1/2, A = 0.6 and Aε = 0.5 as the constant parameters,

and vary a0 from 0.1 to 0.8. For each subsequent subfigure, we double the dimensionless
amplitude of the initial perturbation. In figure 2(a)–2(d), a0 is 0.1, 0.2, 0.4 and 0.8,
respectively. Figure 2 shows that the contributions from the nonlinear terms are important.
By including the nonlinear correction terms, the nonlinear perturbation solution provides
predictions that agree with the numerical data better than the linear theory and, thus,
provides a larger range of validity for theoretical prediction. Particularly, in figure 2(d)
where the dimensionless amplitude of the initial perturbation is large (a0 = 0.8), the
nonlinear effects are important even at early times. In this case, the prediction from the
linear theory deviates from the numerical results early (t ≈ 0.6), while the nonlinear
perturbation solution provides a reasonable prediction up to three times longer time
(t ≈ 2). Figure 2 shows that the larger a0 is, the earlier the nonlinear contribution occurs,
as one expected.

In figure 3 we vary the dimensionless strength of the external horizontal electric
field E2

h and plot the normalized overall velocity of fingers versus the dimensionless
time. In figures 3(a)–3(d) we begin with a weak horizontal electric field and double
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Figure 2. Comparison between the results from the nonlinear perturbation solution given by (5.26) (blue solid
curve), the linear theory (black solid curve) and the numerical simulations (blue ‘◦’) for the dimensionless
overall velocity of fingers vov/a0 with various dimensionless initial amplitudes a0 = 0.1, 0.2, 0.4, 0.8. The
other physical parameters are listed in the main text.

its strength in each subsequent case until the horizontal electric field suppresses the
interfacial instability. More precisely, we vary the ratio of the gravitational force to the
electric-field force g/E2

h = 64, 16, 4 and 1. These values correspond to the dimensionless
electric-field strength E2

h being 1/65, 1/17, 1/5 and 1/2, respectively. This covers the
cases from a situation in which the material interface is dominated by gravity-induced
instability to that in which the interface is close to the stable state. The other parameters are
a0 = 0.1, A = 0.4 and Aε = 0.6. Figure 3 shows that the regime of validity of the nonlinear
perturbation solution is larger than that of the linear theory in all cases. Particularly, when
E2

h = 1/2, the nonlinear perturbation solution provides much more accurate predictions
than the linear theory. Figure 3 also shows that both the nonlinear perturbation solution and
the linear theory are valid over a larger temporal domain as the strength of the horizontal
electric field E2

h increases. This is because as E2
h increases, the material interface becomes

less unstable. Therefore, the finger amplitude grows at a slower rate, which extends the
regime of validity of both theories over a longer period of time.

In figure 4 we vary the dielectric Atwood number Aε . Since Aε lies in the range [−1, 1]
and we have presented the results for Aε = 0.5 and 0.6 in figures 2 and 3, to explore
more points in the phase space, we present the results for Aε = −0.1, −0.3, −0.5 and
−0.7 in figures 4(a)–4(d), respectively. The other parameters are a0 = 0.2, A = 0.5 and
g = Eh

2 = 1/2. Figure 4 shows that the predictions of the nonlinear perturbation solution
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Figure 3. Comparison between the results from the nonlinear perturbation solution given by (5.26) (blue
solid curve), the linear theory (black solid curve) and the numerical simulations (blue ‘◦’) for the
dimensionless overall velocity of fingers vov/a0 with various strengths of horizontal electric fields applied
(E2

h = 1/65, 1/17, 1/5 and 1/2). The other physical parameters are listed in the main text.

are valid in a larger regime than those of the linear theory in all cases. Particularly, when
Aε = −0.7, the prediction of the linear theory deviates significantly from the numerical
results as early as t ≈ 2 (see figure 4d). The importance of the nonlinear behaviour is
clearly shown by the numerical results and captured by the nonlinear perturbation solution
in figure 4(d). As Aε changes from −0.1 the −0.7, the material interface becomes less
unstable, and the regime of validity of the nonlinear perturbation solution becomes larger
consequently. For Aε � −0.8, the effects of the driving force due to the horizontal electric
field become dominant such that the interface becomes stable.

In figure 5 we vary the Atwood number A and present the validation study for A = 0.3,
0.5, 0.7 and 1.0 in figures 5(a)–5(d), respectively. The other parameters are a0 = 0.1,
Aε = −0.5 and g = Eh

2 = 1/2. Similar to the previous comparisons, figure 5 also shows
that the predictions of the nonlinear perturbation solution are valid in a larger regime
than that of the linear theory. Since the increase of A destabilizes the system, both the
regime of validity of the nonlinear perturbation solution and that of the linear theory
become smaller as A increases. For 0 � A � 0.2, the destabilizing effects from gravity
are weak and the stabilizing effects from the horizontal electric field dominate, such that
the material interface becomes stable.

The nonlinear theoretical prediction for the overall velocity given by (5.26) only contains
the contributions up to O(a4

0). For an unstable material interface, the contributions from
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Figure 4. Comparison between the results from the nonlinear perturbation solution given by (5.26) (blue solid
curve), the linear theory (black solid curve) and the numerical simulations (blue ‘◦’) for the dimensionless
overall velocity of fingers vov/a0 with various dielectric Atwood numbers Aε = −0.1, −0.3, −0.5, −0.7. The
other physical parameters are listed in the main text.

the terms of higher orders become important as time progresses. Then the predictions
of the nonlinear perturbation solution given by (5.26) will also start to deviate from the
numerical solutions. Such a deviation is a complicated function of the four parameters a0,
E2

h, A and Aε . Depending on where the system sits in the four-dimensional phase space,
the deviation can be an overestimate or an underestimate. For example, in figure 3(c) the
nonlinear perturbation solution starts to underestimate the overall velocity around t = 6,
while in figure 3(d) the nonlinear perturbation solution starts to overestimate the overall
velocity around t = 18. To verify that our solution for the overall velocity up to the fourth
order, namely the terms ȧ(1)

1 , ȧ(3)
1 and ȧ(3)

3 in (5.26), is correct even in the time range in
which the theoretical predictions deviate from the numerical results, we need a method for
extracting the values of these terms from the data of numerical simulations. Then it allows
us to compare the extracted numerical results with the theoretical predictions for ȧ(1)

1 , ȧ(3)
1

and ȧ(3)
3 given by (3.54), (3.58) and (3.59). A good agreement between these two will not

only prove the correctness of our theoretical formula given by (5.26) but also confirm that
the deviation between the numerical results and the theoretical predictions is indeed due
to the contributions from the orders higher than those in (5.26). We achieve this by the
following method.
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Figure 5. Comparison between the results from the nonlinear perturbation solution given by (5.26) (blue solid
curve), the linear theory (black solid curve) and the numerical simulations (blue ‘◦’) for the dimensionless
overall velocity of fingers vov/a0 with various Atwood numbers A = 0.3, 0.5, 0.7, 1.0. The other physical
parameters are listed in the main text.

From (3.17) and (3.18) the material interface can also be expressed in terms of Fourier
modes

η(t, x) =
∞∑

n=1

∑
0�j�n

a(n)
j (t) cos(jx) (5.27)

=
∞∑

j=0

⎛⎝ ∞∑
n=j

a(n)
j (t)

⎞⎠ cos(jx) (5.28)

=
∞∑

j=0

ãj(t) cos(jx), (5.29)

where

ãj(t) =
∞∑

n=j

a(n)
j (t) =

∞∑
n=j

c̃(n)
j (t)an

0. (5.30)

We first perform the cosine Fourier transform for cos(jx) (j = 1, 3) to the numerical data
for the shape of the material interface η(t, x) at time t to obtain ãj(t). Note that due
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Figure 6. Comparisons between ȧ(n)
j /a0 predicted by the nonlinear perturbation solution (solid curves) and

that extracted from the numerical simulation (‘◦’ symbols) for the material interface shown in figure 3(c).

to symmetry, the even modes cos(jx) (j = 0, 2, 4, . . .) do not contribute to the overall
amplitude and, consequently, not to the overall velocity. By conducting several numerical
simulations for different values of a0 and applying the resulting data to (5.30), we
obtain a set of linear equations for the coefficients c̃(n)

j (t) (see (F5) in Appendix F).

By solving this set of linear equations, we obtain the corresponding c̃(n)
j (t) from the

numerical simulations. Then from the relation a(n)
j (t) = c̃(n)

j (t)an
0 (see (5.30)), we can

extract the information about a(n)
j (t) from the data of numerical simulations. The details

of the theoretical derivation for this method can be found in Appendix F. Finally,
by applying the central difference approximation to the value of a(n)

j (t), we obtain

the results of ȧ(n)
j (t) from the data of numerical simulations and present the results

in figures 6 and 7.
In figures 6 and 7 we investigate the material interfaces in figures 3(c) and 3(d).

We compare the theoretical predictions for the normalized interface coefficients ȧ(1)
1 /a0,

ȧ(3)
1 /a0 and ȧ(3)

3 /a0 given by (3.54), (3.58) and (3.59) with the extracted results from
numerical simulations obtained by the method we have explained above (see also
(F7)–(F9)). Note that the coefficients ȧ(2)

1 and ȧ(3)
2 are not plotted since they are identically

zero. Here ȧ(2)
2 and the fourth-order coefficients are not plotted since they do not

contribute to the overall velocity. Figure 6 corresponds to the system shown in figure 3(c),
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Figure 7. Comparisons between ȧ(n)
j /a0 predicted by the nonlinear perturbation solution (solid curves) and

that extracted from the numerical simulation (‘◦’ symbols) for the material interface shown in figure 3(d).

in which the nonlinear perturbation solution gives an underestimation at late times,
and figure 7 corresponds to the system shown in figure 3(d), in which the nonlinear
perturbation solution gives an overestimation at late times. In figures 6 and 7 the blue
solid curves are the theoretical predictions and the blue ‘◦’ symbols are the numerical
results.

Figures 6 and 7 show that ȧ(1)
1 /a0, ȧ(3)

1 /a0 and ȧ(3)
3 /a0 extracted from the data of

numerical simulations are in good agreement with our theoretical results for the interface
coefficients. This is true even at the late times of the simulations conducted in figures 3(c)
and 3(d), at which the theoretical predictions for the overall velocity have already deviated
from the numerical results. This is due to the fact that by the method that we discussed
above, we are able to extract just the information about each individual coefficient a(n)

j (t)
from the data of numerical simulations. One may notice that, at late times, the numerical
results shown in figure 7(c) are slightly lower than the theoretical values. This is because
in the numerical method one needs to introduce a numerical parameter δ to regularize the
singularity on the vortex sheet (see (5.21)–(5.24) and also (12) and (13) in Sohn 2004).
This desingularization parameter will slightly smoothen the interface. Such a reduction in
the overall velocity is only noticeable for high-frequency modes and for large times. This
is why it only appears at the late times of figure 7(c).

Figures 6 and 7 show good agreement between the nonlinear theoretical predictions and
the numerical results for ȧ(1)

1 , ȧ(3)
1 and ȧ(3)

3 even in the time domain in which the nonlinear
perturbation solution underestimates/overestimates (see figure 3c/3d). This confirms that
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Figure 8. Normalized dimensionless velocities of bubbles vbb/a0 and those of spikes vsp/a0 when the material
interface is in a linear neutral state due to the stabilizing effects of the horizontal electric field. The horizontal
magenta line is the linear prediction for both spikes and bubbles, the black curve is the prediction up to the
second order for both spikes and bubbles, the blue curve is the prediction up to the third order for the bubble
and the red curve is the prediction up to the third order for the spike. The blue ‘◦’ and red ‘×’ symbols are the
numerical data for bubbles and spikes, respectively.

the derived perturbation expansion coefficients given by (3.54), (3.58) and (3.59) are
correct. It also confirms that the deviation between the nonlinear perturbation solution
and the numerical data is due to the contributions from the higher-order terms since our
solution for the overall velocity given by (5.26) is only up to the fourth order of a0. Now
we explain why our theoretical prediction given by (5.26) underestimates in figure 3(c)
but overestimates in figure 3(d). In general, whether the nonlinear perturbation solution
given by (5.26) provides an underestimation or overestimation for the overall velocity of
fingers involves complicated interplay between ȧ(1)

1 , ȧ(3)
1 , ȧ(3)

3 and the contributions from
higher orders. Figure 6 shows that ȧ(1)

1 is positive, but both ȧ(3)
1 and ȧ(3)

3 are negative.
This is why the corresponding prediction from the nonlinear perturbation solution shown
in figure 3(c) underestimates the overall velocity at late times. On the contrary, figure 7
shows that ȧ(1)

1 , ȧ(3)
1 and ȧ(3)

3 are all positive. This leads to an overestimate of the
overall velocity by the nonlinear perturbation solution, as shown in the corresponding
figure 3(d).

In figures 8 and 9 we present the validation study for the velocity of bubbles and that of
spikes. Figure 8 is for the comparison of the normalized finger velocities, namely vbb/a0
and vsp/a0, between the numerical results (bubble:‘◦’, spike: ‘×’) and the theoretical
predictions up to the first (magenta curve), second (black curve) and third (bubble:
blue curve, spike: red curve) orders given by (4.10)–(4.12). The dimensionless physical
parameters for figure 8 are A = 1, Aε = 0.5, E2

h = 4/5 and a0 = 0.01. For this set of
parameters, the system is linear neutral, i.e. σ1 = 0, which is the turning point between
the stable case and the unstable case in the linear analysis. In this case F(1)

1 = 0 and (3.27)
gives d2a(1)

1 /dt2 = 0. From the initial conditions a(1)
1 (0) = a0 and ȧ(1)

1 (0) = 0, one obtains
a(1)

1 (t) = a0 and v(1)(t) = ȧ(1)
1 (t) = 0. Thus, the linear analysis predicts that the fingers do

not grow at all. If we consider the solutions only up to the second order, the spike and the
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Figure 9. Normalized dimensionless velocities of bubbles vbb/a0 and those of spikes vsp/a0 when a horizontal
electric field of various dimensionless strengths E2

h is applied. Plots (a,c,e) are for bubbles; plots (b,d, f ) are
for spikes. Plots (a,b) are for E2

h = 1/6; plots (c,d) are for E2
h = 1/3; plots (e, f ) are for E2

h = 3/5. The other
physical parameters are listed in the main text. The material interface is unstable in all these cases. The blue
solid curves are the predictions from the nonlinear perturbation solution given by (4.8) and (4.9). The black
solid curves are the predictions from the linear theory. The ‘◦’ symbols are the data from numerical simulations.

bubble exhibit oscillating motion, but grow at the same rate. Only when we expand the
solutions up to the third order in terms of the initial perturbation amplitude, i.e. a3

0, the
theoretical prediction correctly shows that the spike grows faster than the bubble. Hence,
to provide a qualitatively correct prediction for these fingers, one needs the solutions
expanded up to the third order, which are displayed in (4.8) and (4.9).
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In figure 9 we plot the normalized velocities of bubbles vbb/a0 and those of
spikes vsp/a0 for various strengths E2

h = 1/6, 1/3, 3/5. The other dimensionless physical
parameters are A = 0.6, Aε = 0.5, a0 = 0.1. For all cases in this figure, the system is
unstable. The blue solid curves are the predictions from the nonlinear perturbation solution
given by (4.8) and (4.9), and the black solid curves are the predictions from the linear
theory. The ‘◦’ symbols are the data from numerical simulations. The figures in the
left (right) column are for bubble (spike) velocities. Figure 9 shows that the nonlinear
theoretical predictions are in good agreement with the numerical results and capture
the nonlinear behaviour of bubbles and that of spikes. Figure 9 also shows that as the
horizontal electric field becomes stronger, both bubbles and spikes grow more slowly due
to the stronger stabilization effect.

6. Analysis of effects of horizontal electric fields

Now we study the effects of the horizontal electric field. When the electric permittivities
of the two fluids are equal (ε̂1 = ε̂2), namely Aε = 0, it is easy to check that the electric
field plays no role in the governing equations given by (2.21)–(2.26) and the boundary
conditions given by (2.27)–(2.32). Then the problem reduces to the classical RTI problem.
Since we are interested in the effects of external electric fields on the material interface,
we assume that Aε /= 0 in the rest of our discussions.

We investigate how the horizontal electric field affects the instability of the material
interface. The amplitude of each mode a(n)

j is governed by (3.27) with its eigenvalue σj

given by (3.25). Equation (3.25) shows that the larger E2
h is, the smaller σ 2

j is. Therefore,
the horizontal electric field provides a stabilization factor to the fingers. We comment
that the sign of Eh does not affect the hydrodynamics of the material interface since
(3.33)–(3.50) only depend on E2

h. Therefore, whether the direction of the horizontal
electric field points from left to right or from right to left, its effects on the evolution
of the material interface are identically the same.

Let j∗ be the smallest j such that σ 2
j∗ = j∗(Ag − j∗A2

εE2
h) < 0, namely j∗ =

ceil(Ag/A2
εE2

h). Then (3.25) shows that all modes with j � j∗ are stable. The larger j is,
the smaller the value of σ 2

j , and the more stable that mode. Particularly, when j∗ = 1,
i.e. when E2

h > (E∗
h)2 = Ag/A2

ε , all modes including the linear mode are stable. Therefore,
if the linear analysis shows that the system is linearly stable, the system is stable for all
modes, including the high-order nonlinear modes. However, if the linear analysis shows
that the system is linearly unstable, the modes with j < j∗ are also unstable, but the modes
with j � j∗ are stable.

7. Analysis of effects of electric permittivities

In the previous section we have shown that, if the direction of the horizontal electric
field is reversed, the hydrodynamics of the system is not altered. One might wonder
what happens if one switches the electric permittivities of the two fluids. Will this
cause any effects on the motion of the material interface? The linear theory predicts
that the amplitude of the material interface, namely a(1)

1 (t), remains the same if the
values of the electric permittivities ε̂1 and ε̂2 are switched. This is because the linear
theory given by (3.35) and its growth rate σ1 given by (3.25) only depend on A2

ε

and interchanging ε̂1 and ε̂2 only changes the sign of Aε . However, the numerical
simulations conducted by Yang et al. (2016) showed that the interfacial morphology
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Figure 10. Differences between the normalized finger amplitudes for Aε = 0.5 and Aε = −0.5,
i.e. Δ|ampbb/sp|/a0 = (|ampbb/sp(Aε = 0.5)| − |ampbb/sp(Aε = −0.5)|)/a0, with the same external horizontal
electric field applied; (a) bubbles, (b) spikes. The blue solid curves are the predictions from the nonlinear
perturbation solution, and the red dashed lines are those from the linear theory. The ‘◦’ symbols are the data
from numerical simulations.

evolves differently if the electric permittivities of the fluids are interchanged. Yang et al.’s
study is for a complicated system, namely a system with viscosity and surface tension.
In figure 10 we show that the same phenomenon still exists for a much simpler system,
namely for inviscid fluids without surface tension. For all figures in this section, the
dimensionless physical parameters are A = 0.5, Aε = ±0.5, E2

h = 1/5 and a0 = 0.05. In
figure 10(a) we present the difference between the normalized bubble amplitude before
switching the electric permittivities (Aε = 0.5) and that after the switching (Aε = −0.5),
namely Δ|ampbb|/a0 = (|ampbb(Aε = 0.5)| − |ampbb(Aε = −0.5)|)/a0. Figure 10(b) is
the corresponding difference for spikes, namely Δ|ampsp|/a0 = (|ampsp(Aε = 0.5)| −
|ampsp(Aε = −0.5)|)/a0. In figure 10 the red dashed lines are the predictions from the
linear theory, which predicts that such a difference is zero since the theory only depends
on A2

ε ; the curves marked by the ‘◦’ symbols are the results from numerical simulations,
which show that the difference is non-zero. This is because although the finger growth
is suppressed by the horizontal electric field both in the system before the switching
(Aε = 0.5) and in the system after the switching (Aε = −0.5), the degree of suppression
is different. The rising bubble for Aε = 0.5 grows more slowly than that for Aε = −0.5.
Consequently, the vertical location of the rising bubble tip for Aε = 0.5 is lower than
that for Aε = −0.5. Similarly, the falling spike for Aε = 0.5 grows faster than that for
Aε = −0.5. Hence, the vertical location of the falling spike tip for Aε = 0.5 is also lower
than that for Aε = −0.5. This confirms the phenomenon shown in figure 9 of Yang et al.
(2016) that switching the electric permittivities of the fluids does have effects on the
dynamics of fingers. Since the solution of the linear theory does not depend on the sign
of Aε , the effects of switching electric permittivities shown in figure 10 are solely due to
the nonlinear dynamics. To verify this, in figure 10 we also show the predictions from our
nonlinear perturbation solution (blue solid curves), which are in good agreement with the
results from numerical simulations. Next, we provide theoretical explanations about the
nonlinear effects caused by switching the electric permittivities.

To shed more light on the effects of interchanging electric permittivities and to
understand better how the electric field affects the dynamics of the fluids, we investigate
the electrical force at the material interface. The dimensionless stress tensors at the
material interface, i.e. T 1 for fluid 1 and T 2 for fluid 2, are given by (2.19) and (2.20).
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The components in these stress tensors attributed to electrodynamics are

T e
1 = 1 + Aε

2
E2

h

(
E1 ⊗ E1 − 1

2
|E1|2I

)
, (7.1)

T e
2 = 1 − Aε

2
E2

h

(
E2 ⊗ E2 − 1

2
|E2|2I

)
. (7.2)

These give the resulting normal stresses at the two sides of the material interface

f e
1 = n · T e

1 · n = 1 + Aε

2
E2

h

[
(E1 · n)2 − 1

2
|E1|2

]
, (7.3)

f e
2 = n · T e

2 · n = 1 − Aε

2
E2

h

[
(E2 · n)2 − 1

2
|E2|2

]
. (7.4)

Due to the difference in the electric field and the difference in the electric permittivity
across the material interface, there exists a difference between f e

1 and f e
2 . This leads to an

electrical force exerted on the material interface, which is defined by

fe = f e
1 − f e

2

= 1 + Aε

2
E2

h

[
(E1 · n)2 − 1

2
|E1|2

]
− 1 − Aε

2
E2

h

[
(E2 · n)2 − 1

2
|E2|2

]
(7.5)

= 1 + Aε

4
E2

h

[
(E1 · n)2 − (E1 · s)2

]
− 1 − Aε

4
E2

h

[
(E2 · n)2 − (E2 · s)2

]
= E2

h

[
D2

n

1 + Aε

− 1 + Aε

4
E2

s

]
− E2

h

[
D2

n

1 − Aε

− 1 − Aε

4
E2

s

]
= −AεE2

h

[
2D2

n

1 − A2
ε

+ E2
s

2

]
, (7.6)

where Dn = (1 + Aε)(E1 · n)/2 = (1 − Aε)(E2 · n)/2 and Es = E1 · s = E2 · s are both
continuous at the material interface (see (2.30) and (2.31)). Since |Aε | < 1, one can
check from (7.6) that the electrical force points from the high-permittivity fluid to the
low-permittivity fluid: when Aε > 0 (ε̂1 > ε̂2), namely when the permittivity of the upper
fluid is larger than that of the lower fluid, the electrical force points from the upper fluid
to the lower fluid (fe < 0); on the other hand, when Aε < 0 (ε̂1 < ε̂2), namely when the
permittivity of the upper fluid is smaller than that of the lower fluid, the electrical force
points from the lower fluid to the upper fluid (fe > 0).

The dimensionless electrical force along the material interface given by (7.5) can be
expressed in terms of the voltage potentials

fe = E2
h

2

2∑
i=1

(−1)i−1
[
1 + (−1)i−1Aε

]

×

⎡⎢⎢⎢⎣ 1

1 +
(

∂η

∂x

)2

(
∂Vi

∂z
− ∂Vi

∂x
∂η

∂x

)2

− 1
2

((
∂Vi

∂x

)2

+
(

∂Vi

∂z

)2
)⎤⎥⎥⎥⎦ . (7.7)
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Here the voltage potentials Vi (i = 1, 2) are given by

V1(t, x, z) = −x +
∞∑

n=1

∑
0�j�n

d′(n)
j (t) sin(jx)e−jz, (7.8)

V2(t, x, z) = −x +
∞∑

n=1

∑
0�j�n

d̃′(n)
j (t) sin(jx)ejz, (7.9)

and the explicit expressions for the coefficients d′(n)
j and d̃′(n)

j in the three leading orders
(n = 1, 2, 3) are given in Appendix G. We comment that fe given by (7.7) has a factor
of E2

h, namely the magnitude of the electrical force is proportional to the square of the
strength of the external horizontal electric field. The remaining factors in (7.7) do not
explicitly depend on Eh and represent the distribution of the electrical force along the
material interface. Substituting (3.17), (3.18), (7.8) and (7.9) into (7.7), one can obtain
the expression for fe in terms of perturbation expansion. The following are the explicit
expressions for the leading terms of the electrical force:

fe = f0 + f1 + f2 + f3. (7.10)

Here

f0 = −E2
h

Aε

2
, (7.11)

f1 = E2
h

[
1 + Aε

2
∂V(1)

1
∂x

− 1 − Aε

2
∂V(1)

2
∂x

]
, (7.12)

f2 = E2
h

2∑
i=1

(−1)i−1 1 + (−1)i−1Aε

2

⎡⎣(
∂V(1)

i
∂z

+ ∂η(1)

∂x

)2

+ ∂V(2)
i

∂x
− 1

2

(
∂V(1)

i
∂x

)2

−1
2

(
∂V(1)

i
∂z

)2
⎤⎦ , (7.13)

f3 = E2
h

2∑
i=1

(−1)i−1 1+(−1)i−1Aε

2

[
2

(
∂V(1)

i
∂z

+ ∂η(1)

∂x

)(
∂V(2)

i
∂z

+ ∂η(2)

∂x
− ∂V(1)

i
∂x

∂η(1)

∂x

)

+∂V(3)
i

∂x
−

(
∂V(1)

i
∂x

∂V(2)
i

∂x
+ ∂V(1)

i
∂z

∂V(2)
i

∂z

)]
. (7.14)

The explicit expressions for the partial derivatives in (7.12)–(7.14) are given in
Appendix H.

Figure 11 is an illustration of the electrical force at the material interface when a
horizontal electric field is applied. It shows that the force in the case Aε > 0 and the force
in the case Aε < 0 have opposite directions. This is because the electrical force points from
the high-permittivity fluid to the low-permittivity one, as shown by (7.6). The electrical
force causes the reduction in finger growth. However, such a cause is not so obvious when
one inspects figure 11. This is because there are three factors that affect the electrical
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Aε > 0 Aε < 0

(a) (b)

Figure 11. Illustrations of the electrical force at the material interface in a horizontal electric field for
(a) Aε > 0 and (b) Aε < 0. The direction of the arrow indicates the direction of the force, and the length
of the arrow indicates the magnitude of the force.

force on the material interface: (1) the dimensionless strength of the horizontal electric
field Eh; (2) the difference in the electric permittivities of the two fluids, namely Aε ; (3)
the shape of the material interface. The contributions from the first and second factors
exist even for an unperturbed flat interface (a0 = 0), namely f0 = −E2

hAε/2, which is the
dimensionless electrical force at the unperturbed interface. However, for an unperturbed
material interface, the electric field in each fluid is uniform. Consequently, a dimensionless
electrical force of magnitude f0 is exerted uniformly on the interface. This force is balanced
by the constraint of mass conservation since the fluids are incompressible. The situation
is quite different once the interface is perturbed. The electric fields in the fluids evolve
dynamically with the shape of the interface. Then the electrical force fe deviates from
f0 and is no longer uniform along the interface. It is the difference fe − f0 that provides
the effective electrical force on the perturbed interface. Figure 12 is an illustration of
fe − f0 along the material interface. Figure 12 shows that for both Aε > 0 and Aε < 0,
the horizontal electric field provides an upward effective electrical force on the falling
finger tip and a downward effective electrical force on the rising finger tip. Both effects
lead to the suppression of finger growth. Therefore, both the bubbles and the spikes in the
presence of a horizontal electric field grow more slowly than the bubbles and the spikes
in the classical RTI, respectively. Figure 12 provides an intuitive understanding of the
phenomenon observed in the numerical simulations conducted by Cimpeanu et al. (2014)
and Yang et al. (2016). Namely, a horizontal electric field always suppresses the instability
of the material interface, as long as there is a difference in electric permittivities between
the two fluids, no matter whether Aε is positive or negative.

Figures 12(a) and 12(b) have the same physical parameters except that the values of ε̂1
and ε̂2 are switched, namely in these two figures Aε has the same magnitude but opposite
signs. Figure 12 contains two important properties. The first one is that the material
interface is stabilized by the horizontal electric field as long as Aε /= 0. This property
is obvious in figure 12. The second one is not that obvious: Although figures 12(a) and
12(b) may look similar, they are quantitatively different. It is this difference that leads
to the non-zero values in figure 10. To investigate this property, in figure 13 we plot the
difference in the vertical component of the effective electrical force between figures 12(a)
and 12(b), namely �fz(Aε = 0.5) − �fz(Aε = −0.5), where �fz = nz·( fe − f0)/|f0| is the

958 A36-34

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.105


Nonlinearity of dielectric RTI in tangential electric fields

Aε > 0 Aε < 0

(a) (b)

Figure 12. Illustrations of the difference of the electrical forces, fe − f0, at the material interface in a horizontal
electric field for (a) Aε > 0 and (b) Aε < 0. This figure clearly shows that the horizontal electric field exerts a
suppression effect on the material interface, no matter what the sign of Aε is.

vertical component of the normalized electrical force difference fe − f0. Here fe − f0
is the additionally induced electrical force when the interface shape deviates from the
flat one. We comment that nz is the vertical component of the normal unit vector n
at the interface, which points from the lower fluid to the upper fluid (see figure 1).
Therefore, nz·( fe − f0) > 0 indicates that the effective electrical force is pointing upward,
and nz·( fe − f0) < 0 indicates that the effective electrical force is pointing downward.
In figure 13 the solid curve is the theoretical prediction from the nonlinear perturbation
solution up to the third order, and the ‘◦’ symbols are numerical results. Since �fz is a
force on the material interface, the difference �fz(Aε = 0.5) − �fz(Aε = −0.5) reflects
the change in the force due to the interchange of electric permittivities of the two
fluids. Figure 13 shows that the change �fz(Aε = 0.5) − �fz(Aε = −0.5) is negative,
i.e. �fz(Aε = 0.5) < �fz(Aε = −0.5), at both the rising finger tip (x = 0) and the falling
finger tip (x = ±π). Since the horizontal electric field exerts a downward effect at
the rising finger tip (see figure 12), �fz(Aε = 0.5) < �fz(Aε = −0.5) indicates that the
rising finger tip for Aε = 0.5 is pushed down harder by the electrical force than that for
Aε = −0.5. Therefore, the rising finger (i.e. bubble) grows more slowly for Aε = 0.5 than
for Aε = −0.5. Conversely, the falling finger tip experiences an upward effect from the
horizontal electric field, and figure 13 indicates that such an effect for Aε = 0.5 is smaller
than that for Aε = −0.5. This leads to the falling finger (i.e. spike) growing faster for
Aε = 0.5 than for Aε = −0.5. These differences in the electrical force at finger tips explain
the differences in finger growth shown in figure 10 when the electric permittivities ε̂1 and
ε̂2 are switched. We comment that such differences are due to the nonlinear interaction
between the distribution of the electric fields and the shape of the material interface.
Since the linear theory does not consider nonlinear factors, it predicts that switching the
electric permittivities of the fluids has no effects and gives zero difference in the finger
growth, as shown in figure 10. We also comment that the phenomenon shown in figure 13
does not depend on the sign of A, namely it does not depend on whether the upper fluid
is heavier or lighter than the lower fluid. In the example shown in figure 13, the heavy
fluid is on top of the light fluid (A > 0), i.e. the rising finger is the bubble and the falling
finger is the spike. The same phenomenon still occurs even when the light fluid is on
top of the heavy fluid (A > 0), i.e. the rising finger is the spike and the falling finger is
the bubble. This is because such a phenomenon is solely caused by the electrical force
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Figure 13. Difference between the vertical component of the normalized effective electrical force for Aε = 0.5
and for Aε = −0.5, namely �fz(Aε = 0.5) − �fz(Aε = −0.5). The blue solid curve is the prediction from the
nonlinear perturbation solution, and the red dashed line is that from the linear theory. The ‘◦’ symbols are the
results from the numerical simulation. These differences in the electrical force lead to the differences in the
finger amplitude shown in figure 10.

from the external horizontal electric field and does not depend on gravity or the density
difference between the fluids.

8. Summary

In this paper we study the nonlinear behaviour of an RT unstable interface between two
inviscid, incompressible and perfect dielectric fluids in the presence of a horizontal electric
field in two dimensions. We derive the nonlinear perturbation solutions for the velocity
and the amplitude of fingers at the material interface, and explicitly display the analytical
expressions for spikes and bubbles up to the third order and for the overall velocity of
the interface up to the fourth order. An exploration of the four-parameter phase space
(amplitude of the initial perturbation, strength of the horizontal electric field, fluid density
ratio and electric permittivity ratio) shows that the nonlinear perturbation solution derived
captures the nonlinear dynamics of the material interface and consistently provides a
greater range of validity than the linear theory. As time further progresses, our theoretical
predictions eventually deviate from the numerical solutions, since we only carried out the
explicit solutions up to the third order but the contributions from the higher orders also
become important. One needs to include these contributions in order to further extend
the range of validity of the perturbation expansion series. However, the complexity of
analytical expressions increases rapidly as one reaches higher orders. Researchers who
are experts in symbolic computation may consider programming the general expansion
procedure, derived in this paper, to obtain numerical solutions of higher orders. Fluids in
experiments contain viscosity and surface tension. These effects are not included in our
theory. The vortex sheet formulation in our numerical method is not applicable to systems
with viscosity. Then it will lose certain advantages in numerical computation, namely,
solving the governing equations along the material interface solely, representing the shape
of the interface accurately, and eliminating the numerical boundaries.
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Nonlinearity of dielectric RTI in tangential electric fields

The analytical expressions for the electrical force along the material interface are also
derived. By analysing these expressions, we show that the electrical force fe can deposit
into two parts, f0 and fe − f0, where f0 is the electrical force associated with a flat interface
and fe − f0 is the additionally induced electrical force when the interface is non-flat. It is
the part fe − f0 that leads to the suppression effects on the perturbed material interface.
The nonlinear terms in the expression for the electrical force also explain the phenomenon
that the growth of fingers is different before and after switching the electric permittivities
of the two fluids, a phenomenon that was reported in the numerical simulations in the
literature (Yang et al. 2016).
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Appendix A. Governing equations for the perturbation expansion procedure

In this appendix we derive the general expressions of the governing equations in the
perturbation expansion up to any order.

For a material interface with a small initial perturbation, i.e. a0 � 1, we expand the
physical quantities φi, Vi and η in terms of powers of a0. After applying this expansion,
the governing equations, namely (3.1), (3.2), (3.5)–(3.7) and (3.10), can be expressed as

∞∑
n=1

∇2φ
(n)
i = 0 in fluid i (i = 1, 2); (A1)

∞∑
n=0

∇2V(n)
i = 0 in fluid i (i = 1, 2); (A2)

∞∑
n=1

(
∂η(n)

∂t
−

n−1∑
m=1

∂φ
(m)
i

∂x
∂η(n−m)

∂x
+ ∂φ

(n)
i

∂z

)
= 0 at z = η (i = 1, 2); (A3)

∞∑
n=0

2∑
i=1

(−1)i−1

[
(1 + (−1)i−1Aε)

(
∂V(n)

i
∂z

−
n−1∑
m=0

∂V(m)
i

∂x
∂η(n−m)

∂x

)]
= 0 at z = η;

(A4)

∞∑
n=0

2∑
i=1

(−1)i−1

[
∂V(n)

i
∂x

+
n−1∑
m=0

∂V(m)
i

∂z
∂η(n−m)

∂x

]
= 0 at z = η; (A5)
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2∑
i=1

(−1)i−1

[
(1 + (−1)i−1A)

∞∑
n=1

(
−gη(n) + ∂φ

(n)
i

∂t

−1
2

n−1∑
m=1

(
∂φ

(m)
i

∂x
∂φ

(n−m)
i
∂x

+ ∂φ
(m)
i

∂z
∂φ

(n−m)
i
∂z

))

+ 1 + (−1)i−1Aε

2
E2

h

∞∑
n=0

n∑
m=0

(
∂V(m)

i
∂x

∂V(n−m)
i
∂x

+ ∂V(m)
i

∂z
∂V(n−m)

i
∂z

)

− 1 + (−1)i−1Aε

1 +
( ∞∑

n=1

∂η(n)

∂x

)2

× E2
h

∞∑
n=0

n∑
m=0

(
∂V(m)

i
∂z

−
m−1∑
l=0

∂V(l)
i

∂x
∂η(m−l)

∂x

)(
∂V(n−m)

i
∂z

−
n−m−1∑

l=0

∂V(l)
i

∂x
∂η(n−m−l)

∂x

)]
= 2h at z = η. (A6)

Note that (A3)–(A6) are the expanded expressions of the boundary conditions (3.5)–(3.7)
and (3.10) in terms of a0. These conditions are evaluated at the material interface z =
η(t, x), which itself is a nonlinear function of a0. We need to further expand η(t, x) in terms
of a0, namely η(t, x) = ∑∞

n=1 η(n)(t, x), so that the boundary conditions can be evaluated
at the unperturbed location z = 0. Then, from the expansion of (A3)–(A6), the governing
equations for the quantities of the nth order (n � 1) are

∇2φ
(n)
i = 0 in fluid i (i = 1, 2); (A7)

∇2V(n)
i = 0 in fluid i (i = 1, 2); (A8)

∂η(n)

∂t
+ ∂φ

(n)
1

∂z
=

∑
0�j�n

R(n)
j (t) cos(jx) at z = 0; (A9)

∂η(n)

∂t
+ ∂φ

(n)
2

∂z
=

∑
0�j�n

R̃(n)
j (t) cos(jx) at z = 0; (A10)

1 + Aε

2
∂V(n)

1
∂z

− 1 − Aε

2
∂V(n)

2
∂z

+ Aε

∂η(n)

∂x
=

∑
0�j�n

S′(n)
j (t) sin(jx) at z = 0; (A11)

∂V(n)
1

∂x
− ∂V(n)

2
∂x

=
∑

0�j�n

T(n)
j (t) cos(jx) at z = 0; (A12)

− Agη(n) + 1 + A
2

∂φ
(n)
1

∂t
− 1 − A

2
∂φ

(n)
2

∂t
− 1 + Aε

2
E2

h
∂V(n)

1
∂x

+ 1 − Aε

2
E2

h
∂V(n)

2
∂x

=
∑

0�j�n

U(n)
j (t) cos(jx) at z = 0, (A13)
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with the initial conditions given by

η(n)(t = 0, x) = a0 cos(x)δ1n, (A14)

η̇(n)(t = 0, x) = 0. (A15)

Here we have used the unperturbed solution given by (3.15), and the source terms on the
right-hand sides of (A9)–(A13), i.e. R(n)

j , R̃(n)
j , S′(n)

j , T(n)
j and U(n)

j , are determined from
the Fourier mode decomposition of the following expressions:∑

0�j�n

R(n)
j (t) cos(jx)

= −
∑

sum1

1
p!

∂p+1φ
(a)
1

∂zp+1

p∏
j=1

η(nj) +
∑

sum2

1
p!

∂p+1φ
(a)
1

∂x∂zp
∂η(b)

∂x

p∏
j=1

η(nj); (A16)

∑
0�j�n

R̃(n)
j (t) cos(jx)

= −
∑

sum1

1
p!

∂p+1φ
(a)
2

∂zp+1

p∏
j=1

η(nj) +
∑

sum2

1
p!

∂p+1φ
(a)
2

∂x∂zp
∂η(b)

∂x

p∏
j=1

η(nj); (A17)

∑
0�j�n

S′(n)
j (t) sin(jx)

= −
2∑

i=1

(−1)i−1

⎡⎣1 + (−1)i−1Aε

2

⎛⎝ ∑
sum1

1
p!

∂p+1V(a)
i

∂zp+1

p∏
j=1

η(nj)

−
∑

sum2

1
p!

∂p+1V(a)
i

∂x∂zp
∂η(b)

∂x

p∏
j=1

η(nj)

⎞⎠⎤⎦ ; (A18)

∑
0�j�n

T(n)
j (t) cos(jx)

= −
2∑

i=1

(−1)i−1

⎡⎣ ∑
sum1

1
p!

∂p+1V(a)
i

∂x∂zp

p∏
j=1

η(nj) +
∑

sum2

1
p!

∂p+1V(a)
i

∂zp+1
∂η(b)

∂x

p∏
j=1

η(nj)

⎤⎦ ;

(A19)

∑
0�j�n

U(n)
j (t) cos(jx)

=
2∑

i=1

(−1)i−1

⎡⎣−1 + (−1)i−1A
2

∑
sum1

1
p!

∂p+1φ
(a)
i

∂t∂zp

p∏
j=1

η(nj)

+ 1 + (−1)i−1A
4

∑
sum3

1
p!q!

(
∂p+1φ

(a)
i

∂x∂zp

∂q+1φ
(b)
i

∂x∂zq + ∂p+1φ
(a)
i

∂zp+1

∂q+1φ
(b)
i

∂zq+1

) p∏
j=1

η(nj)
q∏

l=1

η(ml)

− 1 + (−1)i−1Aε

4
E2

h

∑
sum4

1
p!q!

(
∂p+1V(a)

i
∂x∂zp

∂q+1V(b)
i

∂x∂zq + ∂p+1V(a)
i

∂zp+1

∂q+1V(b)
i

∂zq+1

) p∏
j=1

η(nj)
q∏

l=1

η(ml)
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+ 1 + (−1)i−1Aε

2
E2

h

∑
sum5

(−1)r

p!q!
∂p+1V(a)

i

∂zp+1

∂q+1V(b)
i

∂zq+1

2r∏
i=1

∂η(ni)

∂x

p∏
j=1

η(mj)
q∏

l=1

η(m̃l)

− (1 + (−1)i−1Aε)E2
h

∑
sum6

(−1)r

p!q!
∂p+1V(a)

i

∂zp+1

∂q+1V(b)
i

∂x∂zq
∂η(c)

∂x

2r∏
i=1

∂η(ni)

∂x

p∏
j=1

η(mj)
q∏

l=1

η(m̃l)

+1 + (−1)i−1Aε

2
E2

h

∑
sum7

(−1)r

p!q!
∂p+1V(a)

i
∂x∂zp

∂q+1V(b)
i

∂x∂zq
∂η(c)

∂x
∂η(d)

∂x

2r∏
i=1

∂η(ni)

∂x

p∏
j=1

η(mj)
q∏

l=1

η(m̃l)

⎤⎦ . (A20)

Here

sum1:
(
0 < n1, n2, . . . , np, p, a < n

)(
n1 + n2 + · · · + np + a = n

)
sum2:

(
0 < n1, n2, . . . , np, a, b < n

)
, (0 � p < n)(

n1 + n2 + · · · + np + a + b = n
)

sum3:
(
0 < n1, n2, . . . , np, m1, m2 . . . , mq, a, b < n

)
, (0 � p, q < n)(

n1 + n2 + · · · + np + m1 + m2 + · · · + mq + a + b = n
)

sum4:
(
0 < n1, n2, . . . , np, m1, m2 . . . , mq < n

)
, (0 � a, b, p, q < n)(

n1 + n2 + · · · + np + m1 + m2 + . . . + mq + a + b = n
)

sum5:
(
0 < n1, n2, . . . , n2r, m1, m2 . . . , mp, m̃1, m̃2 . . . , m̃q, < n

)
,

(0 � a, b, r, p, q < n)(
n1 + n2 + · · · + n2r + m1 + m2 + · · · + mp + m̃1

+m̃2 + · · · + m̃q + a + b = n
)

sum6:
(
0 < n1, n2, . . . , n2r, m1, m2 . . . , mp, m̃1, m̃2 . . . , m̃q, c < n

)
,

(0 � a, b, r, p, q < n)(
n1 + n2 + · · · + n2r + m1 + m2 + · · · + mp + m̃1

+m̃2 + . . . + m̃q + a + b + c = n
)

sum7:
(
0 < n1, n2, . . . , n2r, m1, m2 . . . , mp, m̃1, m̃2 . . . , m̃q, c, d < n

)
,

(0 � a, b, r, p, q < n)(
n1 + n2 + · · · + n2r + m1 + m2 + · · · + mp + m̃1

+m̃2 + · · · + m̃q + a + b + c + d = n
)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A21)

We comment that the left-hand sides of (A9)–(A13) contain the nth-order unknowns.
However, the terms on the right-hand sides, namely R(n)

j , R̃(n)
j , S′(n)

j , T(n)
j and U(n)

j , contain
only quantities of orders lower than n. Since our perturbation expansion is a recursive
procedure, at the time of solving the nth-order variables, all lower-order quantities
are known. Consequently, all expressions on the right-hand sides of (A9)–(A13), i.e. the
expressions of R(n)

j , R̃(n)
j , S′(n)

j , T(n)
j and U(n)

j , are also known. Therefore, (A7)–(A13) are
linear partial differential equations for the nth-order unknowns.

Appendix B. Derivation of general perturbation solutions

In this appendix we derive the general procedure for obtaining the perturbation solutions
up to arbitrary order.

Equations (A7)–(A13) are the governing equations for the nth-order perturbation
solutions for a RT system in the presence of horizontal electric fields. The functional forms
of the nth-order perturbation solutions are given by (3.18)–(3.22). Note that the ansatzes
given by (3.19) and (3.20) automatically satisfy (A7), and those given by (3.21) and (3.22)
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Nonlinearity of dielectric RTI in tangential electric fields

satisfy (A8). After substituting (3.18)–(3.22) into (A9)–(A13) for order n (n � 1), one
obtains a group of equations that comprise Fourier modes of wavenumber 1, 2, . . . , n.
Applying Fourier decomposition to the resulting equations, one can obtain the governing
equations of the nth-order coefficients for any given mode j (1 � j � n). Particularly, the
kinetic equations at the material interface, namely (A9) and (A10), give

da(n)
j (t)

dt
− jb(n)

j (t) = R(n)
j (t), (B1)

da(n)
j (t)

dt
+ jb̃(n)

j (t) = R̃(n)
j (t). (B2)

The electrodynamic boundary conditions at the material interface, i.e. (A11) and (A12),
give

−j
[

Aεa(n)
j (t) + 1 + Aε

2
d′(n)

j (t) + 1 − Aε

2
d̃′(n)

j (t)
]

= S′(n)
j (t), (B3)

j
[
d′(n)

j (t) − d̃′(n)
j (t)

]
= T(n)

j (t). (B4)

The Bernoulli equation at the material interface (A13) gives

1 + A
2

db(n)
j (t)

dt
− 1 − A

2

db̃(n)
j (t)

dt
− Aga(n)

j (t)

− jE2
h

(
1 + Aε

2
d′(n)

j (t) − 1 − Aε

2
d̃′(n)

j (t)
)

= U(n)
j (t). (B5)

The initial conditions can also be determined by Fourier decomposition of (A14) and
(A15), i.e.

a(n)
j (0) = a0δ1j, ȧ(n)

j (0) = 0, (B6a,b)

where the Kronecker delta δ1j = 1 when j = 1 and δ1j = 0 when j /= 1.
For the case of j = 0, we have a(n)

0 (t) = 0 from the incompressibility condition and the
initial conditions. Note that the coefficients for j = 0 in the velocity potentials (b(n)

0 and
b̃(n)

0 ) do not contribute to the velocity fields in the fluids, and those in the voltage potentials
(d′(n)

0 and d̃′(n)
0 ) do not contribute to the electric fields either. Moreover, all these terms do

not appear explicitly on the right-hand sides of (A16)–(A20), since (A16)–(A20) involve
differentiation with respect to x or/and z. Consequently, these terms will not appear in the
source terms R(n)

j , R̃(n)
j , S′(n)

j , T(n)
j and U(n)

j in (B1)–(B5). Therefore, the functional forms

of b(n)
0 , b̃(n)

0 , d′(n)
0 and d̃′(n)

0 do not play a role in the dynamics of the system. For this reason,
we will not display the terms for j = 0 explicitly.

Equations (B1) and (B2) are linear equations for b(n)
j and b̃(n)

j , respectively. Hence, one

can solve the expressions of b(n)
j and b̃(n)

j in terms of a(n)
j . The solutions are given by (3.29)

and (3.30). Similarly, (B3) and (B4) are a linear system of d′(n)
j and d̃′(n)

j . Based on these

equations, the solutions of d′(n)
j and d̃′(n)

j can be expressed in terms of a(n)
j , which are given

by (3.31) and (3.32). By substituting (3.29)–(3.32) into (B5), we obtain a linear ordinary
differential equation (ODE) about a(n)

j (t), i.e. (3.27). Note that the source term on the
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W. Guo, Q. Zhang and D. He

right-hand side of (3.27) (i.e. F(n)
j ) only contains quantities of order lower than n, which

are known at the time of solving the nth-order quantities (see Appendix A). Therefore, a(n)
j

can be solved from (3.27). The solution is given by (3.26).
For a given order n, the solution of the interface η(n) contains Fourier modes up to the

wavenumber n (see (3.18)). Hence, there are n Fourier coefficients a(n)
j (j = 1, 2, . . . , n)

in η(n). Each coefficient a(n)
j of mode j satisfies a linear ODE given by (3.27). The source

terms of (3.27) can be evaluated from (A16)–(A20) using Fourier decomposition.

Appendix C. Derivation of the first-order solution

In this appendix we derive the explicit expressions for the first-order solutions.
By selecting the n = 1 and j = 1 mode in Fourier analysis of (A16)–(A20), we obtain

the following first-order source terms of (B1)–(B5):

R(1)
1 = R̃(1)

1 = S′(1)
1 = T(1)

1 = U(1)
1 = 0. (C1)

From (3.27)–(3.28), the first-order governing equation of the material interface is

d2a(1)
1

dt2
− σ 2

1 a(1)
1 = 0, (C2)

where the eigenvalue σ1 is given by (3.25). Using the initial conditions given by (B6a,b)
(a(1)

1 = a0, ȧ(1)
1 = 0), one can solve a(1)

1 from (C2). The solution is given by (3.35). This
recovers the linear theory obtained in Eldabe (1989).

Appendix D. Derivation of the second-order solutions

In this appendix we derive the explicit expressions for the second-order solutions.
For the mode n = 2 and j = 1, the source terms of (B1)–(B5) can be obtained from the

Fourier decomposition of (A16)–(A20), i.e.

R(2)
1 = R̃(2)

1 = S′(2)
1 = T(2)

1 = U(2)
1 = 0. (D1)

Therefore, the governing equation for this mode is

d2a(2)
1

dt2
− σ 2

1 a(2)
1 = 0. (D2)

Since the initial conditions for a(2)
1 are zero (see (B6a,b)), it is easy to see that the solution

for (D2) is

a(2)
1 (t) = 0. (D3)

Similarly, by selecting the mode n = 2 and j = 2 in Fourier analysis of (A16)–(A20),
we obtain the following source terms of (B1)–(B5) for this mode:

R(2)
2 = −a(1)

1 b(1)
1 , (D4)

R̃(2)
2 = −a(1)

1 b̃(1)
1 , (D5)

S′(2)
2 = −

[
(1 + Aε)d

′(1)
1 − (1 − Aε)d̃

′(1)
1

] a(1)
1
2

, (D6)

T(2)
2 = (d′(1)

1 + d̃′(1)
1 )a(1)

1 , (D7)
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Nonlinearity of dielectric RTI in tangential electric fields

U(2)
2 = a(1)

1
4

[
(1 + A)

db(1)
1

dt
+ (1 − A)

db̃(1)
1

dt

]
− 3a(1)

1
4

E2
h

[
(1 + Aε)d

′(1)
1 + (1 − Aε)d̃

′(1)
1

]

− (a(1)
1 )2

2
AεE2

h − 1 + Aε

4
E2

h(d
′(1)
1 )2 + 1 − Aε

4
E2

h(d̃
′(1)
1 )2. (D8)

Substituting (D4)–(D8) into (3.27)–(3.28), we obtain the governing equation for a(2)
2 , i.e.

d2a(2)
2

dt2
− σ 2

2 a(2)
2 = −A

(
da(1)

1
dt

)2

− W+(a(1)
1 )2, (D9)

where W+ is given by (3.24). The solution of a(2)
2 is given by (3.37).

Appendix E. Derivation of the third-order solutions

In this appendix we derive the explicit expressions for the third-order solutions.
By conducting Fourier decomposition of (A16)–(A20), one can obtain the third-order

source terms of (B1)–(B5). The resulting expressions of these source terms can be
simplified by applying (D3). Then the source terms of (B1)–(B5) for the mode n = 3 and
j = 1 are

R(3)
1 = −a(1)

1 b(2)
2 + 1

2 a(2)
2 b(1)

1 + 1
8(a(1)

1 )2b(1)
1 , (E1)

R̃(3)
1 = −a(1)

1 b̃(2)
2 + 1

2 a(2)
2 b̃(1)

1 − 1
8(a(1)

1 )2b̃(1)
1 , (E2)

S′(3)
1 = −1

2 [(1 + Aε)d
′(2)
2 − (1 − Aε)d̃

′(2)
2 ]a(1)

1

− 1
4 [(1 + Aε)d

′(1)
1 − (1 − Aε)d̃

′(1)
1 ]a(2)

2 − 3
8 Aε(a

(1)
1 )3, (E3)

T(3)
1 = (d′(2)

2 + d̃′(2)
2 )a(1)

1 − 1
2 (d′(1)

1 + d̃′(1)
1 )a(2)

2 , (E4)

U(3)
1 =

[
(1 + A)

(
db(2)

2
dt

− (b(1)
1 )2

)
+ (1 − A)

(
db̃(2)

2
dt

− (b̃(1)
1 )2

)]
a(1)

1
2

− 3
16

[
(1 + A)

db(1)
1

dt
− (1 − A)

db̃(1)
1

dt

]
(a(1)

1 )2

+ 1
4

[
(1 + A)

db(1)
1

dt
+ (1 − A)

db̃(1)
1

dt

]
a(2)

2

+ [(1 + A)b(1)
1 b(2)

2 − (1 − A)b̃(1)
1 b̃(2)

2 ] + 2E2
hAεa(1)

1 a(2)
2

− 5
16

E2
h[(1 + Aε)d

′(1)
1 − (1 − Aε)d̃

′(1)
1 ](a(1)

1 )2

+ 3
4

E2
h[(1 + Aε)d

′(1)
1 + (1 − Aε)d̃

′(1)
1 ]a(2)

2 . (E5)

958 A36-43

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.105


W. Guo, Q. Zhang and D. He

These expressions give the following governing equation for a(3)
1 (see (3.27)–(3.28)):

d2a(3)
1

dt2
− σ 2

1 a(3)
1 = −1

4

⎡⎣a(1)
1

(
da(1)

1
dt

)2

+ (a(1)
1 )2 d2a(1)

1
dt2

⎤⎦
+ A

(
da(1)

1
dt

da(2)
2

dt
+ d2a(1)

1
dt2

a(2)
2

)
− 1

2
W−(a(1)

1 )3 − W+a(1)
1 a(2)

2 .

(E6)

The solution for a(3)
1 is given by (3.39).

Similarly, we have the following source terms of (B1)–(B5) for n = 3 and j = 2:

R(3)
2 = R̃(3)

2 = S′(3)
2 = T(3)

2 = U(3)
2 = 0. (E7)

The resulting governing equation for a(3)
2 given by (3.27)–(3.28) is

d2a(3)
2

dt2
− σ 2

2 a(3)
2 = 0. (E8)

Since the initial conditions for a(3)
2 (t) are also zero (see (B6a,b)), we obtain the solution

a(3)
2 (t) = 0. (E9)

The expressions for the source terms of (B1)–(B5) for n = 3 and j = 3 are

R(3)
3 = −3a(1)

1 b(2)
2 − 3

2 a(2)
2 b(1)

1 + 3
8 (a(1)

1 )2b(1)
1 , (E10)

R̃(3)
3 = −3a(1)

1 b̃(2)
2 − 3

2 a(2)
2 b̃(1)

1 − 3
8(a(1)

1 )2b̃(1)
1 , (E11)

S′(3)
3 = −3

2 [(1 + Aε)d
′(2)
2 − (1 − Aε)d̃

′(2)
2 ]a(1)

1 − 3
4 [(1 + Aε)d

′(1)
1 − (1 − Aε)d̃

′(1)
1 ]a(2)

2

+ 1
4 [(1 + Aε)d

′(1)
1 + (1 − Aε)d̃

′(1)
1 ](a(1)

1 )2 + 1
8 Aε(a

(1)
1 )3, (E12)

T(3)
3 = 3(d′(2)

2 + d̃′(2)
2 )a(1)

1 + 3
2(d′(1)

1 + d̃′(1)
1 )a(2)

2 − 1
2 (d′(1)

1 − d̃′(1)
1 )(a(1)

1 )2, (E13)

U(3)
3 =

[
(1+A)

db(2)
2

dt
+(1 − A)

db̃(2)
2

dt

]
a(1)

1
2

− 1
16

[
(1+A)

db(1)
1

dt
− (1 − A)

db̃(1)
1

dt

]
(a(1)

1 )2

+ 1
4

[
(1 + A)

db(1)
1

dt
+ (1 − A)

db̃(1)
1

dt

]
a(2)

2 − 2E2
hAεa(1)

1 a(2)
2

+ 9
16

E2
h[(1 + Aε)d

′(1)
1 − (1 − Aε)d̃

′(1)
1 ](a(1)

1 )2

− 5
4

E2
h[(1 + Aε)d

′(1)
1 + (1 − Aε)d̃

′(1)
1 ]a(2)

2

− 2E2
h[(1 + Aε)d

′(2)
2 + (1 − Aε)d̃

′(2)
2 ]a(1)

1

+ E2
h

2

[
(1 + Aε)(d

′(1)
1 )2 + (1 − Aε)(d̃

′(1)
1 )2

]
a(1)

1

− E2
h(1 + Aε)d

′(1)
1 d′(2)

2 + E2
h(1 − Aε)d̃

′(1)
1 d̃′(2)

2 . (E14)
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Nonlinearity of dielectric RTI in tangential electric fields

The governing equation for a(3)
3 can then be determined, i.e.

d2a(3)
3

dt2
− σ 2

3 a(3)
3 = −3

4
a(1)

1

(
da(1)

1
dt

)2

− 3A
da(1)

1
dt

da(2)
2

dt

+ 3
4

W−(a(1)
1 )3 − 6W+a(1)

1 a(2)
2 . (E15)

The solution for a(3)
3 is given by (3.40).

Appendix F. Procedure for obtaining ȧ(1)
1 , ȧ(3)

1 and ȧ(3)
3 from numerical simulations

To verify that our analytical expressions for ȧ(1)
1 , ȧ(3)

1 and ȧ(3)
3 given by (3.54), (3.58) and

(3.59) are still correct even in the time period in which the predictions of the nonlinear
perturbation solution deviate from the results of numerical simulations, which is shown
near the end of the simulations in figures 2–5, we need to extract the information of ȧ(1)

1 ,
ȧ(3)

1 and ȧ(3)
3 from the results of numerical simulations. In this appendix we provide the

details of how to obtain these coefficients from the data of numerical simulations.
The dimensionless horizontal width of the physical domain in the numerical simulations

is 2π. From the data of numerical simulations, one can obtain the Fourier coefficient for
the jth harmonic mode of the interface shape

ãj(t) = 1
π

∫ 2π

0
η(t, x) cos(jx) dx. (F1)

Equation (5.30) shows that each Fourier coefficient ãj is a summation of the contributions
from many high-order nonlinear terms a(n)

j (n � j) and, therefore, is a polynomial of a0,
where a0 is the dimensionless amplitude of the initial perturbation. Up to the Nth order, ãj
can then be expressed in terms of a0 as

ãj(t) =
N∑

n=j

a(n)
j (t) + O(aN+1

0 ) =
N∑

n=j

c̃(n)
j (t)an

0 + O(aN+1
0 ), (F2)

where c̃(n)
j (t) is independent of a0. Once we extract c̃(n)

j (t) from the numerical data,

c̃(n)
j (t)an

0 gives the numerical result for a(n)
j (t). Therefore, by changing the dimensionless

amplitude of the initial perturbation from a0 to a0/2m and keeping the other physical
parameters the same, the resulting Fourier coefficient of the material interface becomes

ãj

[ a0

2m

]
=

N∑
n=j

( a0

2m

)n
c̃(n)

j (t) + O(aN+1
0 ), (F3)

=
N∑

n=j

1
2mn a(n)

j (t) + O(aN+1
0 ), (F4)

where ãj[a0/2m] denotes the Fourier coefficient obtained from a numerical simulation for
the material interface whose initial amplitude is a0/2m. For a given j and n ∈ [j, N], to
estimate the value of c̃(n)

j up to O(aN
0 ), we run a sequence of numerical simulations for
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the same system but with different initial amplitudes a0, a0/2, . . . , a0/2m. Here m is the
integer part of (N − j)/2, and we have used the property of the interface shape that c̃(n)

j = 0
when n − j is odd. From the sequence of numerical simulations, we obtain the values of
the Fourier coefficients ãj[a0], ãj[a0/2], . . . , ãj[a0/2m]. The expressions of these Fourier
coefficients constitute a group of linear equations for c̃(n)

j (n = j, j + 2, . . .) (see (F3)), i.e.

a j
0c̃(j)

j + aj+2
0 c̃(j+2)

j + · · · + aN
0 c̃(N)

j = ãj[a0],(a0

2

) j
c̃(j)

j +
(a0

2

)j+2
c̃(j+2)

j + · · · +
(a0

2

)N
c̃(N)

j = ãj

[a0

2

]
,

· · ·( a0

2m

) j
c̃(j)

j +
( a0

2m

)j+2
c̃(j+2)

j + · · · +
( a0

2m

)N
c̃(N)

j = ãj

[ a0

2m

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(F5)

Here N − j is even, otherwise c̃(N)
j = 0 and it vanishes in (F5). Hence, from (F5) the

values of c̃(n)
j (n = j, j + 2, . . .) can be solved in terms of a linear combination of

ãj[a0], ãj[a0/2], . . . , ãj[a0/2m]. Then the interface coefficient for a material interface with
a dimensionless initial amplitude a0 is given by

a(n)
j [a0] = c̃(n)

j an
0. (F6)

Since the explicit expression of our nonlinear perturbation solution for the overall
velocity is up to the fourth order of a0, which contains the coefficients a(1)

1 , a(3)
1 and a(3)

3 ,
we need to determine the values of these coefficients a(1)

1 [a0], a(3)
1 [a0] and a(3)

3 [a0] from
the numerical data. From (F5) and (F6), we have the following expressions. For the case
j = 1 and n = 1 and 3, by choosing N = 7, we have m = 3. Combining (F5) and (F6) we
obtain the following expressions for determining a(1)

1 , a(3)
1 and a(3)

3 :

a(1)
1 [a0] = − 1

2835
ã1 [a0] + 8

135
ã1

[a0

2

]
− 256

135
ã1

[a0

4

]
+ 32 768

2835
ã1

[a0

8

]
, (F7)

a(3)
1 [a0] = 4

135
ã1 [a0] − 24

5
ã1

[a0

2

]
+ 5888

45
ã1

[a0

4

]
− 32 768

135
ã1

[a0

8

]
. (F8)

Similarly, for j = n = 3 and m = 3, (F5) and (F6) give

a(3)
3 [a0] = − 1

2835
ã3 [a0] + 32

135
ã3

[a0

2

]
− 4096

135
ã3

[a0

4

]
+ 2 097 152

2835
ã3

[a0

8

]
. (F9)

We comment that the quantities on the right-hand side of (F7)–(F9) are obtained
by applying (F1) to the interface shape in the numerical simulations with the initial
perturbation amplitude of a0, a0/2, a0/4 and a0/8, and the expressions on the left-hand
side of (F7)–(F9) denote the values of a(1)

1 , a(3)
1 and a(3)

3 estimated from the resulting
numerical data. By applying the central difference approximation to a(1)

1 [a0], a(3)
1 [a0] and

a(3)
3 [a0] in time variable, we numerically extract the values of ȧ(1)

1 , ȧ(3)
1 and ȧ(3)

3 from the
data of numerical simulations.

Appendix G. Perturbation solutions of electric fields

In this appendix we derive the explicit expressions of the perturbation solutions for the
voltage potentials up to the third order.
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In order to investigate the electrical force at the material interface, one needs to
determine the electric fields on both sides of the interface first. The perturbation solutions
for the voltage potentials in fluids 1 and 2 are given by (3.21) and (3.22), respectively. The
coefficients in these two equations, namely d′(n)

j and d̃′(n)
j , can be determined recursively

from (3.31) and (3.32). In (3.31) and (3.32) the explicit expression of a(n)
j can be

determined from (3.26), and is given by (3.35), (3.37), (3.39), (3.40) and (3.51) explicitly
up to the third order. The source terms (S′(n)

j and T(n)
j ) can be determined from (A18) and

(A19) using Fourier decomposition. The explicit expressions of these terms are displayed
in Appendices C, D and E up to the third order.

The coefficients of the first-order solutions for voltage potentials are

d′(1)
1 = −Aεa(1)

1 , (G1)

d̃′(1)
1 = −Aεa(1)

1 . (G2)

The coefficients of the second-order solutions for voltage potentials are

d′(2)
1 = d̃′(2)

1 = 0; (G3)

d′(2)
2 = −Aεa(2)

2 + 1
2 d′(1)

1 a(1)
1 , (G4)

d̃′(2)
2 = −Aεa(2)

2 − 1
2 d̃′(1)

1 a(1)
1 . (G5)

The coefficients of the third-order solutions for voltage potentials are

d′(3)
1 = −Aε

[
a(3)

1 − 3
8(a(1)

1 )3
]

+ d′(2)
2 a(1)

1 − 1
2

[
d̃′(1)

1 (1 − Aε) − d′(1)
1 Aε

]
a(2)

2 , (G6)

d̃′(3)
1 = −Aε

[
a(3)

1 − 3
8 (a(1)

1 )3
]

− d̃′(2)
2 a(1)

1 + 1
2

[
d′(1)

1 (1 + Aε) + d̃′(1)
1 Aε

]
a(2)

2 ; (G7)

d′(3)
2 = d̃′(3)

2 = 0; (G8)

d′(3)
3 = −Aε

[
a(3)

3 + 1
24(a(1)

1 )3
]

+ d′(2)
2 a(1)

1 + 1
2 d′(1)

1 a(2)
2 − 1

6 d′(1)
1 (a(1)

1 )2, (G9)

d̃′(3)
3 = −Aε

[
a(3)

3 + 1
24(a(1)

1 )3
]

− d̃′(2)
2 a(1)

1 − 1
2 d̃′(1)

1 a(2)
2 − 1

6 d̃′(1)
1 (a(1)

1 )2. (G10)

One can then use (7.7)–(7.9) to determine the electrical force on the material interface.

Appendix H. Explicit expressions for the terms in (7.12)–(7.14)

Equations (7.12)–(7.14) contain partial derivatives of η, V1 and V2 with respect to x or z.
In this appendix we display the explicit expressions of these partial derivatives up to the
third order.

The partial derivatives of the interface shape η with respect to x are

∂η(1)

∂x
= −a(1)

1 sin(x), (H1)

∂η(2)

∂x
= −2a(2)

2 sin(2x), (H2)

∂η(3)

∂x
= −a(3)

1 sin(x) − 3a(3)
3 sin(3x), (H3)

where a(1)
1 , a(2)

2 , a(3)
1 and a(3)

3 are given by (3.35), (3.37), (3.39) and (3.40), respectively.
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The partial derivatives of the voltage potential V1 with respect to x are

∂V(1)
1

∂x
= d′(1)

1 cos(x)e−z, (H4)

∂V(2)
1

∂x
= 2d′(2)

2 cos(2x)e−2z, (H5)

∂V(3)
1

∂x
= d′(3)

1 cos(x)e−z + 3d′(3)
3 cos(3x)e−3z, (H6)

and those with respect to z are

∂V(1)
1

∂z
= −d′(1)

1 sin(x)e−z, (H7)

∂V(2)
1

∂z
= −2d′(2)

2 sin(2x)e−2z, (H8)

∂V(3)
1

∂z
= −d′(3)

1 sin(x)e−z − 3d′(3)
3 sin(3x)e−3z, (H9)

where d′(1)
1 , d′(2)

2 , d′(3)
1 and d′(3)

3 are given by (G1), (G4), (G6) and (G9), respectively.
The partial derivatives of the voltage potential V2 with respect to x are

∂V(1)
2

∂x
= d̃′(1)

1 cos(x)ez, (H10)

∂V(2)
2

∂x
= 2d̃′(2)

2 cos(2x)e2z, (H11)

∂V(3)
2

∂x
= d̃′(3)

1 cos(x)ez + 3d̃′(3)
3 cos(3x)e3z, (H12)

and those with respect to z are

∂V(1)
2

∂z
= d̃′(1)

1 sin(x)ez, (H13)

∂V(2)
2

∂z
= 2d̃′(2)

2 sin(2x)e2z, (H14)

∂V(3)
2

∂z
= d̃′(3)

1 sin(x)ez + 3d̃′(3)
3 sin(3x)e3z, (H15)

where d̃′(1)
1 , d̃′(2)

2 , d̃′(3)
1 and d̃′(3)

3 are given by (G2), (G5), (G7) and (G10), respectively.
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