
Robotica (2023), 41, pp. 2668–2687
doi:10.1017/S0263574723000590

RESEARCH ARTICLE

High-efficiency inverse dynamics modeling of parallel
posture alignment mechanism with actuation redundancy
Zhihao Wang1,2 , Hongbin Li1,2 and Nina Sun1,2

1College of Transportation, Ludong University, Yantai City, China and 2College of Intelligent Manufacturing Industry, Ludong
University, Yantai City, China
Corresponding author: Zhihao Wang; Email: wangzhihao0312@foxmail.com

Received: 2 November 2022; Revised: 6 April 2023; Accepted: 11 April 2023; First published online: 4 May 2023

Keywords: parallel mechanism; high efficiency; analytical modeling; inverse dynamics; actuation redundancy

Abstract
The analytical expression of driving force is helpful to quickly plan the kinematic trajectory of parallel mechanism
for automatic drilling and riveting. For parallel posture alignment mechanism, because of its closed-loop charac-
teristics, the inverse dynamic solution is more complex, especially for parallel bracket with actuation redundancy.
Considering that the telescopic rods are actually flexible parts, the dynamic analytical modeling is carried out with
deformation supplementary equation. Taking the force at the spherical joint as the intermediate variable and the
driving force of each active prismatic pair are analytically analyzed by vector cross-product. The modeling was
verified by experiment. Compared with previous research methods, the analytical method proposed improves the
solution accuracy of driving force slightly and reduces the driving force solution time by 56.28%, which is high
efficiency. The maximum error percentage is 1.61%, and the experimental results show that the method of inverse
dynamics modeling is practical. This paper can be used for driving force analysis of parallel posture alignment
mechanism based on positioner in the field of aircraft assembly.

1. Introduction
Parallel mechanism with actuation redundancy can reduce the driving force of each prismatic pair under
specified trajectory [1, 2]. However, the driving forces of parallel mechanism need to be allocated reason-
ably as a result of that unreasonable driving forces will lead to huge internal forces, damage or accidents.
Moreover, driving force analysis is also the premise of trajectory planning. To analyze the driving force
of the mechanism, dynamic modeling is needed. Dynamic modeling methods include Lagrange method,
Newton–Euler method, virtual work principle, Kane equation method, and so on [3].

Newton–Euler method establishes the Newton equation and Euler equation of the analytic object
separately and then solves the equation, which can calculate the force and moment between the motion
pairs [4]. From the view of energy analysis, Lagrange method calculates the kinetic energy and potential
energy of components. Then, the system variables are differentiated and Lagrange equation is established
[5]. The principle of virtual work establishes dynamic equation based on that sum of virtual work done
by active force and moment, inertia force and moment are equal to zero [6]. Kane equation method
solves the unknown quantity by means of the equilibrium equation about the generalized velocity, partial
velocity, active force and inertial force of the rigid body [7]. When carrying out deformation coordination
analysis, it is necessary to calculate the forces between components at the spherical joint. Newton–
Euler method can analyze the force between components, so Newton–Euler method is used for dynamic
modeling. Therefore, the dynamic analysis of parallel posture alignment mechanism is carried out by
Newton–Euler method.

Many scholars have used Newton–Euler method to study the dynamic modeling of parallel mech-
anisms [8]. Jiao et al. [9] studied the dynamics characteristics of 2-DOF planar parallel manipulator.
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Jiang et al. [10] did similar research and the redundant driving force of parallel mechanism was opti-
mized. Research object of the above article is a planar mechanism, whose dynamic analysis does not
involve the solution of space force and moment, so it is less difficult to solve. Chen researched 4-
UPS-UPU parallel mechanism and proposed corresponding dynamic model. However, the 4-UPS-UPU
parallel mechanism is not a redundant drive parallel mechanism, and the dynamics modeling does not
involve the supplement of constraint equation [11]. D–H method [12] can be used to drive the kine-
matic and dynamic equations, but researchers need to set up the coordinate system according to the
D–H rule.

For parallel mechanisms with actuation redundancy, the number of constraint equations is less than
that of the unknown quantity [13]. Therefore, it is necessary to supplement the constraint equation.
Deformation compatibility analysis is required. For the parts of the mechanism, there is no infinite
stiffness body and elastic deformation inevitably occurs under the function of internal forces [14]. For
the parts used in automatic drilling and riveting system, because of the large area of aircraft panels and
skin, the posture alignment mechanism has a longer span and a larger weight [15]. This will inevitably
lead to elastic deformation of telescopic rod. Therefore, it is necessary to consider telescopic rod as a
flexible body when dynamics modeling. Especially for parallel mechanism with actuation redundancy,
the number of constraint equations is less than the number of unknown variables in dynamic modeling.
It is necessary to increase the number of constraint equations by combining deformation compatibility
equation [16]. When dynamic simulation analysis is carried out, the deformed parts need to be designed
as flexible bodies [17]. Considering the influence of structural flexibility, Liu et al. conducted a dynamic
modeling of active over-constrained parallel manipulator based on deformation coordination [18]. By
combining equilibrium and deformation coordination equations, wang et al proposed dynamic model
for a 7-DOF serial-parallel hybrid humanoid robotic arm [19].

The purpose of this paper is to establish the analytical solution of the driving force of the parallel
posture alignment mechanism with actuation redundancy and improve the efficiency and accuracy of
the driving force. The driving force solved in paper refers to the force required to act on prismatic pair
with servo motor installed.

The remainder of this paper is organized as follows. The Section 2 introduces the structure, degree
of freedom and working principle of the automatic drilling and riveting system composed of parallel
posture alignment mechanism and end actuator. In the Section 3, the kinematics analysis is presented,
mainly including the inverse solution of posture, velocity and acceleration. In the Section 4, the dynamics
modeling is studied, and the analytical expression of driving force is derived. The Section 5 carries out
simulation analysis, and the Section 6 conducts experimental verification.

2. Bracket type parallel posture alignment mechanism
The automatic drilling and riveting system shown in Fig. 1(a) is composed of parallel posture alignment
mechanism whose structural diagram is shown in Fig. 1(d) and end actuator whose structural diagram is
shown in Fig. 1(e). The PS-PPS-2PPPS parallel posture alignment mechanism consists of four position-
ers [20] and a moving platform. As shown in Fig. 1(b), the parallel posture alignment mechanism can
translate along the zb axis of the global coordinate system with distance zb

t , rotate around the xb axis and
yb axis of the global coordinate system with angle αb

t and βb
t , respectively. The positioner 1 is equipped

with x direction active prismatic pair which driven by motor. The positioner 2 is equipped with x- and
z-direction active prismatic pair. The positioner 3 and 4 are equipped with x, y and z direction prismatic
pair, among which, z direction prismatic pair is active prismatic pair and the other ones are follow-up
prismatic pair which do not have motor installed.

Global coordinate system Ob − xbybzb, moving platform coordinate system Ot − xtytzt, positioner
coordinate system Oi − xiyizi and degree of freedom of parallel posture alignment mechanism are shown
in Fig. 1(b). i represents the number of positioner. The direction of x, y and z axis of the global coordi-
nate system is from S2 to S1, S1 to S4 and Ob to S1, respectively. Coordinate axis of positioner coordinate
system are parallel to the ones of global coordinate system. Ob coincides with O1. Ot is located at center
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Figure 1. Automatic drilling and riveting machine. (a) Picture of real products. (b) Three-dimensional
model. (c) Motion pair of end effector. (d) Structural diagram of parallel posture alignment mechanism.
(e) Structural diagram of end effector.

of the upper plane of moving platform. Coordinate axis of moving platform coordinate system is parallel
to the ones of global coordinate system at the beginning. When adjusting the parallel posture alignment
mechanism, the moving platform firstly rotates around the xb axis and then rotates around the yb axis.
Xi, Yi and Zi denote prismatic pair of positioner and Si denotes spherical joint connecting positioner and
moving platform. Coordinate system origin of positioner 1∼4 are located at Z1 = 0, X2 = 0, Y3 = 0,
Y4 = 0, respectively. The moving pair of the end actuator is shown in Fig. 1(c). The design accuracy of
parallel posture alignment mechanism is 0.5 mm for position error and 0.5◦ for posture error.

Through offline programming, the motion path of the end effector and the parallel posture alignment
mechanism is planned. Then, the pose of the parallel posture alignment mechanism and the end effector
is adjusted for rough positioning. Precise positioning is carried out by laser ranging device and visual
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imaging device. At last, the upper end actuator is used to drilling, and then, the upper end actuator and
the lower end actuator are used for riveting.

3. Kinematics analysis of low DOF parallel mechanism
Kinematic analysis is the basis of dynamic analysis, which including pose inverse solution, velocity
inverse solution and acceleration inverse solution of parallel posture alignment mechanism. First of all,
it is necessary to analyze the relationship between the degree of freedom and the pose parameter of the
mechanism. Kutzbach–Grüble formula [21] can be used to calculate the freedom of the parallel posture
alignment mechanism, as shown in Eq. (1).

M = 6(nm − gm − 1) +
gm∑

h=1

fh = 6 × (11 − 13 − 1) + 21 = 3 (1)

where M represents the degree of freedom of the mechanism and nm represents the number of parts. gm

represents the number of motion pairs. fh represents the degrees of freedom of hth kinematic pair.
Therefore, only three components of the mechanism’s pose variables are independent, and the other

variables should be determined according to independent variables. In other words, displacement of
each prismatic pair is related to three independent variables in pose parameters (xb

t , yb
t , zb

t , αb
t , βb

t , γ b
t ).

The posture alignment parallel mechanism has no degree of freedom of rotation about the zb axis of
the global coordinate system. What’s more, according to Eq. (2), xb

t and yb
t can be calculated by αb

t

and βb
t .

xb
t = − l cos βb

t

2
+ w sin αb

t sin βb
t

2
+ h cos αb

t sin βb
t

yb
t = w cos αb

t

2
− h sin αb

t

(2)

where l, w and h denote the distance between O2 and Ob, O2 and O3, Si and upper plane of moving
platform, respectively. Therefore, the independent variables in pose parameters are (zb

t , αb
t , βb

t ).

3.1. Inverse solution of pose
The inverse solution of pose establishes the mapping relationship between the posture parameters of
moving platform and the displacement of prismatic pair in the local coordinate system. The posture
transformation matrix of the parallel posture alignment mechanism is:

Rb
t = R

(
yb, βb

t

)
R

(
xb, αb

t

) =

⎡
⎢⎢⎣

cos βb
t sin βb

t sin αb
t sin βb

t cos αb
t

0 cos αb
t −sin αb

t

−sinβb
t cos βb

t sin αb
t cos βb

t cos αb
t

⎤
⎥⎥⎦

∣∣∣∣∣∣∣∣
γ b

t =0

(3)

where the posture alignment parallel mechanism has no degree of freedom of rotation about the zb axis
of the global coordinate system. As shown in Eq. (4), the displacement of each prismatic pair can be
obtained by using space vector chain method:

dx
i = (

Rb
t λ

t
si + Pb

t − λb
oi

)Tnx

dy
i = (

Rb
t λ

t
si + Pb

t − λb
oi

)Tny (4)

dz
i = (

Rb
t λ

t
si + Pb

t − λb
oi

)Tnz

where nx = [1, 0, 0]T , ny = [0, 1, 0]T and nz = [0, 0, 1]T . nx, ny and nz denote the direction vector.
Pb

t = [xb
t , yb

t , zb
t ]T denotes the vector of moving platform coordinate system origin Ot relative to global
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coordinate system origin Ob. λt
si represents the vector of Si relative to Ot. It can be calculated from Eq.

(5) that the displacement of each prismatic pair of the positioner driven by servo motor is:

dz
1 = −l sin βb

t /2 − w cos βb
t sin αb

t /2 − h cos βb
t cos αb

t + zb
t

dx
2 = l − l cos βb

t

dz
2 = l sin βb

t /2 − w cos βb
t sin αb

t /2 − h cos βb
t cos αb

t + zb
t

dz
3 = lsin βb

t /2 + w cos βb
t sin αb

t /2 − h cos βb
t cos αb

t + zb
t

dz
4 = −l sin βb

t /2 + w cos βb
t sin αb

t /2 − h cos βb
t cos αb

t + zb
t

(5)

where dz
i and dx

i represent the relative displacement of prismatic pair in z and x direction, respectively.

3.2. Inverse solution of velocity
The inverse solution of pose establishes the mapping relationship between the generalized velocity of
moving platform and the velocity of prismatic pair in the local coordinate system. Relative velocity of
prismatic pair can be calculated as follow:

vj
i =

[
vb

t + ωb
t × (

Rb
t λ

t
si

)]
� nj

i =
[(

nj
i

)T (
Rb

t λ
t
si × nj

i

)T
] [

vb
t

ωb
t

]
(6)

where vb
t and ωb

t denote velocity and angular velocity of moving platform in global coordinate system,
respectively. The velocity vb

t and angular velocity ωb
t of moving platform can be expressed as:

ωb
t = R

(
yb, βb

t

)
⎡
⎢⎢⎣

1

0

0

⎤
⎥⎥⎦ α̇b

t +

⎡
⎢⎢⎣

0

1

0

⎤
⎥⎥⎦ β̇b

t =

⎡
⎢⎢⎣

0 cos βb
t 0

0 0 1

0 −sin βb
t 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

żb
t

α̇b
t

β̇b
t

⎤
⎥⎥⎦ (7)

vb
t =

⎡
⎢⎢⎣

0 ∂xb
t /∂αb

t ∂xb
t /∂β

b
t

0 ∂yb
t /∂αb

t 0

1 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

żb
t

α̇b
t

β̇b
t

⎤
⎥⎥⎦ (8)

Therefore, the relationship between the speed of each prismatic pair and the generalized speed of
moving platform can be expressed as:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vz
1

vx
2

vz
2

vx
3

vy
3

vz
3

vx
4

vy
4

vz
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

nT
z

(
λb

s1 × nz

)T

nT
x

(
λb

s2 × nx

)T

nT
z

(
λb

s2 × nz

)T

nT
x

(
λb

s3 × nx

)T

nT
y

(
λb

s3 × ny

)T

nT
z

(
λb

s3 × nz

)T

nT
x

(
λb

s4 × nx

)T

nT
y

(
λb

s4 × ny

)T

nT
z

(
λb

s4 × nz

)T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
∂xb

t

∂αb
t

∂xb
t

∂βb
t

0
∂yb

t

∂αb
t

0

1 0 0

0 cos βb
t 0

0 0 1

0 −sin βb
t 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

żb
t

α̇b
t

β̇b
t

⎤
⎥⎥⎦ (9)

where vx
i , vy

i and vz
i represent the relative velocity of prismatic pair in x, y and z direction, respectively.

λb
si represents the vector of Si relative to Ob which can be expressed as λb

si = Rb
t λt

si.
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3.3. Inverse solution of acceleration
The inverse solution of pose establishes the mapping relationship between the generalized accelera-
tion of moving platform and the acceleration of prismatic pair in the local coordinate system. Relative
acceleration of prismatic pair can be calculated according to Eq. (10):

aj
i =

[
v̇b

t + ω̇b
t × λb

si + ωb
t × (

ωb
t × λb

si

)]Tnj =
[
nT

j

(
λb

si × nj

)T
] [

v̇b
t

ω̇b
t

]
+ [

ωb
t × (

ωb
t × λb

si

)]Tnj (10)

where j represents the direction of prismatic pair and j = (x,y,z).[
v̇b

t

ω̇b
t

]
= JsAs + (Vs)

THrVs (11)

where As = [z̈b
t , α̈b

t , β̈b
t ]T . Hr is a 6 × 3 × 3 Hessian matrix and Hr = [h1 h2 h3 h4 h5 h6]T . h3 and h5 are

3-order matrix whose element is zero.

h1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0

0
∂2xb

t

∂αb
t ∂αb

t

∂2xb
t

∂β∂αb
t

0
∂2xb

t

∂αb
t ∂β

b
t

∂2xb
t

∂βb
t ∂β

b
t

⎤
⎥⎥⎥⎥⎥⎥⎦

h2 =

⎡
⎢⎢⎢⎢⎣

0 0 0

0
∂2yb

t

∂αb
t ∂αb

t

0

0 0 0

⎤
⎥⎥⎥⎥⎦ (12)

h4 =

⎡
⎢⎢⎣

0 0 0

0 0 0

0 −sin βb
t 0

⎤
⎥⎥⎦ h6 =

⎡
⎢⎢⎣

0 0 0

0 0 0

0 −cos βb
t 0

⎤
⎥⎥⎦ (13)

4. Dynamics analytical modeling of parallel mechanism with actuation redundancy
Based on kinematics analysis, Newton–Euler method is used to establish the dynamic model of par-
allel posture alignment mechanism. When establishing modeling, the friction force at the spherical
hinge is neglected, and the influence of the friction force between the prismatic pair of the positioner is
considered. The distributed force is simplified to a concentrated force.

4.1. Establishment of dynamic equation
During dynamic modeling, force analysis of each component is required. The force analysis of the mov-
ing platform is shown in Fig. 2. iFp

t denotes the constraint force acting on the spherical hinge relative to
the global coordinate system. oFp

t and oMp
t represent the equivalent external force and moment acting on

the moving platform relative to the global coordinate system, respectively. mt denotes the mass of the
moving platform. g represents the gravity acceleration relative to the global coordinate system and g =
[0, 0, −9.8 m/s2]T . When dynamic modeling is performed, kinematic chain and joint deformation are
ignored.

Newton equation and Euler equation of moving platform are established relative to the global
coordinate system.

4∑
i=1

iFp
t + mtg + oFb

t = mtAs

4∑
i=1

(
Rb

t λ
t
si

) × iFp
t + oMb

t = Ibω̇
b
t + ωb

t × (
Ibω

b
t

) (14)

where Rb
t and Ib represent the posture transform matrix and inertia matrix of the moving platform relative

to global coordinate system [22], respectively. It denotes inertia matrix of moving platform relative to
moving platform coordinate system and Ib = Rb

t It

(
Rb

t

)
T .
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Figure 2. Force and moment analysis of moving platform.

The component analyzed in Figs. 3(a)–(d) is defined as component 3x, component 3y, component
3z and component 3r, respectively. lFu

3z and lFd
3z denote the arm of force and in Fig. 3(a), respectively.

mz
3 denote the mass of components 3z. Newton equation and Euler equation of each analysis object of

positioner are established in the global coordinate system. Take positioner 3 as an example to analyze
the force of each component, as shown in Fig. 3. Coulomb friction and elastoplastic friction between
different parts are considered. According to the mass and installation position of each part, the centroid
position of each part of positioner can be calculated. The dynamic equations of each component of
positioner 3 are established as follows.

See Fig. 3(a) for the stress analysis of telescopic rod of positioner 3 and define az
3 = [0, 0, az

3]T . Then,
the Newton–Euler equation of component 3z are written as:

eF3z
3x + nF3z

3x + dFz
3 + mz

3g − 3Fp
t = mz

3az
3 (15)

lFd
3z

(−nz
3 × nF3z

3x

) + lFu
3z

[
nz

3 × (−3Fp
t

)] + sM3z
3x = E0 (16)

where F3z
3x and sM3z

3x represent the force and moment of component 3x applied on component 3z, respec-
tively. nF3z

3x and eF3z
3x represent the perpendicular and parallel components of the spatial force to the z-axis,

respectively. dFz
3 indicates the driving force acting on the telescopic rod, and the definitions of other driv-

ing force symbols are defined similarly. nz
3 represents the direction vector of the z-direction prismatic

pair of positioner 3, and the other direction vectors are defined similarly. E0 = [0, 0, 0]T .
The force analysis of components 3x, 3y and 3r is shown in Figs. 3(b)–(d), whose Newton–Euler

equation is given as:

mx
3g − dFz

3 − eF3z
3x − nF3z

3x + eF3x
3y + nF3x

3y = mx
3ax

3 (17)

lFd
3x

[
nz

3 × (
eF3x

3y + nF3x
3y

)] + lFu
3x

[
nz

3 × (−nF3z
3x

)] − sM3z
3x + sM3x

3y = E0 (18)

eF3y
3r + nF3y

3r − eF3x
3y − nF3x

3y + my
3g = my

3a
y
3 (19)

(
lFu
3y nz

3 + dx
3nx

3

) × (−eF3x
3y − nF3x

3y

) + lFd
3y

[−nz
3 × (

eF3y
3r + nF3y

3r

)] + sM3y
3r − sM3x

3y = E0 (20)

F3r
gd − eF3y

3r − nF3y
3r + mr

3g = E0 (21)

sM3r
gd + lFd

3r

(−nz
3 × F3r

gd

) + (
lFu
3r nz

3 + dy
3n

y
3

) × (−eF3y
3r − nF3y

3r

) − sM3y
3r = E0 (22)

where the variables in Eqs. (17)–(22) are similar to those in the previous equation.
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(a) (b)

(c) (d)

Figure 3. Force analysis diagram of positioner 3. (a) Force analysis of component 3z. (b) Force analysis
of component 3y. (c) Force analysis of component 3z. (d) Force analysis of component 3r.

Elastoplastic friction model [23] considers the influence of elastic–plastic deformation of parts on
friction, which is suitable for the calculation of friction when considering the elastic deformation of
telescopic rod. On the premise that the friction calculation accuracy meets the requirements, to improve
the efficiency of the algorithm, the Coulomb friction model is used to calculate the friction of telescopic
rod. When the friction between prismatic pairs is taken into consideration, the friction is calculated as
follows:

eF3z
3x = −μc

∣∣nF3z
3x

∣∣ sgn
(
vz

3

)
nz

3 (23)

eF3x
3y =

σ0z
x
3 + σ1vx

3

⎛
⎜⎝1 − σ

(
zx

3, vx
3

)
zx

3σ0

μc

(∣∣nF3x
3y � nz

3

∣∣ + ∣∣nF3x
3y � ny

3

∣∣) + [
Fs − μc

(∣∣nF3x
3y � nz

3

∣∣ + ∣∣nF3x
3y � ny

3

∣∣)]
e

−
(

| vx
3

vs
|
)js

⎞
⎟⎠+ σ2vx

3

(24)
eF3y

3r =

σ0z
y
3 + σ1vy

3

⎛
⎜⎝1 − σ

(
zy

3, vy
3

)
zy

3σ0

μc

(∣∣nF3y
3r � nz

3

∣∣ + ∣∣nF3y
3r � nx

3

∣∣) + [
Fs − μc

(∣∣nF3y
3r � nz

3

∣∣ + ∣∣nF3y
3r � nx

3

∣∣)]
e

−
(

| v
y
3

vs
|
)js

⎞
⎟⎠+ σ2vy

3

(25)
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where μc represents Coulomb friction coefficient and sgn represents step function. Fs denotes static
friction force. σ0 represents the stiffness coefficient. zx

3 and zy
3 stand for average deflection of the con-

tacting asperities, σ1 denotes the damping coefficient of the bristle, σ2 is the viscous friction coefficient.
σ (zx

3, vx
3) and σ (zy

3, vy
3) stand for the zones of the elastic and plastic deformation of asperities. vs represents

the Stribeck velocity. js denotes the Stribeck shape factor.
Newton equations and Euler equations of the other positioners can be established using similar meth-

ods. Since the number of unknowns 95 is more than the number of equations 93, there are multiple sets
of solutions to the driving force, so it is difficult to accurately calculate. Therefore, it is necessary to
supplement the constraint equations.

4.1.1. Mapping relationship between position uncertainty of follow-up prismatic pair and pose error of
moving platform

For parallel mechanism with actuation redundancy, there are many ways to increase the number of
constraint equations, for example, minimizing the position errors [10] and internal force regulation [24].
Based on the deformation compatibility equation, the paper increases the number of constraint equations.
Taking the third branch chain as an example, the establishment process of the mapping relationship
between the telescopic rod deformation and the pose error of the moving platform is introduced in
detail.

The telescopic rod is regarded as a cantilever beam. Under the action of spatial force, the position
error of Si relative to Ot.δλt

si can be expressed as [25]:

δλt
si =

[−i
xF

p
t L3

ii

3EI

−i
yF

p
t L3

ii

3EI

−i
zF

p
t Liz

EA

]T

(26)

where Lii denotes the length of component iz extending from component ix. Liz stands for the length of
component iz. A, E and I represent the cross-section area, elastic modulus and polar moment of inertia
of component iz, respectively.

nx
i , ny

i and nz
i represent the direction vectors of each prismatic pair, respectively. λb

oi denotes the origin
of positioner i coordinate system in the global coordinate system.dx

i , dy
i and dz

i denote the displacement
of each prismatic pair of the positioner. Eq. (27) can be obtained by the space vector chain method:

λb
oi + dx

i nx
i + dy

i n
y
i + dz

i nz
i = Pb

t + Rb
t λ

t
si (27)

Considering the axial deformation and bending deformation of the telescopic rod under the action of
external force and torque, Eq. (28) is established as follows:

λb
oi +

(
dx

i + δdx
i

)
nx

i + (
dy

i + δdy
i

)
ny

i + dz
i nz

i + δSi = Pb
t + δPb

t + (
δRb

t + Rb
t

)
λt

si (28)

where the elastic deformation of moving platform, x and y prismatic pair is ignored, so there is no
parameter term related to δnx

i , δny
i , δnz

i , δλt
si and δλb

oi. z-direction prismatic pair is driven by servo motor
and ball screw, so the position error is very small and can be ignored. δSi denotes the spatial variation
of point Si caused by the deformation of the telescopic rod, and δSi = [δSx

i , δSy
i , δSz

i ]T . δdx
i and δdy

i

represent the positional errors of the follow-up prismatic pair of positioner i in the x direction and y
direction, respectively. δPb

t and δRb
t represent the position error and the differential of rotation matrix

of moving platform [26], respectively.

δPb
t =

[
δxb

t δyb
t δzb

t

]T
(29)

δRb
t =

⎡
⎢⎢⎣

0 −δγ b
t δβb

t

δγ b
t 0 −δαb

t

−δβb
t δαb

t 0

⎤
⎥⎥⎦ Rb

t = 
3×3Rb
t (30)

https://doi.org/10.1017/S0263574723000590 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000590


Robotica 2677

where δxb
t , δyb

t , δzb
t , δαb

t , δβb
t and δγ b

t represent pose error of moving platform. It can be obtained from
Eq. (28) that:

λb
oi + dx

i nx
i + δdx

i nx
i + dy

i n
y
i + δdy

i n
y
i + dz

i nz
i + δSi = Pb

t + δPb
t + δRb

t λ
t
si + Rb

t λ
t
si (31)

Eq. (32) can be built by subtracting Eq. (27) from Eq. (31):

δdx
i nx

i + δdy
i n

y
i + δSi = δPb

t + δRb
t λ

t
si (32)

Eq. (33) is established by matrix vector multiplication:

δdx
i + δSi � nx

i = (
δPb

t + δRb
t λ

t
si

)
� nx

i = (
δPb

t + 
3×3Rb
t λ

t
si

)
� nx

i (33)

There is the following definition,

Rb
t λ

t
si = ζi (34)

where ζi = [ζ x
i , ζ

y
i , ζ z

i ]T ,which is a known quantity. Then, Eq. (32) can be sorted as:

δdx
i + δSi � nx

i = δdx
i + δST

i nx
i = (

δPb
t + 
3×3ζi

)
� nx

i = Q1δM (35)

where

Q1 = [
1 0 0 0 ζ z

i −ζ
y
i

]
(36)

δM = [
δxb

t δyb
t δzb

t δαb
t δβb

t δγ b
t

]T (37)

Evidenced by the same token,

δdy
i + δSi � ny

i = δdy
i + δST

i ny
i = [

0 1 0 −ζ z
i 0 ζ x

i

]
δM (38)

δST
i nz

i = [
0 0 1 ζ

y
i −ζ x

i 0
]
δM (39)

Eq. (40) can be obtained by further analysis,

�d + �SN = QδM (40)

where

�d =
[
0 · · · δdx

3 · · · δdy
4 0

]T

12×1
(41)

N =
[(

nx
1

)T (
ny

1

)T · · · (nz
4)

T
]T

36×1
(42)

� S =

⎡
⎢⎢⎢⎢⎢⎢⎣

δST
1 ET

0 · · · ET
0 ET

0

ET
0 δST

1 · · · ET
0 ET

0

...
...

. . .
...

...

ET
0 ET

0 · · · ET
0 δST

4

⎤
⎥⎥⎥⎥⎥⎥⎦

12×36

(43)

Q =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 ζ z
1 −ζ

y
1

0 1 0 −ζ z
1 0 ζ x

1

...
...

...
...

...
...

0 0 1 ζ
y
4 −ζ z

4 0

⎤
⎥⎥⎥⎥⎥⎥⎦

12×6

(44)
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Positioner 1 does not install prismatic pair in x and y direction, and positioner 2 has no prismatic
pair in y direction. The positional error of prismatic pairs in z direction is extremely small, and the
corresponding positional error is 0. So far, the mapping relationship between the deformation of the
telescopic rod and the pose error of the moving platform can be established.

4.1.2. Deformation supplementary equation based on flexibility analysis
Under the internal force of the parallel posture alignment system, the elastic deformation matrix of the
telescopic rod can be expressed as:

� S12×36 = F12×36C36×36 (45)

where C represents the flexibility matrix of the telescopic rod.

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
xFp

t
1
yF

p
t

1
z F

p
t 0 · · · 0 0

0 0 0 1
xF

p
t · · · 0 0

...
...

...
...

. . .
...

...

0 0 0 0 · · · 0 0

0 0 0 0 · · · 4
yFp

t
4
z Fp

t

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(46)

where
(1

x
Fp

t , 1
yF

p
t , 1

z Fp
t

)T = 1Fp
t

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−L3
11

EI
0 0 · · · 0 0

0
−L3

11

EI
0 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · −L3
44

EI
0

0 0 0 · · · 0
−L4z

EA

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(47)

As shown in Fig. 4(a), the follow-up prismatic pair moves under the internal force of the parallel
posture alignment system and affected by the friction force of the prismatic pair. The deformation of
the telescopic rod is related to the friction. The force component at the spherical hinge is similar to the
friction when adjust the parallel posture alignment system with low accelerations. Therefore, the force
component at the spherical hinge is used to replace the friction to calculate the deformation of telescopic
rod. Then, the deformation at the top of the telescopic rod is equivalent to the position uncertainty of
the follow-up prismatic pair, as shown in Fig. 4(b). In Fig. 4, the solid line represents the actual situation
and the dotted line represents the ideal situation.

The dynamic supplementary equation can be obtained by simultaneous Eqs. (40) and (45),

� d12×1 + F12×36C36×36N36×1 = Q12×6δM6×1 (48)

Through deformation coordination analysis, Eq. (48) establishes the correlation equation among δRb
t

and δPb
t , dx

i , dy
i and dz

i . 12 linearly independent constraint equations are supplemented. The spatial posi-
tion of the spherical hinge in the moving platform coordinate system remains unchanged, so Eqs. (49)
and (50) are established.

δS1 + δS3 = δS2 + δS4 (49)

(
λt

s1 − λt
s2 + δS1 − δS2

)
�

(
λt

s3 − λt
s2 + δS3 − δS2

) = 0 (50)
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(a) (b)

Figure 4. Structural deformation and positional error. (a) Deformation of telescopic rod. (b) Position
uncertainty of follow-up prismatic pair.

There are three constraint equations in Eq. (49) and one constraint equation in Eq. (50). Higher-order
terms such as δS1δS2, δS2δS3 and δS2

2 are ignored in Eq. (50). So Eq. (50) can be simplified as a first-order
equation related to δS1, δS2 and δS3. Eqs. (14)–(25) and Eqs. (48)–(50) contain 124 constraint equations
and 124 unknowns. Therefore, the driving force can be solved.

4.2. Solution of force acting on spherical hinge
Maple [27] or Mathematics [28] can be used to solve the equations, but the equations cannot be solved in
a short time. The least square method [29] and other numerical methods can be used to solve the unknown
variables in the dynamic equation, which does not require complex analytical modeling. However, the
accuracy of the solution is greatly affected by the initial iteration values, so it is difficult to obtain exact
solutions. The unknowns in the dynamic equation can be solved by analytic analysis, that is, the math-
ematical expression of the unknowns can be obtained. In the analytical modeling, the driving force at
the spherical hinge is first solved by taking the moving platform as the analytical object, then the force
at the spherical hinge is brought into the dynamic equation of each branch and the analytical solution of
the branch equation is solved.

It can be seen from Eq. (5) that the displacement of prismatic pair is only related to zb
t , αb

t and βb
t .

Therefore, the motion trajectory of the posture alignment mechanism is only related to zb
t , αb

t and βb
t .

Assuming that the trajectory of the parallel posture alignment mechanism is known, that is, zb
t , αb

t ,and
βb

t are known quantities. In Eqs. (14), (48), (49) and (50), the unknown is the force at the spherical hinge
and the position uncertainty of the follow-up prismatic pair. The unknown number is 22 and the number
of equations is 22.

In Eq. (14), only Af is the first-order function of 1Fp
t , 2Fp

t , 3Fp
t and 4Fp

t are unknowns. In Eq. (48),
only the parameters and are unknown. After sorting out Eqs. (14), (48), (49) and Eqs. (50), (51) can be
obtained:

Af Xf = Bf (51)

where Af is the first-order function of 1Fp
t , 2Fp

t , 3Fp
t and 4Fp

t . Bf is the function of mtq̈, mdrg, oFb
t , Ib ω̇b

t ,
ωb

t × (Ibω
b
t ) and oMb

t . Af is a matrix of order 22, whose expression is known. Therefore, the force at each
spherical joint can be solved,

Xf = (
Af

)−1Bf (52)
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4.3. Solution of driving force based on vector mixed product
After calculating the force at the spherical joint, take the force at the spherical joint as the intermedi-
ate variable to calculate the driving force required by each active prismatic pair. Taking the force at
the spherical hinge as the intermediate variable, the driving force of the branch chain can be solved.
According to the principle of mixed product of vector, multiply Eq. (15) by vector nz

1 and then multiply
by lFd

3z , Eq. (53) can be obtained:

lFd
3z

(
nz

3 × nF3z
3x

) + lFd
3z

(
nz

3 × dFz
3

) − lFd
3z

(
nz

3 × 3Fp
t

) = E0 (53)

After adding Eqs. (53) to (16), Eq. (54) can be obtained:
sM3z

3x = (
lFd
3z + lFu

3z

) (
nz

3 × 3Fp
t

)
(54)

Based on Eqs. (16), (55) can be obtained by multiplying the left cross of the vector nz
3 and expanding

it according to the triple product of the vector:

nF3z
3x = 1

lFd
3z

{
lFu
3z

[
nz

3

(
nz

3 � 3Fp
t

) − 3Fp
t

] − nz
3 × sM3z

3x

}
(55)

Substituting Eq. (54) into Eq. (55) gives:
nF3z

3x = 3Fp
t − nz

3

(
nz

3 � 3Fp
t

)
(56)

Additionally, substituting Eq. (56) into Eq. (23) gives:
eF3z

3x = −μc

∣∣3Fp
t − nz

3

(
nz

3 � 3Fp
t

)∣∣ sgn
(
vz

3

)
nz

3 (57)

According to Eq. (15), dFz
3 can be expressed as:

dFz
3 = mz

3az
3 + 3Fp

t − mz
3g − eF3z

3x − nF3z
3x (58)

Substituting Eqs. (57) and (56) into Eq. (58) gives:
dFz

3 = mz
3az

3 − mz
3g + −μc

∣∣3Fp
t − nz

3

(
nz

3 � 3Fp
t

)∣∣ sgn
(
vz

3

)
nz

3 + nz
3

(
nz

3 � 3Fp
t

)
(59)

Based on Eqs. (17), (60) can be obtained by multiplying the left cross of the vector nx
3 twice and

expanding it according to the triple product of the vector:
nF3x

3y = −mx
3g + dFz

3 + eF3z
3x − nz

3

(
nz

3 � nF3z
3x

) + nF3z
3x (60)

Substituting Eqs. (57), (56) and (58) into Eq. (60) gives:
nF3x

3y = mz
3az

3 − (
mz

3 + mx
3

)
g + 3Fp

t − nz
3

(
nz

3 � 3Fp
t

)
(61)

It can be seen from Eq. (17) that:

ax
3 = (

mx
3g − dFz

3 − eF3z
3x − nF3z

3x + eF3x
3y + nF3x

3y

)
/mx

3 (62)

Substituting Eqs. (57) to (61) into Eq. (62) gives:

ax
3 = 〈−nx

3

(
nx

3 � 3Fp
t

) − μc{|mz
3az

3 − (
mz

3 + mx
3

)
g + 3Fp

t | + |ny
3 � 3Fp

t |}sgn
(
vz

3

)
nz

3

〉
/mx

3 (63)

Add Eqs. (15), (17) and (19), and Eq. (64) can be obtained:

mz
3g − 3Fp

t + mx
3g + eF3y

3r + nF3y
3r + my

3g = mx
3ax

3 + my
3a

y
3 + mz

3az
3 (64)

Based on Eqs. (64), (65) can be obtained by multiplying the left cross of the vector ny
3 twice and

expanding it according to the triple product of the vector:
nF3y

3r = mz
3az

3 + mx
3ax

3 − (
mz

3 + mx
3 + my

3

)
g − ny

3

(
ny

3 � 3Fp
t

) + 3Fp
t (65)

eF3y
3r and eF3x

3y can be calculated by Eqs. (24), (25), (61) and (65).
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Table I. Value of simulation parameters.

Symbol Value
mz

1, mz
2, mz

3, mz
4 33.3 kg

mr
1 70.8 kg

mr
3, mr

4 33.2 kg
mx

2, mx
3, mx

4 75.9 kg
my

3, my
4 35.2 kg

mr
2 30.0 kg

lFd
1z , lFd

2z , lFd
3z , lFd

4z 308 mm
lFd
2r , lFd

3r , lFd
4r 18.9 mm

lFu
3y , lFu

4y , lFu
2r , lFu

3r , lFu
4r 47.3 mm

lFu
1z , lFu

2z , lFu
3z , lFu

4z 382.5 mm
lFd
3y , lFy

4r 34.1 mm

The similar method can be used to calculate the driving force required by the remaining prismatic
pair of positioners under the specified trajectory.

dFz
1 = mz

1az
1 − mz

1g + (
1Fp

t � nz
1

)
nz

1 + μc|1Fp
t − nz

1

(
nz

1 � 1Fp
t

) |sgn
(
vz

1

)
nz

1 (66)

dFz
2 = mz

2az
2 − mz

2g + (
2Fp

t � nz
2

)
nz

2 + μc|2Fp
t − nz

2

(
nz

2 � 2Fp
t

) |sgn
(
vz

2

)
nz

2 (67)

dFx
2 = mx

2ax
2 + (

2Fp
t � nx

2

)
nx

2 + μc{|mz
3az

3 − (
mz

3 + mx
3

)
g + 3Fp

t | + |ny
3 � 3Fp

t |}sgn
(
vz

3

)
nz

3 (68)

The expressions for dFz
4 and dFz

3 are similar. Thus, the inverse dynamics modeling of the parallel
posture alignment system with actuation redundancy can be realized. To analysis efficiency and verify
the validity and applicability of the dynamics model, simulation analysis and experimental verification
are carried out.

5. Simulation analysis
To prove the efficiency of the algorithm, the simulation analysis of analytical modeling method proposed
is carried out. The simulation analysis is mainly used to compare the driving force solution time of the
proposed algorithm and other methods and calculate the difference between the proposed algorithm and
ADAMS software simulation.

To demonstrate the validity and applicability of the proposed method, trajectories should be defined
to include moving and turning. The independent variables in the pose parameters are zb

t , αb
t and βb

t . zb
t

makes the parallel posture alignment mechanism moving along the global coordinate system, αb
t and

βb
t make the parallel posture alignment mechanism turning around the global coordinate system axis.

Therefore, the kinematic trajectory of the parallel posture alignment mechanism is defined as follows:⎧⎪⎪⎨
⎪⎪⎩

zb
t = 60 sin(t) + 1240

αb
t = t/300

βb
t = t/600

(69)

where the unit of αb
t and βb

t is radian. The unit of zb
t is mm, and t represent simulation time whose

unit is second. A = 5.5×103 mm2, I = 4.0 × 106 mm4, E = 2.05×105 N/mm2, l = 4410 mm, w =
2050 mm, h = 240 mm, mt = 561 kg. The remaining parameters are shown in Table I.
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Table II. Comparison of calculation time of driving force.

Calculation method Calculation time
The method proposed 13.85 ms
Moore Penrose contrastive analysis 31.68 ms

(a)

(b)

Figure 5. Driving force simulation. (a) Simulation model. (b) Simulation result.

5.1. Analysis of algorithm efficiency
To compare the running time of this algorithm with the existing algorithms, the driving force calcula-
tion time is analyzed, as shown in Table II. The computer configuration used for the inverse dynamics
modeling is Intel Core i7-9750H CPU 2.60 GHz with 16G RAM.

It can be seen from Table II that the dynamic modeling method proposed has a shorter calculation
time and high efficiency, which is 56.28% lower than Moore–Penrose [30] and has more advantages
in the design of dynamic controllers. The dynamic modeling method proposed can improve the anti-
interference and anti-noise performance of the parallel posture alignment mechanism.

5.2. Analysis of validity and applicability
To demonstrate the validity and applicability of the proposed method, ADAMS software is used to
calculate the difference between the algorithm proposed in this paper and the simulation value, as shown
in Fig. 5(a).

where adFz
1, adFz

2 and adFz
3 represent the driving force calculated by the proposed method. sdFz

1, sdFz
2

and sdFz
3 denote the driving force calculated by ADAMS.

It can be seen from Fig. 5(b) that the maximum difference between the analytical modeling method
proposed in this paper and ADAMS simulation results is 16.35N, and the maximum percentage of error
is 0.97% which demonstrates the validity and applicability of the proposed method.

6. Experiment verification
To verify the validity and applicability of the proposed analytical method of driving force, an experimen-
tal study is carried out. The parameters of the mechanism are identified using the method in literature
[23, 31] and computer-aided design. RS-485 [32] converter is used to read the drive current, as shown
in Fig. 6.
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(a)

(b)

Figure 6. Read current information of driver. (a) The posture alignment parallel mechanism. (b)
Driving force information transmission.

As shown in Fig. 6(a), a servo motor driver is installed in the control cabinet. The Comm Operator
Pal can be installed on the computer, and the driver current information in the servo motor driver can be
read through the RS-485 converter. The read and converted values are processed through the longitu-
dinal redundancy check combined with the MATLAB wavelet denoising toolbox. As can be seen from
Fig. 6(b), the kinematic pair of the parallel posture alignment mechanism includes prismatic pair and
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(a) (b)

Figure 7. Driving force during experiment. (a) Precision analysis of the algorithm proposed in this
paper. (b) Precision analysis of algorithms in existing literature.

(a) (b)

Figure 8. Deviation percentage comparison. (a) The deviation percentage of the algorithm proposed
in this paper. (b) Comparative experiment of deviation percentage.

spherical joint pair. The control program in PC sends instructions to the driver through universal motion
and automation controller, and the driver controls the motion of the servo motor. Using the laser tracker
and the kinematics calibration algorithm, the structural parameters of the parallel posture alignment
mechanism can be identified to increase the motion accuracy.

The z-direction prismatic pair of positioner 1, 2 and 3 adopts the position control mode [33]. The
x-direction prismatic pair of positioner 2 and the z-direction prismatic pair of positioner 4 adopt the
force control mode [34, 35]. The driving force of z-direction prismatic pair of positioner 1, 2 and 3 is
analyzed to verify the effectiveness of the proposed modeling method.

The driver adopts absolute value encoder: speed response 1 KHz, circuit time parameter 47 μs, max-
imum input pulse frequency 500K pps. Parameters of current sensor: accuracy 0.5%, linearity 0.2%,
response time <10μs, bandwidth DC 100 kHz, temperature drift ≤ 500 PPM/◦C. The driving force
data is read every 0.1 s.

The current signal of servo motor driver is collected, and the drive current is translated into the
driving force of prismatic pair. Wavelet denoising and curve fitting in MATLAB are used to process the
collected information, and the corresponding driving force information is shown in Figs. 7 and 8. edFz

1,
edFz

2 and edFz
3 represent the driving force during the experiment. mdFz

1, mdFz
2 and mdFz

3 represent the driving
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force calculated in the existing literature. ea
p Fdp

1z , ea
p Fdp

2z and ea
p Fdp

3z represent the deviation percentage of the
proposed method. ea

p Fdp
1z , ea

p Fdp
2z and ea

p Fdp
3z denote the deviation percentage in existing literature.

It can be seen from Figs. 7 to 8 that the experimental results are in good agreement with the simulation
results, which proves the reliability of the analytical analysis method of driving force proposed.

(1) The accuracy of inverse dynamic solution algorithm proposed in this paper is slightly higher
than the existing algorithm in terms of maximum difference, error percentage and the average
error value.

(2) When using this method to design dynamic controller, the stability of the algorithm is better,
which can improve the anti-interference and anti-noise performance of the system.

(3) There is a certain deviation between the simulation value and the experiment value, which may
be caused by the external uncertainty dynamic disturbance.

Set different posture alignment paths for experiment and compare the experimental value with the
model value. It can be found that the maximum error percentage is less than 1.61% which is lower than
the maximum value of the error percentage 1.98% in comparative literature [30].

7. Conclusions
An analytical modeling method of driving force of parallel posture alignment mechanism based on
positioner is proposed. The following conclusions have been reached:

(1) Based on independent variables in kinematics parameters, dynamic equations of each compo-
nent are established by Newton–Euler method. Combining with the deformation compatibility
equation, the force acting on the joint of the positioner and the moving platform are analyzed
analytically, and then, the driving force is solved analytically.

(2) The efficiency and accuracy of the algorithm is analyzed through simulation and experiment,
respectively. It can be seen from the simulation and experiment results that the algorithm pro-
posed in this paper is slightly better than the existing algorithm in the accuracy of driving force
solution. The driving force solution time is reduced by 56.28% compared with the existing
algorithm, which proves the validity and applicability of the modeling method.

(3) The novelty of this paper is based on Newton–Euler method, combining the elastoplastic friction
model and deformation coordination analysis, the dynamic modeling is carried out, and the driv-
ing force is analytically calculated through vector cross-product, which improve the efficiency
of solving the driving force and ensuring the calculation accuracy.

The approach can be used for other robots than the one discussed in this article.
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