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Computing Borcherds products

Dominic Gehre, Judith Kreuzer and Martin Raum

Abstract

We present an algorithm for computing Borcherds products, which has polynomial runtime. It
deals efficiently with the bounds on Fourier expansion indices originating in Weyl chambers.
Naive multiplication has exponential runtime due to inefficient handling of these bounds. An
implementation of the new algorithm shows that it is also much faster in practice.

1. Introduction

Product expansions are a useful construction in the world of automorphic forms. For example,
writing τ and τ ′ for two variables in the Poincaré upper half plane, we can express the famous
j-invariant as follows:

j(τ)− j(τ ′) = (e−2πiτ ′ − e−2πiτ )
∞∏

m,n=1

(1− e2πi(mτ+nτ
′))cmn

for certain integral coefficients cmn. This formula holds for sufficiently large imaginary parts of
τ and τ ′. Several facts can be deduced from it. For instance, one sees immediately that close
to infinity, the j-function is one-to-one on the fundamental domain.

It turns out that product expansions exist for a much larger class of automorphic forms,
namely orthogonal modular forms for O2,n(R). Such product expansions allow for a direct
investigation of all zeros of such an automorphic form, regardless of the limited domain of
convergence they have.

The convergence of these more general product expansions remained an open problem for a
long time. When Borcherds presented his work on product expansions for orthogonal groups [3]
(see also [2, 23, 26]), he started a revolution. Product expansions, which at that time played a
role in the classical theory of elliptic modular forms and Jacobi forms only, became important
to other areas in mathematics. One branch of research aimed at Kac–Moody algebras which
could be constructed by means of lattice theory [19, 20, 37, 38]. As a natural generalization of
finite-dimensional Lie algebras, they attracted the physicists’ attention. On the automorphic
forms side, research in this area focuses on orthogonal groups for rather large lattices. A
second, equally popular branch of research originating from Borcherds’ work is concerned with
the structure of divisor class groups and Chern classes [1, 4, 5, 9, 10]. It is founded on the fact
that one can easily read off the divisor of an automorphic form given by a product expansion.
Lattices with particular nice structures, which are typically of moderate size, are in the focus
of mathematicians working in this direction. The Fourier expansion of Borcherds products is
a particular aspect that is interesting in this context. Among other things, it can be used to
understand the structure of graded rings of modular forms [15, 27, 29] or to check for relations
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such as those coming from Saito–Kurokawa–Maaß–Gritsenko lifts [24]. Most importantly, the
multiplicative version of the degeneracy of Bogomol’nyi–Prasad–Sommerfield (BPS) dyons,
occurring in string theory, are Borcherds products of this type (see, for example, [16, 23, 25]).
The last named author will return to this subject in a sequel to this paper.

The purpose of this work is to provide an algorithm for explicit computations with Borcherds
products that runs in polynomial time. In particular, such an algorithm needs to build up on
efficient bounds on the Fourier expansion indices that arise from positivity conditions related
to Weyl chambers. More precisely, the (infinite) products that we have to deal with essentially
have the form (see (2.3) for a precise formula)∏

[a,b,c]�0

(1− e(aτ + cτ ′ − (b, z)L0))f([a,b,c]) =
∑

[a,b,c]

g([a, b, c])e(aτ + cτ ′ − (b, z)L0),

where e(x) = exp(2πi x), [a, b, c] are vectors in a lattice of signature (1, n− 1), and f([a, b, c])
are certain coefficients of an elliptic modular form. By definition, we have [a, b, c]� 0 if [a, b, c]
has positive scalar product with all elements in a certain subset, called a Weyl chamber, of that
lattice. One typically wants to evaluate the above product up to a certain bound. That is, for
given B > 0, one aims at computing all g([a, b, c]) with 0 6 a, c < B. Although the positivity
condition [a, b, c]� 0 is natural and can be described in simple terms, its influence on the
product as a whole is involved. For example, a priori there are infinitely many f([a, b, c]) that
contribute to g([1, 0, 1]). Further considerations reveal that only finitely many contribute, and
it is an important matter to provide good corresponding bounds.

When it comes to explicitly evaluating Borcherds products, the state of the art is [29],
dealing with Hilbert modular forms. Remark 5.1 and Lemma 5.9(5) of [29] contain the
only considerations concerning the resulting bounds on those [a, b, c] for which the powers of
(1− exp(aτ + cτ ′ − (b, z)L0)) need to be computed. Moreover, in the case of Hilbert modular
forms the component b does not appear, something that simplifies the corresponding estimates.
In the case of rank-two Lie groups O2,n(R), n> 3, no similar estimate can be found in the
literature. Some computations of Borcherds products in this setting can be found in the physics
literature, see, e.g., [28]. Without bounds for the contributing indices, however, a rigorous
evaluation of Borcherds products is not possible, and with bad bounds it is inefficient. That is,
a naive evaluation of Borcherds products in a strict sense is not even possible.

To provide efficient bounds for all orthogonal modular forms, we employ two ideas: to make
the problem as linear as possible and to decompose the resulting expression into parts that
behave differently. In order to achieve the first objective, we first apply the logarithm and
then the exponential to Borcherds’ original formula. We then evaluate the logarithmic term
first. This avoids the repeated multiplication of polynomials, and it allows for a more efficient
estimate of the indices of the non-vanishing terms in the Fourier expansion. To achieve the
second objective, we analyze the structure of Fourier indices that are positive with respect to
a fixed Weyl chamber (see (3.4)–(3.8)). This allows us to significantly reduce the number of
terms taken into consideration.

In order to illustrate our algorithm, we provide an implementation in Sage [13, 36] of the case
of Hermitian modular forms over Q(

√
−3). We compare it with an implementation based on

naive multiplication (mainly using FLINT [21], written in C). Even though our implementation
is not written in a compiled language, it is faster by several orders of magnitude. Finally, we
also discuss how to provide input data for our implementation.

In § 2, we review the basic theory of orthogonal modular forms and Borcherds products.
Section 3 deals with the algorithm to compute Fourier expansions of Borcherds products. The
implementation for Hermitian modular forms is discussed in § 4. In particular, this section
contains a comparison of runtimes.
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2. Preliminaries

2.1. Orthogonal modular forms

Throughout the paper, we fix an even lattice L of signature (2, n) with n> 3. The quadratic
form attached to L is denoted by qL, while we write (µ, λ)L for the bilinear form qL(µ+ λ)−
qL(µ)− qL(λ). There is a natural extension of qL to L⊗Q that we will denote by the same
letter. The dual lattice of L is

L# = {λ ∈ L⊗Q : (µ, λ)L ∈ Z for all µ ∈ L}.

Clearly, L⊆ L#. Thus, we can construct the Z-module L#/L, that is equipped with the
quadratic form qL ≡ qL (mod 1) taking values in Q/Z. The pair (L#/L, qL) is a finite quadratic
module of order |L|. Given a basis for L, we find that |L| equals the determinant of the
associated Gram matrix. We call (L#/L, qL) the discriminant module of L, which we denote
by disc L.

We write O(L) for the orthogonal group associated with L. It is the group of all Z-linear
bijections of L that leave the quadratic form qL invariant. Any such transformation acts also
on L# and disc L. The discriminant kernel O(L)[disc L] consists of all transformations in O(L)
fixing disc L elementwise.

We consider a fixed connected component D+
e of

De := {λ ∈ L⊗ C : qL(λ) = 0 ∧ (λ, λ)L > 0},

where λ is the complex conjugate in the second tensor component of λ. The projectivization
D+ = P(D+

e ) =D+
e /C×, which is a Hermitian locally symmetric domain of type IV [22],

is the natural domain of definition for orthogonal modular forms. We define these using
the −k-homogeneous pullback to D+

e . A function f :D+
e → C is called −k-homogeneous if

f(sλ) = s−kf(λ) for all s ∈ C× and all λ ∈ D+
e .

Definition 2.1. An orthogonal modular form of weight k for a finite index subgroup
Γ⊂O(L) is a holomorphic, −k-homogeneous function f : De→ C that is invariant under Γ:
f ◦ γ = f for all γ ∈ Γ.

After fixing a section D+ ↪→De, we identify any orthogonal modular form with its restriction
to D+.

We are interested in Borcherds products that are associated with lattices that contain two
hyperbolic planes. Hence, throughout the paper, we assume that L= U ⊕ U ⊕ (−1)L0, where
U is the unimodular hyperbolic lattice of rank 2 and L0 is a fixed even positive-definite lattice.
We write qL0 and (· , ·)L0 for the quadratic and bilinear form associated with L0. Typically,
L0 is some order in a composition algebra A together with the quadratic form attached to A
restricted to this order. Note that disc L= disc (−1)L0. There is a canonical section D+ ↪→De
whose image has elements (1, qL0(z)− ττ ′, τ, τ ′, z), τ, τ ′ ∈ C, z ∈ L0 ⊗ C. Here, the first and
second entry and the third and fourth entry are coordinates with respect to a standard basis
of the first and second copy of U , respectively. This element is always isotropic, since

1 · (qL0(z)− ττ ′) + τ · τ ′ + (−1)qL0(z) = 0.

It lies in De if
qL(Im(1, qL0(z)− ττ ′, τ, τ ′, z))> 0,

where Im is applied to the second tensor component.
We shall show in a moment that in this setting, any orthogonal modular form has a Fourier

expansion ∑
α([a, b, c]) e(aτ + cτ ′ − (b, z)L0), (2.1)
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where e(x) := exp(2πi x). The sum ranges over triples [a, b, c] with a, c ∈Q and b ∈ L0 ⊗Q,
which correspond to vectors (0, 0, a, c, b) ∈ L⊗Q. We write QQ for the additive group of
such triples. The submonoid of integral indices [a, b, c] ∈QQ that satisfy a, c ∈ Z and b ∈ L#

0 ,
is denoted by Q. All Fourier expansions that we will deal with satisfy α([a, b, c]) = 0, if
[a, b, c] 6∈ Q.

We call an index positive definite or semi-definite if

disc([a, b, c]) := qL((0, 0, a, c, b)) = ac− qL0(b)> 0 and a > 0,

or disc([a, b, c]) > 0 and a, c> 0. We write [a, b, c]> 0 if [a, b, c] is positive definite and
[a, b, c] > 0 if it is positive semi-definite. The monoid of integral positive semi-definite indices
is denoted by Q+.

Since the authors are not aware of any publicly available, explicit discussion of the above
Fourier expansion (2.1), we briefly prove it. Fix an orthogonal modular form Φ for a finite index
subgroup Γ⊂O(L), and view it as a function of τ , τ ′ and z. Set u= (0, 1, 0, 0, 0) ∈ L⊗Q.
Given an element of [a′, b′, c′] = (0, 0, a′, c′, b′) of U ⊕ (−1)L0 ⊂ L, we can define Eichler
transformations E(u, [a′, b′, c′]) ∈O(L) (see [17, Remark 4.2]). By definition, we have

E(u, [a′, b′, c′])(1, qL0(z)− ττ ′, τ, τ ′, z)
= (1, qL0(z)− ττ ′, τ, τ ′, z)− [a′, b′, c] + ((c′τ + a′τ ′ − (b′, z)L0)− disc([a′, b′, c′]))u
= (1, qL0(z)− ττ ′ + c′τ + a′τ ′ − (b′, z)L0 − disc([a′, b′, c′]), τ − a′, τ ′ − c′, z − b′).

Consequently, invariance under E(u, [a′, b′, c′]) implies that Φ(τ, τ ′, z) = Φ(τ + a′, τ ′ + c′,
z + b′). If Γ = O(L), then Φ is invariant under all E(u, [a′, b′, c′]), [a′, b′, c′] ∈ U ⊕ (−1)L0. It
hence has a Fourier expansion (2.1) with [a, b, c] running through Q. In general, since Γ has
finite index in O(L), Φ is invariant under E(m · u, [ma′, mb′, mc′]) for some positive integer m
and all [a′, b′, c′] ∈ U ⊕ (−1)L0. In this case, the Fourier expansion of Φ is indexed by elements
of (1/m)Q⊂QQ.

The discriminant kernel of the second and third component of L,

M :=O(U ⊕ (−1)L0)[disc (−1)L0] ∩ Γ⊂O(L),

gives rise to symmetries of the Fourier expansion. More precisely, we have

α([a, b, c]) = χk(m) α(m[a, b, c])

for all m ∈M and a character χk of M that depends only on the weight of an orthogonal
modular form.

Remark 2.2. For an arbitrary lattice L̃ of signature (2, n) with n> 5, it is always possible
to find a sublattice L̃′ ⊆ L̃ of finite index that splits: L̃′ ' u1U ⊕ u2U ⊕ (−1)L̃′0 with positive
constants u1 and u2 (see [3, § 8]; this follows from the fact that any such lattice contains a non-
zero isotropic vector, see [39, Satz 2], and the classification of local lattices, which is explained
in [30]). Since the orthogonal groups of L̃ and L̃′ are commensurable, the considerations in
this paper apply to arbitrary Borcherds products for lattices of signature (2, n) with n> 5.

2.2. Borcherds products

We review the construction of Borcherds products, which dates back to [2] and [3]. A more
accessible discussion, valid in some interesting special cases, can be found in [19, 20]. Given
an elliptic vector-valued modular form, we construct an orthogonal modular form.

Let H := {τ ∈ C : Im(τ)> 0} denote the Poincaré upper half-plane. Since we will deal with
half-integral weights, we first have to define the metaplectic cover Mp2(Z) of SL2(Z). It is the
preimage of SL2(Z) in Mp2(R), the connected double cover of SL2(R). Recall that if N is a
positive integer, then the principal congruence subgroup of level N , denoted by Γ(N), is defined
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as the kernel of the natural projection map SL2(Z)→ SL2(Z / NZ). The principle congruence
subgroup of level N of Mp2(Z) is defined as the preimage of Γ(N).

Write g =
(
a b
c d

)
for a typical element of SL2(R). The elements of Mp2(R) can be written

(g, τ 7→
√
cτ + d), where the first component is an element of SL2(R) and the second is a

holomorphic function on H. Since there are two branches of the square root, this indeed yields
a double cover of SL2(R).

Given a representation (ρ, Vρ) of Mp2(Z), k ∈ 1
2Z, F : H→ Vρ, and (g, ω) ∈Mp2(Z), we

define

(F |k,ρ (g, ω)) (τ) := ω(τ)−2k ρ((g, ω))−1 F

(
aτ + b

cτ + d

)
.

Definition 2.3. Let (ρ, Vρ) be a finite-dimensional representation of Mp2(Z). A weakly
holomorphic vector valued modular form of type ρ and weight k ∈ 1

2Z is a holomorphic function
F : H→ Vρ such that the following conditions are satisfied.

(1) For all g̃ ∈Mp2(Z) we have F |k,ρ g̃ = F .
(2) The Fourier expansion of F has the form∑

−∞�m∈Q
f(m) e(mτ), f(m) ∈ Vρ.

Remark 2.4. If the weight k is integral and ρ is trivial on some principal congruence
subgroup, the map

Mp2(Z)→GL(Vρ), (g, ω) 7→ ω(τ)−2kρ((g, ω))

factors through SL2(Z).

The case that is most relevant to us is ρ= ρL, where ρL is the Weil representation associated
with the finite quadratic module disc L. The space Vρ has a canonical basis indexed by disc L.
We refer the reader to [3, 40] for a definition and more details. Suppose that F is an elliptic
modular form of type ρL. Write

Fλ(τ) =
∑
−∞�m

f(λ, m) e(mτ) (2.2)

for the Fourier expansion of the components Fλ of F , λ ∈ disc L. We often write f(λ, m) with
λ ∈ L#, meaning f(λ, m) with λ≡ λ (mod L).

Given a fixed basis w1, . . . , wn−2 of L0 ⊗ R, we write b� 0 if there is 1 6 j 6 n− 2 such that
(b, wj)L0 > 0 and (b, wj′)L0 = 0 for all 1 6 j′ < j. A triple [a, b, c] is called positive, [a, b, c]� 0,
if c > 0, or c= 0 and a > 0, or a= c= 0 and b� 0. This definition is motivated by Weyl
chambers discussed in [3, § 6]. We can find a Weyl chamber W for U ⊕ (−1)L0 ⊂ L such
that ([a, b, c], W ) = ((0, 0, a, c, b), W )> 0 if and only if [a, b, c]� 0, where all wj are rational
vectors.

Borcherds also defined a Weyl vector attached to F and W . It gives rise to the exponential
factor WF defined below. In our setting (see also [11, Satz 5.4]), we have

aW :=
1
24

∑
b∈L#

0

f(b,−qL0(b)), bW :=−1
2

∑
0≺b∈L#

0

f(b,−qL0(b)) · b,

cW := aW −
∞∑
n

σ1(n)
∑
b∈L#

0

f(b,−n− qL0(b)),

WF := e(aW τ + cW τ
′ − (bW , z)L0).
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With this notation at hand, we reformulate [3, Theorem 13.3]. Note that ΨF is only well
defined up to a complex multiplicative scalar of norm 1. In addition, we rescale ΨF by a real
factor which can be explicitly computed in terms of the f(λ, 0).

Theorem 2.5. Fix a weakly holomorphic vector-valued elliptic modular form F of type ρL
and weight (2− n)/2 with Fourier expansion (2.2) and integral f(λ, m). Then the following
product converges for (τ, τ ′, z) ∈ Rn + iW ⊂ (U ⊕ (−1)L0)⊗ C and is an orthogonal modular
form of weight f(0, 0)/2 for O(L)[disc L]:

ΨF :=WF

∏
[a,b,c]�0

( 1− e(aτ + cτ ′ − (b, z)L0) )f(b,disc([a,b,c])). (2.3)

By definition of W , we have

|e(aτ + cτ ′ − (b, z)L0)|< 1

for all [a, b, c]� 0 and (τ, τ ′, z) ∈ Rn + iW . Hence, we can define a holomorphic logarithm of
ΨF on Rn + iW , which is non-zero there:

ΦF = log ΨF

= log WF +
∑

[a,b,c]�0

f(b, disc([a, b, c])) log(1− e(aτ + cτ ′ − (b, z)L0)). (2.4)

This logarithm will be crucial to our approach.

3. An algorithm for Fourier expansions of Borcherds products

We write QJQK for the direct product of one-dimensional Q vector spaces indexed by Q. Any
element will be written as a possibly infinite sum of multiples of e[a,b,c] for [a, b, c] ∈Q. Here,
e[a,b,c] is simply a convenient notation for basis vectors of this space. We say that [a, b, c] occurs
non-trivially in an element of QJQK if the coefficient of e[a,b,c] is non-zero.

Fix a vector-valued elliptic modular form F of type ρL and weight (2− n)/2. Define

Φ̃F :=−
∑

[a,b,c]�0

f(b, disc([a, b, c]))
∞∑
m=1

em[a,b,c]

m
∈QJQK. (3.1)

This is well defined, since only finitely many terms contribute to the [a′, b′, c′]th component of
Φ̃F for each [a′, b′, c′] ∈Q. For example, if c′ > 0, then only those [a, b, c]� 0 contribute that
satisfy c6 c′ and disc([a, b, c])> d for some d that depends on f . A reasoning similar to this
will be used while proving Lemma 3.1.

We can map this formal expansion to a function on Rn + iW , where as stated before, we
have

|e(aτ + cτ ′ − (b, z)L0)|< 1

for all [a, b, c]� 0. Clearly, Φ̃F is mapped to ΦF − log WF as e[a,b,c] is mapped to e(aτ + cτ ′ −
(b, z)L0).

Note that QJQK does not carry an algebra structure, since it contains QJ{[a, 0, 0] : a ∈ Z}K,
which is isomorphic to the space of two-ended formal power series over Q. However, we can
define powers of Φ̃F . Write φ̃F ([a, b, c]) for the coefficient of e[a,b,c] in Φ̃F . We set

Φ̃lF :=
∑

[a,b,c]

( ∑
∑l

i=1[ai,bi,ci]=[a,b,c]

∏
φ̃F ([ai, bi, ci])

)
e[a,b,c], (3.2)

where the [ai, bi, ci] are elements of Q. By the next lemma, the inner sum is finite.
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Lemma 3.1. Given l ∈ N, the set{
([ai, bi, ci])i=1,...,l ∈Ql :

l∑
i=1

[ai, bi, ci] = [a, b, c], φ̃F ([ai, bi, ci]) 6= 0 for all i

}
is finite.

Proof. For reasons of symmetry, it suffices to prove that, given arbitrary [ai, bi, ci] with
i 6= 1, there are only finitely many [a1, b1, c1] that possibly contribute. Assume that the tuple
([ai, bi, ci])i=1,...,n ∈Ql is an element of the above set.

Since F is a weakly holomorphic modular form, there is a lower bound d such that
f(b, D) = 0, whenever D 6 d. By definition of the relation � and of Φ̃F , only indices [a1, b1, c1]
satisfying c1 > 0 contribute. In particular, we have c1 6 c for those [a1, b1, c1] that contribute.
Consider those indices with c1 > 0. If φF ([a1, b1, c1]) 6= 0, we can write [a1, b1, c1] =m [ã1, b̃1, c̃1]
with m ∈ N and disc([ã1, b̃1, c̃1])> d. This gives rise to the inequality disc([a1, b1, c1])>m2d.
Because m6 c1 6 c, we obtain the weaker inequality disc([a1, b1, c1])> c2d. From this, we
deduce a lower bound Al on a1 for those [a1, b1, c1] with c1 > 0 that contribute. We can assume
that Al 6 0, so that a1 >Al also holds in the case of c1 = 0, as is explained later. For reasons
of symmetry Al is then a lower bound on all other ai, and there are exactly (l − 1) of them.
From this we deduce the following upper bound

a1 = a−
∑

26i6n−2

ai 6 a− (l − 1)Al :=Au.

Note that this bound also holds, if c1 = 0. In the case c1 > 0, the above inequality for
disc([a1, b1, c1]) implies that qL0(b1)< a1c1 − c2d. There are only finitely many vectors b1 of
any bounded length, since L0 is definite. Consequently, for fixed a1 and c1 only finitely many
b1 contribute. We have thus proved the statement in the case of c1 > 0.

Consider the case c1 = 0. By definition, we have a1 > 0 if [a1, b1, 0]� 0. In particular, the
above choice of Al is justified also if c1 = 0. We have already found an upper bound Au

on a1 as well. If a1 > 0, we have the factorization [a1, b1, 0] =m[ã1, b̃1, 0] with m<Au and
disc([ã1, b̃1, 0])> d. Hence, disc([a1, b1, 0]) =−qL0(b1)>A2

ud. There are only finitely many b1
satisfying this bound. This proves the statement in the case of c1 = 0, a1 > 0.

Consider the case a1 = c1 = 0. Then b1 � 0. Recall the vectors w1, . . . , wn−2 ∈ L0 ⊗Q
discussed in § 2. Since wj is rational, the set of values |(wj , b1)| with b1 � 0 and 1 6 j 6 n− 2
is discrete in R. Write ε for the minimal non-zero value of |(wj , b1)|, b1 � 0.

Given bi, we denote by 1 6 j(bi) 6 n− 2 the integer satisfying

(wj(bi), bi)> 0 and (wk, bi) = 0 for all 1 6 k < j(bi). (3.3)

Given 1 6 j 6 n− 2, we consider all bi � 0 with j(bi) = j. We will prove by induction on j
that |(wk, bi)| is bounded by some Bk,j > 0 for all k with j 6 k 6 n− 2. Given j, the induction
hypothesis will be that |(wk, bi)|6Bk,j(bi) for all bi with j(bi)< j and for all j(bi) 6 k 6 n− 2.
Note that we do not need to treat the case j = 1 separately.

Given j, we have (wj , bi) >−max16j′<j Bj,j′ for all bi. Indeed, this follows from the
induction hypothesis, if j(bi)< j. If j(bi) = j, then (wj , bi)> 0 by definition of j(bi), and if
j(bi)> j, then (wj , bi) = 0, again by definition of j(bi). We conclude that

(wj , b1) = (wj , b)−
∑

26i6l

(wj , bi) 6 (wj , b) + (l − 1) max
16j′<j

Bj,j′ =:Bj,j .

Since 0< (wj , b1) 6Bj,j , we can write b1 =mb̃1 with −qL0 (̃b1)> d and m6 ε−1Bj,j . From this,
we deduce that qL0(b1) 6−(ε−1Bj,j)2d. Hence, there are only finitely many b1 that contribute
and satisfy (3.3) for the given j. Since there are only finitely many such b1, we get the desired
bounds Bj′,j for j < j′ 6 n− 2. This completes the induction.
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We easily complete the proof by combining the bounds on |(wj , b1)| and the discreteness of
the values (wj , b1) in R. 2

We decompose Φ̃F as
A + B + C + D + E,

where

A :=
∑

[a,b,c]>0

−f(b, disc([a, b, c]))
∞∑
m=1

em[a,b,c]

m
, (3.4)

B :=
∑

[a,b,c]6>0 : a,c>0

−f(b, disc([a, b, c]))
∞∑
m=1

em[a,b,c]

m
, (3.5)

C :=
∑

[a,b,c]6>0 : a60,c>0

−f(b, disc([a, b, c]))
∞∑
m=1

em[a,b,c]

m
, (3.6)

D :=
∑

[a,b,c] : a>0,c=0

−f(b, disc([a, b, c]))
∞∑
m=1

em[a,b,c]

m
, (3.7)

E :=
∑

[a,b,c] : a=c=0,b�0

−f(b, disc([a, b, c]))
∞∑
m=1

em[a,b,c]

m
. (3.8)

We can further decompose E =
∑n−2
j=1 Ej :

Ej :=
∑

[a,b,c] : a=c=0,b�0

−f(b, disc([a, b, c]))
∞∑
m=1

em[a,b,c]

m
,

where the sum only ranges over those b satisfying (wj , b)> 0 and (wj′ , b) = 0 for all 1 6 j′ < j.
It is not only necessary to make use of this decomposition in order to formulate Algorithm 3.3,
but it will also help us to prove Theorem 3.2.

Recall that M is the discriminant kernel of U ⊕ L0 in Γ. In particular, M preserves
disc([a, b, c]) and b ∈ disc L0. Hence, A is M -invariant.

The next theorem is used implicitly, when computing Borcherds products, whether or not
Borcherds’ formula is evaluated only naively. Nevertheless, no proof seems to be available in
the literature.

Theorem 3.2 (Formal Borcherds convergence theorem). The exponential

Ψ̃F :=WF exp(Φ̃F ) =WF

∞∑
l=0

1
l!

Φ̃lF (3.9)

is well defined in the sense that, given [a, b, c], the coefficient of e[a,b,c] in Φ̃lF is non-zero for
only finitely many l.

Moreover, for any [a, b, c] the coefficient of e[a,b,c] in Φ̃F equals the Fourier coefficient of
e(aτ + cτ ′ − (b, z)L0) in ΦF .

Proof. The second part follows from the first part, since by Theorem 2.5, due to Borcherds,
the product expansion of ΨF converges locally uniformly and absolutely on Rn + iW .

The first part of Theorem 3.2 can be shown by analyzing the proof of Lemma 3.1. Our
arguments build upon the above decomposition of Φ̃F . Fix [a, b, c] ∈Q+. Consider the product

Aα Bβ Cγ Dδ
n−2∏
j=1

E
ηj

j . (3.10)
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It suffices to give upper bounds on α, β, γ, δ and η1, . . . , ηn−2 ∈ N for those products in which
[a, b, c] occurs non-trivially.

Since c̃> 0 for all [ã, b̃, c̃]� 0, we conclude that α+ β + γ 6 c. That is, we have found upper
bounds for α, β and γ, which we, henceforth, assume to be fixed. We are reduced to proving
that there are upper bounds for δ and η1, . . . , ηn−2.

In analogy to the proof of Lemma 3.1, we can find A ∈ Z such that ã>A for all [ã, b̃, c]� 0
that occur non-trivially in Aα Bβ Cγ . We deduce that δ 6 a−A.

Henceforth, we assume that δ is fixed, and we will prove that there are only finitely many
η1, . . . , ηn−2 leading to a non-zero coefficient of [a, b, c] in the product (3.10). We use induction
on the index j of ηj . Given j, assume that we have bounds on ηj′ for all 1 6 j′ < j. For
simplicity fix ηj′ for these j′. Inspecting the proof of Lemma 3.1, we find a lower bound on
(wj , b̃) that holds for all [a, b̃, c] that satisfy (wj′ , b̃) = (wj′ , b) for all 1 6 j′ < j and that occur
non-trivially in

Aα Bβ Cγ Dδ
∏

16j′<j

E
ηj′

j′ .

For all [ã, b̃, c̃] that occur non-trivially in Ej′ , j < j′ 6 n− 2 we have (wj′ , b̃) = 0. Since, in
addition, (wj , b̃)> ε (with ε taken from the proof of Lemma 3.1) for all [0, b̃, 0] that occur
non-trivially in Ej , we obtain a bound on ηj . This completes the proof. 2

Choose functions

wj,max : N→ R, wj,max(B) > max
b∈L0,qL0 (b)<B

|(wj , b)|.

The optimal choices for wj,max are invariants of the lattice L0. In practice, it seems sufficient
to give an estimate computed by embedding L0 into a lattice that is diagonal with respect to
w1, . . . , wn−2. We write ξα for the Fourier coefficients of Ξα ∈QJQK.

Algorithm 3.3. Assume that F is a vector-valued modular form of weight (n− 2)/2 and
type ρL. Suppose that f(b, d) = 0 if d6 dmin. Given 0<B ∈ Z, set aneg =−(B − cW − 1)2 dmin.
Then we need the Fourier coefficient f(b, d) for d6D := max{0, (B − 1− aW + aneg)(B − 1−
cW )} in order to compute all Fourier coefficients φ̃F ([a, b, c]) of Φ̃F with a, c < B using the
following algorithm.

(1) Truncate A and B to indices [a, b, c] with a < B − aW + aneg and c < B − cW . Truncate
C to indices [a, b, c] with c < B − cW .

(2) For all 0 6 α < B − cW , set

Ξα←
∑ 1

α!β!γ!
Bβ Cγ ,

where the sum ranges over 0 6 β, γ < B − cW − α.
(3) Set amin←min{a : ∃α, [a, b, c] such that ξα([a, b, c]) 6= 0}.
(4) Truncate D to indices [a, b, c] with a < B − aW − amin.
(5) For all 0 6 α < B − cW , set

Ξα← Ξα ·
∑ 1

δ!
Dδ,

where the sum ranges over 0 6 δ < B − aW − amin.
(6) For 1 6 j 6 n− 2 process the following loop.
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(i) Set

amin ← min{a : ∃α, [a, b, c] such that ξα([a, b, c]) 6= 0};
bmin ← min{(wj , b) : ∃α, [a, b, c] such that ξα([a, b, c]) 6= 0};
cmin ← min{c : ∃α, [a, b, c] such that ξα([a, b, c]) 6= 0};
btru ← bmin + (wj , bW ) + wj,max((B − 1)2 + 1)

+ wj,max((B − 1− aW − amin)(B − 1− cW − cmin) + 1).

(ii) Truncate Ej to indices [a, b, c] satisfying (wj , b) 6 btru.
(iii) For all 0 6 α < B − cW , set

Ξα← Ξα ·
∑

06ηj6btru

1
ηj !

E
ηj

j .

(7) Compute

FE ← e[aW ,bW ,cW ]
∑

06α<B−cW

Ξα Aαn,

and truncate it to indices [a, b, c] satisfying a, c < B.
Then FE represents the truncated Fourier expansion of Φ̃F .

Proof of correctness. In order to see that the given Fourier coefficients f(b, d) suffice to compute
the Fourier expansion FE , note that the f(b, d) with d > 0 only contribute to the expressions
of A. Then the statement follows from inspection of Step (1).

Correctness follows when making the bounds used in the proof of Lemma 3.1 and Theorem 3.2
explicit. Since the important arguments are already given there, we content ourselves with
sketching how to do this.

The factor e[aW ,bW ,cW ] is taken into consideration only in the last step. Hence, we have to
prove that ∑

06α<B−cW

Ξα Aα (3.11)

represents the Fourier expansion FE ′ of Ψ̃F /e
[aW ,bW ,cW ] for all [a, b, c] with a < B − aW and

c < B − cW . Only terms of index [a, b, c] with c < B − cW contribute to FE ′, since c> 0, if
[a, b, c] occurs non-trivially in A, B or C. Hence, it is correct to truncate A, B and C to
c < B − cW . In the same way, we can see that we only have to consider powers of A with
exponent less than B − cW . Since FE =

∑
α Aα Ξα and c> 1 for all [a, b, c] which occur non-

trivially in A, we only have to consider powers of B and C with exponents less than B − cW − α
when computing Ξα.

One has to take C into account in order to see that truncating A and B to a < B − aW − aneg

is correct. The minimal value of a for [a, b, c] that occurs non-trivially in any power of C and
contributes to FE ′ is bounded by aneg. Since a > 0 for terms that occur non-trivially in A or
B, also this truncation is correct. Hence, when Step (4) is processed, then contributions of B
and C to FE have been computed correctly.

When processing Step (4), the minimal value of a for indices [a, b, c] which occur in any
AαΞα, 0 6 α < B − cW is amin. Since a > 0 for any [a, b, 0] that occurs non-trivially in D, we
have to take into consideration powers of D with exponent less than B − aW − amin. The terms
of D that contribute satisfy a < B − aW − amin.

The contributions of Ej can be analyzed along the same lines. We content ourselves with
explaining the terms that occur in the expression for btru. The first term is the minimal value
of (wj , b) in Ξα. The second term takes the Weyl vector into account. The third term in the
expression for btru corresponds to the maximal value of |(wj , b)| for those [a, b, c] that occur
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non-trivially in FE . The fourth term corresponds to the maximal value of |(wj , b)| for those
[a, b, c] that occur non-trivially in any Aα. 2

Remark 3.4. Considering each step separately, one easily sees that Algorithm 3.3 has
polynomial runtime in B. See the introduction for a discussion of evaluation based on naive
multiplication.

4. Borcherds products for the Hermitian modular group

The authors provide an implementation of Algorithm 3.3 for Hermitian modular forms over the
imaginary quadratic fields Q(

√
D) withD a fundamental discriminant. It is written in Sage [36],

and builds on a framework presented in [31], which provides a model for general Fourier
expansions. For D 6=−3 the framework currently provides only limited support, resulting
in restricted functionality of our implementation. Both the implementation of the discussed
algorithm and the Fourier expansion framework are part of the last named author’s branch of
Purple Sage [34, 35]. In § 4.3, we will explain how to install and use them.

We briefly describe the model for the Fourier expansion that we have chosen. We follow
the notation introduced by Braun [6–8]. Hermitian modular forms in her sense can also
be described as orthogonal modular forms for O2,4. The lattice L that corresponds to
the case of Hermitian modular forms is L= U ⊕ U ⊕ (−1)L0, where L0 is the integers in
Q(
√
D) together with the quadratic form qL0(a) = aa ∈ Z. In the case of D =−3, which

we will deal with throughout this section, we can choose L0 to be a lattice with Gram
matrix (2 1

1 2). Hermitian modular forms are functions of four complex variables, written as
Z ∈M2(C) satisfying (Z − Ztr

)/i > 0. Denote the entries of Z by zkl, 1 6 k, l 6 2. Then
z12 + z21 + j(z12 − z21) ∈ C⊗ Cj corresponds to z ∈ L0 ⊗ Cj . Here, Cj denotes the field of
complex numbers x+ jy, j2 =−1, x, y ∈ R, and L0 is identified with C as a quadratic space via
the basis 1, (D +

√
D)/2. For more details on the correspondence between orthogonal modular

forms for L and Hermitian modular forms and for proofs of what we state in the next two
paragraphs, the reader is referred to [11]. We have, however, chosen notation so that notions
in the former setting can be easily translated to notions in the latter. In particular, the Fourier
terms exp(2πi tr([a, b, c]Z)) in the Hermitian setting correspond to the Fourier terms of index
[a, b, c] in the previous section.

The Fourier expansion of an Hermitian modular form without character is indexed by
Hermitian matrices [a, b, c] :=

(
a b
b c

)
, where a, c ∈ 2Z and b ∈ O#. By O we denote the ring

of integers in Q(
√
D) and O# is the inverse different of Q(

√
D). We store such matrices as

quadruples (a, b1, b2, c), where b is represented by a pair (b1, b2) of coordinates with respect
to the basis 1/

√
D, (1 +

√
D)/2 of O#. Fourier expansions of Hermitian modular forms are

almost invariant under GL2(O). Given such a Fourier expansion
∑
a(T ) exp(2πi tr(TZ)), we

have a(T ) = det(U)ka(U
tr
TU) for all U ∈GL2(O). We have chosen a Weyl chamber for L such

that the condition b� 0, which was described in § 2.2, is equivalent to b2 < 0 ∨ (b2 = 0 ∧ b1 < 0).
The associated Weyl chamber, as a subset of (U ⊕ (−1)O#)⊗ R, where O# has basis 1/

√
D,

(1 +
√
D)/2 as above, contains the set{(

1, x, x2

(
−D +

D2 −D
2

x

)
, x2(2−Dx)

)
: 0< x < ε

}
,

provided that ε is sufficiently small. In order to check that the above is indeed always contained
in some Weyl chamber, adjust the arguments on [11, p. 105].

The implementation follows Algorithm 3.3 closely, except that unnecessary parts of
Ξα are truncated after each step. Computing powers of A is the bottleneck of our
implementation. As mentioned in the previous section, A is invariant under the action ofM , and
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we have M ∼= GL2(O). We use this to speed up the computations. The multiplication of two
GL2(O)-invariant Fourier expansions is performed by the Fourier expansion framework. Its
most time-consuming parts are implemented in Cython.

The implementation of the last step of Algorithm 3.3 also relies on GL2(O) invariant Fourier
expansions. This invariance allows for a significant reduction of the number of coefficients that
we need to calculate. That is, we write the product∑

[a,b,c]

g([a, b, c]) exp(2πi tr([a, b, c]Z)) ·
∑

[a,b,c]

h([a, b, c]) exp(2πi tr([a, b, c]Z))

as ∑
[a,b,c]

( ∑
[a,b,c]=[a1,b1,c1]+[a2,b2,c2]

g([a1, b1, c1]) h([a2, b2, c2])
)

exp(2πi tr([a, b, c]Z)).

Now, the inner expression needs to be calculated only for few [a, b, c]. For more details on the
implementation, the reader it referred to comments in the source code.

4.1. Runtimes and tests

As a first demonstration of our implementation, we illustrate how it compares to naive
multiplication of all factors in (2.3). More precisely, each factor is truncated and the resulting
polynomials are multiplied using FLINT. In addition, we have applied intermediate truncation
to avoid polynomials that are too large. Bounds on the Fourier indices [a, b, c], that we needed
in order to perform this truncation, can essentially be found in § 3. We have imposed a simplified
version of these bounds, that does not depend on the decomposition of (2.3) into A, B, etc.
The precise bounds can be found in the file phi 45 naive computation.sage at [33].

The Hermitian modular form Φ45 occurred in [11, 14] as a generator of the graded ring
of Hermitian modular forms over Q(

√
−3). Table 1 shows times needed to compute the

Fourier expansion
∑

[a,b,c] Φ45([a, b, c]) exp(2πi tr([a, b, c]Z)) of Φ45. The columns correspond
to precisions: we have computed the Fourier coefficients φ45([a, b, c]) for all a, c < B and
all b. The first row contains a list of times consumed by an implementation based on naive
multiplication, the second row contains a list of times consumed by our implementation.

In order to test our implementation for correctness, we have compared the results of both
computations for precision 8. Some of the coefficients are given in Table 2.

Table 1. Time needed to compute the coefficients of Φ45 for indices with diagonal entries
bounded by B.

B 5 6 7 8 9

Number of computed coefficients 1011 2353 4627 8301 13765

Multiplication 0.05 s 4.9 s 290.0 s 142.6 min —
Algorithm 3.3 0.20 s 0.7 s 3.8 s 19.7 s 93.9 s

Table 2. Fourier coefficients of Φ45, where b = b1/
√

D + b2(1 +
√

D)/2.

[a, b1, b2, c] [3, 3, 2, 4] [3, 3, 2, 5] [3, 3, 2, 6] [4, 3, 2, 5] [4, 3, 2, 6]

φ45([a, b, c]) −1 88 −3740 95931 −720940

[a, b1, b2, c] [4, 4, 3, 5] [4, 4, 3, 6] [5, 3, 2, 6] [5, 4, 3, 6] [5, 5, 4, 6]

φ45([a, b, c]) 16038 681615 −835953624 62772732 −47271276
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4.2. Input data for the implementation

We now explain the format of Fourier expansions of vector-valued modular forms that can be
passed to our implementation. Such a Fourier expansion is represented by a dictionary f whose
keys are tuples and whose values are dictionaries, which we call the inner dictionaries of f.
The keys of f represent vectors in O#/O = disc L with respect to the basis 1/

√
D, (1 +

√
D)/2

of O#. A unique representative can be obtained as follows.

D = -3
prec = HermitianModularFormD2Filter_diagonal (2, D)
factory = HermitianModularFormD2Factory(prec)
factory._reduce_vector_valued_index ((2 ,3))

This gives the tuple (−1, 0). That is, we have

2 · 1√
−3

+ 3 · 1 +
√
−3

2
=−1 · 1√

−3
∈ disc(L).

We say that a tuple is reduced if it is reproduced by reduce vector valued index. The keys
of the input dictionary f must by reduced. In the case D =−3 the reduced tuples are (0, 0),
(1, 0), and (−1, 0).

The inner dictionaries of f have rational numbers as keys and values. The keys correspond
to the exponent of q in the Fourier expansion of the corresponding component. The values are
the associated Fourier coefficients.

Example 4.1. The truncated Fourier expansion of a vector-valued modular form

F0 = 1 + 2 q +O(q2), F ±1√
−3

= 4 q
1
3 +O(q2)

can be represented as follows.

{ (0,0) : { 0 : 1, 1 : 2 }, (1,0) : { 1/3 : 4 },
(-1,0) : { 1/3 : 4 } }

In some special cases vector-valued modular forms of type ρL can be computed using
Eisenstein series and theta series. However, this approach does not always work. In [32], a
method is provided that allows us to compute vector-valued modular forms for all L. The
input data used in § 4.3 was obtained this way.

4.3. Using the implementation

One can apply explicit computations of Fourier expansions to prove relations between various
kinds of modular forms. For example, in [18] the restrictions of quaternionic modular forms
to the Hermitian and Siegel upper half-space were investigated. We shall establish a product
expansion for a certain elliptic modular form. The case that we consider has no particular
importance, but it was chosen for reasons of simplicity and clearness. It is, however, similar to
computations that are necessary in string theory, where one wants to derive equalities between
Borcherds products and Maass lifts [12].

Install Sage [36] in such a way that you can modify it. Using git [41], clone the author’s
Purple Sage repository at [34].

git clone git :// github.com/martinra/psage.git
cd psage
git fetch origin paper_computing_borcherds_products:borcherds
git checkout borcherds
sage -sh
./ build_ext
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Link the downloaded psage library to the site packages folder of Sage’s Python. If, for example,
both Sage and Purple Sage are in the same folder, go there and type the following.

PSAGE=‘readlink -f psage/psage ‘
ln -s $PSAGE sage/local/lib/python/site -packages/

Start Sage, either in the terminal or as a notebook. The code that proves the final equality (4.1)
can be found at [33]. One can either load the corresponding file by

load borcherds_example.sage

or copy the code line by line. We reproduce parts of this code, which illustrate how to invoke
our implementation of Algorithm 3.3. The input data is a vector-valued modular form F.

F = load(" borcherds_example_input_data.sobj")
B = 11; D = -3;
prec = HermitianModularFormD2Filter_diagonal(B, D)
phi = borcherds_product__by_logarithm(F, prec)

We start by loading a file that contains the Fourier expansion f of a vector-valued elliptic
modular form. In the third line, we define a filter in the sense of [31]. It contains all Hermitian
matrices [a, b, c] satisfying a, c < B. In the last line, we invoke our implementation. In this way,
we obtain the Fourier expansion phi of the corresponding Borcherds product. The resulting
list of Fourier coefficients for reduced indices [a, b, c] can be found at [33]

In order to demonstrate how to make further use of the result, we restrict it to the Poincaré
upper half-plane.

prec_nr = phi.parent (). monoid (). filter(B)
mf_expansion = dict( enumerate (2*B * [0]) )
ch = phi.parent (). characters (). one_element ()
for (a, b1 , b2 , c) in prec_nr :

mf_expansion[a + c] += phi[(ch , (a, b1 , b2, c))]
mfs = ModularForms (1, F[(0 ,0)][0] / 2)
mfs(PowerSeriesRing(QQ , ’q’)( mf_expansion ). add_bigoh(B))

In the first line, we obtain a filter that allows us to access all indices of a truncated
Fourier expansion. Since we have set B = 11, this is a list of all positive-definite Hermitian
matrices [a, b, c] as above satisfying a, c < 11. In the second to fifth line, we restrict the
Borcherds product to the Poincaré upper half-plane. The corresponding embedding of half
spaces is

τ 7→
(
τ 0
0 τ

)
.

The reader is referred to [17] for a general treatment of modular embeddings in the context
of orthogonal modular forms. In the last line, we construct an elliptic modular form from the
dictionary that we have obtained before.

We have thus found an explicit expression for

WF

∏
[a,b,c]�0

(1− qa+c)f(b,disc([a,b,c])) =−∆(τ)9, (4.1)

where ∆ is the unique normalized cuspform of weight 12. The form F is uniquely determined
by the Fourier expansion

F0(τ) = q−2 +O(q0), F ±1√
−3

(τ) =O(q0).

The above computation is time consuming on a desktop PC. The Borcherds product Φ45 is
a less interesting but more accessible example. For reasons of symmetry, the restriction of Φ45

to (τ 0
0 τ) vanishes, and this can be checked by a direct computation. Along the way, the reader

will compute the coefficients of Φ45 which are given in Table 2.
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F = load(" phi_45_input_data.sobj")
B = 7; D = -3
prec = HermitianModularFormD2Filter_diagonal(B, D)
phi = borcherds_product__by_logarithm(F, prec)

Now one can proceed as above to obtain the restriction of Φ45.
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References

1. J. Bruinier and K. Ono, ‘Heegner divisors, L-functions and harmonic weak Maass forms’, Ann. of Math.
(2) 172 (2010) 2135–2181.

2. R. Borcherds, ‘Automorphic forms on Os+2,2(R) and infinite products’, Invent. Math. 120 (1995)
161–213.

3. R. Borcherds, ‘Automorphic forms with singularities on Grassmannians’, Invent. Math. 132 (1998)
491–562.

4. R. Borcherds, ‘The Gross–Kohnen–Zagier theorem in higher dimensions’, Duke Math. J. 97 (1999)
219–233.

5. R. Borcherds, ‘Correction to: The Gross–Kohnen–Zagier theorem in higher dimensions’, Duke Math. J.
105 (2000) 183–184.

6. H. Braun, ‘Hermitian modular functions’, Ann. of Math. (2) 50 (1949) 827–855.
7. H. Braun, ‘Hermitian modular functions. II’, Ann. of Math. (2) 51 (1950) 92–104.
8. H. Braun, ‘Hermitian modular functions III’, Ann. of Math. (2) 53 (1951) 143–160.
9. J. Bruinier, Borcherds products on O(2,l) and Chern classes of Heegner divisors, Lecture Notes in

Mathematics 1780 (Springer, Berlin, 2002).
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